1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
|
@Part(09, Root="ada.mss")
@Comment{$Date: 2006/11/09 06:29:48 $}
@LabeledSection{Tasks and Synchronization}
@Comment{$Source: e:\\cvsroot/ARM/Source/09.mss,v $}
@Comment{$Revision: 1.84 $}
@begin{Intro}
@PDefn2{Term=[execution], Sec=(Ada program)}
The execution of an Ada program consists of the execution of one
or more @i(tasks).
@Defn{task}
@Defn2{Term=[interaction], Sec=(between tasks)}
Each task represents a separate thread of
control that proceeds independently and concurrently
between the points where it @i(interacts) with other tasks.
The various forms of task interaction are
described in this section, and include:
@IndexSee{Term=[parallel processing],See=(task)}
@Defn{synchronization}
@IndexSee{Term=[concurrent processing],See=(task)}
@IndexSeeAlso{Term=[intertask communication],See=(task)}
@begin(Honest)
The execution of an Ada program consists of the execution
of one or more partitions (see @RefSecNum(Program Execution)),
each of which in turn consists of the execution of an environment task
and zero or more subtasks.
@end(Honest)
@begin(itemize)
the activation and termination of a task;
@Defn{protected object}
a call on a protected subprogram of a @i(protected object),
providing exclusive read-write access, or concurrent read-only
access to shared data;
a call on an entry, either of another task,
allowing for synchronous communication with that task,
or of a protected object, allowing for asynchronous
communication with one or more other tasks using that same protected
object;
a timed operation, including a simple delay statement,
a timed entry call or accept, or a timed asynchronous
select statement (see next
item);
an asynchronous transfer of control as part of an asynchronous
select statement, where a task
stops what it is doing and begins execution at a different
point in response to the completion of an entry call or
the expiration of a delay;
an abort statement, allowing one task to cause the
termination of another task.
@end(itemize)
In addition, tasks can communicate indirectly by
reading and updating (unprotected) shared
variables, presuming the access is properly synchronized through
some other kind of task interaction.
@end{Intro}
@begin{StaticSem}
@Defn{task unit}
The properties of a task are defined by a corresponding task declaration
and @nt<task_body>, which together define a program unit
called a @i(task unit).
@end{StaticSem}
@begin{RunTime}
Over time, tasks proceed through various @i(states).
@PDefn2{Term=[task state], Sec=(inactive)}
@Defn2{Term=[inactive], Sec=(a task state)}
@PDefn2{Term=[task state], Sec=(blocked)}
@Defn2{Term=[blocked], Sec=(a task state)}
@PDefn2{Term=[task state], Sec=(ready)}
@Defn2{Term=[ready], Sec=(a task state)}
@PDefn2{Term=[task state], Sec=(terminated)}
@Defn2{Term=[terminated], Sec=(a task state)}
A task is initially @i(inactive); upon activation, and prior to its
@i{termination}
it is either @i(blocked) (as part
of some task interaction) or @i(ready) to run.
@Defn2{Term=[execution resource], Sec=(required for a task to run)}
While ready, a task competes for the available
@i(execution resources) that it requires to run.
@begin(Discussion)
@Defn{task dispatching policy}
@Defn{dispatching policy for tasks}
The means for selecting which of the ready tasks to run,
given the currently available execution resources, is determined by the
@i(task dispatching policy) in effect, which is generally
implementation defined, but may be controlled by pragmas
and operations defined in the Real-Time Annex
(see @RefSecNum(Priority Scheduling) and @RefSecNum(Dynamic Priorities)).
@end(Discussion)
@end{RunTime}
@begin{Notes}
Concurrent task execution may be implemented on
multicomputers, multiprocessors, or with interleaved execution on a single
physical processor. On the other hand, whenever an implementation can
determine that the required semantic effects can be achieved when
parts of the execution of a
given task are performed by different physical processors acting in
parallel, it may choose to perform them in this way.
@end{Notes}
@begin{DiffWord83}
The introduction has been rewritten.
We use the term "concurrent" rather than "parallel" when talking
about logically independent execution of threads of control.
The term "parallel" is reserved for referring to the
situation where multiple physical processors run simultaneously.
@end{DiffWord83}
@LabeledClause{Task Units and Task Objects}
@begin{Intro}
@Defn{task declaration}
A task unit is declared by a @i(task declaration), which has
a corresponding @nt<task_body>. A task declaration may be
a @nt<task_type_declaration>, in which case it declares
a named task type; alternatively, it may be a @nt<single_task_declaration>,
in which case it defines an anonymous task type, as well as declaring
a named task object of that type.
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<task_type_declaration>,rhs="
@key{task} @key{type} @Syn2{defining_identifier} [@Syn2{known_discriminant_part}] [@key{is}@Chg{Version=[2],New=<
[@key{new} @Syn2{interface_list} @key{with}]
>,Old=<>} @Syn2{task_definition}];"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00399-01]}
@Syn{lhs=<single_task_declaration>,rhs="
@key{task} @Syn2{defining_identifier} [@key{is}@Chg{Version=[2],New=<
[@key{new} @Syn2{interface_list} @key{with}]
>,Old=<>} @Syn2{task_definition}];"}
@Syn{lhs=<task_definition>,rhs="
{@Syn2{task_item}}
[ @key{private}
{@Syn2{task_item}}]
@key{end} [@SynI{task_}@Syn2{identifier}]"}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<task_item>,rhs="@Syn2{entry_declaration} | @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}
@Softpage
@Syn{lhs=<task_body>,rhs="
@key{task} @key{body} @Syn2{defining_identifier} @key{is}
@Syn2{declarative_part}
@key{begin}
@Syn2{handled_sequence_of_statements}
@key{end} [@SynI{task_}@Syn2{identifier}];"}
@begin{SyntaxText}
If a @SynI{task_}@nt{identifier} appears at the
end of a @nt{task_definition} or @nt{task_body},
it shall repeat the @nt{defining_identifier}.
@end{SyntaxText}
@end{Syntax}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00345-01]}@ChgNote{This was just moved below}
@ChgDeleted{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{task_declaration}})}
A task declaration requires a completion@redundant[,
which shall be a @nt{task_body},]
and every @nt{task_body} shall be the completion of some
task declaration.]}
@begin(Honest)
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[The completion can be a @nt{pragma} Import,
if the implementation supports it.]}
@end(Honest)
@end{Legality}
@begin{StaticSem}
A @nt<task_definition> defines a task type and its first subtype.
@PDefn2{Term=[visible part], Sec=(of a task unit)}
The first list of @nt{task_item}s of a @nt{task_@!definition},
together with the @nt{known_@!discriminant_@!part}, if any,
is called the visible part of the task unit.
@Redundant[@PDefn2{Term=[private part], Sec=(of a task unit)}
The optional list of @nt{task_item}s after the reserved
word @key{private} is called the private part of the task unit.]
@begin{TheProof}
Private part is defined in Section 8.
@end{theproof}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0029],ARef=[AI95-00116-01]}
@ChgAdded{Version=[1],Text=[For a task declaration without a
@nt{task_definition}, a
@nt{task_definition} without @nt{task_item}s is assumed.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[For a task declaration
with an @nt{interface_list}, the task type
inherits user-defined primitive subprograms from each progenitor
type (see @RefSecNum{Interface Types}), in the same way that a derived type
inherits user-defined primitive subprograms from its progenitor types (see
@RefSecNum{Derived Types and Classes}). If the first
parameter of a primitive inherited subprogram is of the task type or an access
parameter designating the task type, and there is an @nt{entry_declaration} for
a single entry with the same identifier within the task declaration,
whose profile is type conformant with the
prefixed view profile of the inherited subprogram, the inherited subprogram is
said to be @i{implemented} by the conforming task entry.@PDefn2{Term=[implemented],
Sec=[by a task entry]}@Defn2{Term=[type conformance],Sec=(required)}]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The inherited subprograms can only come from an
interface given as part of the task declaration.]}
@end{Ramification}
@end{StaticSem}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}@ChgNote{This was just moved, not changed}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{task_declaration}})}
A task declaration requires a completion@redundant[,
which shall be a @nt{task_body},]
and every @nt{task_body} shall be the completion of some
task declaration.]}
@begin(Honest)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The completion can be a @nt{pragma} Import,
if the implementation supports it.]}
@end(Honest)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Text=[@Redundant[Each @i{interface_}@nt{subtype_mark} of an
@nt{interface_list} appearing within a task declaration shall denote
a limited interface type that is not a protected interface.]]}
@begin(TheProof)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@RefSecNum{Interface Types} requires that an
@nt{interface_list} only name interface types, and limits the descendants of
the various kinds of interface types. Only a limited, task, or
synchronized interface can have a task type descendant. Nonlimited or
protected interfaces are not allowed, as they offer operations that a task
does not have.]}
@end(TheProof)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[The prefixed view profile of an explicitly
declared primitive subprogram of a tagged task type shall not be type
conformant with any entry of the task type, if the first
parameter of the subprogram is of the task type or is an
access parameter designating the task type.]}
@begin(Reason)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This prevents the existence of two operations
with the same name and profile which could be called with a prefixed view.
If the operation was inherited, this would be illegal by the following rules;
this rule puts inherited and non-inherited routines on the same footing.
Note that this only applies to tagged task types (that is, those with an
interface in their declaration); we do that as there is no problem with
prefixed view calls of primitive operations for @lquotes@;normal@rquotes
task types, and having this rule apply to all tasks would be incompatible
with Ada 95.]}
@end(Reason)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For each primitive subprogram
inherited by the type declared by a task declaration, at most one of the
following shall apply:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is overridden with a
primitive subprogram of the task type, in which case the overriding subprogram
shall be subtype conformant with the inherited subprogram and not abstract;
or@Defn2{Term=[subtype conformance],Sec=(required)}]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is implemented by a
single entry of the task type; in which case its prefixed view profile
shall be subtype conformant with that of the task entry.
@Defn2{Term=[subtype conformance],Sec=(required)}]}
@begin(Ramification)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[An entry may implement two subprograms from the
ancestors, one whose first parameter is of type @i<T> and one whose first
parameter is of type @key{access} @i{T}. That doesn't cause implementation
problems because @lquotes@;implemented by@rquotes (unlike
@lquotes@;overridden@rquote) probably entails the creation of wrappers.]}
@end(Ramification)
@end{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[If neither applies, the inherited subprogram shall be a
null procedure. @PDefn{generic contract issue}In addition to the places where
@LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Each inherited subprogram can only have a single
implementation (either from overriding a subprogram or implementing an entry),
and must have an implementation unless the subprogram is a null procedure.]}
@end{Reason}
@end{Legality}
@begin{RunTime}
@redundant[@PDefn2{Term=[elaboration], Sec=(task declaration)}
The elaboration of a task declaration elaborates the @nt<task_definition>.
@PDefn2{Term=[elaboration], Sec=(single_task_declaration)}
The elaboration of a @nt<single_@!task_@!declaration> also creates
an object of an (anonymous) task type.]
@begin(TheProof)
This is redundant with the general rules for the elaboration
of a @nt<full_type_declaration> and an @nt<object_declaration>.
@end(TheProof)
@PDefn2{Term=[elaboration], Sec=(task_definition)}
@Redundant[The elaboration of a @nt<task_definition>
creates the task type and its first
subtype;] it also includes the elaboration of the @nt<entry_declaration>s
in the given order.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@PDefn2{Term=[initialization], Sec=(of a task object)}
As part of the initialization of a task object, any
@Chg{New=[@nt<aspect_clause>s],Old=[@nt<representation_clause>s]} and
any per-object constraints associated with @nt<entry_@!declaration>s
of the corresponding @nt<task_@!definition> are elaborated in the given order.
@begin{Reason}
@ChgRef{Version=[1],Kind=[Revised]}
The only @Chg{New=[@nt<aspect_clause>s],Old=[@nt<representation_clause>s]}
defined for task entries are ones that specify the Address of an entry,
as part of defining an interrupt entry.
These clearly need to be elaborated per-object, not per-type.
Normally the address will be a function of a discriminant,
if such an Address clause is in a task type rather than a single task
declaration, though it could rely on a parameterless function
that allocates sequential interrupt vectors.
We do not mention representation pragmas, since each
pragma may have its own elaboration rules.
@end{Reason}
@PDefn2{Term=[elaboration], Sec=(task_body)}
The elaboration of a @nt{task_body} has no effect other than to establish
that tasks of the type can from then on be activated without
failing the Elaboration_Check.
@redundant[The execution of a @nt<task_body> is invoked by the activation of a
task of the corresponding type
(see @RefSecNum(Task Execution - Task Activation)).]
@leading@;The content of a task object of a given task type includes:
@begin(itemize)
The values of the discriminants of the task object, if any;
An entry queue for each entry of the task object;
@begin(Ramification)
"For each entry" implies one queue for each single entry,
plus one for each entry of each entry family.
@end(Ramification)
A representation of the state of the associated task.
@end(itemize)
@end{RunTime}
@begin{Notes}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
@Chg{Version=[2],New=[Other than
in an @nt{access_definition}, the name of a task unit within],Old=[Within]}
the declaration or body of @Chg{Version=[2],New=[the],Old=[a]} task
unit@Chg{Version=[2],New=[],Old=[, the name of
the task unit]} denotes the current instance of the unit
(see @RefSecNum(The Context of Overload Resolution)),
rather than the first subtype of the corresponding task type (and
thus the name cannot be used as a @nt<subtype_mark>).
@begin(Discussion)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
@Chg{Version=[2],New=[It can be used as a @nt{subtype_mark} in an anonymous
access type. In addition],Old=[However]}, it is possible to refer to
some other subtype of the task type within its body,
presuming such a subtype has been
declared between the @nt<task_type_declaration> and the @nt<task_body>.
@end(Discussion)
The notation of a @nt<selected_component> can be used to denote a discriminant
of a task (see @RefSecNum(Selected Components)).
Within a task unit, the name of a discriminant of the task type
denotes the corresponding discriminant of the current instance
of the unit.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A task type is a limited type (see @RefSecNum(Limited Types)),
and hence @Chg{Version=[2],New=[precludes use of @nt{assignment_statement}s and],
Old=[has neither an assignment operation nor]} predefined equality operators.
If an application needs to store and exchange task identities, it
can do so by defining an access type designating the corresponding
task objects and by using access values for identification purposes.
Assignment is available for such an access type as for any
access type.
Alternatively, if the implementation supports the
Systems Programming Annex,
the Identity attribute
can be used for task identification
(see @Chg{Version=[2],New=[@RefSecNum(The Package Task_Identification)],
Old=[@RefSecNum(Task Information)]}).
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Examples of declarations of task types:}
@begin{Example}
@key(task) @key(type) Server @key(is)
@key(entry) Next_Work_Item(WI : @key(in) Work_Item);
@key(entry) Shut_Down;
@key(end) Server;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(task) @key(type) Keyboard_Driver(ID : Keyboard_ID := New_ID) @key(is)@Chg{Version=[2],New=[
@key(new) Serial_Device @key(with) --@RI[ see @RefSecNum{Interface Types}]],Old=[]}
@key(entry) Read (C : @key(out) Character);
@key(entry) Write(C : @key(in) Character);
@key(end) Keyboard_Driver;
@end{Example}
@leading@keepnext@i{Examples of declarations of single tasks:}
@begin{Example}
@key(task) Controller @key(is)
@key(entry) Request(Level)(D : Item); --@RI[ a family of entries]
@key(end) Controller;
@key(task) Parser @key(is)
@key(entry) Next_Lexeme(L : @key(in) Lexical_Element);
@key(entry) Next_Action(A : @key(out) Parser_Action);
@key(end);
@key(task) User; --@RI[ has no entries]
@end{Example}
@begin{wide}
@leading@keepnext@i{Examples of task objects:}
@end{wide}
@begin{Example}
Agent : Server;
Teletype : Keyboard_Driver(TTY_ID);
Pool : @key(array)(1 .. 10) @key(of) Keyboard_Driver;
@end{Example}
@begin{wide}
@leading@keepnext@i{Example of access type designating task objects:}
@end{wide}
@begin{Example}
@key(type) Keyboard @key(is) @key(access) Keyboard_Driver;
Terminal : Keyboard := @key(new) Keyboard_Driver(Term_ID);
@end{Example}
@end{Examples}
@begin{Extend83}
@ChgRef{Version=[1],Kind=[Revised]}
@Defn{extensions to Ada 83}
The syntax rules for task declarations are modified to allow a
@nt{known_discriminant_part}, and to allow a private part.
They are also modified to allow @nt{entry_declaration}s and
@Chg{New=[@nt<aspect_clause>s],Old=[@nt<representation_clause>s]} to be mixed.
@end{Extend83}
@begin{DiffWord83}
The syntax rules for tasks have been split up according to task types and
single tasks.
In particular:
The syntax rules for @ntf{task_declaration} and @ntf{task_specification} are
removed. The syntax rules for
@nt{task_type_declaration}, @nt{single_task_declaration}, @nt{task_definition}
and @nt{task_item} are new.
The syntax rule for @nt{task_body} now uses the nonterminal
@nt{handled_sequence_of_statements}.
The @nt{declarative_part} of a @nt{task_body} is now required;
that doesn't make any real difference,
because a @nt{declarative_part} can be empty.
@end{DiffWord83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Task types and single tasks can be derived from one or more interfaces.
Entries of the task type can implement the primitive operations of an
interface. @nt{Overriding_indicator}s can be used to specify whether or not
an entry implements a primitive operation.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0029],ARef=[AI95-00116-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that a task type has an
implicit empty @nt{task_definition} if none is given.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0009],ARef=[AI95-00137-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Changed representation clauses
to aspect clauses to reflect that they are used for more than just
representation.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@ChgAdded{Version=[2],Text=[Revised the note on operations of task types to
reflect that limited types do have an assignment operation, but not
copying (@nt{assignment_statement}s).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00382-01]}
@ChgAdded{Version=[2],Text=[Revised the note on use of the name of
a task type within itself to reflect the exception for anonymous
access types.]}
@end{DiffWord95}
@LabeledClause{Task Execution - Task Activation}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(task)}
The execution of a task of a given task type consists of the execution
of the corresponding @nt{task_body}.
@PDefn2{Term=[execution], Sec=(task_body)}
@Defn2{Term=[task], Sec=(execution)}
@Defn2{Term=[activation], Sec=(of a task)}
@Defn2{Term=[task], Sec=(activation)}
The initial part of this execution is called the @i(activation) of
the task; it consists of the elaboration of the @nt<declarative_part>
of the @nt<task_body>.
@Defn{activation failure}
Should an exception be propagated by the elaboration
of its @nt<declarative_part>,
the activation of the task is defined to have @i(failed),
and it becomes a completed task.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00416-01]}
A task object (which represents one task) can be @Chg{Version=[2],New=[a part
of a stand-alone object, of an object created by],Old=[created either as
part of the elaboration
of an @nt<object_@!declaration> occurring immediately within some
declarative region, or as part of the evaluation of]}
an @nt{allocator}@Chg{Version=[2],New=[, or of an anonymous object of a limited
type, or a coextension of one of these],Old=[]}. All
tasks@Chg{Version=[2],New=[ that are part or coextensions of any
of the stand-alone objects],Old=[]}
created by the elaboration of @nt<object_@!declaration>s@Chg{Version=[2],
New=[ (or @nt{generic_association}s of formal objects of
mode @key{in})],Old=[]}
of a single declarative region@Chg{Version=[2],
New=[],Old=[ (including subcomponents of the declared objects)]}
are activated together.
@Chg{Version=[2],New=[All tasks that are part or coextensions of a single
object that is not a stand-alone object are activated together.],Old=[Similarly,
all tasks created by the evaluation of a single @nt<allocator>
are activated together. The activation of a task is associated
with the innermost @nt<allocator> or @nt<object_@!declaration>
that is responsible for its creation.]}
@begin{Discussion}
The initialization of an @nt{object_declaration} or @nt{allocator} can
indirectly include the creation of other objects that contain tasks.
For example, the default expression for a subcomponent of an object
created by an @nt{allocator} might call a function that evaluates a
completely different @nt{allocator}. Tasks created by the two
allocators are @i{not} activated together.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00416-01]}
For @Chg{Version=[2],New=[the ],Old=[]}tasks@Chg{Version=[2],New=[],Old=[
created by the elaboration of @nt<object_declaration>s]}
of a given declarative region, the activations are initiated
within the context of the @nt<handled_@!sequence_of_@!statements>
(and its associated @nt<exception_@!handler>s if any @em
see @RefSecNum{Exception Handlers}), just prior to executing the
statements of the @Chg{Version=[2],New=[@nt{handled_sequence_of_statements}],
Old=[@ntf<_sequence>]}.
@Redundant[For a package without an explicit body or an explicit
@nt<handled_@!sequence_of_@!statements>,
an implicit body or an implicit @nt<null_@!statement> is assumed,
as defined in @RefSecNum(Package Bodies).]
@begin(Ramification)
If Tasking_Error is raised, it can be handled by handlers of
the @nt<handled_@!sequence_of_@!statements>.
@end(Ramification)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00416-01]}
For tasks @Chg{Version=[2],New=[that are part or coextensions of a single
object that is
not a stand-alone object, activations are initiated after completing any
initialization of the outermost object enclosing these tasks, prior
to performing any other operation on the outermost object. In
particular, for tasks that are part or coextensions of the object ],
Old=[]}created by the evaluation of an @nt<allocator>,
the activations are initiated as the last step of
evaluating the @nt<allocator>, @Chg{Version=[2],New=[],Old=[after completing
any initialization for the object created by the @nt<allocator>,
and ]}prior to returning the new access
value.@Chg{Version=[2],New=[ For tasks that are part or coextensions of an
object that is the result of a function call, the activations are
not initiated until after the function returns.],Old=[]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[The intent is that @lquotes@;temporary@rquotes@;
objects with task parts (or coextensions) are treated similarly to an
object created by an
allocator. The @lquotes@;whole@rquotes@; object is initialized, and then all
of the task parts (including the coextensions) are activated together. Each
such @lquotes@;whole@rquotes@;
object has its own task activation sequence, involving the activating task
being suspended until all the new tasks complete their activation.]}
@end{Discussion}
@Defn2{Term=[activator], Sec=(of a task)}
@PDefn2{term=[blocked], Sec=(waiting for activations to complete)}
The task that created the new tasks and initiated their
activations (the @i(activator)) is
blocked until all of these activations complete (successfully
or not).
@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
Once all of these activations are complete,
if the activation
of any of the tasks has failed
@Redundant[(due to the propagation of an exception)],
Tasking_Error is raised in the activator, at the place at which
it initiated the activations. Otherwise, the activator
proceeds with its execution normally. Any tasks that are aborted
prior to completing their activation are ignored when determining
whether to raise Tasking_Error.
@begin(Ramification)
Note that a task created by an @nt<allocator> does not necessarily
depend on its activator; in such a case the activator's termination
can precede the termination of the newly created task.
@end(Ramification)
@begin(Discussion)
Tasking_Error is raised only once, even if two or more
of the tasks being activated fail their activation.
@end(Discussion)
@begin{Honest}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00265-01]}
@ChgAdded{Version=[2],Text=[The pragma Partition_Elaboration_Policy (see
@RefSecNum{Pragma Partition_Elaboration_Policy})
can be used to defer task activation to a later point, thus changing
many of these rules.]}
@end{Honest}
Should the task that created
the new tasks never reach the point
where it would initiate the activations (due to an abort or the
raising of an exception),
the newly created tasks become terminated and are never activated.
@end{RunTime}
@begin{Notes}
An entry of a task can be called before the task has been activated.
If several tasks are activated together, the execution of any of these
tasks need not await the end of the activation of the other tasks.
A task can become completed during its activation either because of an
exception or because it is aborted
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)).
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of task activation:}
@begin{Example}
@key(procedure) P @key(is)
A, B : Server; --@RI[ elaborate the task objects A, B]
C : Server; --@RI[ elaborate the task object C]
@key(begin)
--@RI[ the tasks A, B, C are activated together before the first statement]
...
@key(end);
@end{Example}
@end{Examples}
@begin{DiffWord83}
We have replaced the term @i{suspended} with @i{blocked},
since we didn't want to consider a task blocked when it was
simply competing for execution resources. "Suspended" is sometimes
used more generally to refer to tasks that are not actually running
on some processor, due to the lack of resources.
This clause has been rewritten in an attempt to improve presentation.
@end{DiffWord83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[Adjusted the wording for activating tasks to
handle the case of anonymous function return objects. This is critical;
we don't want to be waiting for the tasks in a return object when we exit
the function normally.]}
@end{DiffWord95}
@LabeledClause{Task Dependence - Termination of Tasks}
@begin{RunTime}
@leading@Defn2{Term=[dependence], Sec=(of a task on a master)}
@Defn2{Term=[task], Sec=(dependence)}
@Defn2{Term=[task], Sec=(completion)}
@Defn2{Term=[task], Sec=(termination)}
Each task (other than an environment task @em see @RefSecNum(Program Execution))
@i(depends) on one or more masters
(see @RefSecNum(Completion and Finalization)), as follows:
@begin(itemize)
If the task is created by the evaluation of an @nt<allocator>
for a given access type,
it depends on each master that includes the
elaboration of the declaration of the ultimate ancestor of the given
access type.
If the task is created by the elaboration of an @nt<object_declaration>,
it depends on each master that includes this elaboration.
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[Otherwise, the task depends on
the master of the outermost object of which it is a part (as determined by the
accessibility level of that object @em see
@RefSecNum{Operations of Access Types} and
@RefSecNum{Completion and Finalization}), as well as on any master whose
execution includes that of the master of the outermost object.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[The master of a task created by a return
statement changes when the accessibility of the return object changes. Note
that its activation happens, if at all, only after the function returns and
all accessibility level changes have occurred.]}
@end{Ramification}
@end(itemize)
@Defn2{term=[dependence], Sec=(of a task on another task)}
Furthermore, if a task depends on a given master, it is defined
to depend on the task that executes the master, and (recursively)
on any master of that task.
@begin{Discussion}
Don't confuse these kinds of dependences with the
dependences among compilation units defined in
@RefSec{Compilation Units - Library Units}.
@end{Discussion}
A task is said to be @i(completed) when the execution of its corresponding
@nt<task_body> is completed. A task is said to be @i(terminated) when
any finalization of the @nt<task_body> has been performed
(see @RefSecNum(Completion and Finalization)).
@Redundant[The first step of finalizing a master
(including a @nt<task_body>) is to
wait for the termination of any tasks dependent on the master.]
@PDefn2{Term=[blocked], Sec=(waiting for dependents to terminate)}
The task executing the master is blocked until all the dependents
have terminated. @Redundant[Any remaining finalization is then performed
and the master is left.]
@ChgRef{Version=[1],Kind=[Revised]}@ChgNote{Doubled word}
@leading@;Completion of a task (and the corresponding @nt<task_body>) can
occur when the task is blocked at a @nt<select_@!statement> with an
@Chg{New=[],Old=[an ]}open @nt<terminate_alternative>
(see @RefSecNum(Selective Accept)); the open @nt<terminate_alternative>
is selected if and only if the following conditions are satisfied:
@begin{itemize}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00415-01]}
The task depends on some completed master;@Chg{Version=[2],New=[ and],Old=[]}
Each task that depends on the master considered is either already
terminated or similarly blocked at a @nt<select_statement>
with an open @nt{terminate_alternative}.
@end{itemize}
When both conditions are satisfied, the task considered becomes
completed, together with all tasks that depend on the master
considered that are not yet completed.
@begin(Ramification)
Any required finalization is performed after the selection
of @nt<terminate_alternative>s. The tasks are not callable
during the finalization. In some ways it is as though they were
aborted.
@end(Ramification)
@end{RunTime}
@begin{Notes}
The full view of a limited private type can be a task type, or
can have subcomponents of a task type. Creation of an object of
such a type creates dependences according to the full type.
An @nt<object_renaming_declaration> defines a new view of an
existing entity and hence creates no further dependence.
The rules given for the collective completion of a group
of tasks all blocked on @nt<select_statement>s with
open @nt<terminate_alternative>s ensure that the collective
completion can occur only when there are no remaining active
tasks that could call one of the tasks being collectively completed.
If two or more tasks are blocked on @nt<select_statement>s
with open @nt{terminate_alternative}s, and become
completed collectively, their finalization actions proceed concurrently.
@leading@keepnext@;The completion of a task can occur due to any of the following:
@begin{itemize}
the raising of an exception during the elaboration of the
@nt{declarative_part} of the corresponding @nt{task_body};
the completion of the
@nt{handled_sequence_of_statements} of the corresponding
@nt{task_body};
the selection of
an open @nt<terminate_alternative> of a @nt<select_statement>
in the corresponding @nt<task_body>;
the abort of the task.
@end{itemize}
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of task dependence:}
@begin{Example}
@key(declare)
@key(type) Global @key(is) @key(access) Server; --@RI[ see @RefSecNum(Task Units and Task Objects)]
A, B : Server;
G : Global;@Softpage
@key(begin)
--@RI[ activation of A and B]
@key(declare)
@key(type) Local @key(is) @key(access) Server;
X : Global := @key(new) Server; --@RI[ activation of X.@key{all}]
L : Local := @key(new) Server; --@RI[ activation of L.@key{all}]
C : Server;@Softpage
@key(begin)
--@RI[ activation of C]
G := X; --@RI[ both G and X designate the same task object]
...
@key(end;) --@RI[ await termination of C and L.@key{all} (but not X.@key{all})]
...
@key(end;) --@RI[ await termination of A, B, and G.@key{all}]
@end{Example}
@end{Examples}
@begin{DiffWord83}
We have revised the wording to be consistent with the definition
of master now given in @RefSec(Completion and Finalization).
Tasks that used to depend on library packages in Ada 83, now depend on the
(implicit) @nt<task_body> of the
environment task (see @RefSecNum(Program Execution)).
Therefore, the environment task has to wait for
them before performing library level finalization and terminating
the partition.
In Ada 83 the requirement to wait for tasks that depended
on library packages was not as clear.
What was "collective termination" is now "collective completion"
resulting from selecting @nt<terminate_alternative>s. This is because
finalization still occurs for such tasks, and this happens after
selecting the @nt<terminate_alternative>, but before termination.
@end{DiffWord83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[Added missing wording that explained the
master of tasks that are neither object declarations nor allocators,
such as function returns.]}
@end{DiffWord95}
@RMNewPage@Comment{For printed RM Ada 2005}
@LabeledClause{Protected Units and Protected Objects}
@begin{Intro}
@Defn{protected object}
@Defn{protected operation}
@Defn{protected subprogram}
@Defn{protected entry}
A @i(protected object) provides coordinated access to shared data,
through calls on its visible @i(protected operations),
which can be @i{protected subprograms} or @i{protected entries}.
@Defn{protected declaration}
@Defn{protected unit}
@Defn{protected declaration}
A @i{protected unit} is declared by a @i(protected declaration), which has
a corresponding @nt<protected_body>.
A protected declaration may be a @nt<protected_type_declaration>,
in which case it declares
a named protected type; alternatively,
it may be a @nt<single_protected_declaration>,
in which case it defines an anonymous protected type, as well as declaring
a named protected object of that type.
@IndexSee{Term=[broadcast signal],See=(protected object)}
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<protected_type_declaration>,rhs="
@key{protected} @key{type} @Syn2{defining_identifier} [@Syn2{known_discriminant_part}] @key{is}@Chg{Version=[2],New=<
[@key{new} @Syn2{interface_list} @key{with}]
>,Old=<>} @Syn2{protected_definition};"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00399-01]}
@Syn{lhs=<single_protected_declaration>,rhs="
@key{protected} @Syn2{defining_identifier} @key{is}@Chg{Version=[2],New=<
[@key{new} @Syn2{interface_list} @key{with}]
>,Old=<>} @Syn2{protected_definition};"}
@Syn{lhs=<protected_definition>,rhs="
{ @Syn2{protected_operation_declaration} }
[ @key{private}
{ @Syn2{protected_element_declaration} } ]
@key{end} [@SynI{protected_}@Syn2{identifier}]"}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<protected_operation_declaration>,
rhs="@Syn2{subprogram_declaration}
| @Syn2{entry_declaration}
| @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}
@Syn{lhs=<protected_element_declaration>,
rhs="@Syn2<protected_operation_declaration>
| @Syn2<component_declaration>"}
@begin{Reason}
We allow the operations and components to be mixed because that's how
other things work (for example, package
declarations). We have relaxed the
ordering rules for the items inside @nt{declarative_part}s and
@nt{task_definition}s as well.
@end{Reason}
@Syn{lhs=<protected_body>,rhs="
@key{protected} @key{body} @Syn2{defining_identifier} @key{is}
{ @Syn2{protected_operation_item} }
@key{end} [@SynI{protected_}@Syn2{identifier}];"}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<protected_operation_item>,
rhs="@Syn2{subprogram_declaration}
| @Syn2{subprogram_body}
| @Syn2{entry_body}
| @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}
@begin{SyntaxText}
If a @SynI{protected_}@nt{identifier} appears at
the end of a @nt{protected_definition} or @nt{protected_body},
it shall repeat the @nt{defining_identifier}.
@end{SyntaxText}
@end{Syntax}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00345-01]}@ChgNote{This was just moved below}
@ChgDeleted{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{protected_declaration}})}
A protected declaration requires a completion@redundant[,
which shall be a @nt{protected_@!body},]
and every @nt{protected_@!body} shall be the completion of some
protected declaration.]}
@begin(Honest)
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[The completion can be a @nt{pragma} Import,
if the implementation supports it.]}
@end(Honest)
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01],ARef=[AI95-00401-01]}@Comment{This
is no change here, but both of these AIs reference this paragraph, adding and removing text.}
A @nt<protected_definition> defines a protected type and its first subtype.
@PDefn2{Term=[visible part], Sec=(of a protected unit)}
The list of @nt{protected_@!operation_@!declaration}s of a
@nt{protected_@!definition},
together with the @nt{known_@!discriminant_@!part}, if any,
is called the visible part of the protected unit.
@Redundant[@PDefn2{Term=[private part], Sec=(of a protected unit)}
The optional list of @nt{protected_@!element_@!declaration}s after the reserved
word @key{private} is called the private part of the protected
unit.]
@begin{TheProof}
Private part is defined in Section 8.
@end{theproof}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[For a protected declaration
with an @nt{interface_list}, the protected type inherits user-defined primitive
subprograms from each progenitor type (see @RefSecNum{Interface Types}), in the
same way that a derived type inherits user-defined primitive subprograms from
its progenitor types (see @RefSecNum{Derived Types and Classes}). If the first
parameter of a primitive inherited subprogram is of the protected type or an
access parameter designating the protected type, and there is a
@nt{protected_operation_declaration} for a protected subprogram or single entry
with the same identifier within the protected declaration, whose
profile is type conformant with the prefixed view profile of the
inherited subprogram, the inherited subprogram is said to be
@i{implemented} by the conforming protected subprogram or
entry.@PDefn2{Term=[implemented],
Sec=[by a protected subprogram]}@PDefn2{Term=[implemented],
Sec=[by a protected entry]}
@Defn2{Term=[type conformance],Sec=(required)}]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The inherited subprograms can only come from an
interface given as part of the protected declaration.]}
@end{Ramification}
@end{StaticSem}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}@ChgNote{This was just moved, not changed}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{protected_declaration}})}
A protected declaration requires a completion@redundant[,
which shall be a @nt{protected_@!body},]
and every @nt{protected_@!body} shall be the completion of some
protected declaration.]}
@begin(Honest)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The completion can be a @nt{pragma} Import,
if the implementation supports it.]}
@end(Honest)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Text=[@Redundant[Each @i{interface_}@nt{subtype_mark} of an
@nt{interface_list} appearing within a protected declaration shall denote a
limited interface type that is not a task interface.]]}
@begin(TheProof)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@RefSecNum{Interface Types} requires that an
@nt{interface_list} only name interface types, and limits the descendants of
the various kinds of interface types. Only a limited, protected, or
synchronized interface can have a protected type descendant. Nonlimited or
task interfaces are not allowed, as they offer operations that a protected
type does not have.]}
@end(TheProof)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[The prefixed view profile of an explicitly declared
primitive subprogram of a tagged protected type shall not be type conformant
with any protected operation of the protected type, if the first parameter of
the subprogram is of the protected type or is an access parameter designating
the protected type.@Defn2{Term=[type conformance],Sec=(required)}]}
@begin(Reason)
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This prevents the existence of two operations
with the same name and profile which could be called with a prefixed view.
If the operation was inherited, this would be illegal by the following rules;
this rule puts inherited and non-inherited routines on the same footing.
Note that this only applies to tagged protected types (that is, those with an
interface in their declaration); we do that as there is no problem with
prefixed view calls of primitive operations for @lquotes@;normal@rquotes
protected types, and having this rule apply to all protected types would be
incompatible with Ada 95.]}
@end(Reason)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For each primitive subprogram
inherited by the type declared by a protected declaration, at most one of the
following shall apply:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is overridden with a
primitive subprogram of the protected type, in which case the overriding
subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or@Defn2{Term=[subtype conformance],Sec=(required)}]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is implemented by a
protected subprogram or single entry of the protected type,
in which case its prefixed view profile shall be subtype conformant with that
of the protected subprogram or entry.
@Defn2{Term=[subtype conformance],Sec=(required)}]}
@end{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[If neither applies, the inherited subprogram shall
be a null procedure. @PDefn{generic contract issue}In addition to the places
where @LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Each inherited subprogram can only have a single
implementation (either from overriding a subprogram, implementing a
subprogram, or implementing an entry), and must have an implementation unless
the subprogram is a null procedure.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[If an inherited subprogram is implemented by a
protected procedure or an entry, then the first parameter of the inherited
subprogram shall be of mode @key{out} or @key{in out}, or an
access-to-variable parameter.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[For a protected procedure or entry, the protected
object can be read or written (see
@RefSecNum{Protected Subprograms and Protected Actions}}. A subprogram
that is implemented by a protected procedure or entry must have a profile
which reflects that in order to avoid confusion.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[If a protected subprogram
declaration has an @nt{overriding_indicator}, then at the point of the
declaration:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{overriding}, then the subprogram shall
implement an inherited subprogram;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{not overriding}, then the subprogram shall
not implement any inherited subprogram.]}
@end{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@PDefn{generic contract issue}In addition to the
places where @LegalityTitle normally apply (see
@RefSecNum{Generic Instantiation}), these rules also apply in the private part
of an instance of a generic unit.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[These rules are subtly different than those for
subprograms (see @RefSecNum{Overriding Indicators}) because there cannot be
@lquotes@;late@rquotes inheritance of primitives from interfaces. Hidden
(that is, private) interfaces are prohibited explicitly (see
@RefSecNum{Private Types and Private Extensions}), as are hidden primitive
operations (as private operations of public abstract types are prohibited
@em see @RefSecNum{Abstract Types and Subprograms}).]}
@end{Discussion}
@end{Legality}
@begin{RunTime}
@redundant[@PDefn2{Term=[elaboration], Sec=(protected declaration)}
The elaboration of a protected declaration
elaborates the @nt<protected_definition>.
@PDefn2{Term=[elaboration], Sec=(single_protected_declaration)}
The elaboration of a @nt<single_@!protected_@!declaration> also creates
an object of an (anonymous) protected type.]
@begin(TheProof)
This is redundant with the general rules for the elaboration
of a @nt<full_type_declaration> and an @nt<object_declaration>.
@end(TheProof)
@PDefn2{Term=[elaboration], Sec=(protected_definition)}
@Redundant[The elaboration of a @nt<protected_definition>
creates the protected type and its first
subtype;] it also includes the elaboration of the
@nt<component_declaration>s and @nt<protected_operation_declaration>s
in the given order.
@redundant[@PDefn2{Term=[initialization], Sec=(of a protected object)}
As part of the initialization of a protected object,
any per-object constraints (see @RefSecNum{Record Types}) are elaborated.]
@begin{Discussion}
We do not mention pragmas since each pragma has its
own elaboration rules.
@end{Discussion}
@PDefn2{Term=[elaboration], Sec=(protected_body)}
The elaboration of a @nt{protected_body} has no other effect than to establish
that protected operations of the type can from then on be called without
failing the Elaboration_Check.
@leading@keepnext@;The content of an object of a given protected type includes:
@begin(itemize)
The values of the components of the
protected object, including (implicitly)
an entry queue for each entry declared for the protected object;
@begin(Ramification)
"For each entry" implies one queue for each single entry,
plus one for each entry of each entry family.
@end(Ramification)
@PDefn2{Term=[execution resource], Sec=(associated with a protected object)}
A representation of the state of the execution resource
@i(associated) with the protected object
(one such resource is associated with each protected object).
@end(itemize)
@Redundant[The execution resource associated with a protected object
has to be acquired to
read or update any components of the protected object;
it can be acquired (as part of a protected action @em
see @RefSecNum(Protected Subprograms and Protected Actions))
either for concurrent read-only access, or for exclusive
read-write access.]
@PDefn2{Term=[finalization], Sec=(of a protected object)}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
As the first step of the @i{finalization} of a protected object,
each call remaining on any entry queue of the object
is removed from its queue and
Program_Error is raised at the place of the corresponding
@nt<entry_@!call_@!statement>.
@begin(Reason)
@leading@;This is analogous to the raising of Tasking_Error in callers
of a task that completes before accepting the calls.
This situation can only occur due to a
requeue (ignoring premature unchecked_deallocation), since any task that
has accessibility to a protected object is awaited before finalizing
the protected object.
For example:
@begin{Example}
@key[procedure] Main @key[is]
@key[task] T @key[is]
@key[entry] E;
@key[end] T;
@key[task] @key[body] T @key[is]
@key[protected] PO @key[is]
@key[entry] Ee;
@key[end] PO;
@key[protected] @key[body] PO @key[is]
@key[entry] Ee @key[when] False @key[is]
@key[begin]
@key[null];
@key[end] Ee;
@key[end] PO;
@key[begin]
@key[accept] E @key[do]
@key[requeue] PO.Ee;
@key[end] E;
@key[end] T;
@key[begin]
T.E;
@key[end] Main;
@end{Example}
The environment task is queued on PO.EE when PO is finalized.
In a real example, a server task might park callers on a local protected
object for some useful purpose, so we didn't want to disallow this case.
@end(Reason)
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00280-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
It is a bounded error to call an entry or subprogram of a
protected object after that object is finalized. If the error is detected,
Program_Error is raised. Otherwise, the call proceeds normally, which may leave
a task queued forever.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is very similar to the finalization rule. It
is a bounded error so that an implementation can avoid the overhead of the
check if it can ensure that the call still will operate properly. Such an
implementation cannot need to return resources (such as locks) to an
executive that it needs to execute calls.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Type=[Leading],Text=[This case can happen (and has
happened in
production code) when a protected object is accessed from the Finalize routine
of a type. For example:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} Ada.Finalization.Controlled;
@key{package} Window_Manager @key{is}
...
@key{type} Root_Window @key{is new} Ada.Finalization.Controlled @key{with private};
@key{type} Any_Window @key{is access all} Root_Window;
...
@key{private}
...
@key{procedure} Finalize (Object : @key{in out} Root_Window);
...
@key{end} Window_Manager;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{package body} Window_Manager @key{is}
@key{protected type} Lock @key{is}
@key{entry} Get_Lock;
@key{procedure} Free_Lock;
...
@key{end} Lock;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ Window_Lock : Lock;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} Finalize (Object : @key{in out} Root_Window) @key{is}
@key{begin}
Window_Lock.Get_Lock;
...
Window_Lock.Free_Lock;
@key{end} Finalize;
...
A_Window : Any_Window := @key{new} Root_Window;
@key{end} Window_Manager;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The environment task will call Window_Lock for
the object allocated for A_Window when the collection for Any_Window
is finalized, which
will happen after the finalization of Window_Lock (because finalization of the
package body will occur before that of the package specification).]}
@end{Reason}
@end{Bounded}
@begin{Notes}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
Within the declaration or body of a protected unit@Chg{Version=[2],New=[ other
than in an @nt{access_definition}],Old=[]}, the name of
the protected unit denotes the current instance of the unit
(see @RefSecNum(The Context of Overload Resolution)),
rather than the first subtype of the corresponding protected type (and
thus the name cannot be used as a @nt<subtype_mark>).
@begin(Discussion)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
@Chg{Version=[2],New=[It can be used as a @nt{subtype_mark} in an anonymous
access type. In addition],Old=[However]}, it is possible to refer to
some other subtype of the protected type within its body,
presuming such a subtype has been
declared between the @nt<protected_type_declaration>
and the @nt<protected_body>.
@end(Discussion)
A @nt<selected_component> can be used to denote a discriminant
of a protected object (see @RefSecNum(Selected Components)).
Within a protected unit, the name of a discriminant of the protected type
denotes the corresponding discriminant of the current instance
of the unit.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A protected type is a limited type (see @RefSecNum(Limited Types)),
and hence @Chg{Version=[2],New=[precludes use of @nt{assignment_statement}s and],
Old=[has neither an assignment operation nor]} predefined equality operators.
The bodies of the protected operations given in the @nt<protected_body>
define the actions that take place upon calls to the protected operations.
The declarations in the private part are only
visible within the private part and the body of the
protected unit.
@begin{Reason}
@nt{Component_declaration}s are disallowed in a @nt{protected_body}
because, for efficiency, we wish to allow the compiler to
determine the size of protected objects (when not dynamic);
the compiler cannot necessarily see the body.
Furthermore, the semantics of initialization of such objects would be
problematic @em we do not wish to give protected objects complex
initialization semantics similar to task activation.
The same applies to @nt{entry_declaration}s,
since an entry involves an implicit component @em the entry queue.
@end{Reason}
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of declaration of protected type and corresponding body:}
@begin{Example}
@key(protected) @key(type) Resource @key(is)
@key(entry) Seize;
@key(procedure) Release;
@key(private)
Busy : Boolean := False;
@key(end) Resource;
@key(protected) @key(body) Resource @key(is)
@key(entry) Seize @key(when not) Busy @key(is)
@key(begin)
Busy := True;
@key(end) Seize;
@key(procedure) Release @key(is)
@key(begin)
Busy := False;
@key(end) Release;
@key(end) Resource;
@end{Example}
@begin{wide}
@leading@keepnext@i{Example of a single protected declaration and corresponding body:}
@end{wide}
@begin{Example}
@key(protected) Shared_Array @key(is)
--@RI[ Index, Item, and Item_Array are global types]
@key(function) Component (N : @key(in) Index) return Item;
@key(procedure) Set_Component(N : @key(in) Index; E : @key(in) Item);
@key(private)
Table : Item_Array(Index) := (others => Null_Item);
@key(end) Shared_Array;
@key(protected) @key(body) Shared_Array @key(is)
@key(function) Component(N : @key(in) Index) @key(return) Item @key(is)
@key(begin)
@key(return) Table(N);
@key(end) Component;
@key(procedure) Set_Component(N : @key(in) Index; E : @key(in) Item) @key(is)
@key(begin)
Table(N) := E;
@key(end) Set_Component;
@key(end) Shared_Array;
@end{Example}
@begin{wide}
@leading@keepnext@i{Examples of protected objects:}
@end{wide}
@begin{Example}
Control : Resource;
Flags : @key(array)(1 .. 100) @key(of) Resource;
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
This entire clause is new;
protected units do not exist in Ada 83.
@end{Extend83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00401-01],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Protected types and single protected objects can be derived from one or
more interfaces. Operations declared in the protected type can implement
the primitive operations of an interface. @nt{Overriding_indicator}s can
be used to specify whether or not a protected operation implements a
primitive operation.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0009],ARef=[AI95-00137-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Changed representation clauses
to aspect clauses to reflect that they are used for more than just
representation.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00280-01]}
@ChgAdded{Version=[2],Text=[Described what happens when an operation of a
finalized protected object is called.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@ChgAdded{Version=[2],Text=[Revised the note on operations of
protected types to
reflect that limited types do have an assignment operation, but not
copying (@nt{assignment_statement}s).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00382-01]}
@ChgAdded{Version=[2],Text=[Revised the note on use of the name of
a protected type within itself to reflect the exception for anonymous
access types.]}
@end{DiffWord95}
@LabeledClause{Intertask Communication}
@begin{Intro}
@Defn{intertask communication}
@IndexSee{Term=[critical section],See=(intertask communication)}
The primary means for intertask
communication is provided by
calls on entries and protected subprograms.
Calls on protected subprograms allow coordinated access
to shared data objects.
Entry calls allow for blocking the caller until
a given condition is satisfied (namely, that the corresponding entry is open
@em see @RefSecNum(Entry Calls)),
and then communicating data or control information directly
with another task or
indirectly via a shared protected object.
@end{Intro}
@begin{StaticSem}
@leading@Defn2{Term=[target object],
Sec=(of a call on an entry or a protected subprogram)}
Any call on an entry or on a protected subprogram
identifies a @i(target object) for the operation,
which is either a task (for an entry call) or a protected
object (for an entry call or a protected subprogram call).
The target object is considered an implicit parameter to the operation,
and is determined by the operation
@nt<name> (or @nt<prefix>) used in the call on the operation, as follows:
@begin(Itemize)
If it is a @nt<direct_name> or expanded name
that denotes the declaration (or body) of the operation, then
the target object is implicitly specified to be
the current instance of the task or protected unit
immediately enclosing the operation;
@Defn{internal call}
such a call is defined to be an @i(internal call);
@leading@;If it is a @nt<selected_component> that is not
an expanded name, then the target object is explicitly
specified to be the task or protected object
denoted by the @nt<prefix> of the @nt<name>;
@Defn{external call}
such a call is defined to be an @i(external call);
@begin{Discussion}
For example:
@begin{Example}
@key[protected] @key[type] Pt @key[is]
@key[procedure] Op1;
@key[procedure] Op2;
@key[end] Pt;
PO : Pt;
Other_Object : Some_Other_Protected_Type;
@key[protected] @key[body] Pt @key[is]
@key[procedure] Op1 @key[is] @key[begin] ... @key[end] Op1;
@key[procedure] Op2 @key[is]
@key[begin]
Op1; --@RI{ An internal call.}
Pt.Op1; --@RI{ Another internal call.}
PO.Op1; --@RI{ An external call. It the current instance is PO, then}
--@RI{ this is a bounded error (see @RefSecNum{Protected Subprograms and Protected Actions}).}
Other_Object.Some_Op; --@RI{ An external call.}
@key[end] Op2;
@key[end] Pt;
@end{Example}
@end{Discussion}
If the @nt<name> or @nt<prefix> is a dereference
(implicit or explicit) of an
access-to-protected-subprogram value,
then the target object is determined by the
@nt<prefix> of the Access @nt<attribute_reference>
that produced the access value originally, and the
call is defined to be an @i(external call);
If the @nt<name> or @nt<prefix> denotes a
@nt<subprogram_renaming_declaration>,
then the target object is as determined by the @nt<name> of the renamed
entity.
@end(Itemize)
@Defn2{Term=[target object],
Sec=(of a @nt<requeue_statement>)}
@Defn{internal requeue}
@Defn{external requeue}
A corresponding definition of target object applies
to a @nt<requeue_statement> (see @RefSecNum(Requeue Statements)),
with a corresponding distinction between an @i(internal requeue)
and an @i(external requeue).
@end{StaticSem}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[The view of the target protected object associated
with a call of a protected procedure or entry shall be a variable.]}
@end{Legality}
@begin{RunTime}
Within the body of a protected operation, the current instance
(see @RefSecNum(The Context of Overload Resolution))
of the immediately enclosing protected unit is determined by the target object
specified (implicitly or explicitly) in the call (or requeue) on the
protected operation.
@begin{Honest}
The current instance is defined in the same way
within the body of a subprogram declared immediately within a
@nt{protected_body}.
@end{Honest}
Any call on a protected procedure or entry of a target
protected object is defined to be an update to the object,
as is a requeue on such an entry.
@begin(Reason)
Read/write access to the components of a protected
object is granted while inside the body
of a protected procedure or entry.
Also, any protected entry call can change the value of the Count
attribute, which represents an update.
Any protected procedure call can result in servicing the entries,
which again might change the value of a Count attribute.
@end(Reason)
@end{RunTime}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[Added a @LegalityName to make it crystal-clear
that the protected object of an entry or procedure call must be a variable.
This rule was implied by the @RuntimeTitle here, along with the
@StaticSemTitle of @RefSecNum{Objects and Named Numbers}, but it is much
better to explicitly say it. While many implementations have gotten this
wrong, this is not an incompatibility @em allowing updates of protected
constants has always been wrong.]}
@end{DiffWord95}
@LabeledSubClause{Protected Subprograms and Protected Actions}
@begin{Intro}
@Defn{protected subprogram}
@Defn{protected procedure}
@Defn{protected function}
A @i{protected subprogram} is a subprogram declared immediately
within a @nt{protected_definition}.
Protected procedures provide exclusive read-write access
to the data of a protected object; protected functions provide
concurrent read-only access to the data.
@begin{Ramification}
A subprogram declared immediately within a @nt{protected_body} is not a
protected subprogram; it is an intrinsic subprogram.
See @RefSec{Conformance Rules}.
@end{Ramification}
@end{Intro}
@begin{StaticSem}
Within the body of a protected function
(or a function declared immediately within a @nt<protected_body>),
the current instance of the enclosing protected unit is defined to be a
constant
@Redundant[(that is, its subcomponents may be read but not updated)].
Within the body of a protected procedure
(or a procedure declared immediately within a @nt<protected_body>),
and within an @nt<entry_body>,
the current instance is defined to be a variable
@Redundant[(updating is permitted)].
@begin(Ramification)
The current instance is like an implicit parameter,
of mode @key(in) for a protected function, and of mode @key(in out)
for a protected procedure (or protected entry).
@end(Ramification)
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(protected subprogram call)}
For the execution of a call on a protected subprogram,
the evaluation of the @nt<name> or @nt<prefix>
and of the parameter associations,
and any assigning back of @key[in out] or @key[out] parameters,
proceeds as for a normal subprogram call (see @RefSecNum{Subprogram Calls}).
If the call is an internal call (see @RefSecNum(Intertask Communication)),
the body of the subprogram
is executed as for a normal subprogram call.
If the call is an external call, then
the body of the subprogram is executed as part of a new
@i(protected action) on the target protected object;
the protected action completes after the body of the
subprogram is executed.
@Redundant[A protected action can also be started by an entry call
(see @RefSecNum{Entry Calls}).]
@leading@Defn{protected action}
A new protected action is not started on a protected object
while another protected action on the same protected object is underway,
unless both actions are the result of a call on a protected function.
This rule is expressible in terms of the execution resource
associated with the protected object:
@begin(Itemize)
@Defn2{Term=[protected action], Sec=(start)}
@Defn2{Term=[acquire], Sec=(execution resource associated with protected object)}
@i(Starting) a protected action on a protected object
corresponds to @i(acquiring) the execution resource associated
with the protected object, either for concurrent read-only access
if the protected action is for a call on a protected function,
or for exclusive read-write access otherwise;
@Defn2{Term=[protected action], Sec=(complete)}
@Defn2{Term=[release], Sec=(execution resource associated with protected object)}
@i(Completing) the protected action
corresponds to @i(releasing) the associated execution resource.
@end(Itemize)
@Redundant[After performing an operation on a protected object other than
a call on a protected function, but prior
to completing the associated protected action,
the entry queues (if any)
of the protected object are
serviced (see @RefSecNum(Entry Calls)).]
@end{RunTime}
@begin{Bounded}
@leading@PDefn2{Term=(bounded error),Sec=(cause)}
During a protected action, it is a bounded error to invoke an operation that
is @i(potentially blocking).
@Defn{potentially blocking operation}
@Defn{blocking, potentially}
The following are defined to be potentially blocking operations:
@begin{Reason}
Some of these operations are not directly blocking.
However, they are still treated as bounded errors during a protected
action, because allowing them might impose an undesirable
implementation burden.
@end{Reason}
@begin{itemize}
a @nt{select_statement};
an @nt{accept_statement};
an @nt{entry_call_statement};
a @nt{delay_statement};
an @nt{abort_statement};
task creation or activation;
an external call on a protected subprogram (or an external requeue)
with the same target object as that of the protected action;
@begin(Reason)
This is really a deadlocking call, rather than a blocking call,
but we include it in this list for simplicity.
@end(Reason)
a call on a subprogram whose body contains a
potentially blocking operation.
@begin(Reason)
This allows an implementation to check and raise Program_Error
as soon as a subprogram is called, rather than waiting to find out
whether it actually reaches the potentially blocking operation.
This in turn allows the potentially blocking operation check
to be performed prior to run time in some environments.
@end(Reason)
@end{itemize}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If the bounded error is detected, Program_Error is raised.
If not detected, the bounded error
might result in deadlock or a (nested)
protected action on the same target object.
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[By @lquotes@;nested protected action@rquotes,
we mean that an additional protected action can be started by another task
on the same protected object. This means that mutual exclusion may be broken
in this bounded error case. A way to ensure that this does not happen is to use
pragma Detect_Blocking (see @RefSecNum{Pragma Detect_Blocking}).]}
@end{Discussion}
Certain language-defined subprograms are
potentially blocking.
In particular, the subprograms of
the language-defined input-output packages that manipulate
files (implicitly or explicitly) are potentially blocking.
Other potentially blocking subprograms are identified
where they are defined.
When not specified as potentially blocking,
a language-defined subprogram is nonblocking.
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00178-01]}
@ChgAdded{Version=[2],Text=[Any subprogram in a language-defined input-output
package that has a file parameter or result or operates on a default file is
considered to manipulate a file. An instance of a language-defined input-output
generic package provides subprograms that are covered by this rule. The only
subprograms in language-defined input-output packages not covered by this rule
(and thus not potentially blocking) are the Get and Put routines that take
string parameters defined in the packages nested in Text_IO.]}@ChgNote{This
was the resolution of a ramification.}
@end{Discussion}
@end{Bounded}
@begin{Notes}
If two tasks both try to start a protected action
on a protected object, and at most one is calling
a protected function, then only one of the tasks can proceed.
Although the other task cannot proceed, it is not considered
blocked, and it might be consuming processing resources while it
awaits its turn. There is no language-defined ordering or queuing
presumed for tasks competing to start a protected action @em
on a multiprocessor such tasks might use busy-waiting; for
monoprocessor considerations, see @RefSec{Priority Ceiling Locking}.
@begin{Discussion}
The intended implementation on a multi-processor is in terms of
@lquotes@;spin locks@rquotes@; @em the waiting task will spin.
@end{Discussion}
The body of a protected unit may contain declarations and bodies for local
subprograms. These are not visible outside the protected unit.
The body of a protected function can contain internal calls
on other protected functions, but not protected procedures,
because the current instance is a constant.
On the other hand, the body of a protected procedure
can contain internal calls on both protected functions and procedures.
From within a protected action,
an internal call on a protected subprogram,
or an external call on a protected subprogram with a different
target object is not considered a potentially blocking operation.
@begin(Reason)
This is because a task is not considered blocked
while attempting to acquire the execution resource associated with
a protected object. The acquisition of such a resource
is rather considered part of the normal competition for execution
resources between the various tasks that are ready.
External calls that turn out to be on the same target
object are considered potentially blocking, since they
can deadlock the task indefinitely.
@end(Reason)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[The @nt{pragma} Detect_Blocking may be used to
ensure that all executions of potentially blocking operations during a
protected action raise Program_Error.
See @RefSecNum{Pragma Detect_Blocking}.]}
@end{Notes}
@begin{Examples}
@leading@i{Examples of protected subprogram calls
(see @RefSecNum(Protected Units and Protected Objects)):}
@begin{Example}
Shared_Array.Set_Component(N, E);
E := Shared_Array.Component(M);
Control.Release;
@end{Example}
@end{Examples}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[Added a note pointing out the existence of
@nt{pragma} Detect_Blocking. This pragma can be used to ensure portable
(somewhat pessimistic) behavior of protected actions by converting the
Bounded Error into a required check.]}
@end{DiffWord95}
@LabeledSubClause{Entries and Accept Statements}
@begin{Intro}
@nt<Entry_declaration>s, with the corresponding @ntf<entry_bodies>
or @nt<accept_statement>s,
are used to define potentially queued operations on
tasks and protected objects.
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00397-01]}
@Syn{lhs=<entry_declaration>,rhs="@Chg{Version=[2],New=<
[@Syn2{overriding_indicator}]>,Old=[]}
@key{entry} @Syn2{defining_identifier} [(@Syn2{discrete_subtype_definition})] @Syn2{parameter_profile};"}
@Syn{lhs=<accept_statement>,rhs="
@key{accept} @SynI{entry_}@Syn2{direct_name} [(@Syn2{entry_index})] @Syn2{parameter_profile} [@key{do}
@Syn2{handled_sequence_of_statements}
@key{end} [@SynI{entry_}@Syn2{identifier}]];"}
@begin{Reason}
We cannot use @nt{defining_identifier} for @nt<accept_statement>s.
Although an @nt{accept_statement} is sort of like a body, it can appear
nested within a @nt{block_statement}, and therefore be hidden from
its own entry by an outer homograph.
@end{Reason}
@Syn{lhs=<entry_index>,rhs="@Syn2{expression}"}
@Syn{lhs=<entry_body>,rhs="
@key{entry} @Syn2{defining_identifier} @Syn2{entry_body_formal_part} @Syn2{entry_barrier} @key{is}
@Syn2{declarative_part}
@key{begin}
@Syn2{handled_sequence_of_statements}
@key{end} [@SynI{entry_}@Syn2{identifier}];"}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[We don't allow an @nt{overriding_indicator} on
an @nt{entry_body} because entries always implement procedures at the
point of the type declaration; there is no late implementation. And we
don't want to have to think about @nt{overriding_indicator}s on
@nt{accept_statement}s.]}
@end{Discussion}
@Syn{lhs=<entry_body_formal_part>,
rhs="[(@Syn2{entry_index_specification})] @Syn2{parameter_profile}"}
@Syn{lhs=<entry_barrier>,
rhs="@key{when} @Syn2{condition}"}
@Syn{lhs=<entry_index_specification>,
rhs="@key{for} @Syn2{defining_identifier} @key{in} @Syn2{discrete_subtype_definition}"}
@begin{SyntaxText}
If an @SynI{entry_}@nt{identifier} appears at the end of an
@nt{accept_statement}, it shall repeat the @SynI{entry_}@!@nt<direct_@!name>.
If an @SynI{entry_}@!@nt{identifier} appears at the end of an @nt{entry_@!body}, it shall repeat the
@nt{defining_@!identifier}.
@Redundant[An @nt{entry_declaration} is allowed only in a protected or task
declaration.]
@begin(TheProof)
This follows from the BNF.
@end(TheProof)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[An @nt{overriding_indicator} is not allowed in an
@nt{entry_declaration} that includes a @nt{discrete_subtype_definition}.]}
@begin(Reason)
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[An entry family can never implement something,
so allowing an indicator is felt by the majority of the ARG to be redundant.]}
@end(Reason)
@end{SyntaxText}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected profile],
Sec=(accept_statement @i{entry_}@nt<direct_name>)}
In an @nt<accept_statement>,
the expected profile for the @SynI{entry_}@nt<direct_name>
is that of the @nt<entry_@!declaration>;
@PDefn2{Term=[expected type],
Sec=(entry_index)}
the expected type for an @nt<entry_index> is that
of the subtype defined by the @nt<discrete_@!subtype_@!definition>
of the corresponding @nt<entry_@!declaration>.
Within the @nt<handled_sequence_of_statements> of an @nt<accept_statement>,
if a @nt<selected_@!component> has a @nt<prefix> that denotes
the corresponding @nt<entry_@!declaration>, then the
entity denoted by the @nt<prefix> is the @nt<accept_@!statement>, and
the @nt<selected_@!component> is interpreted as an expanded name
(see @RefSecNum(Selected Components))@Redundant[; the @nt<selector_name>
of the @nt<selected_@!component> has to be the @nt<identifier> for
some formal parameter of the @nt<accept_@!statement>].
@begin{TheProof}
The only declarations that occur immediately within the
declarative region of an @nt<accept_statement> are those
for its formal parameters.
@end{TheProof}
@end{Resolution}
@begin{Legality}
An @nt<entry_declaration> in a task declaration shall not contain
a specification for an access parameter (see @RefSecNum(Access Types)).
@begin(Reason)
@leading@;Access parameters for task entries would require a complex
implementation. For example:
@begin(Example)
@key(task) T @key(is)
@key(entry) E(Z : @key(access) Integer); --@RI{ Illegal!}
@key(end) T;
@key(task body) T @key(is)
@key(begin)
@key(declare)
@key(type) A @key(is access all) Integer;
X : A;
Int : @key(aliased) Integer;
@key(task) Inner;
@key(task body) Inner @key(is)
@key(begin)
T.E(Int'Access);
@key(end) Inner;
@key(begin)
@key(accept) E(Z : @key(access) Integer) @key(do)
X := A(Z); --@RI{ Accessibility_Check}
@key(end) E;
@key(end);
@key(end) T;
@end(Example)
Implementing the Accessibility_Check inside the @nt<accept_statement> for
E is difficult, since one does not know whether the entry caller
is calling from inside the immediately enclosing declare block or from
outside it. This means that the lexical nesting level associated with
the designated object is not sufficient to determine whether the
Accessibility_Check should pass or fail.
Note that such problems do not arise with protected entries, because
@ntf<entry_bodies> are always nested immediately within the
@nt<protected_body>; they cannot be further nested as can
@nt<accept_statement>s, nor can they be called from within the
@nt<protected_body> (since no entry calls are permitted inside
a @nt<protected_body>).
@end(Reason)
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[If an @nt{entry_declaration} has an
@nt{overriding_indicator}, then at
the point of the declaration:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{overriding}, then the entry shall implement an inherited subprogram;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{not overriding}, then the entry shall not implement any inherited
subprogram.]}
@end{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@PDefn{generic contract issue}In addition to the
places where @LegalityTitle normally apply (see
@RefSecNum{Generic Instantiation}), these rules also apply in the private part
of an instance of a generic unit.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[These rules are subtly different than those for
subprograms (see @RefSecNum{Overriding Indicators}) because there cannot be
@lquotes@;late@rquotes inheritance of primitives from interfaces. Hidden
(that is, private) interfaces are prohibited explicitly (see
@RefSecNum{Private Types and Private Extensions}), as are hidden primitive
operations (as private operations of public abstract types are prohibited
@em see @RefSecNum{Abstract Types and Subprograms}).]}
@end{Discussion}
For an @nt<accept_statement>,
the innermost enclosing body shall be a @nt<task_body>,
and the @i(entry_)@!@nt<direct_@!name> shall
denote an @nt<entry_@!declaration> in the corresponding task declaration;
the profile of the @nt{accept_@!statement} shall
conform fully to that of the corresponding @nt<entry_@!declaration>.
@Defn2{Term=[full conformance],Sec=(required)}
An @nt<accept_@!statement> shall have a parenthesized @nt<entry_@!index> if
and only if the corresponding @nt<entry_@!declaration> has a
@nt<discrete_@!subtype_@!definition>.
An @nt<accept_statement> shall not be within another
@nt{accept_statement} that corresponds to the same @nt<entry_@!declaration>,
nor within an @nt<asynchronous_@!select> inner to
the enclosing @nt<task_body>.
@begin(Reason)
@nt<Accept_statement>s are required to be immediately within
the enclosing @nt<task_body> (as opposed to being in a nested
subprogram) to ensure that a nested task does not
attempt to accept the entry of its enclosing task. We considered
relaxing this restriction, either by making the check a run-time
check, or by allowing a nested task to accept an entry of its
enclosing task. However, neither change seemed to provide sufficient
benefit to justify the additional implementation burden.
Nested @nt<accept_statement>s for the same entry (or entry family)
are prohibited to ensure that there is no ambiguity in the
resolution of an expanded name for a formal parameter of the
entry. This could be relaxed by allowing the inner
one to hide the outer one from all visibility, but again the
small added benefit didn't seem to justify making the change for Ada 95.
@nt<Accept_statement>s are not permitted within @nt<asynchronous_select>
statements to simplify the semantics and implementation:
an @nt<accept_statement> in an @nt<abortable_part> could result
in Tasking_Error being propagated from an entry call even though
the target task was still callable; implementations that use
multiple tasks implicitly to implement an @nt<asynchronous_select>
might have trouble supporting "up-level" accepts.
Furthermore, if @nt<accept_statement>s were permitted in
the @nt<abortable_part>, a task could call its own
entry and then accept it in the @nt<abortable_part>, leading
to rather unusual and possibly difficult-to-specify semantics.
@end(Reason)
@PDefn2{Term=[requires a completion], Sec=(protected @nt{entry_declaration})}
An @nt{entry_declaration} of a protected unit requires
a completion@redundant[, which shall be an @nt{entry_body},]
@PDefn2{Term=[only as a completion], Sec=(@nt<entry_body>)}
and every @nt<entry_@!body> shall be the completion
of an @nt<entry_@!declaration> of a protected unit.
@PDefn2{Term=[completion legality], Sec=(@nt<entry_body>)}
The profile of the @nt<entry_@!body> shall conform fully to that
of the corresponding declaration.
@Defn2{Term=[full conformance],Sec=(required)}
@begin{Ramification}
An @nt<entry_declaration>, unlike a @nt<subprogram_declaration>,
cannot be completed with a @nt<renaming_@!declaration>.
@end{Ramification}
@begin(Honest)
The completion can be a @nt{pragma} Import,
if the implementation supports it.
@end(Honest)
@begin{Discussion}
The above applies only to protected entries,
which are the only ones completed with @ntf{entry_bodies}.
Task entries have corresponding @nt{accept_statement}s
instead of having @ntf{entry_bodies}, and
we do not consider an @nt{accept_statement} to be a @lquotes@;completion,@rquotes@;
because a task @nt{entry_declaration} is allowed to have zero, one, or more
than one corresponding @nt{accept_statement}s.
@end{Discussion}
An @nt{entry_body_formal_part} shall have an @nt{entry_@!index_@!specification}
if and only if the corresponding @nt{entry_@!declaration} has
a @nt<discrete_@!subtype_@!definition>.
In this case, the @nt<discrete_@!subtype_@!definition>s of the
@nt<entry_@!declaration> and the @nt<entry_@!index_@!specification>
shall fully conform to one another (see @RefSecNum(Conformance Rules)).
@Defn2{Term=[full conformance],Sec=(required)}
A name that denotes a formal parameter of an @nt<entry_body> is not
allowed within the @nt<entry_barrier> of the @nt<entry_body>.
@end{Legality}
@begin{StaticSem}
The parameter modes defined for parameters in the @nt<parameter_profile>
of an @nt{entry_declaration}
are the same as for a @nt<subprogram_declaration> and have
the same meaning (see @RefSecNum(Formal Parameter Modes)).
@begin{Discussion}
Note that access parameters are not allowed for task entries (see above).
@end{Discussion}
@Defn2{Term=[family], Sec=(entry)}
@Defn{entry family}
@Defn{entry index subtype}
An @nt<entry_declaration> with a @nt<discrete_subtype_definition>
(see @RefSecNum(Array Types)) declares a @i(family) of distinct
entries having the same profile, with one such entry for each
value of the @i(entry index subtype) defined
by the @nt<discrete_@!subtype_@!definition>.
@Redundant[A name for an entry of a family takes the form of
an @nt<indexed_component>, where the @nt<prefix> denotes
the @nt<entry_declaration> for the family, and the index value
identifies the entry within the family.]
@Defn{single entry}
@Defn2{Term=[entry], Sec=(single)}
The term @i(single entry) is used to refer to any entry other
than an entry of an entry family.
In the @nt<entry_body> for an entry family,
the @nt<entry_index_specification> declares a named constant
whose subtype is the entry index subtype defined by the
corresponding @nt<entry_declaration>;
@Defn{named entry index}
the value of the @i(named entry index) identifies
which entry of the family was called.
@begin{Ramification}
The @nt<discrete_subtype_definition> of the @nt<entry_index_specification>
is not elaborated; the subtype of the named constant declared
is defined by the @nt<discrete_subtype_definition> of the corresponding
@nt<entry_declaration>, which is elaborated, either when the
type is declared, or when the object is created, if its constraint
is per-object.
@end{Ramification}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0002],ARef=[AI95-00171-01]}
@PDefn2{Term=[elaboration], Sec=(entry_declaration)}
@Chg{New=[The elaboration of an @nt<entry_declaration> for an entry family
consists of the elaboration of the @nt<discrete_@!subtype_@!definition>, as
described in @RefSecNum(Record Types).],
Old=[For the elaboration of an @nt<entry_@!declaration> for an
entry family, if the
@nt{discrete_@!subtype_@!definition} contains no per-object expressions
(see @RefSecNum(Record Types)), then the @nt<discrete_@!subtype_@!definition>
is elaborated. Otherwise, the elaboration of the
@nt<entry_@!declaration> consists of the evaluation of any
expression of the @nt<discrete_@!subtype_@!definition>
that is not a per-object expression (or part of one).]}
The elaboration of an @nt<entry_@!declaration> for a single entry
has no effect.
@begin{Discussion}
The elaboration of the declaration of a protected subprogram has
no effect, as specified in clause @RefSecNum(Subprogram Declarations).
The default initialization of an object of a task or protected
type is covered in @RefSecNum(Object Declarations).
@end{Discussion}
@Redundant[The actions to be performed when
an entry is called are specified by the
corresponding @nt{accept_@!statement}s (if any) for an entry of a task unit,
and by the corresponding @nt<entry_@!body> for an entry of a protected unit.]
@PDefn2{Term=[execution], Sec=(accept_statement)}
For the execution of an @nt{accept_statement}, the @nt<entry_index>, if
any, is first evaluated and converted to the entry index subtype;
this index value identifies which entry of the family is to be accepted.
@PDefn2{Term=[implicit subtype conversion],Sec=(entry index)}
@PDefn2{Term=[blocked], Sec=(on an @nt<accept_statement>)}
@Defn2{Term=[selection], Sec=(of an entry caller)}
Further execution of the @nt<accept_statement> is then blocked
until a caller of the corresponding entry is selected
(see @RefSecNum(Entry Calls)), whereupon
the @nt<handled_sequence_of_statements>, if any, of the @nt<accept_statement>
is executed, with the formal parameters associated with the
corresponding actual parameters of the selected entry call.
Upon completion of the @nt<handled_sequence_of_statements>,
the @nt<accept_statement> completes and is left.
When an exception is propagated from the
@nt{handled_sequence_of_statements} of an @nt{accept_statement},
the same exception is also raised by the execution of the corresponding
@nt{entry_call_statement}.
@begin{Ramification}
This is in addition to propagating it to the construct
containing the @nt{accept_statement}.
In other words, for a rendezvous, the raising splits in two,
and continues concurrently in both tasks.
The caller gets a new occurrence;
this isn't considered propagation.
Note that we say @lquotes@;propagated from the
@nt{handled_sequence_of_statements} of an @nt{accept_statement}@rquotes@;,
not @lquotes@;propagated from an @nt{accept_statement}.@rquotes@;
The latter would be wrong @em we don't want exceptions propagated by
the @nt<entry_index> to be sent to the caller (there is none yet!).
@end{Ramification}
@Defn{rendezvous}
The above interaction between a calling task and an
accepting task is called a @i(rendezvous).
@Redundant[After a rendezvous, the two tasks continue
their execution independently.]
@Redundant[An @nt<entry_body> is executed when the @nt<condition> of the
@nt<entry_barrier> evaluates to True and a caller of the corresponding
single entry, or entry of the corresponding entry family,
has been selected (see @RefSecNum(Entry Calls)).]
@PDefn2{Term=[execution], Sec=(entry_body)}
For the execution of the @nt<entry_@!body>,
the @nt<declarative_@!part> of the @nt<entry_@!body> is elaborated,
and the @nt<handled_@!sequence_of_@!statements>
of the body is executed, as for the execution
of a @nt<subprogram_body>. The value of the named entry index, if any,
is determined by the value of the entry index specified in the
@i(entry_)@nt<name> of the selected entry call (or intermediate
@nt<requeue_@!statement> @em see @RefSecNum(Requeue Statements)).
@begin(Honest)
If the entry had been renamed as a subprogram,
and the call was a @nt<procedure_call_statement> using
the name declared by the renaming, the entry index (if any) comes from
the entry @nt<name> specified in the
@nt<subprogram_renaming_declaration>.
@end(Honest)
@end{RunTime}
@begin{Notes}
A task entry has corresponding accept_statements (zero or more),
whereas a protected entry has a corresponding entry_body (exactly
one).
A consequence of the rule regarding the allowed placements of
@nt{accept_statement}s is that a task can execute @nt{accept_statement}s
only for its own entries.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
A @Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]}
(see @RefSecNum(Return Statements))
or a @nt<requeue_statement> (see @RefSecNum(Requeue Statements))
may be used to complete the execution of
an @nt<accept_statement> or an @nt<entry_body>.
@begin{Ramification}
An @nt<accept_statement> need not have a @nt<handled_sequence_of_statements>
even if the corresponding entry has parameters. Equally, it can have
a @nt<handled_sequence_of_statements> even if the corresponding entry
has no parameters.
@end{Ramification}
@begin{Ramification}
A single entry overloads a subprogram, an enumeration literal, or another
single entry if they have the same @nt{defining_identifier}. Overloading is
not allowed for entry family names.
A single entry or an entry of an entry family
can be renamed as a procedure as explained in
@RefSecNum{Subprogram Renaming Declarations}.
@end{Ramification}
The @nt<condition> in the @nt{entry_barrier} may reference
anything visible except the formal parameters of the entry.
This
includes the entry index (if any), the components (including discriminants) of
the protected object, the Count attribute of an entry of that protected object,
and data global to the protected unit.
@NoPrefix@;The restriction against referencing the formal parameters within an
@nt{entry_barrier} ensures that all calls of the same entry see
the same barrier value.
If it is necessary to look at the parameters of an entry
call before deciding whether to handle it, the @nt<entry_barrier>
can be @lquotes@;@key(when) True@rquotes@; and the caller can
be requeued (on some private entry)
when its parameters indicate that it cannot be handled immediately.
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Examples of entry declarations:}
@begin{Example}
@key(entry) Read(V : @key(out) Item);
@key(entry) Seize;
@key(entry) Request(Level)(D : Item); --@RI[ a family of entries]
@end{Example}
@begin{Wide}
@leading@keepnext@i{Examples of accept statements:}
@end{Wide}
@begin{Example}
@key(accept) Shut_Down;
@key(accept) Read(V : @key(out) Item) @key(do)
V := Local_Item;
@key(end) Read;
@key(accept) Request(Low)(D : Item) @key(do)
...
@key(end) Request;
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax rule for @nt{entry_body} is new.
@nt{Accept_statement}s can now have @nt{exception_handler}s.
@end{Extend83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0002],ARef=[AI95-00171-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified the elaboration of
per-object constraints.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[@nt{Overriding_indicator}s can be used on
entries; this is only useful when a task or protected type inherits
from an interface.]}
@end{DiffWord95}
@LabeledSubClause{Entry Calls}
@begin{Intro}
@Defn{entry call}
@Redundant[An @nt<entry_call_statement> (an @i(entry call)) can appear in
various contexts.]
@Defn{simple entry call}
@Defn2{Term={entry call}, Sec=(simple)}
A @i(simple) entry call is a stand-alone statement that
represents an unconditional call on an entry of a target
task or a protected object.
@Redundant[Entry calls can also appear
as part of @nt<select_statement>s
(see @RefSecNum(Select Statements)).]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<entry_call_statement>,rhs="@SynI{entry_}@Syn2{name} [@Syn2{actual_parameter_part}];"}
@end{Syntax}
@begin{Resolution}
The @i(entry_)@nt<name> given in an @nt<entry_call_statement> shall resolve
to denote an entry. The rules for parameter
associations are the same as for subprogram calls (see @RefSecNum(Subprogram Calls)
and @RefSecNum(Parameter Associations)).
@end{Resolution}
@begin{StaticSem}
@Redundant[The @i(entry_)@nt<name> of an @nt<entry_call_statement> specifies
(explicitly or implicitly) the target object of the call,
the entry or entry family, and the entry index, if any
(see @RefSecNum(Intertask Communication)).]
@end{StaticSem}
@begin{RunTime}
@leading@Defn{open entry}
@Defn2{Term=[entry], Sec=(open)}
@Defn{closed entry}
@Defn2{Term=[entry], Sec=(closed)}
Under certain circumstances (detailed below), an entry of a task
or protected
object is checked to see whether it is @i(open) or @i(closed):
@begin(Itemize)
@Defn2{Term=[open entry], Sec=(of a task)}
@Defn2{Term=[closed entry], Sec=(of a task)}
An entry of a task is open if the task
is blocked on an @nt<accept_statement>
that corresponds to the entry (see @RefSecNum(Entries and Accept Statements)),
or on a @nt<selective_accept>
(see @RefSecNum(Selective Accept)) with an open
@nt<accept_alternative> that corresponds to the entry; otherwise
it is closed.
@Defn2{Term=[open entry], Sec=(of a protected object)}
@Defn2{Term=[closed entry], Sec=(of a protected object)}
An entry of a protected object is open if
the @nt<condition> of the @nt<entry_barrier> of the
corresponding @nt<entry_body> evaluates to True; otherwise it is closed.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If the evaluation of the @nt<condition> propagates an exception, the
exception Program_Error is propagated
to all current callers of all entries of the protected object.
@begin(Reason)
An exception during barrier evaluation is considered essentially
a fatal error. All current entry callers are notified with a Program_Error.
In a fault-tolerant system, a protected object might provide a Reset
protected procedure, or equivalent, to support attempts to restore such
a "broken" protected object to a reasonable state.
@end(Reason)
@end(Itemize)
@begin(Discussion)
Note that the definition of when a task entry is open is
based on the state of the (accepting) task, whereas the
"openness" of a protected entry is defined only
when it is explicitly checked, since the barrier expression needs to
be evaluated. Implementation permissions are given (below) to
allow implementations to evaluate the barrier expression more or
less often than it is checked, but the basic semantic model presumes
it is evaluated at the times when it is checked.
@end(Discussion)
@leading@PDefn2{Term=[execution], Sec=(entry_call_statement)}
For the execution of an @nt{entry_call_statement},
evaluation of the @nt<name>
and of the parameter associations
is as for a subprogram call (see @RefSecNum{Subprogram Calls}).
@Defn2{Term=[issue], Sec=(an entry call)}
The entry call is then @i(issued):
For a call on an entry of a protected object, a new protected
action is started on the object (see @RefSecNum(Protected Subprograms and Protected Actions)).
The named entry is checked to see if it is open;
@Defn2{Term=[select an entry call], Sec=(immediately)}
if open, the entry call is said to be @i(selected immediately),
and the execution of the call proceeds as follows:
@begin(Itemize)
For a call on an open entry of a task, the accepting task becomes ready and
continues the execution of the corresponding @nt<accept_statement>
(see @RefSecNum(Entries and Accept Statements)).
For a call on an open entry of a protected object, the corresponding
@nt<entry_body> is executed (see @RefSecNum(Entries and Accept Statements))
as part of the protected action.
@end(Itemize)
If the @nt<accept_statement> or @nt<entry_body> completes other than
by a requeue (see @RefSecNum(Requeue Statements)), return is made to the
caller (after servicing the entry queues @em see below);
any necessary assigning back
of formal to actual parameters occurs,
as for a subprogram call (see @RefSecNum(Parameter Associations));
such assignments take
place outside of any protected action.
@begin(Ramification)
The return to the caller will generally not occur until
the protected action completes, unless some other thread of
control is given the job of completing the protected action
and releasing the associated execution resource.
@end(Ramification)
If the named entry is closed, the entry call is added to an @i(entry queue)
(as part of the protected action, for a call on a protected entry),
and the call remains queued until it is selected or cancelled;
@Defn{entry queue}
there is a separate (logical) entry queue for each entry of a
given task or protected object
@Redundant[(including each entry of an entry family)].
@Leading@Defn2{Term=[service], Sec=(an entry queue)}
@Defn2{Term=[select an entry call], Sec=(from an entry queue)}
When a queued call is @i{selected}, it is removed from its entry queue.
Selecting a queued call from a particular entry queue is
called @i{servicing} the entry queue.
An entry with queued calls can be serviced under
the following circumstances:
@begin(Itemize)
When the associated task reaches a corresponding @nt<accept_statement>, or
a @nt<selective_accept> with a corresponding
open @nt<accept_alternative>;
If after performing, as part of a protected action on the
associated protected object, an operation on the object other than
a call on a protected function,
the entry is checked and found to be open.
@end(Itemize)
@Defn2{Term=[select an entry call], Sec=(from an entry queue)}
If there is at least one call on a queue corresponding to
an open entry, then one such call is selected according to the
@i(entry queuing policy) in effect (see below), and the
corresponding @nt<accept_statement> or @nt<entry_body> is
executed as above for an entry call that is selected immediately.
@Defn{entry queuing policy}
The entry queuing policy controls selection among queued calls
both for task and protected entry queues.
@Defn{default entry queuing policy}
@Defn2{Term=[entry queuing policy], Sec=(default policy)}
The default entry queuing policy is to select calls on a given entry
queue in order of arrival. If calls from two or more queues are
simultaneously eligible for selection, the default entry queuing policy
does not specify which queue is serviced first.
Other entry queuing policies can be specified by @nt{pragma}s
(see @RefSecNum(Entry Queuing Policies)).
For a protected object, the above servicing of entry queues continues
until there are no open entries with queued calls, at which point
the protected action completes.
@begin(Discussion)
While servicing the entry queues of a protected object, no new calls
can be added to any entry queue of the object,
except due to an internal requeue (see @RefSecNum(Requeue Statements)).
This is because the first step of a call on a protected entry
is to start a new protected action, which implies acquiring
(for exclusive read-write access)
the execution resource associated with the protected object, which cannot
be done while another protected action is already in progress.
@end(Discussion)
@PDefn2{Term=[blocked], Sec=(during an entry call)}
For an entry call that is added to a queue,
and that is not the @nt<triggering_statement> of an
@nt<asynchronous_@!select>
(see @RefSecNum{Asynchronous Transfer of Control}),
the calling task is blocked until the call is cancelled,
or the call is selected and a corresponding @nt<accept_statement>
or @nt<entry_body> completes without requeuing.
In addition, the calling task is blocked during a rendezvous.
@begin{Ramification}
For a call on a protected entry,
the caller is not blocked if the call is selected immediately,
unless a requeue causes the call to be queued.
@end{Ramification}
@Defn2{Term=[cancellation], Sec=(of an entry call)}
An attempt can be made to cancel an entry call upon an abort
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements))
and as part of certain forms of @nt<select_statement>
(see @RefSecNum(Timed Entry Calls),
@RefSecNum(Conditional Entry Calls), and
@RefSecNum(Asynchronous Transfer of Control)).
The cancellation does not take place until
a point (if any) when the call is on some entry queue,
and not protected from cancellation as part of a requeue
(see @RefSecNum(Requeue Statements)); at such a point, the
call is removed from the entry queue and the call completes due
to the cancellation.
The cancellation of a call on an entry of a protected object
is a protected action@Redundant[, and as such cannot take place
while any other protected action is occurring on the protected object.
Like any protected action, it includes servicing of the entry queues
(in case some entry barrier depends on a Count attribute).]
@begin(ImplNote)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
In the case of an attempted cancellation due to abort,
this removal might have to be performed by the calling task
itself if the ceiling priority of the protected object
is lower than the @Chg{Version=[2],New=[priority of the ],Old=[]}task
initiating the abort.
@end(ImplNote)
@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
A call on an entry of a task that has already completed its execution
raises the exception Tasking_Error at the point of the call;
similarly, this exception is raised at the point of the call if the
called task completes its execution or becomes abnormal before accepting
the call or completing the rendezvous
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)).
This applies equally to a simple entry call and to an entry call as part
of a @nt<select_statement>.
@end{RunTime}
@begin{ImplPerm}
An implementation may perform the sequence of steps of a protected action
using any thread of control; it need not be that of the task
that started the protected action.
If an @nt<entry_body> completes without requeuing, then the
corresponding calling task may be made ready
without waiting for the entire protected action to complete.
@begin(Reason)
These permissions are intended to allow flexibility for implementations
on multiprocessors. On a monoprocessor, which thread of control executes
the protected action is essentially invisible, since the thread is
not abortable in any case, and the "current_task" function is not
guaranteed to work during a protected action
(see @Chg{Version=[2],New=[@RefSecNum(The Package Task_Identification)],
Old=[@RefSecNum(Task Information)]}).
@end(Reason)
When the entry of a protected object is checked to see whether it
is open, the implementation need not reevaluate
the @nt<condition> of the corresponding @nt<entry_barrier>
if no variable or attribute referenced by
the @nt<condition> (directly or indirectly)
has been altered
by the execution (or cancellation) of a protected procedure or entry call
on the object since the @nt<condition> was last evaluated.
@begin(Ramification)
Changes to variables referenced by an entry barrier that
result from actions outside of a protected procedure or entry call on the
protected object need not be "noticed." For example, if
a global variable is referenced by an entry barrier, it should not
be altered (except as part of a protected action on the object) any
time after the barrier is first evaluated.
In other words, globals can be used to "parameterize" a protected object,
but they cannot reliably be used to control it after the first
use of the protected object.
@end(Ramification)
@begin{ImplNote}
Note that even if a global variable is volatile,
the implementation need only reevaluate a barrier if the
global is updated during a protected action on the protected object.
This ensures that an entry-open bit-vector implementation
approach is possible, where the bit-vector is computed at
the end of a protected action, rather than upon each entry call.
@end{ImplNote}
An implementation may evaluate the @nt<condition>s of all @nt<entry_barrier>s
of a given protected object any time any entry of the object
is checked to see if it is open.
@begin(Ramification)
In other words, any side-effects of evaluating an entry barrier
should be innocuous, since an entry barrier might be evaluated more
or less often than is implied by the "official" dynamic semantics.
@end(Ramification)
@begin(ImplNote)
It is anticipated that when the number of entries is known to be small,
all barriers will be evaluated any time one of them needs to be,
to produce an "entry-open bit-vector." The appropriate bit will
be tested when the entry is called, and only if the bit is false
will a check be made to see whether the bit-vector might need to
be recomputed. This should allow an implementation to maximize
the performance of a call on an open entry, which seems like the
most important case.
In addition to the entry-open bit-vector, an "is-valid"
bit is needed per object, which indicates whether the current
bit-vector setting is valid.
A "depends-on-Count-attribute" bit is needed per type.
The "is-valid" bit is set to false
(as are all the bits of the bit-vector) when the protected object is first
created, as well as any time an exception is propagated from computing
the bit-vector. Is-valid would also be set false any time the
Count is changed and
"depends-on-Count-attribute" is true for the type, or a
protected procedure or entry returns indicating it might have updated a
variable referenced in some barrier.
A single procedure can be compiled to evaluate all of the barriers,
set the entry-open bit-vector accordingly, and set the is-valid bit to true.
It could have a "when others" handler to set them all false,
and call a routine to propagate Program_Error to all queued callers.
For protected types where the number of entries is not known to be
small, it makes more sense to evaluate a barrier only when the
corresponding entry is checked to see if it is open. It isn't worth
saving the state of the entry between checks, because of the space
that would be required. Furthermore, the entry queues probably want
to take up space only when there is actually a caller on them, so
rather than an array of all entry queues, a linked list of nonempty
entry queues make the most sense in this case, with the first caller
on each entry queue acting as the queue header.
@end(ImplNote)
When an attempt is made to cancel an entry call, the implementation
need not make the attempt using the thread of control of the
task (or interrupt) that initiated the cancellation; in particular,
it may use the thread of control of the caller itself to attempt the
cancellation, even if this might allow the entry call to be
selected in the interim.
@begin{Reason}
Because cancellation of a protected entry call is a protected
action (which helps make the Count attribute of a protected
entry meaningful), it might
not be practical to attempt the cancellation from the thread
of control that initiated the cancellation. For example,
if the cancellation is due to the expiration of a delay,
it is unlikely that the handler of the timer interrupt could
perform the necessary protected action itself (due to being
on the interrupt level). Similarly, if the cancellation
is due to an abort, it is possible that the task initiating
the abort has a priority higher than the ceiling priority of the
protected object (for implementations that support ceiling priorities).
Similar considerations could apply in a multiprocessor situation.
@end{Reason}
@end{ImplPerm}
@begin{Notes}
If an exception is raised during the execution of an @nt{entry_body}, it is
propagated to the corresponding caller (see @RefSecNum(Exception Handling)).
For a call on a protected entry, the entry is checked to see if
it is open prior to queuing the call, and again thereafter
if its Count attribute (see @RefSecNum{Task and Entry Attributes})
is referenced in some entry barrier.
@begin(Ramification)
Given this, extra care is required if
a reference to the Count attribute of an entry
appears in the entry's own barrier.
@end(Ramification)
@begin(Reason)
An entry is checked to see if it is open prior to queuing
to maximize the performance of a call on an open entry.
@end(Reason)
In addition to simple entry calls,
the language permits timed, conditional, and asynchronous entry calls
(see @RefSecNum(Timed Entry Calls), @RefSecNum(Conditional Entry Calls),
and see @RefSecNum(Asynchronous Transfer of Control)).
@begin{Ramification}
A task can call its own entries, but
the task will deadlock if the call is a simple entry call.
@end{Ramification}
The @nt<condition> of an @nt<entry_barrier> is allowed to be evaluated by
an implementation more often than strictly necessary, even if the
evaluation might have side effects. On the other hand, an implementation
need not reevaluate the @nt<condition> if nothing it references was
updated by an intervening protected action on the protected object,
even if the @nt<condition> references some global variable that might
have been updated by an action performed from outside of a protected action.
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Examples of entry calls:}
@begin{Example}
Agent.Shut_Down; --@RI[ see @RefSecNum(Task Units and Task Objects)]
Parser.Next_Lexeme(E); --@RI[ see @RefSecNum(Task Units and Task Objects)]
Pool(5).Read(Next_Char); --@RI[ see @RefSecNum(Task Units and Task Objects)]
Controller.Request(Low)(Some_Item); --@RI[ see @RefSecNum(Task Units and Task Objects)]
Flags(3).Seize; --@RI[ see @RefSecNum(Protected Units and Protected Objects)]
@end{Example}
@end{Examples}
@LabeledSubClause{Requeue Statements}
@begin{Intro}
@redundant[A @nt<requeue_statement>
can be used to complete an @nt<accept_statement> or @nt<entry_body>,
while redirecting the corresponding entry call to a new (or the same)
entry queue.
@Defn{requeue}
Such a @i(requeue) can be performed with or without allowing
an intermediate cancellation of the call, due to an abort or
the expiration of a delay.
@IndexSee{Term=[preference control],See=(requeue)}
@IndexSee{Term=[broadcast signal],See=(requeue)}]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<requeue_statement>,
rhs="@key{requeue} @SynI{entry_}@Syn2{name} [@key{with} @key{abort}];"}
@end{Syntax}
@begin{Resolution}
@Defn2{Term=[target entry], Sec=(of a @nt<requeue_statement>)}
The @i(entry_)@nt{name} of a @nt{requeue_statement} shall resolve
to denote an entry (the @i(target entry))
that either has no parameters, or that has
a profile that is type conformant (see @RefSecNum(Conformance Rules)) with
the profile of the innermost enclosing @nt<entry_@!body> or
@nt<accept_@!statement>.
@Defn2{Term=[type conformance],Sec=(required)}
@end{Resolution}
@begin{Legality}
A @nt{requeue_statement} shall be within a callable
construct that is either an @nt{entry_body} or an
@nt{accept_statement}, and this construct shall
be the innermost enclosing body or callable construct.
If the target entry has parameters,
then its profile shall be subtype conformant with
the profile of the innermost enclosing callable construct.
@Defn2{Term=[subtype conformance],Sec=(required)}
@PDefn2{Term=[accessibility rule],Sec=(requeue statement)}
In a @nt<requeue_statement> of an @nt<accept_statement> of
some task unit, either the target object shall be a part of a
formal parameter of the @nt<accept_statement>,
or the accessibility level of the target object
shall not be equal to or statically deeper than any
enclosing @nt<accept_statement> of the task unit.
In a @nt<requeue_@!statement> of an @nt<entry_@!body>
of some protected unit, either the target object shall be
a part of a formal parameter of the @nt<entry_@!body>,
or the accessibility level of the target object
shall not be statically deeper than that
of the @nt<entry_declaration>.
@begin{Ramification}
In the @nt{entry_body} case, the intent is that the target object can
be global,
or can be a component of the protected unit,
but cannot be a local variable of the @nt{entry_body}.
@end{Ramification}
@begin(Reason)
These restrictions ensure that the target object of the requeue outlives the
completion and finalization of the enclosing callable construct.
They also prevent requeuing from a nested
@nt<accept_statement> on a parameter of an outer @nt<accept_statement>,
which could create some strange "long-distance" connections between
an entry caller and its server.
Note that in the strange case where a @nt<task_body> is nested inside
an @nt<accept_statement>, it is permissible to requeue from an
@nt<accept_statement> of the inner @nt<task_body> on parameters of
the outer @nt<accept_statement>. This is not
a problem because all calls on the inner task have to complete before
returning from the outer @nt<accept_statement>, meaning no "dangling
calls" will be created.
@end(Reason)
@begin(ImplNote)
By disallowing certain requeues,
we ensure that the normal @nt<terminate_alternative> rules remain
sensible, and that explicit clearing of the entry queues of a protected
object during finalization is rarely necessary. In particular, such
clearing of the entry queues is necessary only (ignoring premature
Unchecked_Deallocation) for protected objects declared in a
@nt<task_body> (or created by an allocator for an access type declared
in such a body) containing one or more @nt<requeue_statement>s.
Protected objects declared in subprograms, or at the library level,
will never need to have their entry queues explicitly cleared during
finalization.
@end(ImplNote)
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(requeue_statement)}
The execution of a @nt{requeue_statement} proceeds by first evaluating the
@i(entry_)@nt<name>@Redundant[, including the @nt<prefix>
identifying the target task
or protected object and the @nt<expression>
identifying the entry
within an entry family, if any].
The @nt{entry_body} or @nt{accept_statement}
enclosing the @nt{requeue_statement} is then
completed@Redundant[, finalized, and left
(see @RefSecNum(Completion and Finalization))].
@PDefn2{Term=[execution], Sec=(requeue task entry)}
For the execution of a requeue on an entry of a target task,
after leaving the enclosing callable construct, the named entry
is checked to see if it is open and the requeued call is either
selected immediately or queued, as for a normal entry call
(see @RefSecNum(Entry Calls)).
@leading@PDefn2{Term=[execution], Sec=(requeue protected entry)}
For the execution of a requeue on an entry of a target protected
object, after leaving the enclosing callable construct:
@begin(Itemize)
if the requeue is an internal requeue
(that is, the requeue is back on an entry of the same protected object @em
see @RefSecNum(Intertask Communication)),
the call is added to the queue of the named entry and
the ongoing protected action continues (see @RefSecNum(Protected Subprograms and Protected Actions));
@begin(Ramification)
Note that for an internal requeue, the call
is queued without checking whether the target entry is open.
This is because the entry queues will be serviced before the
current protected action completes anyway, and considering the
requeued call immediately might allow it to "jump" ahead of
existing callers on the same queue.
@end(Ramification)
if the requeue is an external requeue (that is, the target protected
object is not implicitly the same as the current object @em
see @RefSecNum(Intertask Communication)),
a protected action is started on the target object and proceeds
as for a normal entry call (see @RefSecNum(Entry Calls)).
@end(Itemize)
If the new entry named in the @nt<requeue_statement>
has formal parameters, then during the execution of the
@nt<accept_statement> or @nt<entry_body> corresponding to the new entry,
the formal parameters denote the same objects as
did the corresponding formal parameters
of the callable construct completed by the requeue.
@Redundant[In any case, no parameters are specified in a
@nt<requeue_statement>; any parameter passing is implicit.]
@leading@Defn{requeue-with-abort}
If the @nt<requeue_statement> includes the reserved words @key(with abort)
(it is a @i(requeue-with-abort)), then:
@begin(Itemize)
if the original entry call has been aborted
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)), then
the requeue acts as an abort completion point for the call,
and the call is cancelled and no requeue is
performed;
if the original entry call was timed (or conditional),
then the original expiration time is the expiration
time for the requeued call.
@end(Itemize)
If the reserved words @key(with abort) do not appear, then the
call remains protected against cancellation while queued as the result
of the @nt<requeue_statement>.
@begin(Ramification)
This protection against cancellation lasts only until the
call completes or a subsequent requeue-with-abort is performed
on the call.
@end(Ramification)
@begin(Reason)
We chose to protect a requeue, by default, against abort or cancellation.
This seemed safer, since it is likely that extra steps need to be taken
to allow for possible cancellation once the servicing of an entry
call has begun. This also means that in the absence of @key(with abort)
the usual Ada 83 behavior is preserved, namely that once an
entry call is accepted, it cannot be cancelled until it completes.
@end(Reason)
@end{RunTime}
@begin{Notes}
A requeue is permitted from a single entry to an entry of
an entry family, or vice-versa. The entry index, if any,
plays no part in the subtype conformance check between the
profiles of the two entries; an entry index
is part of the @i(entry_)@nt<name> for an entry of a family.
@PDefn{subtype conformance}
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Examples of requeue statements:}
@begin{Example}
@key[requeue] Request(Medium) @key[with abort];
--@RI[ requeue on a member of an entry family of the current task, see @RefSecNum{Task Units and Task Objects}]
@key[requeue] Flags(I).Seize;
--@RI[ requeue on an entry of an array component, see @RefSecNum{Protected Units and Protected Objects}]
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The @nt<requeue_statement> is new.
@end{Extend83}
@LabeledClause{Delay Statements, Duration, and Time}
@begin{Intro}
@redundant[@PDefn{expiration time}
A @nt<delay_statement> is used to block further execution until
a specified @i(expiration time) is reached.
The expiration time
can be specified either as a particular point in time (in a
@nt<delay_@!until_@!statement>), or in seconds from the current time
(in a @nt<delay_@!relative_@!statement>).
The language-defined
package Calendar provides definitions for a type Time and associated
operations, including a function Clock that returns the current time.
@IndexSee{Term=[timing],See=(delay_statement)}]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<delay_statement>,
rhs="@Syn2{delay_until_statement} | @Syn2{delay_relative_statement}"}
@Syn{lhs=<delay_until_statement>,
rhs="@key{delay until} @SynI(delay_)@Syn2{expression};"}
@Syn{lhs=<delay_relative_statement>,
rhs="@key{delay} @SynI(delay_)@Syn2{expression};"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type],
Sec=(delay_relative_statement expression)}
The expected type for the @i(delay_)@nt{expression} in a
@nt{delay_relative_statement} is the predefined type Duration.
@PDefn2{Term=[expected type],
Sec=(delay_until_statement expression)}
The @i(delay_)@nt<expression> in a @nt<delay_until_statement>
is expected to be of any nonlimited type.
@end{Resolution}
@begin{Legality}
@Defn{time type}
@Defn{time base}
@Defn{clock}
There can be multiple time bases, each with a corresponding
clock, and a corresponding @i{time type}.
The type of the @i(delay_)@nt<expression>
in a @nt{delay_until_statement} shall be a time type @em either the
type Time defined in the language-defined package Calendar (see below),
or some other implementation-defined time type
(see @RefSecNum(Monotonic Time)).
@ImplDef{Any implementation-defined time types.}
@end{Legality}
@begin{StaticSem}
@Redundant[There is a predefined fixed point type
named Duration, declared in the visible part of package Standard;]
a value of type Duration is used to represent the length
of an interval of time, expressed in seconds.
@Redundant[The type Duration is not specific to a particular time base,
but can be used with any time base.]
A value of the type Time in package Calendar, or of some other
implementation-defined time type, represents a time as reported
by a corresponding clock.
@leading@keepnext@;The following language-defined library package exists:
@begin{Example}
@ChildUnit{Parent=[Ada],Child=[Calendar]}
@key(package) Ada.Calendar @key(is)
@key(type) @AdaTypeDefn{Time} @key(is) @key(private);
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
@key(subtype) @AdaSubtypeDefn{Name=[Year_Number],Of=[Integer]} @key(is) Integer @key(range) 1901 .. @Chg{Version=[2],New=[2399],Old=[2099]};
@key(subtype) @AdaSubtypeDefn{Name=[Month_Number],Of=[Integer]} @key(is) Integer @key(range) 1 .. 12;
@key(subtype) @AdaSubtypeDefn{Name=[Day_Number],Of=[Integer]} @key(is) Integer @key(range) 1 .. 31;
@key(subtype) @AdaSubtypeDefn{Name=[Day_Duration],Of=[Duration]} @key(is) Duration @key(range) 0.0 .. 86_400.0;
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[A range of 500 years was chosen, as that only
requires one extra bit for the year as compared to Ada 95. This was done
to minimize disruptions with existing implementations. (One implementor
reports that their time values represent nanoseconds, and this year range
requires 63.77 bits to represent.)]}
@end{Reason}
@key(function) @AdaSubDefn{Clock} @key(return) Time;
@key(function) @AdaSubDefn{Year} (Date : Time) @key(return) Year_Number;
@key(function) @AdaSubDefn{Month} (Date : Time) @key(return) Month_Number;
@key(function) @AdaSubDefn{Day} (Date : Time) @key(return) Day_Number;
@key(function) @AdaSubDefn{Seconds}(Date : Time) @key(return) Day_Duration;
@key(procedure) @AdaSubDefn{Split} (Date : @key(in) Time;
Year : @key(out) Year_Number;
Month : @key(out) Month_Number;
Day : @key(out) Day_Number;
Seconds : @key(out) Day_Duration);
@key(function) @AdaSubDefn{Time_Of}(Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0)
@key(return) Time;
@key(function) "+" (Left : Time; Right : Duration) @key(return) Time;
@key(function) "+" (Left : Duration; Right : Time) @key(return) Time;
@key(function) "-" (Left : Time; Right : Duration) @key(return) Time;
@key(function) "-" (Left : Time; Right : Time) @key(return) Duration;
@key(function) "<" (Left, Right : Time) @key(return) Boolean;
@key(function) "<="(Left, Right : Time) @key(return) Boolean;
@key(function) ">" (Left, Right : Time) @key(return) Boolean;
@key(function) ">="(Left, Right : Time) @key(return) Boolean;
@AdaExcDefn{Time_Error} : @key(exception;)
@key(private)
... -- @RI{not specified by the language}
@key(end) Ada.Calendar;
@end{Example}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(delay_statement)}
For the execution of a @nt<delay_statement>, the @i(delay_)@nt<expression>
is first evaluated.
@Defn2{Term=[expiration time], Sec=(for a @nt<delay_until_statement>)}
For a @nt<delay_until_statement>, the expiration time for the
delay is the value of the @i(delay_)@nt<expression>, in the time
base associated with the type of the @nt<expression>.
@Defn2{Term=[expiration time], Sec=(for a @nt<delay_relative_statement>)}
For a @nt<delay_relative_statement>, the expiration time is
defined as the current time, in the time base associated
with relative delays, plus
the value of the @i(delay_)@nt<expression>
converted to the type Duration, and then rounded up
to the next clock tick.
@PDefn2{Term=[implicit subtype conversion],Sec=(delay expression)}
The time base associated with relative delays
is as defined in @RefSec{Delay Accuracy} or is
implementation defined.
@ImplDef{The time base associated with relative delays.}
@begin{Ramification}
Rounding up to the next clock tick means that the reading of the
delay-relative clock when the delay expires should be no less than
the current reading of the delay-relative
clock plus the specified duration.
@end{Ramification}
@PDefn2{Term=[blocked], Sec=(on a @nt<delay_statement>)}
The task executing a @nt<delay_statement> is blocked
until the expiration time is reached, at which point it
becomes ready again. If the expiration time
has already passed, the task is not blocked.
@begin(Discussion)
For a @nt<delay_relative_statement>, this case corresponds to
when the value of the @i(delay_)@nt<expression> is zero
or negative.
Even though the task is not blocked,
it might be put back on the end of its ready queue.
See @RefSec(Priority Scheduling).
@end(Discussion)
@Defn2{Term=[cancellation], Sec=(of a @nt<delay_statement>)}
If an attempt is made to @i(cancel) the @nt<delay_statement>
@Redundant[(as part of an @nt<asynchronous_@!select> or abort @em
see @RefSecNum{Asynchronous Transfer of Control} and
@RefSecNum{Abort of a Task - Abort of a Sequence of Statements})],
the @ntf<_statement> is cancelled if
the expiration time has not yet passed,
thereby completing the @nt<delay_statement>.
@begin(Reason)
This is worded this way so that in an @nt<asynchronous_select>
where the @nt<triggering_statement> is a @nt<delay_statement>,
an attempt to cancel the delay when the @nt<abortable_part> completes
is ignored if the expiration time has already passed, in which case the
optional statements of the @nt<triggering_alternative> are executed.
@end(Reason)
The time base associated with the type Time of package Calendar
is implementation defined. The function Clock of package Calendar
returns a value representing the current time for this time base.
@Redundant[The implementation-defined value of the
named number System.Tick (see @RefSecNum(The Package System))
is an approximation of the length of the real-time
interval during which the value of Calendar.Clock remains constant.]
@ImplDef{The time base of the type Calendar.Time.}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
The functions Year,
Month, Day, and Seconds return the corresponding values for
a given value of the type Time,
as appropriate to an implementation-defined
@Chg{Version=[2],New=[time zone],Old=[timezone]}; the procedure Split
returns all four
corresponding values. Conversely, the function Time_Of combines a
year number, a month number, a day number, and a duration, into
a value of type Time. The operators "+" and "@en@;" for addition
and subtraction of times and durations, and the relational operators
for times, have the conventional meaning.
@ChgImplDef{Version=[2],Kind=[Revised],
Text=[The @Chg{Version=[2],New=[time zone],Old=[timezone]} used for
package Calendar operations.]}
If Time_Of is called with a seconds value of 86_400.0, the value
returned is equal to the value of Time_Of for the next day
with a seconds value of 0.0.
The value returned by the function
Seconds or through the Seconds parameter of the procedure
Split is always less than 86_400.0.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0030],ARef=[AI95-00113-01]}
The exception Time_Error is raised by the function Time_Of if the
actual parameters do not form a proper date. This exception
is also raised by the operators "+" and "@en@;" if the
result is not representable in the type Time or Duration, as appropriate.
This exception is also raised by the
function@Chg{New=[s],Old=[]} Year@Chg{New=[, Month, Day, and Seconds and],
Old=[or]} the procedure Split if the year number of the given date is
outside of the range of the subtype Year_Number.
@begin(Honest)
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0106],ARef=[AI95-00160-01]}
By "proper date" above we mean that the given year has
a month with the given day. For example, February 29th is
a proper date only for a leap year. @Chg{New=[We do not mean to include
the Seconds in this notion; in particular, we do not mean to require
implementations to check for the @lquotes@;missing hour@rquotes that occurs
when Daylight Savings Time starts in the spring.],Old=[]}
@end(Honest)
@begin(Reason)
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0030],ARef=[AI95-00113-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
We allow Year and Split to raise Time_Error because the arithmetic operators
are allowed (but not required) to produce times that are outside the range
of years from 1901 to @Chg{Version=[2],New=[2399],Old=[2099]}. This is
similar to the way integer operators may
return values outside the base range of their type so long as the value is
mathematically correct.
@Chg{New=[We allow the functions Month, Day and Seconds to raise Time_Error
so that they can be implemented in terms of Split.],Old=[]}
@end(Reason)
@end{RunTime}
@begin{ImplReq}
The implementation of the type Duration shall allow representation of
time intervals (both positive and negative) up to at least 86400 seconds (one
day); Duration'Small shall not be greater than twenty milliseconds.
The implementation of the type Time shall allow representation of
all dates with year numbers in the range of Year_Number@Redundant[; it
may allow representation of other dates as well (both earlier and later).]
@end{ImplReq}
@begin{ImplPerm}
An implementation may define additional time
types (see @RefSecNum{Monotonic Time}).
An implementation may raise Time_Error if the
value of a @i{delay_}@nt<expression> in a @nt<delay_until_statement>
of a @nt<select_statement> represents a time more than 90 days past the
current time. The actual limit, if any, is implementation-defined.
@ImplDef{Any limit on @nt<delay_until_statement>s of @nt<select_statement>s.}
@begin{ImplNote}
This allows an implementation to implement @nt<select_statement>
timeouts using
a representation that does not support the full range of a time type.
In particular 90 days of seconds can be represented in 23 bits,
allowing a signed 24-bit representation for the seconds part of
a timeout.
There is no similar restriction allowed for stand-alone
@nt<delay_until_statement>s, as these can be implemented
internally using a loop if necessary to accommodate a long delay.
@end{ImplNote}
@end{ImplPerm}
@begin{ImplAdvice}
Whenever possible in an implementation, the value of
Duration'Small should be no greater than 100 microseconds.
@begin(ImplNote)
This can be satisfied using a 32-bit 2's complement representation
with a @i(small) of 2.0**(@en@;14) @em that is, 61 microseconds @em and a
range of @PorM 2.0**17 @em that is, 131_072.0.
@end(ImplNote)
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The value of Duration'Small should be no greater than 100 microseconds.]}]}
The time base for @nt{delay_relative_statement}s should be monotonic;
it need not be the same time base as used for Calendar.Clock.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The time base for @nt{delay_relative_statement}s should be monotonic.]}]}
@end{ImplAdvice}
@begin{Notes}
A @nt{delay_relative_statement} with a negative value of the
@i(delay_)@nt<expression> is equivalent to one with a zero value.
A @nt{delay_statement} may be executed by the environment task;
consequently @nt{delay_statement}s may be executed as part of
the elaboration of a @nt{library_item} or the execution of the main subprogram.
Such statements delay the environment task (see @RefSecNum(Program Execution)).
@PDefn2{Term=[potentially blocking operation],Sec=(delay_statement)}
@PDefn2{Term=[blocking, potentially],Sec=(delay_statement)}
A @nt{delay_statement} is an abort completion point and
a potentially blocking operation,
even if the task is not actually blocked.
There is no necessary relationship between System.Tick (the
resolution of the clock of package Calendar)
and Duration'Small (the @i(small) of type Duration).
@begin{Ramification}
The inaccuracy of the @nt{delay_statement} has no relation to System.Tick.
In particular, it is possible that the clock used for the
@nt{delay_statement} is less accurate than Calendar.Clock.
We considered making Tick a run-time-determined quantity,
to allow for easier configurability.
However, this would not be upward compatible,
and the desired configurability can be achieved using
functionality defined in @RefSec{Real-Time Systems}.
@end{Ramification}
Additional requirements associated with @nt<delay_statement>s
are given in @RefSec(Delay Accuracy).
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of a relative delay statement:}
@begin{example}
@key(delay) 3.0; --@RI[ delay 3.0 seconds]
@end{example}
@begin{Wide}
@leading@keepnext@Defn2{Term=[periodic task],Sec=(example)}
@IndexSee{Term=[periodic task],See=(delay_until_statement)}
@i{Example of a periodic task:}
@end{Wide}
@begin{example}
@key(declare)
@key(use) Ada.Calendar;
Next_Time : Time := Clock + Period;
--@RI[ Period is a global constant of type Duration]
@key(begin)
@key(loop) --@RI[ repeated every Period seconds]
@key(delay) @key(until) Next_Time;
... --@RI[ perform some actions]
Next_Time := Next_Time + Period;
@key(end) @key(loop;)
@key(end;)
@end{example}
@end{Examples}
@begin{Inconsistent83}
@Defn{inconsistencies with Ada 83}
For programs that raise Time_Error on "+" or "@en@;" in Ada 83,the exception
might be deferred until a call on Split or Year_Number, or might
not be raised at all (if the offending time is never Split after being
calculated). This should not affect typical programs,
since they deal only with times corresponding to the relatively
recent past or near future.
@end{Inconsistent83}
@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax rule for @nt{delay_statement} is modified to allow
@nt{delay_until_statement}s.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
The type Time may represent dates with year numbers outside of Year_Number.
Therefore, the operations "+" and
"@en@;" need only raise Time_Error if the result is not representable
in Time (or Duration); also, Split or Year will now raise Time_Error
if the year number is outside of Year_Number.
This change is intended to simplify the implementation
of "+" and "@en@;" (allowing them to depend on overflow for
detecting when to raise Time_Error) and to allow local
@Chg{Version=[2],New=[time zone],Old=[timezone]} information to be
considered at the time of Split rather than Clock (depending on
the implementation approach). For example, in a POSIX environment,
it is natural for the type Time to be based on GMT, and
the results of procedure Split (and the functions
Year, Month, Day, and Seconds) to depend on local time zone information.
In other environments, it is more natural for the type Time to
be based on the local time zone, with the results of
Year, Month, Day, and Seconds being pure functions of their input.
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00351-01]}
@ChgDeleted{Version=[2],Text=[We anticipate that implementations will provide
child packages of Calendar to provide more explicit control over time zones
and other environment-dependent time-related issues.
These would be appropriate for standardization in a given
environment (such as POSIX).]}
@end{Extend83}
@begin{Inconsistent95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[@Defn{inconsistencies with Ada 95}The upper bound
of Year_Number has been changed to avoid a year 2100 problem. A program
which expects years past 2099 to raise Constraint_Error will fail in Ada 2005.
We don't expect there to be many programs which are depending on an exception
to be raised. A program that uses Year_Number'Last as a magic number may also
fail if values of Time are stored outside of the program.
Note that the lower bound of Year_Number wasn't changed, because
it is not unusual to use that value in a constant to represent an unknown
time.]}
@end{Inconsistent95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0002],ARef=[AI95-00171-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that Month, Day, and
Seconds can raise Time_Error.]}
@end{DiffWord95}
@LabeledAddedSubclause{Version=[2],Name=[Formatting, Time Zones, and other operations for Time]}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Text=[The following language-defined library packages exist:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@ChildUnit{Parent=[Ada.Calendar],Child=[Time_Zones]}@key(package) Ada.Calendar.Time_Zones @key(is)]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ -- @RI[Time zone manipulation:]]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{Time_Offset} @key<is range> -28*60 .. 28*60;]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[We want to be able to specify the difference
between any two arbitrary time zones. You might think that 1440 (24 hours)
would be enough, but there are places (like Tonga, which is UTC+13hr) which
are more than 12 hours than UTC. Combined with summer time (known as daylight
saving time in some parts of the world) @en which switches opposite in the
northern and souther hemispheres @en and even greater differences are
possible. We know of cases of a 26 hours difference, so we err on the safe
side by selecting 28 hours as the limit.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @AdaExcDefn{Unknown_Zone_Error} : @key<exception>;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{UTC_Time_Offset} (Date : Time := Clock) @key<return> Time_Offset;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Calendar.Time_Zones;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@ChildUnit{Parent=[Ada.Calendar],Child=[Arithmetic]}
@key(package) Ada.Calendar.Arithmetic @key(is)]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ -- @RI[Arithmetic on days:]]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{Day_Count} @key<is range>
-366*(1+Year_Number'Last - Year_Number'First)
..
366*(1+Year_Number'Last - Year_Number'First);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<subtype> @AdaSubtypeDefn{Name=[Leap_Seconds_Count],Of=[Integer]} @key<is> Integer @key<range> -2047 .. 2047;]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The maximum number of leap seconds is likely
to be much less than this, but we don't want to reach the limit too soon
if the earth's behavior suddenly changes. We believe that the maximum number
is 1612, based on the current rules, but that number is too weird to use here.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Difference} (Left, Right : @key<in> Time;
Days : @key<out> Day_Count;
Seconds : @key<out> Duration;
Leap_Seconds : @key<out> Leap_Seconds_Count);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> "+" (Left : Time; Right : Day_Count) @key<return> Time;
@key<function> "+" (Left : Day_Count; Right : Time) @key<return> Time;
@key<function> "-" (Left : Time; Right : Day_Count) @key<return> Time;
@key<function> "-" (Left, Right : Time) @key<return> Day_Count;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Calendar.Arithmetic;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@ChildUnit{Parent=[Ada.Calendar],Child=[Formatting]}
@key<with> Ada.Calendar.Time_Zones;
@key(package) Ada.Calendar.Formatting @key(is)]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ -- @RI[Day of the week:]]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{Day_Name} @key<is> (@AdaObjDefn{Monday}, @AdaObjDefn{Tuesday}, @AdaObjDefn{Wednesday}, @AdaObjDefn{Thursday},
@AdaObjDefn{Friday}, @AdaObjDefn{Saturday}, @AdaObjDefn{Sunday});]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Day_of_Week} (Date : Time) @key<return> Day_Name;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ -- @RI[Hours:Minutes:Seconds access:]]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<subtype> @AdaSubtypeDefn{Name=[Hour_Number],Of=[Natural]} @key<is> Natural @key<range> 0 .. 23;
@key<subtype> @AdaSubtypeDefn{Name=[Minute_Number],Of=[Natural]} @key<is> Natural @key<range> 0 .. 59;
@key<subtype> @AdaSubtypeDefn{Name=[Second_Number],Of=[Natural]} @key<is> Natural @key<range> 0 .. 59;
@key<subtype> @AdaSubtypeDefn{Name=[Second_Duration],Of=[Day_Duration]} @key<is> Day_Duration @key<range> 0.0 .. 1.0;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Year} (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Year_Number;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Month} (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Month_Number;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Day} (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Day_Number;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Hour} (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Hour_Number;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Minute} (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Minute_Number;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Second} (Date : Time)
@key<return> Second_Number;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Sub_Second} (Date : Time)
@key<return> Second_Duration;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Seconds_Of} (Hour : Hour_Number;
Minute : Minute_Number;
Second : Second_Number := 0;
Sub_Second : Second_Duration := 0.0)
@key<return> Day_Duration;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Split} (Seconds : @key<in> Day_Duration;
Hour : @key<out> Hour_Number;
Minute : @key<out> Minute_Number;
Second : @key<out> Second_Number;
Sub_Second : @key<out> Second_Duration);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Time_Of} (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Hour : Hour_Number;
Minute : Minute_Number;
Second : Second_Number;
Sub_Second : Second_Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Time;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Time_Of} (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Time;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Split} (Date : @key<in> Time;
Year : @key<out> Year_Number;
Month : @key<out> Month_Number;
Day : @key<out> Day_Number;
Hour : @key<out> Hour_Number;
Minute : @key<out> Minute_Number;
Second : @key<out> Second_Number;
Sub_Second : @key<out> Second_Duration;
Time_Zone : @key<in> Time_Zones.Time_Offset := 0);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Split} (Date : @key<in> Time;
Year : @key<out> Year_Number;
Month : @key<out> Month_Number;
Day : @key<out> Day_Number;
Hour : @key<out> Hour_Number;
Minute : @key<out> Minute_Number;
Second : @key<out> Second_Number;
Sub_Second : @key<out> Second_Duration;
Leap_Second: @key<out> Boolean;
Time_Zone : @key<in> Time_Zones.Time_Offset := 0);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Split} (Date : @key<in> Time;
Year : @key<out> Year_Number;
Month : @key<out> Month_Number;
Day : @key<out> Day_Number;
Seconds : @key<out> Day_Duration;
Leap_Second: @key<out> Boolean;
Time_Zone : @key<in> Time_Zones.Time_Offset := 0);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ -- @RI[Simple image and value:]
@key<function> @AdaSubDefn{Image} (Date : Time;
Include_Time_Fraction : Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0) @key<return> String;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Value} (Date : String;
Time_Zone : Time_Zones.Time_Offset := 0) @key<return> Time;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Image} (Elapsed_Time : Duration;
Include_Time_Fraction : Boolean := False) @key<return> String;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Value} (Elapsed_Time : String) @key<return> Duration;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Calendar.Formatting;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[Type Time_Offset represents the number of minutes
difference between the implementation-defined time zone used by Calendar
and another time zone.]}
@begin{DescribeCode}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> UTC_Time_Offset (Date : Time := Clock) @key<return> Time_Offset;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns, as a number of minutes, the
difference between the implementation-defined time zone of Calendar, and
UTC time, at the time Date. If the time zone of the Calendar implementation is
unknown, then Unknown_Zone_Error is raised.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The Date parameter is needed to take
into account time differences caused by daylight-savings time and other
time changes. This parameter is measured in the time zone of Calendar,
if any, not necessarily the UTC time zone.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Other time zones can be supported with a
child package. We don't define one because of the lack of agreement
on the definition of a time zone.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The accuracy of this routine is not specified;
the intent is that the facilities of the underlying target operating system
are used to implement it.]}
@end{Discussion}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Difference (Left, Right : @key<in> Time;
Days : @key<out> Day_Count;
Seconds : @key<out> Duration;
Leap_Seconds : @key<out> Leap_Seconds_Count);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the difference between
Left and Right. Days is the number of days of difference, Seconds is the
remainder seconds of difference excluding leap seconds, and Leap_Seconds is
the number of leap seconds. If Left < Right, then Seconds <= 0.0, Days <= 0,
and Leap_Seconds <= 0. Otherwise, all values are nonnegative.
The absolute value of Seconds is always less than 86_400.0.
For the returned values, if Days =
0, then Seconds + Duration(Leap_Seconds) = Calendar."@en" (Left, Right).]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Leap_Seconds, if any, are not included in
Seconds. However, Leap_Seconds should be included in calculations
using the operators defined in Calendar, as is specified for "@en" above.]}
@end{Discussion}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> "+" (Left : Time; Right : Day_Count) @key<return> Time;
@key<function> "+" (Left : Day_Count; Right : Time) @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Adds a number of days to a time value.
Time_Error is raised if the result is not representable as a value of type
Time.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> "-" (Left : Time; Right : Day_Count) @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Subtracts a number of days from a time value.
Time_Error is raised if the result is not representable as a value of type
Time.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> "-" (Left, Right : Time) @key<return> Day_Count;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Subtracts two time values, and returns the
number of days between them. This is the same value that Difference would
return in Days.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Day_of_Week (Date : Time) @key<return> Day_Name;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the day of the week for Time. This is
based on the Year, Month, and Day values of Time.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Year (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Year_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the year for Date, as
appropriate for the specified time zone offset.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Month (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Month_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the month for Date, as
appropriate for the specified time zone offset.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Day (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Day_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the day number for Date, as
appropriate for the specified time zone offset.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Hour (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Hour_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the hour for Date, as appropriate for
the specified time zone offset.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Minute (Date : Time;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Minute_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the minute within the hour for Date,
as appropriate for the specified time zone offset.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Second (Date : Time)
@key<return> Second_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the second within the hour and minute
for Date.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Sub_Second (Date : Time)
@key<return> Second_Duration;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the fraction of second for
Date (this has the same accuracy as Day_Duration). The value returned is always
less than 1.0.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Seconds_Of (Hour : Hour_Number;
Minute : Minute_Number;
Second : Second_Number := 0;
Sub_Second : Second_Duration := 0.0)
@key<return> Day_Duration;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a Day_Duration value for
the combination of the given Hour, Minute, Second, and Sub_Second.
This value can be used in Calendar.Time_Of as
well as the argument to Calendar."+" and Calendar."@en". If Seconds_Of is
called with a Sub_Second value of 1.0, the value returned is equal to the value
of Seconds_Of for the next second with a Sub_Second value of 0.0.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Seconds : @key<in> Day_Duration;
Hour : @key<out> Hour_Number;
Minute : @key<out> Minute_Number;
Second : @key<out> Second_Number;
Sub_Second : @key<out> Second_Duration);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Splits Seconds into Hour, Minute,
Second and Sub_Second in such a way that the resulting values all belong to
their respective subtypes. The value returned in the Sub_Second
parameter is always less than 1.0.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[There is only one way to do the split which
meets all of the requirements.]}
@end{Ramification}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Time_Of (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Hour : Hour_Number;
Minute : Minute_Number;
Second : Second_Number;
Sub_Second : Second_Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Leap_Second is False,
returns a Time built from the date and time
values, relative to the specified time zone offset. If Leap_Second is True,
returns the Time that represents the time within the leap second that is one
second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time.
If Time_Of is called with a Sub_Second value of 1.0, the value
returned is equal to the value of Time_Of for the next second with
a Sub_Second value of 0.0.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Time_Error should be raised if Leap_Second
is True, and the date and time values do not represent the second before
a leap second. A leap second always occurs at midnight UTC,
and is 23:59:60 UTC in ISO notation. So, if the time zone is UTC and
Leap_Second is True, if any of Hour /= 23, Minute /= 59, or Second /= 59,
then Time_Error should be raised.
However, we do not say that, because other time zones will have different
values where a leap second is allowed.]}
@end{Discussion}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Time_Of (Year : Year_Number;
Month : Month_Number;
Day : Day_Number;
Seconds : Day_Duration := 0.0;
Leap_Second: Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0)
@key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Leap_Second is False, returns
a Time built from the date and time
values, relative to the specified time zone offset. If Leap_Second is True,
returns the Time that represents the time within the leap second that is one
second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time.
If Time_Of is called with a Seconds value of 86_400.0, the value
returned is equal to the value of Time_Of for the next day with
a Seconds value of 0.0.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Date : @key<in> Time;
Year : @key<out> Year_Number;
Month : @key<out> Month_Number;
Day : @key<out> Day_Number;
Hour : @key<out> Hour_Number;
Minute : @key<out> Minute_Number;
Second : @key<out> Second_Number;
Sub_Second : @key<out> Second_Duration;
Leap_Second: @key<out> Boolean;
Time_Zone : @key<in> Time_Zones.Time_Offset := 0);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Date does not represent a time
within a leap second, splits Date into its constituent parts (Year, Month, Day,
Hour, Minute, Second, Sub_Second), relative to the specified time zone offset,
and sets Leap_Second to False. If Date represents a time within a leap second,
set the constituent parts to values corresponding to a time one second earlier
than that given by Date, relative to the specified time zone offset, and sets
Leap_Seconds to True. The value returned in the Sub_Second parameter is always
less than 1.0.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Date : @key<in> Time;
Year : @key<out> Year_Number;
Month : @key<out> Month_Number;
Day : @key<out> Day_Number;
Hour : @key<out> Hour_Number;
Minute : @key<out> Minute_Number;
Second : @key<out> Second_Number;
Sub_Second : @key<out> Second_Duration;
Time_Zone : @key<in> Time_Zones.Time_Offset := 0);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Splits Date into its constituent parts (Year,
Month, Day, Hour, Minute, Second, Sub_Second), relative to the specified time
zone offset. The value returned in the Sub_Second parameter is always less
than 1.0.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Date : @key<in> Time;
Year : @key<out> Year_Number;
Month : @key<out> Month_Number;
Day : @key<out> Day_Number;
Seconds : @key<out> Day_Duration;
Leap_Second: @key<out> Boolean;
Time_Zone : @key<in> Time_Zones.Time_Offset := 0);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Date does not represent a time
within a leap second, splits Date into its constituent parts (Year, Month, Day,
Seconds), relative to the specified time zone offset, and sets Leap_Second to
False. If Date represents a time within a leap second, set the constituent
parts to values corresponding to a time one second earlier than that given by
Date, relative to the specified time zone offset, and sets Leap_Seconds to
True. The value returned in the Seconds parameter is always less than 86_400.0.]}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Image (Date : Time;
Include_Time_Fraction : Boolean := False;
Time_Zone : Time_Zones.Time_Offset := 0) @key<return> String;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a string form of the Date relative to
the given Time_Zone.
The format is "Year-Month-Day Hour:Minute:Second", where the Year is a
4-digit value, and all others are 2-digit values, of the functions
defined in Calendar and Calendar.Formatting, including a leading zero,
if needed. The separators between the values are
a minus, another minus, a colon, and a single space between the Day and Hour.
If Include_Time_Fraction is True, the integer part of Sub_Seconds*100 is
suffixed to the string as a point followed by a 2-digit value.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The Image provides a string in ISO 8601 format, the
international standard time format. Alternative representations allowed
in ISO 8601 are not supported here.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ISO 8601 allows 24:00:00 for midnight; and a seconds
value of 60 for leap seconds. These are not allowed here (the routines
mentioned above cannot produce those results).]}
@end{Discussion}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The fractional part is truncated, not rounded.
It would be quite hard to define the result with proper rounding, as it can
change all of the values of the image. Values can be rounded up by adding
an appropriate constant (0.5 if Include_Time_Fraction is False,
0.005 otherwise) to the time before taking the image.]}
@end{Ramification}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Value (Date : String;
Time_Zone : Time_Zones.Time_Offset := 0) @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a Time value for the image given as
Date, relative to the given time zone. Constraint_Error is raised if the string
is not formatted as described for Image, or the function cannot interpret the
given string as a Time value.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The intent is that the implementation
enforce the same range rules on the string as the appropriate function
Time_Of, except for the hour, so
@lquotes@;cannot interpret the given string as a Time value@rquotes
happens when one of the values is out of the required range.
For example, "2005-08-31 24:0:0" should raise Constraint_Error (the hour
is out of range).]}
@end{Discussion}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Image (Elapsed_Time : Duration;
Include_Time_Fraction : Boolean := False) @key<return> String;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a string form of the Elapsed_Time.
The format is "Hour:Minute:Second", where all values are
2-digit values, including a leading zero, if needed.
The separators between the values are colons.
If Include_Time_Fraction is True, the integer part of Sub_Seconds*100 is
suffixed to the string as a point followed by a 2-digit value.
If Elapsed_Time < 0.0, the result is Image (@key<abs> Elapsed_Time,
Include_Time_Fraction) prefixed with a minus sign. If @key<abs> Elapsed_Time
represents 100 hours or more, the result is implementation-defined.]}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The result of Calendar.Formating.Image if its argument represents more
than 100 hours.]}]}
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This cannot be implemented (directly) by calling
Calendar.Formatting.Split, since it may be out of the range of
Day_Duration, and thus the number of hours may be out of the range of
Hour_Number.]}
@ChgAdded{Version=[2],Text=[If a Duration value can represent more then 100 hours,
the implementation will need to define a format for the return of Image.]}
@end{ImplNote}
@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Value (Elapsed_Time : String) @key<return> Duration;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a Duration value for the image given
as Elapsed_Time. Constraint_Error is raised if the string is not formatted as
described for Image, or the function cannot interpret the given string as a
Duration value.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The intent is that the implementation
enforce the same range rules on the string as the appropriate function
Time_Of, except for the hour, so
@lquotes@;cannot interpret the given string as a Time value@rquotes
happens when one of the values is out of the required range.
For example, "10:23:60" should raise Constraint_Error (the seconds value
is out of range).]}
@end{Discussion}
@end{DescribeCode}
@end{StaticSem}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[An implementation should support leap seconds if the
target system supports them. If leap seconds are not supported, Difference
should return zero for Leap_Seconds, Split should return False for Leap_Second,
and Time_Of should raise Time_Error if Leap_Second is True.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Leap seconds should be supported if the target system supports them.
Otherwise, operations in Calendar.Formatting should return results
consistent with no leap seconds.]}]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[An implementation can always support leap seconds
when the target system does not; indeed, this isn't particularly
hard (all that is required is a table of when leap seconds were inserted). As
such, leap second support isn't @lquotes@;impossible or impractical@rquotes
in the sense of @RefSecNum{Conformity of an Implementation with the Standard}.
However, for some purposes, it may be important to follow the target system's
lack of leap second support (if the target is a GPS satellite, which does not
use leap seconds, leap second support would be a handicap to work around).
Thus, this @ImplAdviceTitle should be read as giving permission to not support
leap seconds on target systems that don't support leap seconds. Implementers
should use the needs of their customers to determine whether or not support
leap seconds on such targets.]}
@end{Discussion}
@end{ImplAdvice}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[The implementation-defined time zone of package Calendar
may, but need not, be the local time zone. UTC_Time_Offset always returns the
difference relative to the implementation-defined time zone of package
Calendar. If UTC_Time_Offset does not raise Unknown_Zone_Error, UTC time
can be safely calculated (within the accuracy of the underlying time-base).]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[The time in the time zone known as Greenwich
Mean Time (GMT) is generally very close to UTC time; for most purposes they
can be treated the same. GMT is the time based on the rotation of the Earth;
UTC is the time based on atomic clocks, with leap seconds periodically
inserted to realign with GMT (because most human activities depend on the
rotation of the Earth). At any point in time, there will be a sub-second
difference between GMT and UTC.]}
@end{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[Calling Split on the results of subtracting
Duration(UTC_Time_Offset*60) from Clock provides the components (hours,
minutes, and so on) of the UTC time. In the United States, for example,
UTC_Time_Offset will generally be negative.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is an illustration to help specify the value of
UTC_Time_Offset. A user should pass UTC_Time_Offset as the Time_Zone
parameter of Split, rather than trying to make the above calculation.]}
@end{Discussion}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00428-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Packages Calendar.Time_Zones, Calendar.Arithmetic, and Calendar.Formatting
are new.]}
@end{Extend95}
@LabeledClause{Select Statements}
@begin{Intro}
@redundant[There are four forms of the @nt{select_statement}. One form provides a
selective wait for one or more @nt{select_alternative}s. Two provide
timed and conditional entry calls. The fourth provides asynchronous
transfer of control.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<select_statement>,rhs="
@Syn2{selective_accept}
| @Syn2{timed_entry_call}
| @Syn2{conditional_entry_call}
| @Syn2{asynchronous_select}"}
@end{Syntax}
@begin{Examples}
@leading@keepnext@i{Example of a select statement:}
@begin{Example}
@key(select)
@key(accept) Driver_Awake_Signal;
@key(or)
@key(delay) 30.0*Seconds;
Stop_The_Train;
@key(end) @key(select);
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
@nt{Asynchronous_select} is new.
@end{Extend83}
@LabeledSubClause{Selective Accept}
@begin{Intro}
@redundant[This form of the @nt{select_statement} allows a combination of waiting for,
and selecting from, one or more alternatives. The
selection may depend on conditions associated with each alternative of the
@nt{selective_accept}.
@IndexSee{Term=[time-out],See=(selective_accept)}]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<selective_accept>,rhs="
@key{select}
[@Syn2{guard}]
@Syn2{select_alternative}
{ @key{or}
[@Syn2{guard}]
@Syn2{select_alternative} }
[ @key{else}
@Syn2{sequence_of_statements} ]
@key{end select};"}
@Syn{lhs=<guard>,rhs="@key{when} @Syn2{condition} =>"}
@Syn{lhs=<select_alternative>,rhs="
@Syn2{accept_alternative}
| @Syn2{delay_alternative}
| @Syn2{terminate_alternative}"}
@Syn{lhs=<accept_alternative>,rhs="
@Syn2{accept_statement} [@Syn2{sequence_of_statements}]"}
@Syn{lhs=<delay_alternative>,rhs="
@Syn2{delay_statement} [@Syn2{sequence_of_statements}]"}
@Syn{lhs=<terminate_alternative>,rhs="@key{terminate};"}
@begin(SyntaxText)
@leading@;A @nt{selective_accept} shall contain at least one @nt{accept_alternative}.
In addition, it can contain:
@begin{itemize}
a @nt{terminate_alternative} (only one); or
one or more @nt{delay_alternative}s; or
@Defn2{Term=[else part], Sec=(of a @nt<selective_accept>)}
an @i(else part) (the reserved word @key(else) followed
by a @nt<sequence_of_statements>).
@end{itemize}
These three possibilities are mutually exclusive.
@end(SyntaxText)
@end{Syntax}
@begin{Legality}
If a @nt{selective_accept} contains more than one @nt{delay_alternative},
then all shall be @nt<delay_@!relative_@!statement>s,
or all shall be @nt<delay_@!until_@!statement>s for the same time type.
@begin{Reason}
This simplifies the implementation and the description of the semantics.
@end{Reason}
@end{Legality}
@begin{RunTime}
@Defn{open alternative}
A @nt<select_alternative> is said to be @i(open) if
it is not immediately preceded by a @nt<guard>, or if
the @nt<condition> of its @nt<guard> evaluates to True. It
is said to be @i(closed) otherwise.
@PDefn2{Term=[execution], Sec=(selective_accept)}
For the execution of a @nt{selective_accept}, any @nt{guard}
@nt{condition}s are evaluated; open alternatives are
thus determined. For an open @nt{delay_alternative}, the
@i(delay_)@nt<expression> is also evaluated. Similarly, for an open
@nt{accept_alternative} for
an entry of a family, the @nt{entry_index} is also evaluated.
These evaluations are performed in an arbitrary order, except that
a @i(delay_)@nt<expression> or @nt<entry_index> is not evaluated until
after evaluating the corresponding @nt<condition>, if any.
Selection and execution of one open alternative, or of the else part, then
completes the execution of the @nt{selective_accept}; the rules for
this selection are described below.
Open @nt{accept_alternative}s are first considered. Selection of one such
alternative takes place immediately if the corresponding
entry already has queued calls. If several alternatives
can thus be selected, one of them is selected according to the
entry queuing policy in effect (see @RefSecNum(Entry Calls) and
@RefSecNum(Entry Queuing Policies)).
When such an
alternative is selected, the selected call is
removed from its entry queue and the @nt<handled_sequence_of_@!statements>
(if any) of the corresponding @nt{accept_statement} is executed; after the
rendezvous completes any subsequent @nt<sequence_of_@!statements>
of the alternative is executed.
@PDefn2{Term=[blocked], Sec=(execution of a @nt<selective_accept>)}
If no selection is immediately possible (in the above sense)
and there is no else part, the task
blocks until an open alternative can be selected.
@leading@;Selection of the other forms of alternative or of an else part is performed
as follows:
@begin{itemize}
An open @nt{delay_alternative} is selected when
its expiration time is reached if no @nt{accept_@!alternative}
or other @nt<delay_@!alternative> can be selected prior to the
expiration time. If several
@nt{delay_@!alternative}s have this same expiration time,
one of them is selected according to the queuing policy in
effect (see @RefSecNum{Entry Queuing Policies}); the default queuing
policy chooses arbitrarily among the @nt<delay_@!alternative>s
whose expiration time has passed.
The else part is selected and its @nt<sequence_of_@!statements> is executed
if no @nt{accept_alternative} can immediately be selected;
in particular, if all alternatives are closed.
An open @nt{terminate_alternative} is selected if the conditions stated at the
end of clause @RefSecNum{Task Dependence - Termination of Tasks}
are satisfied.
@begin(Ramification)
In the absence of a @nt<requeue_statement>, the conditions stated
are such that a @nt<terminate_alternative> cannot be selected while
there is a queued entry call for any entry of the task.
In the presence of requeues from a task to one of its subtasks,
it is possible that when a @nt<terminate_alternative> of the
subtask is selected, requeued calls (for closed entries only) might still
be queued on some entry of the subtask. Tasking_Error will
be propagated to such callers, as is usual when a task completes
while queued callers remain.
@end(Ramification)
@end{itemize}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
The exception Program_Error is raised if all alternatives are closed and
there is no else part.
@end{RunTime}
@begin{Notes}
A @nt{selective_accept} is allowed to have several open
@nt{delay_alternative}s. A @nt{selective_accept} is allowed
to have several open
@nt{accept_alternative}s for the same entry.
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of a task body with a selective accept:}
@begin{Example}
@key(task) @key(body) Server @key(is)
Current_Work_Item : Work_Item;
@key(begin)
@key(loop)
@key(select)
@key(accept) Next_Work_Item(WI : @key(in) Work_Item) @key(do)
Current_Work_Item := WI;
@key(end);
Process_Work_Item(Current_Work_Item);
@key(or)
@key(accept) Shut_Down;
@key(exit); --@RI[ Premature shut down requested]
@key(or)
@key(terminate); --@RI[ Normal shutdown at end of scope]
@key(end) @key(select);
@key(end) @key(loop);
@key(end) Server;
@end{Example}
@end{Examples}
@begin{DiffWord83}
The name of @ntf{selective_wait} was changed to @nt{selective_accept} to
better describe what is being waited for.
We kept @nt{select_alternative} as is, because
@ntf<selective_accept_alternative> was too easily confused
with @nt<accept_alternative>.
@end{DiffWord83}
@LabeledSubClause{Timed Entry Calls}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@redundant[A @nt{timed_entry_call} issues an entry call that is
cancelled if the call (or a requeue-with-abort of the call)
is not selected before the expiration time is
reached.@Chg{Version=[2],New=[ A procedure call may appear rather than
an entry call for cases where the procedure might be implemented by
an entry.],Old=[]}
@IndexSee{Term=[time-out],See=(timed_entry_call)}]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<timed_entry_call>,rhs="
@key{select}
@Syn2{entry_call_alternative}
@key{or}
@Syn2{delay_alternative}
@key{end select};"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<entry_call_alternative>,rhs="
@Chg{Version=[2],New=[@Syn2{procedure_or_entry_call}],Old=[@Syn2{entry_call_statement}]} [@Syn2{sequence_of_statements}]"}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=[procedure_or_entry_call],Old=[]}>,rhs="
@Chg{Version=[2],New=[@Syn2{procedure_call_statement} | @Syn2{entry_call_statement}],Old=[]}"}
@end{Syntax}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[If a @nt{procedure_call_statement} is used for a
@nt{procedure_or_entry_call}, the @SynI{procedure_}@nt{name} or
@SynI{procedure_}@nt{prefix} of the @nt{procedure_call_statement} shall
statically denote an entry renamed as a procedure or (a view of) a
primitive subprogram of a limited interface whose first parameter is a
controlling parameter (see @RefSecNum{Dispatching Operations of Tagged Types}).]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This would be a confusing way to call a procedure,
so we only allow it when it is possible that the procedure is actually an
entry. We could have allowed formal subprograms here, but we didn't because
we'd have to allow all formal subprograms, and it would increase the
difficulty of generic code sharing.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[We say @lquotes@;statically denotes@rquotes
because an access-to-subprogram cannot be primitive, and we don't have
anything like access-to-entry. So only names of entries or procedures are
possible.]}
@end{Reason}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[If a @nt{procedure_call_statement} is used for a
@nt{procedure_or_entry_call}, and the procedure is implemented by an entry,
then the @SynI{procedure_}@nt{name}, or @SynI{procedure_}@nt{prefix} and
possibly the first parameter of the @nt{procedure_call_statement}, determine
the target object of the call and the entry to be called.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The above says @lquotes@;possibly the first
parameter@rquotes@;, because Ada allows entries
to be renamed and passed as formal subprograms. In those cases, the
task or protected object is implicit in the name of the routine; otherwise
the object is an explicit parameter to the call.]}
@end{Discussion}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@PDefn2{Term=[execution], Sec=(timed_entry_call)}
For the execution of a @nt{timed_entry_call}, the @SynI(entry_)@nt<name>@Chg{Version=[2],
New=[, @Syni{procedure_}@nt{name}, or @Syni{procedure_}@nt{prefix},],Old=[]}
and any actual parameters are evaluated,
as for a simple entry call (see @RefSecNum(Entry Calls))@Chg{Version=[2],New=[
or procedure call (see @RefSecNum{Subprogram Calls})],Old=[]}.
The expiration time
(see @RefSecNum(Delay Statements, Duration, and Time))
for the call is determined by evaluating
the @i(delay_)@nt<expression> of the
@nt<delay_alternative>@Chg{Version=[2],New=[. If the call is an entry call or
a call on a procedure implemented by an entry,],Old=[;]}
the entry call is then issued.@Chg{Version=[2],New=[ Otherwise, the call
proceeds as described in @RefSecNum{Subprogram Calls} for a procedure call,
followed by the @nt{sequence_of_@!statements} of the @nt{entry_call_@!alternative};
the @nt{sequence_of_@!statements} of the @nt{delay_@!alternative} is ignored.],Old=[]}
If the call is queued (including due to a requeue-with-abort),
and not selected before the expiration
time is reached, an attempt to cancel the call is made.
If the call completes due to the cancellation, the optional
@nt<sequence_of_@!statements> of the @nt<delay_@!alternative> is
executed; if the entry call completes normally, the optional
@nt<sequence_of_@!statements> of the @nt<entry_call_@!alternative> is
executed.
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00345-01]}
@ChgDeleted{Version=[2],Text=[The fact that the syntax calls for
an @nt{entry_call_statement} means
that this fact is used in overload resolution.
For example,
if there is a procedure X and an entry X (both with no parameters),
then "select X; ..." is legal,
because overload resolution knows that the entry is the one that was
meant.]}
@end{Ramification}
@end{RunTime}
@begin{Examples}
@leading@keepnext@i{Example of a timed entry call:}
@begin{Example}
@key(select)
Controller.Request(Medium)(Some_Item);
@key(or)
@key(delay) 45.0;
--@RI[ controller too busy, try something else]
@key(end) @key(select);
@end{Example}
@end{Examples}
@begin{DiffWord83}
This clause comes before the one for Conditional Entry Calls,
so we can define conditional entry calls in terms of timed entry calls.
@end{DiffWord83}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
A procedure can be used as the in a timed or
conditional entry call, if the procedure
might actually be an entry. Since the fact that something is an entry
could be used in resolving these calls in Ada 95, it is possible for
timed or conditional entry calls that resolved in Ada 95 to be ambiguous
in Ada 2005. That could happen if both an entry and procedure with the
same name and profile exist, which should be rare.]}
@end{Incompatible95}
@LabeledSubClause{Conditional Entry Calls}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Redundant[A @nt{conditional_entry_call} issues an entry call that is
then cancelled if it is not selected immediately (or if a requeue-with-abort
of the call is not selected immediately).@Chg{Version=[2],New=[ A procedure
call may appear rather than
an entry call for cases where the procedure might be implemented by
an entry.],Old=[]}]
@begin(Honest)
In the case of an entry call on a protected object, it is OK if the entry
is closed at the start of the corresponding protected action, so long as
it opens and the call is selected before the end of that protected
action (due to changes in the Count attribute).
@end(Honest)
@end{Intro}
@begin{Syntax}
@Syn{lhs=<conditional_entry_call>,rhs="
@key{select}
@Syn2{entry_call_alternative}
@key{else}
@Syn2{sequence_of_statements}
@key{end select};"}
@end{Syntax}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(conditional_entry_call)}
The execution of a @nt<conditional_entry_call> is defined to be equivalent
to the execution of a @nt<timed_@!entry_@!call> with a @nt<delay_@!alternative>
specifying an immediate expiration time and the
same @nt<sequence_of_@!statements> as given after the reserved word @key(else).
@end{RunTime}
@begin{Notes}
A @nt{conditional_entry_call} may briefly increase the Count attribute of
the entry, even if the conditional call is not selected.
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of a conditional entry call:}
@begin{Example}
@key(procedure) Spin(R : @key[in] Resource) @key(is)
@key(begin)
@key(loop)
@key(select)
R.Seize;
@key(return);
@key(else)
@key(null); --@RI[ busy waiting]
@key(end) @key(select);
@key(end) @key(loop);
@key(end);
@end{Example}
@end{Examples}
@begin{DiffWord83}
This clause comes after the one for Timed Entry Calls,
so we can define conditional entry calls in terms of timed
entry calls.
We do that so that an "expiration time" is defined for both,
thereby simplifying the definition of what happens on
a requeue-with-abort.
@end{DiffWord83}
@RMNewPage@Comment{For printed Ada 2005 RM}
@LabeledSubClause{Asynchronous Transfer of Control}
@begin{Intro}
@redundant[An asynchronous @nt{select_statement} provides
asynchronous transfer of control
upon completion of an entry call or the expiration of a delay.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<asynchronous_select>,rhs="
@key{select}
@Syn2{triggering_alternative}
@key{then abort}
@Syn2{abortable_part}
@key{end select};"}
@Syn{lhs=<triggering_alternative>,rhs="@Syn2{triggering_statement} [@Syn2{sequence_of_statements}]"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<triggering_statement>,rhs="@Chg{Version=[2],New=[@Syn2{procedure_or_entry_call}],Old=[@Syn2{entry_call_statement}]} | @Syn2{delay_statement}"}
@Syn{lhs=<abortable_part>,rhs="@Syn2{sequence_of_statements}"}
@end{Syntax}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@PDefn2{Term=[execution],
Sec=(asynchronous_select with an entry call trigger)}
@Chg{Version=[2],New=[@PDefn2{Term=[execution],
Sec=(asynchronous_select with a procedure call trigger)}],Old=[]}
For the execution of an @nt{asynchronous_select}
whose @nt<triggering_@!statement> is @Chg{Version=[2],
New=[a @nt<procedure_or_entry_call>],Old=[an @nt<entry_call_statement>]},
the @Syni(entry_)@nt<name>@Chg{Version=[2],New=[, @Syni{procedure_}@nt{name},
or @Syni{procedure_}@nt{prefix},],Old=[]} and actual parameters are evaluated
as for a simple entry call (see @RefSecNum(Entry Calls))@Chg{Version=[2],New=[
or procedure call (see @RefSecNum{Subprogram Calls}).
If the call is an entry call or a call on a procedure implemented by an
entry,],Old=[, and]} the entry call is issued.
If the entry call is queued (or requeued-with-abort),
then the @nt<abortable_part> is executed.
@Redundant[If the entry call is selected immediately,
and never requeued-with-abort,
then the @nt<abortable_part> is never started.]@Chg{Version=[2],New=[ If the
call is on a procedure that is not implemented by an entry, the call proceeds
as described in @RefSecNum{Subprogram Calls}, followed by the
@nt{sequence_of_@!statements} of the @nt{triggering_@!alternative}@Redundant[;
the @nt{abortable_part} is never started].],Old=[]}
@PDefn2{Term=[execution],
Sec=(asynchronous_select with a delay_statement trigger)}
For the execution of an @nt<asynchronous_select> whose
@nt<triggering_@!statement> is a @nt<delay_statement>,
the @i(delay_)@nt<expression> is evaluated
and the expiration time is determined,
as for a normal @nt<delay_statement>.
If the expiration time has not already passed, the @nt<abortable_part>
is executed.
If the @nt<abortable_part> completes and is left prior to completion of the
@nt<triggering_@!statement>,
an attempt to cancel the @nt<triggering_@!statement> is made.
If the attempt to cancel succeeds (see @RefSecNum(Entry Calls) and
@RefSecNum(Delay Statements, Duration, and Time)), the
@nt<asynchronous_select> is complete.
If the @nt<triggering_@!statement> completes other than
due to cancellation,
the @nt<abortable_part>
is aborted (if started but not yet completed @em
see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)).
If the @nt<triggering_@!statement> completes normally, the optional
@nt<sequence_of_@!statements> of the @nt<triggering_@!alternative> is
executed after the @nt<abortable_part> is left.
@begin(Discussion)
We currently don't specify when the by-copy [@key(in)] @key(out)
parameters are assigned back into the actuals. We considered
requiring that to happen after the @nt<abortable_part> is
left. However, that doesn't seem useful enough
to justify possibly overspecifying the implementation approach,
since some of the parameters are passed by reference anyway.
In an earlier description, we required that the @nt<sequence_of_@!statements>
of the @nt<triggering_@!alternative> execute after aborting
the @nt<abortable_part>, but before waiting for it to complete
and finalize, to provide more rapid response to the triggering event
in case the finalization was unbounded. However, various reviewers felt
that this created unnecessary complexity in the description,
and a potential for undesirable concurrency (and nondeterminism)
within a single task. We have now reverted to simpler, more
deterministic semantics,
but anticipate that further discussion of this issue might be
appropriate during subsequent reviews.
One possibility is to leave this area implementation defined,
so as to encourage experimentation. The user would then have
to assume the worst about what kinds of actions are appropriate
for the @nt<sequence_of_@!statements> of the @nt<triggering_@!alternative>
to achieve portability.
@end(Discussion)
@end{RunTime}
@begin{Examples}
@leading@keepnext@Defn2{Term=[signal handling], Sec=(example)}
@Defn2{Term=[interrupt],Sec=(example using @nt<asynchronous_select>)}
@Defn2{Term=[terminal interrupt], Sec=(example)}
@i(Example of a main command loop for a command interpreter:)
@begin(Example)
@key(loop)
@key(select)
Terminal.Wait_For_Interrupt;
Put_Line("Interrupted");
@key(then abort)
-- @RI(This will be abandoned upon terminal interrupt)
Put_Line("-> ");
Get_Line(Command, Last);
Process_Command(Command(1..Last));
@key(end) @key(select);
@key(end) @key(loop);
@end(Example)
@begin{Wide}
@leading@keepnext@i(Example of a time-limited calculation:)
@IndexSee{Term=[time-out],See=(asynchronous_select)}
@Defn2{Term=[time-out],Sec=(example)}
@Defn2{Term=[time limit],Sec=(example)}
@Defn2{Term=[interrupt],Sec=(example using @nt<asynchronous_select>)}
@Defn2{Term=[timer interrupt],Sec=(example)}
@end{Wide}
@begin(Example)
@key(select)
@key(delay) 5.0;
Put_Line("Calculation does not converge");
@key(then abort)
-- @RI(This calculation should finish in 5.0 seconds;)
-- @RI( if not, it is assumed to diverge.)
Horribly_Complicated_Recursive_Function(X, Y);
@key(end) @key(select);
@end(Example)
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
@nt<Asynchronous_select> is new.
@end{Extend83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
A procedure can be used as the
@nt{triggering_@!statement} of an @nt<asynchronous_select>, if the procedure
might actually be an entry]}
@end{Extend95}
@LabeledClause{Abort of a Task - Abort of a Sequence of Statements}
@begin{Intro}
@redundant[An @nt{abort_statement} causes one or more tasks to become abnormal, thus
preventing any further interaction with such tasks. The completion
of the @nt<triggering_@!statement> of an @nt<asynchronous_select>
causes a @nt{sequence_of_@!statements} to be aborted.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<abort_statement>,
rhs="@key{abort} @SynI{task_}@Syn2{name} {, @SynI{task_}@Syn2{name}};"}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type], Sec=(abort_statement task_name)}
Each @SynI{task_}@nt{name} is expected to be of any task
type@Redundant[; they need not all be of the same task type.]
@end{Resolution}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(abort_statement)}
For the execution of an @nt<abort_statement>, the given @i(task_)@nt<name>s
are evaluated in an arbitrary order.
@Defn2{Term=[abort], Sec=(of a task)}
@Defn{abnormal task}
@PDefn2{Term=[task state], Sec=(abnormal)}
Each named task is
then @i(aborted), which consists of making the task @i(abnormal)
and aborting the execution of the corresponding @nt<task_body>,
unless it is already completed.
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
Note that aborting those tasks is not defined to be an
abort-deferred operation.
Therefore, if one of the named tasks is the task executing the
@nt{abort_statement}, or if the task executing the
@nt{abort_statement} depends on one of the named tasks,
then it is possible for the execution of the @nt{abort_statement} to be
aborted, thus leaving some of the tasks unaborted.
This allows the implementation to use either a sequence of calls to an
@lquotes@;abort task@rquotes@; @Chg{Version=[2],New=[run-time
system],Old=[RTS]} primitive, or a single call to an @lquotes@;abort list of
tasks@rquotes@; @Chg{Version=[2],New=[run-time system],Old=[RTS]} primitive.
@end{Ramification}
@leading@PDefn2{Term=[execution], Sec=(aborting the execution of a construct)}
@Defn2{Term=[abort], Sec=(of the execution of a construct)}
When the execution of a construct
is @i(aborted) (including that of a @nt<task_@!body> or of a
@nt<sequence_of_@!statements>), the execution of every construct
included within the aborted execution is also aborted,
except for executions included within the execution of an @i(abort-deferred)
operation; the execution of an abort-deferred operation
continues to completion without being affected by the abort;
@Defn{abort-deferred operation}
the following are the abort-deferred operations:
@begin(Itemize)
a protected action;
waiting for an entry call to complete (after having
initiated the attempt to cancel it @em see below);
waiting for the termination of dependent tasks;
the execution of an Initialize procedure as the last step
of the default initialization of a controlled object;
the execution of a Finalize procedure as part of the
finalization of a controlled object;
an assignment operation to an object with a controlled part.
@end(Itemize)
@Redundant[The last three of these are discussed further in
@RefSecNum(User-Defined Assignment and Finalization).]
@begin{Reason}
Deferring abort during Initialize and finalization allows,
for example, the result of an allocator performed in
an Initialize operation to be assigned into an access object without
being interrupted in the middle, which would cause storage leaks.
For an object with several controlled parts,
each individual Initialize is abort-deferred.
Note that there is generally no semantic difference between
making each Finalize
abort-deferred, versus making a group of them abort-deferred,
because if the task gets aborted, the first thing it will do is
complete any remaining finalizations.
Individual objects are finalized prior to an assignment operation
(if nonlimited controlled) and as part of Unchecked_Deallocation.
@end{Reason}
@begin(Ramification)
Abort is deferred during the entire assignment operation
to an object with a controlled part,
even if only some subcomponents are controlled.
Note that this says "assignment operation,"
not "@nt{assignment_statement}."
Explicit calls to Initialize, Finalize, or Adjust are
not abort-deferred.
@end(Ramification)
When a master is aborted, all tasks
that depend on that master are aborted.
@PDefn{unspecified}
The order in which tasks become abnormal as the result
of an @nt<abort_statement> or the abort of a @nt<sequence_of_@!statements>
is not specified by the language.
@leading@;If the execution of an entry call is aborted,
an immediate attempt is made to cancel the entry call
(see @RefSecNum(Entry Calls)).
If the execution of a construct
is aborted at a time when the execution is blocked,
other than for an entry call, at a point that is outside
the execution of an abort-deferred operation,
then the execution of the construct completes immediately.
For an abort due to an @nt<abort_statement>,
these immediate effects occur before the execution of
the @nt<abort_statement> completes.
Other than for these immediate cases, the execution
of a construct that is aborted does not necessarily
complete before the @nt<abort_statement> completes.
However, the execution of the aborted construct
completes no later than its next @i(abort completion point) (if any)
that occurs outside of an abort-deferred operation;
@Defn{abort completion point}
the following are abort completion points for an execution:
@begin(Itemize)
the point where the execution initiates the activation of another task;
the end of the activation of a task;
the start or end of the execution of an entry call,
@nt<accept_statement>, @nt<delay_statement>, or @nt<abort_statement>;
@begin(Ramification)
Although the abort completion point doesn't occur until the end
of the entry call or @nt<delay_statement>, these operations might
be cut short because an abort attempts to cancel them.
@end(Ramification)
the start of the execution of a @nt<select_statement>,
or of the @nt<sequence_of_@!statements> of an @nt<exception_handler>.
@begin(Reason)
The start of an @nt<exception_handler> is considered an abort completion
point simply because it is easy for an implementation to check
at such points.
@end(Reason)
@begin(ImplNote)
Implementations may of course check for abort more often than at
each abort completion point; ideally, a fully preemptive
implementation of abort will be provided.
If preemptive abort is not supported in a given environment,
then supporting the checking for abort
as part of subprogram calls and loop iterations might be a useful option.
@end(ImplNote)
@end(Itemize)
@end{RunTime}
@begin{Bounded}
@PDefn2{Term=(bounded error),Sec=(cause)}
An attempt to execute an @nt<asynchronous_select> as
part of the execution of an abort-deferred operation is a bounded error.
Similarly, an attempt to create a task that depends on a master
that is included entirely within the execution of
an abort-deferred operation is a bounded error.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
In both cases, Program_Error is raised if the error is detected
by the implementation; otherwise the operations proceed
as they would outside an abort-deferred operation, except
that an abort of the @nt<abortable_part>
or the created task might or might not have an effect.
@begin(Reason)
An @nt<asynchronous_select> relies on an abort of the
@nt<abortable_part> to effect the
asynchronous transfer of control. For an @nt<asynchronous_select>
within an abort-deferred operation, the abort might
have no effect.
Creating a task dependent on a master included within an abort-deferred
operation is considered an error, because such tasks could be aborted while
the abort-deferred operation was still progressing, undermining the
purpose of abort-deferral. Alternatively, we could say that such
tasks are abort-deferred for their entire execution, but that seems
too easy to abuse. Note that task creation is already a bounded error
in protected actions, so this additional rule only applies to local task
creation as part of Initialize, Finalize, or Adjust.
@end(Reason)
@end{Bounded}
@begin{Erron}
@PDefn{normal state of an object}
@PDefn{abnormal state of an object}
@Defn{disruption of an assignment}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If an assignment operation completes prematurely due to an abort,
the assignment is said to be @i{disrupted};
the target of the assignment or its parts can become abnormal,
and certain subsequent uses of the object can be erroneous,
as explained in @RefSecNum{Data Validity}.
@end{Erron}
@begin{Notes}
An @nt{abort_statement} should be used only in situations
requiring unconditional termination.
A task is allowed to abort any task it can name, including itself.
Additional requirements associated with abort
are given in @RefSec(Preemptive Abort).
@end{Notes}
@begin{DiffWord83}
This clause has been rewritten to accommodate the concept
of aborting the execution of a construct, rather than just of a task.
@end{DiffWord83}
@LabeledClause{Task and Entry Attributes}
@begin{RunTime}
@leading@;
For @PrefixType{a @nt<prefix> T that
is of a task type @Redundant[(after
any implicit dereference)]},
the following attributes are defined:
@begin{Description}
@Comment{@ChgAttribute{Version=[2], Kind=[Revised], ChginAnnex=[F], Leading=[F],
Prefix=<T>, AttrName=<Callable>, ARef=[AI95-00345],
Text=<Yields the value True when the task denoted by T
is @i(callable), and False otherwise;>}
@PDefn2{Term=[task state], Sec=(callable)}
@Defn{callable}
a task is callable unless it is completed or abnormal.
The value of this attribute is of the predefined
type Boolean.}
@Attribute{Prefix=<T>, AttrName=<Callable>,
Text=<Yields the value True when the task denoted by T
is @i(callable), and False otherwise;>}
@PDefn2{Term=[task state], Sec=(callable)}
@Defn{callable}
a task is callable unless it is completed or abnormal.
The value of this attribute is of the predefined
type Boolean.
@Attribute{Prefix=<T>, AttrName=<Terminated>,
Text=<Yields the value True if the task denoted by T is
terminated, and False otherwise. The value of this
attribute is of the predefined type Boolean.>}
@end{Description}
@EndPrefixType{}
For @PrefixType{a @nt<prefix> E that denotes an entry
of a task or protected unit},
the following attribute is defined.
This attribute is only allowed within the body of the task or protected
unit, but excluding, in the case of an entry of a task unit, within any
program unit that is, itself, inner to the body of the task unit.
@begin{Description}
@Attribute{Prefix=<E>, AttrName=<Count>,
Text=<Yields the number of calls presently queued on the
entry E of the current instance of the unit.
The value of this attribute is of the type
@i{universal_integer}.>}
@end{Description}
@EndPrefixType{}
@end{RunTime}
@begin{Notes}
For the Count attribute, the entry can be either a single entry or an
entry of a family. The name of the entry or entry
family can be either a @nt<direct_name> or an expanded name.
Within task units, algorithms interrogating the attribute E'Count should
take precautions to allow for the increase of the value of this attribute
for incoming entry calls, and its decrease, for example with
@nt{timed_entry_call}s. Also, a @nt{conditional_entry_call} may briefly
increase this value, even if the conditional call is not accepted.
Within protected units, algorithms interrogating the attribute E'Count
in the @nt<entry_barrier> for the entry E should take precautions to
allow for the evaluation of the @nt<condition> of the barrier both before
and after queuing a given caller.
@end{Notes}
@LabeledClause{Shared Variables}
@begin{StaticSem}
@Defn2{Term=[shared variable], Sec=(protection of)}
@Defn{independently addressable}
If two different objects, including nonoverlapping
parts of the same object, are @i{independently addressable},
they can be manipulated concurrently by two different tasks
without synchronization.
Normally, any two nonoverlapping objects are independently addressable.
However, if packing, record layout, or Component_Size
is specified for a given composite object,
then it is implementation defined whether or not
two nonoverlapping parts of that composite object
are independently addressable.
@ImplDef{Whether or not two nonoverlapping parts of a composite
object are independently addressable,
in the case where packing, record layout, or Component_Size
is specified for the object.}
@begin{ImplNote}
Independent addressability is the only high level semantic effect of
a @nt{pragma} Pack.
If two objects are independently addressable,
the implementation should allocate them in such a way
that each can be written by the hardware without writing the other.
For example, unless the user asks for it,
it is generally not feasible to choose a bit-packed
representation on a machine without an atomic bit field
insertion instruction,
because there might be tasks that update neighboring subcomponents
concurrently,
and locking operations on all subcomponents is generally not a good
idea.
Even if packing or one of the other above-mentioned aspects is specified,
subcomponents should still be updated independently if the
hardware efficiently supports it.
@end{ImplNote}
@end{StaticSem}
@begin{RunTime}
@leading@redundant[Separate tasks normally proceed independently and concurrently
with one another. However, task interactions can be used
to synchronize the actions of two or more tasks to allow,
for example, meaningful communication by the direct updating and
reading of variables shared between the tasks.]
The actions of two different tasks are synchronized in this
sense when an
action of one task @i(signals) an action of the other task;
@Defn2{Term=[signal], Sec=(as defined between actions)}
an action A1 is defined to signal an action A2 under the following
circumstances:
@begin(Itemize)
If A1 and A2 are part of the execution of the same task,
and the language rules require A1 to be performed before A2;
If A1 is the action of an activator that initiates the
activation of a task, and
A2 is part of the execution of the task that is activated;
If A1 is part of the activation of a task, and A2
is the action of
waiting for completion of the activation;
If A1 is part of the execution of a task, and A2 is
the action of waiting for the termination of the task;
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0031],ARef=[AI95-00118-01]}
@ChgAdded{Version=[1],Text=[If A1 is the termination of a task T, and A2 is
either the evaluation of the expression T'Terminated or a call to
Ada.Task_Identification.Is_Terminated with an actual parameter that
identifies T (see @RefSecNum(The Package Task_Identification));]}
If A1 is the action of issuing an entry call, and A2 is
part of the corresponding execution of the appropriate
@nt<entry_body> or @nt<accept_statement>.
@begin(Ramification)
Evaluating the @nt<entry_index> of an @nt<accept_statement>
is not synchronized with a corresponding entry call,
nor is evaluating the entry barrier of an @nt<entry_body>.
@end(Ramification)
If A1 is part of the execution of an @nt<accept_statement> or
@nt<entry_body>, and A2 is the action of returning
from the corresponding entry call;
If A1 is part of the execution of a protected procedure body
or @nt<entry_body> for a given protected object, and A2 is part of
a later execution of an @nt<entry_body> for the same
protected object;
@begin(Reason)
The underlying principle here is that
for one action to @lquotes@;signal@rquotes@; a second, the second action has to follow
a potentially blocking operation, whose blocking is dependent on
the first action in some way.
Protected procedures are not potentially blocking, so they can
only be "signalers," they cannot be signaled.
@end(Reason)
@begin(Ramification)
Protected subprogram calls are not defined to signal one another,
which means that such calls alone cannot be used to synchronize
access to shared data outside of a protected object.
@end(Ramification)
@begin(Reason)
The point of this distinction is so that on multiprocessors with
inconsistent caches, the caches only need to be refreshed at
the beginning of an entry body, and forced out at the end of an
entry body or protected procedure that leaves an entry open.
Protected function calls, and protected subprogram calls for
entryless protected objects do not require full cache consistency.
Entryless protected objects are intended to be treated roughly like
atomic objects @em each operation is indivisible with respect to
other operations (unless both are reads), but such operations cannot
be used to synchronize access to other nonvolatile
shared variables.
@end(Reason)
@Leading@Comment{This "Leading" is to help fit the next example on one page.}
If A1 signals some action that in turn signals A2.
@end(Itemize)
@end{RunTime}
@begin{Erron}
@Leading@;@PDefn2{Term=(erroneous execution),Sec=(cause)}
Given an action of assigning to an object,
and an action of reading or updating a part of the same object
(or of a neighboring object if the two are not
independently addressable), then the execution of the actions is erroneous
unless the actions are @i(sequential).
@Defn2{Term=[sequential], Sec=(actions)}
Two actions are sequential if one of the following is true:
@begin(Itemize)
One action signals the other;
Both actions occur as part of the execution of the same task;
@begin{Reason}
Any two actions of the same task are sequential, even
if one does not signal the other because they can be
executed in an @lquotes@;arbitrary@rquotes@;
(but necessarily equivalent to some @lquotes@;sequential@rquotes@;) order.
@end{Reason}
Both actions occur as part
of protected actions on the same protected object, and
at most one of the actions is part of a call on a protected function
of the protected object.
@begin(Reason)
Because actions within protected actions do not always imply
signaling, we have to mention them here explicitly to make sure
that actions occurring within different protected actions of the
same protected object are sequential with respect to one another
(unless both are part of calls on protected functions).
@end(Reason)
@begin(Ramification)
It doesn't matter whether or not the variable being assigned is
actually a subcomponent of the protected object; globals can be
safely updated from within the bodies of protected procedures or entries.
@end(Ramification)
@end(Itemize)
A @nt{pragma} Atomic or Atomic_Components may also be used to
ensure that certain reads and updates are sequential @em
see @RefSecNum(Shared Variable Control).
@begin(Ramification)
If two actions are @lquotes@;sequential@rquotes@; it is known that their executions
don't overlap in time, but it is not necessarily specified which occurs first.
For example, all actions of a single task are sequential, even though
the exact order of execution is not fully specified for all constructs.
@end(Ramification)
@begin(Discussion)
Note that if two assignments to the same variable are sequential,
but neither signals the other, then the program is not erroneous,
but it is not specified which assignment ultimately prevails.
Such a situation usually corresponds to a programming mistake, but
in some (rare) cases, the order makes no difference, and for this
reason this situation is not considered erroneous nor even a bounded error.
In Ada 83, this was considered an @lquotes@;incorrect order dependence@rquotes@; if
the @lquotes@;effect@rquotes@; of the program was affected, but @lquotes@;effect@rquotes@; was never
fully defined. In Ada 95, this situation represents a potential
nonportability, and a friendly compiler might want to warn the
programmer about the situation, but it is not considered an error.
An example where this would come up would be in gathering statistics
as part of referencing some information, where the assignments
associated with
statistics gathering don't need to be ordered since they are
just accumulating aggregate counts, sums, products, etc.
@end(Discussion)
@end{Erron}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0031],ARef=[AI95-00118-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that a task T2 can rely on
values of variables that are updated by another task T1, if task T2 first
verifies that T1'Terminated is True.]}
@end{DiffWord95}
@LabeledClause{Example of Tasking and Synchronization}
@begin{Examples}
@Leading@;The following example defines a buffer protected object
to smooth variations between
the speed of output of a producing task and the speed of input of some
consuming task. For instance, the producing task might have the
following structure:
@begin(Example)
@key(task) Producer;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(task body) Producer @key(is)
@Chg{Version=[2],New=[Person : Person_Name; --@RI[ see @RefSecNum{Incomplete Type Declarations}]],Old=[Char : Character;]}
@key(begin)
@key(loop)
... --@RI[ @Chg{Version=[2],New=[simulate arrival of the next customer],Old=[produce the next character Char]}]
Buffer.@Chg{Version=[2],New=[Append_Wait(Person)],Old=[Write(Char)]};
@key(exit) @key(when) @Chg{Version=[2],New=[Person = @key(null)],Old=[Char = ASCII.EOT]};
@key(end) @key(loop);
@key(end) Producer;
@end(Example)
@leading@keepnext@;and the consuming task might have the following structure:
@begin(Example)
@key(task) Consumer;
@Trailing@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}@key(task body) Consumer @key(is)
@Chg{Version=[2],New=[Person : Person_Name;],Old=[Char : Character;]}
@key(begin)
@key(loop)
Buffer.@Chg{Version=[2],New=[Remove_First_Wait(Person)],Old=[Read(Char)]};
@key(exit) @key(when) @Chg{Version=[2],New=[Person = @key(null)],Old=[Char = ASCII.EOT]};
... --@RI[ @Chg{Version=[2],New=[simulate serving a customer],Old=[consume the character Char]}]
@key(end) @key(loop);
@key(end) Consumer;
@end(Example)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
The buffer object contains an internal @Chg{Version=[2],New=[array],Old=[pool]}
of @Chg{Version=[2],New=[person names],Old=[characters]} managed in a
round-robin fashion. The @Chg{Version=[2],New=[array],Old=[pool]} has two
indices, an In_Index denoting the @Chg{Version=[2],New=[index],Old=[space]}
for the next input @Chg{Version=[2],New=[person name],Old=[character]} and an
Out_Index denoting the @Chg{Version=[2],New=[index],Old=[space]} for the next
output @Chg{Version=[2],New=[person name],Old=[character]}.
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[The Buffer is defined as an extension of the
Synchronized_Queue interface (see @RefSecNum{Interface Types}), and as such
promises to implement the abstraction defined by that interface. By doing so,
the Buffer can be passed to the Transfer class-wide operation defined for
objects of a type covered by Queue'Class.]}
@begin(Example)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(protected) Buffer @key(is)@Chg{Version=[2],New=[ @key(new) Synchronized_Queue @key(with) --@RI[ see @RefSecNum{Interface Types}]],Old=[]}
@key(entry) @Chg{Version=[2],New=[Append_Wait(Person : @key(in) Person_Name);],Old=[Read (C : @key(out) Character);]}
@key(entry) @Chg{Version=[2],New=[Remove_First_Wait(Person : @key(out) Person_Name);
@key(function) Cur_Count @key(return) Natural;
@key(function) Max_Count @key(return) Natural;
@key(procedure) Append(Person : @key(in) Person_Name);
@key(procedure) Remove_First(Person : @key(out) Person_Name);],Old=[Write(C : @key(in) Character);]}
@key(private)
Pool : @Chg{Version=[2],New=[Person_Name_Array],Old=[String]}(1 .. 100);
Count : Natural := 0;
In_Index, Out_Index : Positive := 1;
@key(end) Buffer;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(protected body) Buffer @key(is)
@key(entry) @Chg{Version=[2],New=[Append_Wait(Person : @key(in) Person_Name)],Old=[Write(C : @key(in) Character)]}
@key(when) Count < Pool'Length @key(is)
@key(begin)
@Chg{Version=[2],New=[Append(Person);],Old=[Pool(In_Index) := C;
In_Index := (In_Index @key(mod) Pool'Length) + 1;
Count := Count + 1;]}
@key(end) @Chg{Version=[2],New=[Append_Wait],Old=[Write]};
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[ @key(procedure) Append(Person : @key(in) Person_Name) @key(is)
@key(begin)
@key(if) Count = Pool'Length @key(then)
@key(raise) Queue_Error @key(with) "Buffer Full"; --@RI[ see @RefSecNum{Raise Statements}]
@key(end if);
Pool(In_Index) := Person;
In_Index := (In_Index @key(mod) Pool'Length) + 1;
Count := Count + 1;
@key(end) Append;]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(entry) @Chg{Version=[2],New=[Remove_First_Wait(Person : @key(out) Person_Name)],Old=[Read(C : @key(out) Character)]}
@key(when) Count > 0 @key(is)
@key(begin)
@Chg{Version=[2],New=[Remove_First(Person);],Old=[C := Pool(Out_Index);
Out_Index := (Out_Index @key(mod) Pool'Length) + 1;
Count := Count - 1;]}
@key(end) @Chg{Version=[2],New=[Remove_First_Wait],Old=[Read;
@key(end) Buffer]};
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[ @key(procedure) Remove_First(Person : @key(out) Person_Name) @key(is)
@key(begin)
@key(if) Count = 0 @key(then)
@key(raise) Queue_Error @key(with) "Buffer Empty"; --@RI[ see @RefSecNum{Raise Statements}]
@key(end if);
Person := Pool(Out_Index);
Out_Index := (Out_Index @key(mod) Pool'Length) + 1;
Count := Count - 1;
@key(end) Remove_First;]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[ @key(function) Cur_Count @key(return) Natural @key(is)
@key(begin)
@key(return) Buffer.Count;
@key(end) Cur_Count;]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[ @key(function) Max_Count @key(return) Natural @key(is)
@key(begin)
@key(return) Pool'Length;
@key(end) Max_Count;
@key(end) Buffer;]}
@end(Example)
@end{Examples}
|