File: 09.mss

package info (click to toggle)
ada-reference-manual 1%3A2012.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,872 kB
  • sloc: ada: 29,393; makefile: 193; python: 92
file content (5309 lines) | stat: -rwxr-xr-x 227,362 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
@Part(09, Root="ada.mss")

@Comment{$Date: 2006/11/09 06:29:48 $}
@LabeledSection{Tasks and Synchronization}

@Comment{$Source: e:\\cvsroot/ARM/Source/09.mss,v $}
@Comment{$Revision: 1.84 $}

@begin{Intro}

@PDefn2{Term=[execution], Sec=(Ada program)}
The execution of an Ada program consists of the execution of one
or more @i(tasks).
@Defn{task}
@Defn2{Term=[interaction], Sec=(between tasks)}
Each task represents a separate thread of
control that proceeds independently and concurrently
between the points where it @i(interacts) with other tasks.
The various forms of task interaction are
described in this section, and include:
@IndexSee{Term=[parallel processing],See=(task)}
@Defn{synchronization}
@IndexSee{Term=[concurrent processing],See=(task)}
@IndexSeeAlso{Term=[intertask communication],See=(task)}
@begin(Honest)
  The execution of an Ada program consists of the execution
  of one or more partitions (see @RefSecNum(Program Execution)),
  each of which in turn consists of the execution of an environment task
  and zero or more subtasks.
@end(Honest)
@begin(itemize)
the activation and termination of a task;

@Defn{protected object}
a call on a protected subprogram of a @i(protected object),
providing exclusive read-write access, or concurrent read-only
access to shared data;

a call on an entry, either of another task,
allowing for synchronous communication with that task,
or of a protected object, allowing for asynchronous
communication with one or more other tasks using that same protected
object;

a timed operation, including a simple delay statement,
a timed entry call or accept, or a timed asynchronous
select statement (see next
item);

an asynchronous transfer of control as part of an asynchronous
select statement, where a task
stops what it is doing and begins execution at a different
point in response to the completion of an entry call or
the expiration of a delay;

an abort statement, allowing one task to cause the
termination of another task.
@end(itemize)

In addition, tasks can communicate indirectly by
reading and updating (unprotected) shared
variables, presuming the access is properly synchronized through
some other kind of task interaction.

@end{Intro}

@begin{StaticSem}
@Defn{task unit}
The properties of a task are defined by a corresponding task declaration
and @nt<task_body>, which together define a program unit
called a @i(task unit).
@end{StaticSem}

@begin{RunTime}
Over time, tasks proceed through various @i(states).
@PDefn2{Term=[task state], Sec=(inactive)}
@Defn2{Term=[inactive], Sec=(a task state)}
@PDefn2{Term=[task state], Sec=(blocked)}
@Defn2{Term=[blocked], Sec=(a task state)}
@PDefn2{Term=[task state], Sec=(ready)}
@Defn2{Term=[ready], Sec=(a task state)}
@PDefn2{Term=[task state], Sec=(terminated)}
@Defn2{Term=[terminated], Sec=(a task state)}
A task is initially @i(inactive); upon activation, and prior to its
@i{termination}
it is either @i(blocked) (as part
of some task interaction) or @i(ready) to run.
@Defn2{Term=[execution resource], Sec=(required for a task to run)}
While ready, a task competes for the available
@i(execution resources) that it requires to run.
@begin(Discussion)
  @Defn{task dispatching policy}
  @Defn{dispatching policy for tasks}
  The means for selecting which of the ready tasks to run,
  given the currently available execution resources, is determined by the
  @i(task dispatching policy) in effect, which is generally
  implementation defined, but may be controlled by pragmas
  and operations defined in the Real-Time Annex
  (see @RefSecNum(Priority Scheduling) and @RefSecNum(Dynamic Priorities)).
@end(Discussion)
@end{RunTime}

@begin{Notes}

Concurrent task execution may be implemented on
multicomputers, multiprocessors, or with interleaved execution on a single
physical processor. On the other hand, whenever an implementation can
determine that the required semantic effects can be achieved when
parts of the execution of a
given task are performed by different physical processors acting in
parallel, it may choose to perform them in this way.

@end{Notes}

@begin{DiffWord83}
The introduction has been rewritten.

We use the term "concurrent" rather than "parallel" when talking
about logically independent execution of threads of control.
The term "parallel" is reserved for referring to the
situation where multiple physical processors run simultaneously.
@end{DiffWord83}


@LabeledClause{Task Units and Task Objects}

@begin{Intro}
@Defn{task declaration}
A task unit is declared by a @i(task declaration), which has
a corresponding @nt<task_body>. A task declaration may be
a @nt<task_type_declaration>, in which case it declares
a named task type; alternatively, it may be a @nt<single_task_declaration>,
in which case it defines an anonymous task type, as well as declaring
a named task object of that type.
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<task_type_declaration>,rhs="
   @key{task} @key{type} @Syn2{defining_identifier} [@Syn2{known_discriminant_part}] [@key{is}@Chg{Version=[2],New=<
     [@key{new} @Syn2{interface_list} @key{with}]
    >,Old=<>} @Syn2{task_definition}];"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00399-01]}
@Syn{lhs=<single_task_declaration>,rhs="
   @key{task} @Syn2{defining_identifier} [@key{is}@Chg{Version=[2],New=<
     [@key{new} @Syn2{interface_list} @key{with}]
    >,Old=<>} @Syn2{task_definition}];"}


@Syn{lhs=<task_definition>,rhs="
     {@Syn2{task_item}}
  [ @key{private}
     {@Syn2{task_item}}]
  @key{end} [@SynI{task_}@Syn2{identifier}]"}

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<task_item>,rhs="@Syn2{entry_declaration} | @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}

@Softpage
@Syn{lhs=<task_body>,rhs="
   @key{task} @key{body} @Syn2{defining_identifier} @key{is}
     @Syn2{declarative_part}
   @key{begin}
     @Syn2{handled_sequence_of_statements}
   @key{end} [@SynI{task_}@Syn2{identifier}];"}

@begin{SyntaxText}
If a @SynI{task_}@nt{identifier} appears at the
end of a @nt{task_definition} or @nt{task_body},
it shall repeat the @nt{defining_identifier}.
@end{SyntaxText}
@end{Syntax}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00345-01]}@ChgNote{This was just moved below}
@ChgDeleted{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{task_declaration}})}
A task declaration requires a completion@redundant[,
which shall be a @nt{task_body},]
and every @nt{task_body} shall be the completion of some
task declaration.]}
@begin(Honest)
  @ChgRef{Version=[2],Kind=[Deleted]}
  @ChgDeleted{Version=[2],Text=[The completion can be a @nt{pragma} Import,
  if the implementation supports it.]}
@end(Honest)
@end{Legality}

@begin{StaticSem}

A @nt<task_definition> defines a task type and its first subtype.
@PDefn2{Term=[visible part], Sec=(of a task unit)}
The first list of @nt{task_item}s of a @nt{task_@!definition},
together with the @nt{known_@!discriminant_@!part}, if any,
is called the visible part of the task unit.
@Redundant[@PDefn2{Term=[private part], Sec=(of a task unit)}
The optional list of @nt{task_item}s after the reserved
word @key{private} is called the private part of the task unit.]
@begin{TheProof}
Private part is defined in Section 8.
@end{theproof}

@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0029],ARef=[AI95-00116-01]}
@ChgAdded{Version=[1],Text=[For a task declaration without a
@nt{task_definition}, a
@nt{task_definition} without @nt{task_item}s is assumed.]}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[For a task declaration
with an @nt{interface_list}, the task type
inherits user-defined primitive subprograms from each progenitor
type (see @RefSecNum{Interface Types}), in the same way that a derived type
inherits user-defined primitive subprograms from its progenitor types (see
@RefSecNum{Derived Types and Classes}). If the first
parameter of a primitive inherited subprogram is of the task type or an access
parameter designating the task type, and there is an @nt{entry_declaration} for
a single entry with the same identifier within the task declaration,
whose profile is type conformant with the
prefixed view profile of the inherited subprogram, the inherited subprogram is
said to be @i{implemented} by the conforming task entry.@PDefn2{Term=[implemented],
Sec=[by a task entry]}@Defn2{Term=[type conformance],Sec=(required)}]}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The inherited subprograms can only come from an
  interface given as part of the task declaration.]}
@end{Ramification}
@end{StaticSem}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}@ChgNote{This was just moved, not changed}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{task_declaration}})}
A task declaration requires a completion@redundant[,
which shall be a @nt{task_body},]
and every @nt{task_body} shall be the completion of some
task declaration.]}
@begin(Honest)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The completion can be a @nt{pragma} Import,
  if the implementation supports it.]}
@end(Honest)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Text=[@Redundant[Each @i{interface_}@nt{subtype_mark} of an
@nt{interface_list} appearing within a task declaration shall denote
a limited interface type that is not a protected interface.]]}
@begin(TheProof)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[@RefSecNum{Interface Types} requires that an
  @nt{interface_list} only name interface types, and limits the descendants of
  the various kinds of interface types. Only a limited, task, or
  synchronized interface can have a task type descendant. Nonlimited or
  protected interfaces are not allowed, as they offer operations that a task
  does not have.]}
@end(TheProof)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[The prefixed view profile of an explicitly
declared primitive subprogram of a tagged task type shall not be type
conformant with any entry of the task type, if the first
parameter of the subprogram is of the task type or is an
access parameter designating the task type.]}
@begin(Reason)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This prevents the existence of two operations
  with the same name and profile which could be called with a prefixed view.
  If the operation was inherited, this would be illegal by the following rules;
  this rule puts inherited and non-inherited routines on the same footing.
  Note that this only applies to tagged task types (that is, those with an
  interface in their declaration); we do that as there is no problem with
  prefixed view calls of primitive operations for @lquotes@;normal@rquotes
  task types, and having this rule apply to all tasks would be incompatible
  with Ada 95.]}
@end(Reason)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For each primitive subprogram
inherited by the type declared by a task declaration, at most one of the
following shall apply:]}

@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is overridden with a
primitive subprogram of the task type, in which case the overriding subprogram
shall be subtype conformant with the inherited subprogram and not abstract;
or@Defn2{Term=[subtype conformance],Sec=(required)}]}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is implemented by a
single entry of the task type; in which case its prefixed view profile
shall be subtype conformant with that of the task entry.
@Defn2{Term=[subtype conformance],Sec=(required)}]}

@begin(Ramification)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[An entry may implement two subprograms from the
  ancestors, one whose first parameter is of type @i<T> and one whose first
  parameter is of type @key{access} @i{T}. That doesn't cause implementation
  problems because @lquotes@;implemented by@rquotes (unlike
  @lquotes@;overridden@rquote) probably entails the creation of wrappers.]}
@end(Ramification)

@end{Itemize}

@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[If neither applies, the inherited subprogram shall be a
null procedure. @PDefn{generic contract issue}In addition to the places where
@LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Each inherited subprogram can only have a single
implementation (either from overriding a subprogram or implementing an entry),
and must have an implementation unless the subprogram is a null procedure.]}
@end{Reason}

@end{Legality}

@begin{RunTime}
@redundant[@PDefn2{Term=[elaboration], Sec=(task declaration)}
The elaboration of a task declaration elaborates the @nt<task_definition>.
@PDefn2{Term=[elaboration], Sec=(single_task_declaration)}
The elaboration of a @nt<single_@!task_@!declaration> also creates
an object of an (anonymous) task type.]
@begin(TheProof)
  This is redundant with the general rules for the elaboration
  of a @nt<full_type_declaration> and an @nt<object_declaration>.
@end(TheProof)

@PDefn2{Term=[elaboration], Sec=(task_definition)}
@Redundant[The elaboration of a @nt<task_definition>
creates the task type and its first
subtype;] it also includes the elaboration of the @nt<entry_declaration>s
in the given order.

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@PDefn2{Term=[initialization], Sec=(of a task object)}
As part of the initialization of a task object, any
@Chg{New=[@nt<aspect_clause>s],Old=[@nt<representation_clause>s]} and
any per-object constraints associated with @nt<entry_@!declaration>s
of the corresponding @nt<task_@!definition> are elaborated in the given order.
@begin{Reason}
@ChgRef{Version=[1],Kind=[Revised]}
  The only @Chg{New=[@nt<aspect_clause>s],Old=[@nt<representation_clause>s]}
  defined for task entries are ones that specify the Address of an entry,
  as part of defining an interrupt entry.
  These clearly need to be elaborated per-object, not per-type.
  Normally the address will be a function of a discriminant,
  if such an Address clause is in a task type rather than a single task
  declaration, though it could rely on a parameterless function
  that allocates sequential interrupt vectors.

  We do not mention representation pragmas, since each
  pragma may have its own elaboration rules.
@end{Reason}

@PDefn2{Term=[elaboration], Sec=(task_body)}
The elaboration of a @nt{task_body} has no effect other than to establish
that tasks of the type can from then on be activated without
failing the Elaboration_Check.

@redundant[The execution of a @nt<task_body> is invoked by the activation of a
task of the corresponding type
(see @RefSecNum(Task Execution - Task Activation)).]

@leading@;The content of a task object of a given task type includes:
@begin(itemize)
  The values of the discriminants of the task object, if any;

  An entry queue for each entry of the task object;
  @begin(Ramification)
     "For each entry" implies one queue for each single entry,
      plus one for each entry of each entry family.
  @end(Ramification)

  A representation of the state of the associated task.
@end(itemize)

@end{RunTime}

@begin{Notes}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
@Chg{Version=[2],New=[Other than
in an @nt{access_definition}, the name of a task unit within],Old=[Within]}
the declaration or body of @Chg{Version=[2],New=[the],Old=[a]} task
unit@Chg{Version=[2],New=[],Old=[, the name of
the task unit]} denotes the current instance of the unit
(see @RefSecNum(The Context of Overload Resolution)),
rather than the first subtype of the corresponding task type (and
thus the name cannot be used as a @nt<subtype_mark>).
@begin(Discussion)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
@Chg{Version=[2],New=[It can be used as a @nt{subtype_mark} in an anonymous
access type. In addition],Old=[However]}, it is possible to refer to
some other subtype of the task type within its body,
presuming such a subtype has been
declared between the @nt<task_type_declaration> and the @nt<task_body>.
@end(Discussion)

The notation of a @nt<selected_component> can be used to denote a discriminant
of a task (see @RefSecNum(Selected Components)).
Within a task unit, the name of a discriminant of the task type
denotes the corresponding discriminant of the current instance
of the unit.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A task type is a limited type (see @RefSecNum(Limited Types)),
and hence @Chg{Version=[2],New=[precludes use of @nt{assignment_statement}s and],
Old=[has neither an assignment operation nor]} predefined equality operators.
If an application needs to store and exchange task identities, it
can do so by defining an access type designating the corresponding
task objects and by using access values for identification purposes.
Assignment is available for such an access type as for any
access type.
Alternatively, if the implementation supports the
Systems Programming Annex,
the Identity attribute
can be used for task identification
(see @Chg{Version=[2],New=[@RefSecNum(The Package Task_Identification)],
Old=[@RefSecNum(Task Information)]}).
@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of declarations of task types:}
@begin{Example}
@key(task) @key(type) Server @key(is)
   @key(entry) Next_Work_Item(WI : @key(in) Work_Item);
   @key(entry) Shut_Down;
@key(end) Server;

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(task) @key(type) Keyboard_Driver(ID : Keyboard_ID := New_ID) @key(is)@Chg{Version=[2],New=[
      @key(new) Serial_Device @key(with)  --@RI[ see @RefSecNum{Interface Types}]],Old=[]}
   @key(entry) Read (C : @key(out) Character);
   @key(entry) Write(C : @key(in)  Character);
@key(end) Keyboard_Driver;
@end{Example}

@leading@keepnext@i{Examples of declarations of single tasks:}
@begin{Example}
@key(task) Controller @key(is)
   @key(entry) Request(Level)(D : Item);  --@RI[  a family of entries]
@key(end) Controller;

@key(task) Parser @key(is)
   @key(entry) Next_Lexeme(L : @key(in)  Lexical_Element);
   @key(entry) Next_Action(A : @key(out) Parser_Action);
@key(end);

@key(task) User;  --@RI[  has no entries]
@end{Example}

@begin{wide}
@leading@keepnext@i{Examples of task objects:}
@end{wide}
@begin{Example}
Agent    : Server;
Teletype : Keyboard_Driver(TTY_ID);
Pool     : @key(array)(1 .. 10) @key(of) Keyboard_Driver;
@end{Example}

@begin{wide}
@leading@keepnext@i{Example of access type designating task objects:}
@end{wide}
@begin{Example}
@key(type) Keyboard @key(is) @key(access) Keyboard_Driver;
Terminal : Keyboard := @key(new) Keyboard_Driver(Term_ID);
@end{Example}

@end{Examples}

@begin{Extend83}
@ChgRef{Version=[1],Kind=[Revised]}
@Defn{extensions to Ada 83}
The syntax rules for task declarations are modified to allow a
@nt{known_discriminant_part}, and to allow a private part.
They are also modified to allow @nt{entry_declaration}s and
@Chg{New=[@nt<aspect_clause>s],Old=[@nt<representation_clause>s]} to be mixed.
@end{Extend83}

@begin{DiffWord83}
The syntax rules for tasks have been split up according to task types and
single tasks.
In particular:
The syntax rules for @ntf{task_declaration} and @ntf{task_specification} are
removed. The syntax rules for
@nt{task_type_declaration}, @nt{single_task_declaration}, @nt{task_definition}
and @nt{task_item} are new.

The syntax rule for @nt{task_body} now uses the nonterminal
@nt{handled_sequence_of_statements}.

The @nt{declarative_part} of a @nt{task_body} is now required;
that doesn't make any real difference,
because a @nt{declarative_part} can be empty.
@end{DiffWord83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00419-01]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  Task types and single tasks can be derived from one or more interfaces.
  Entries of the task type can implement the primitive operations of an
  interface. @nt{Overriding_indicator}s can be used to specify whether or not
  an entry implements a primitive operation.]}
@end{Extend95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0029],ARef=[AI95-00116-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that a task type has an
  implicit empty @nt{task_definition} if none is given.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0009],ARef=[AI95-00137-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Changed representation clauses
  to aspect clauses to reflect that they are used for more than just
  representation.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
  @ChgAdded{Version=[2],Text=[Revised the note on operations of task types to
  reflect that limited types do have an assignment operation, but not
  copying (@nt{assignment_statement}s).]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00382-01]}
  @ChgAdded{Version=[2],Text=[Revised the note on use of the name of
  a task type within itself to reflect the exception for anonymous
  access types.]}
@end{DiffWord95}


@LabeledClause{Task Execution - Task Activation}

@begin{RunTime}

@PDefn2{Term=[execution], Sec=(task)}
The execution of a task of a given task type consists of the execution
of the corresponding @nt{task_body}.
@PDefn2{Term=[execution], Sec=(task_body)}
@Defn2{Term=[task], Sec=(execution)}
@Defn2{Term=[activation], Sec=(of a task)}
@Defn2{Term=[task], Sec=(activation)}
The initial part of this execution is called the @i(activation) of
the task; it consists of the elaboration of the @nt<declarative_part>
of the @nt<task_body>.
@Defn{activation failure}
Should an exception be propagated by the elaboration
of its @nt<declarative_part>,
the activation of the task is defined to have @i(failed),
and it becomes a completed task.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00416-01]}
A task object (which represents one task) can be @Chg{Version=[2],New=[a part
of a stand-alone object, of an object created by],Old=[created either as
part of the elaboration
of an @nt<object_@!declaration> occurring immediately within some
declarative region, or as part of the evaluation of]}
an @nt{allocator}@Chg{Version=[2],New=[, or of an anonymous object of a limited
type, or a coextension of one of these],Old=[]}. All
tasks@Chg{Version=[2],New=[ that are part or coextensions of any
of the stand-alone objects],Old=[]}
created by the elaboration of @nt<object_@!declaration>s@Chg{Version=[2],
New=[ (or @nt{generic_association}s of formal objects of
mode @key{in})],Old=[]}
of a single declarative region@Chg{Version=[2],
New=[],Old=[ (including subcomponents of the declared objects)]}
are activated together.
@Chg{Version=[2],New=[All tasks that are part or coextensions of a single
object that is not a stand-alone object are activated together.],Old=[Similarly,
all tasks created by the evaluation of a single @nt<allocator>
are activated together. The activation of a task is associated
with the innermost @nt<allocator> or @nt<object_@!declaration>
that is responsible for its creation.]}
@begin{Discussion}
The initialization of an @nt{object_declaration} or @nt{allocator} can
indirectly include the creation of other objects that contain tasks.
For example, the default expression for a subcomponent of an object
created by an @nt{allocator} might call a function that evaluates a
completely different @nt{allocator}. Tasks created by the two
allocators are @i{not} activated together.
@end{Discussion}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00416-01]}
For @Chg{Version=[2],New=[the ],Old=[]}tasks@Chg{Version=[2],New=[],Old=[
created by the elaboration of @nt<object_declaration>s]}
of a given declarative region, the activations are initiated
within the context of the @nt<handled_@!sequence_of_@!statements>
(and its associated @nt<exception_@!handler>s if any @em
see @RefSecNum{Exception Handlers}), just prior to executing the
statements of the @Chg{Version=[2],New=[@nt{handled_sequence_of_statements}],
Old=[@ntf<_sequence>]}.
@Redundant[For a package without an explicit body or an explicit
@nt<handled_@!sequence_of_@!statements>,
an implicit body or an implicit @nt<null_@!statement> is assumed,
as defined in @RefSecNum(Package Bodies).]
@begin(Ramification)
  If Tasking_Error is raised, it can be handled by handlers of
  the @nt<handled_@!sequence_of_@!statements>.
@end(Ramification)

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00416-01]}
For tasks @Chg{Version=[2],New=[that are part or coextensions of a single
object that is
not a stand-alone object, activations are initiated after completing any
initialization of the outermost object enclosing these tasks, prior
to performing any other operation on the outermost object. In
particular, for tasks that are part or coextensions of the object ],
Old=[]}created by the evaluation of an @nt<allocator>,
the activations are initiated as the last step of
evaluating the @nt<allocator>, @Chg{Version=[2],New=[],Old=[after completing
any initialization for the object created by the @nt<allocator>,
and ]}prior to returning the new access
value.@Chg{Version=[2],New=[ For tasks that are part or coextensions of an
object that is the result of a function call, the activations are
not initiated until after the function returns.],Old=[]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
  @ChgAdded{Version=[2],Text=[The intent is that @lquotes@;temporary@rquotes@;
  objects with task parts (or coextensions) are treated similarly to an
  object created by an
  allocator. The @lquotes@;whole@rquotes@; object is initialized, and then all
  of the task parts (including the coextensions) are activated together. Each
  such @lquotes@;whole@rquotes@;
  object has its own task activation sequence, involving the activating task
  being suspended until all the new tasks complete their activation.]}
@end{Discussion}

@Defn2{Term=[activator], Sec=(of a task)}
@PDefn2{term=[blocked], Sec=(waiting for activations to complete)}
The task that created the new tasks and initiated their
activations (the @i(activator)) is
blocked until all of these activations complete (successfully
or not).
@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
Once all of these activations are complete,
if the activation
of any of the tasks has failed
@Redundant[(due to the propagation of an exception)],
Tasking_Error is raised in the activator, at the place at which
it initiated the activations. Otherwise, the activator
proceeds with its execution normally. Any tasks that are aborted
prior to completing their activation are ignored when determining
whether to raise Tasking_Error.
@begin(Ramification)
  Note that a task created by an @nt<allocator> does not necessarily
  depend on its activator; in such a case the activator's termination
  can precede the termination of the newly created task.
@end(Ramification)
@begin(Discussion)
  Tasking_Error is raised only once, even if two or more
  of the tasks being activated fail their activation.
@end(Discussion)
@begin{Honest}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00265-01]}
  @ChgAdded{Version=[2],Text=[The pragma Partition_Elaboration_Policy (see
  @RefSecNum{Pragma Partition_Elaboration_Policy})
  can be used to defer task activation to a later point, thus changing
  many of these rules.]}
@end{Honest}

Should the task that created
the new tasks never reach the point
where it would initiate the activations (due to an abort or the
raising of an exception),
the newly created tasks become terminated and are never activated.
@end{RunTime}

@begin{Notes}

An entry of a task can be called before the task has been activated.

If several tasks are activated together, the execution of any of these
tasks need not await the end of the activation of the other tasks.

A task can become completed during its activation either because of an
exception or because it is aborted
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)).

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Example of task activation:}
@begin{Example}
@key(procedure) P @key(is)
   A, B : Server;    --@RI[  elaborate the task objects A, B]
   C    : Server;    --@RI[  elaborate the task object C]
@key(begin)
   --@RI[  the tasks A, B, C are activated together before the first statement]
   ...
@key(end);
@end{Example}

@end{Examples}

@begin{DiffWord83}

We have replaced the term @i{suspended} with @i{blocked},
since we didn't want to consider a task blocked when it was
simply competing for execution resources. "Suspended" is sometimes
used more generally to refer to tasks that are not actually running
on some processor, due to the lack of resources.

This clause has been rewritten in an attempt to improve presentation.
@end{DiffWord83}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
  @ChgAdded{Version=[2],Text=[Adjusted the wording for activating tasks to
  handle the case of anonymous function return objects. This is critical;
  we don't want to be waiting for the tasks in a return object when we exit
  the function normally.]}
@end{DiffWord95}


@LabeledClause{Task Dependence - Termination of Tasks}

@begin{RunTime}

@leading@Defn2{Term=[dependence], Sec=(of a task on a master)}
@Defn2{Term=[task], Sec=(dependence)}
@Defn2{Term=[task], Sec=(completion)}
@Defn2{Term=[task], Sec=(termination)}
Each task (other than an environment task @em see @RefSecNum(Program Execution))
@i(depends) on one or more masters
(see @RefSecNum(Completion and Finalization)), as follows:
@begin(itemize)
If the task is created by the evaluation of an @nt<allocator>
for a given access type,
it depends on each master that includes the
elaboration of the declaration of the ultimate ancestor of the given
access type.

If the task is created by the elaboration of an @nt<object_declaration>,
it depends on each master that includes this elaboration.

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00416-01]}
@ChgAdded{Version=[2],Text=[Otherwise, the task depends on
the master of the outermost object of which it is a part (as determined by the
accessibility level of that object @em see
@RefSecNum{Operations of Access Types} and
@RefSecNum{Completion and Finalization}), as well as on any master whose
execution includes that of the master of the outermost object.]}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
  @ChgAdded{Version=[2],Text=[The master of a task created by a return
  statement changes when the accessibility of the return object changes. Note
  that its activation happens, if at all, only after the function returns and
  all accessibility level changes have occurred.]}
@end{Ramification}
@end(itemize)

@Defn2{term=[dependence], Sec=(of a task on another task)}
Furthermore, if a task depends on a given master, it is defined
to depend on the task that executes the master, and (recursively)
on any master of that task.
@begin{Discussion}
Don't confuse these kinds of dependences with the
dependences among compilation units defined in
@RefSec{Compilation Units - Library Units}.
@end{Discussion}

A task is said to be @i(completed) when the execution of its corresponding
@nt<task_body> is completed. A task is said to be @i(terminated) when
any finalization of the @nt<task_body> has been performed
(see @RefSecNum(Completion and Finalization)).
@Redundant[The first step of finalizing a master
(including a @nt<task_body>) is to
wait for the termination of any tasks dependent on the master.]
@PDefn2{Term=[blocked], Sec=(waiting for dependents to terminate)}
The task executing the master is blocked until all the dependents
have terminated. @Redundant[Any remaining finalization is then performed
and the master is left.]

@ChgRef{Version=[1],Kind=[Revised]}@ChgNote{Doubled word}
@leading@;Completion of a task (and the corresponding @nt<task_body>) can
occur when the task is blocked at a @nt<select_@!statement> with an
@Chg{New=[],Old=[an ]}open @nt<terminate_alternative>
(see @RefSecNum(Selective Accept)); the open @nt<terminate_alternative>
is selected if and only if the following conditions are satisfied:
@begin{itemize}
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00415-01]}
  The task depends on some completed master;@Chg{Version=[2],New=[ and],Old=[]}

  Each task that depends on the master considered is either already
  terminated or similarly blocked at a @nt<select_statement>
  with an open @nt{terminate_alternative}.
@end{itemize}

When both conditions are satisfied, the task considered becomes
completed, together with all tasks that depend on the master
considered that are not yet completed.
@begin(Ramification)
  Any required finalization is performed after the selection
  of @nt<terminate_alternative>s. The tasks are not callable
  during the finalization. In some ways it is as though they were
  aborted.
@end(Ramification)

@end{RunTime}

@begin{Notes}

The full view of a limited private type can be a task type, or
can have subcomponents of a task type. Creation of an object of
such a type creates dependences according to the full type.

An @nt<object_renaming_declaration> defines a new view of an
existing entity and hence creates no further dependence.

The rules given for the collective completion of a group
of tasks all blocked on @nt<select_statement>s with
open @nt<terminate_alternative>s ensure that the collective
completion can occur only when there are no remaining active
tasks that could call one of the tasks being collectively completed.

If two or more tasks are blocked on @nt<select_statement>s
with open @nt{terminate_alternative}s, and become
completed collectively, their finalization actions proceed concurrently.

@leading@keepnext@;The completion of a task can occur due to any of the following:
@begin{itemize}
the raising of an exception during the elaboration of the
@nt{declarative_part} of the corresponding @nt{task_body};

the completion of the
@nt{handled_sequence_of_statements} of the corresponding
@nt{task_body};

the selection of
an open @nt<terminate_alternative> of a @nt<select_statement>
in the corresponding @nt<task_body>;

the abort of the task.
@end{itemize}

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Example of task dependence:}
@begin{Example}
@key(declare)
   @key(type) Global @key(is) @key(access) Server;        --@RI[  see @RefSecNum(Task Units and Task Objects)]
   A, B : Server;
   G    : Global;@Softpage
@key(begin)
   --@RI[  activation of A and B]
   @key(declare)
      @key(type) Local @key(is) @key(access) Server;
      X : Global := @key(new) Server;  --@RI[  activation of X.@key{all}]
      L : Local  := @key(new) Server;  --@RI[  activation of L.@key{all}]
      C : Server;@Softpage
   @key(begin)
      --@RI[  activation of C]
      G := X;  --@RI[  both G and X designate the same task object]
      ...
   @key(end;)  --@RI[  await termination of C and L.@key{all} (but not X.@key{all})]
   ...
@key(end;)  --@RI[  await termination of A, B, and G.@key{all}]
@end{Example}

@end{Examples}

@begin{DiffWord83}
We have revised the wording to be consistent with the definition
of master now given in @RefSec(Completion and Finalization).

Tasks that used to depend on library packages in Ada 83, now depend on the
(implicit) @nt<task_body> of the
environment task (see @RefSecNum(Program Execution)).
Therefore, the environment task has to wait for
them before performing library level finalization and terminating
the partition.
In Ada 83 the requirement to wait for tasks that depended
on library packages was not as clear.

What was "collective termination" is now "collective completion"
resulting from selecting @nt<terminate_alternative>s. This is because
finalization still occurs for such tasks, and this happens after
selecting the @nt<terminate_alternative>, but before termination.
@end{DiffWord83}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
  @ChgAdded{Version=[2],Text=[Added missing wording that explained the
  master of tasks that are neither object declarations nor allocators,
  such as function returns.]}
@end{DiffWord95}


@RMNewPage@Comment{For printed RM Ada 2005}
@LabeledClause{Protected Units and Protected Objects}

@begin{Intro}
@Defn{protected object}
@Defn{protected operation}
@Defn{protected subprogram}
@Defn{protected entry}
A @i(protected object) provides coordinated access to shared data,
through calls on its visible @i(protected operations),
which can be @i{protected subprograms} or @i{protected entries}.
@Defn{protected declaration}
@Defn{protected unit}
@Defn{protected declaration}
A @i{protected unit} is declared by a @i(protected declaration), which has
a corresponding @nt<protected_body>.
A protected declaration may be a @nt<protected_type_declaration>,
in which case it declares
a named protected type; alternatively,
it may be a @nt<single_protected_declaration>,
in which case it defines an anonymous protected type, as well as declaring
a named protected object of that type.
@IndexSee{Term=[broadcast signal],See=(protected object)}
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<protected_type_declaration>,rhs="
  @key{protected} @key{type} @Syn2{defining_identifier} [@Syn2{known_discriminant_part}] @key{is}@Chg{Version=[2],New=<
     [@key{new} @Syn2{interface_list} @key{with}]
    >,Old=<>} @Syn2{protected_definition};"}


@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00399-01]}
@Syn{lhs=<single_protected_declaration>,rhs="
  @key{protected} @Syn2{defining_identifier} @key{is}@Chg{Version=[2],New=<
     [@key{new} @Syn2{interface_list} @key{with}]
    >,Old=<>} @Syn2{protected_definition};"}


@Syn{lhs=<protected_definition>,rhs="
    { @Syn2{protected_operation_declaration} }
[ @key{private}
    { @Syn2{protected_element_declaration} } ]
  @key{end} [@SynI{protected_}@Syn2{identifier}]"}

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<protected_operation_declaration>,
  rhs="@Syn2{subprogram_declaration}
     | @Syn2{entry_declaration}
     | @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}
@Syn{lhs=<protected_element_declaration>,
  rhs="@Syn2<protected_operation_declaration>
     | @Syn2<component_declaration>"}
@begin{Reason}
     We allow the operations and components to be mixed because that's how
     other things work (for example, package
     declarations). We have relaxed the
     ordering rules for the items inside @nt{declarative_part}s and
     @nt{task_definition}s as well.
@end{Reason}


@Syn{lhs=<protected_body>,rhs="
  @key{protected} @key{body} @Syn2{defining_identifier} @key{is}
   { @Syn2{protected_operation_item} }
  @key{end} [@SynI{protected_}@Syn2{identifier}];"}

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0009],ARef=[AI95-00137-01]}
@Syn{lhs=<protected_operation_item>,
  rhs="@Syn2{subprogram_declaration}
     | @Syn2{subprogram_body}
     | @Syn2{entry_body}
     | @Chg{New=[@Syn2{aspect_clause}],Old=[@Syn2{representation_clause}]}"}

@begin{SyntaxText}
If a @SynI{protected_}@nt{identifier} appears at
the end of a @nt{protected_definition} or @nt{protected_body},
it shall repeat the @nt{defining_identifier}.
@end{SyntaxText}
@end{Syntax}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00345-01]}@ChgNote{This was just moved below}
@ChgDeleted{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{protected_declaration}})}
A protected declaration requires a completion@redundant[,
which shall be a @nt{protected_@!body},]
and every @nt{protected_@!body} shall be the completion of some
protected declaration.]}
@begin(Honest)
  @ChgRef{Version=[2],Kind=[Deleted]}
  @ChgDeleted{Version=[2],Text=[The completion can be a @nt{pragma} Import,
  if the implementation supports it.]}
@end(Honest)
@end{Legality}

@begin{StaticSem}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01],ARef=[AI95-00401-01]}@Comment{This
is no change here, but both of these AIs reference this paragraph, adding and removing text.}
A @nt<protected_definition> defines a protected type and its first subtype.
@PDefn2{Term=[visible part], Sec=(of a protected unit)}
The list of @nt{protected_@!operation_@!declaration}s of a
@nt{protected_@!definition},
together with the @nt{known_@!discriminant_@!part}, if any,
is called the visible part of the protected unit.
@Redundant[@PDefn2{Term=[private part], Sec=(of a protected unit)}
The optional list of @nt{protected_@!element_@!declaration}s after the reserved
word @key{private} is called the private part of the protected
unit.]
@begin{TheProof}
Private part is defined in Section 8.
@end{theproof}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00419-01]}
@ChgAdded{Version=[2],Text=[For a protected declaration
with an @nt{interface_list}, the protected type inherits user-defined primitive
subprograms from each progenitor type (see @RefSecNum{Interface Types}), in the
same way that a derived type inherits user-defined primitive subprograms from
its progenitor types (see @RefSecNum{Derived Types and Classes}). If the first
parameter of a primitive inherited subprogram is of the protected type or an
access parameter designating the protected type, and there is a
@nt{protected_operation_declaration} for a protected subprogram or single entry
with the same identifier within the protected declaration, whose
profile is type conformant with the prefixed view profile of the
inherited subprogram, the inherited subprogram is said to be
@i{implemented} by the conforming protected subprogram or
entry.@PDefn2{Term=[implemented],
Sec=[by a protected subprogram]}@PDefn2{Term=[implemented],
Sec=[by a protected entry]}
@Defn2{Term=[type conformance],Sec=(required)}]}

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The inherited subprograms can only come from an
  interface given as part of the protected declaration.]}
@end{Ramification}


@end{StaticSem}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}@ChgNote{This was just moved, not changed}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[requires a completion], Sec=(@nt{@nt{protected_declaration}})}
A protected declaration requires a completion@redundant[,
which shall be a @nt{protected_@!body},]
and every @nt{protected_@!body} shall be the completion of some
protected declaration.]}
@begin(Honest)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The completion can be a @nt{pragma} Import,
  if the implementation supports it.]}
@end(Honest)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Text=[@Redundant[Each @i{interface_}@nt{subtype_mark} of an
@nt{interface_list} appearing within a protected declaration shall denote a
limited interface type that is not a task interface.]]}
@begin(TheProof)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[@RefSecNum{Interface Types} requires that an
  @nt{interface_list} only name interface types, and limits the descendants of
  the various kinds of interface types. Only a limited, protected, or
  synchronized interface can have a protected type descendant. Nonlimited or
  task interfaces are not allowed, as they offer operations that a protected
  type does not have.]}
@end(TheProof)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[The prefixed view profile of an explicitly declared
primitive subprogram of a tagged protected type shall not be type conformant
with any protected operation of the protected type, if the first parameter of
the subprogram is of the protected type or is an access parameter designating
the protected type.@Defn2{Term=[type conformance],Sec=(required)}]}
@begin(Reason)
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This prevents the existence of two operations
  with the same name and profile which could be called with a prefixed view.
  If the operation was inherited, this would be illegal by the following rules;
  this rule puts inherited and non-inherited routines on the same footing.
  Note that this only applies to tagged protected types (that is, those with an
  interface in their declaration); we do that as there is no problem with
  prefixed view calls of primitive operations for @lquotes@;normal@rquotes
  protected types, and having this rule apply to all protected types would be
  incompatible with Ada 95.]}
@end(Reason)



@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00399-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For each primitive subprogram
inherited by the type declared by a protected declaration, at most one of the
following shall apply:]}

@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is overridden with a
primitive subprogram of the protected type, in which case the overriding
subprogram shall be subtype conformant with the inherited
subprogram and not abstract; or@Defn2{Term=[subtype conformance],Sec=(required)}]}


@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[the inherited subprogram is implemented by a
protected subprogram or single entry of the protected type,
in which case its prefixed view profile shall be subtype conformant with that
of the protected subprogram or entry.
@Defn2{Term=[subtype conformance],Sec=(required)}]}

@end{Itemize}

@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[If neither applies, the inherited subprogram shall
be a null procedure. @PDefn{generic contract issue}In addition to the places
where @LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[Each inherited subprogram can only have a single
  implementation (either from overriding a subprogram, implementing a
  subprogram, or implementing an entry), and must have an implementation unless
  the subprogram is a null procedure.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[If an inherited subprogram is implemented by a
protected procedure or an entry, then the first parameter of the inherited
subprogram shall be of mode @key{out} or @key{in out}, or an
access-to-variable parameter.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[For a protected procedure or entry, the protected
object can be read or written (see
@RefSecNum{Protected Subprograms and Protected Actions}}. A subprogram
that is implemented by a protected procedure or entry must have a profile
which reflects that in order to avoid confusion.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[If a protected subprogram
declaration has an @nt{overriding_indicator}, then at the point of the
declaration:]}

@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{overriding}, then the subprogram shall
implement an inherited subprogram;]}

@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{not overriding}, then the subprogram shall
not implement any inherited subprogram.]}

@end{Itemize}

@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@PDefn{generic contract issue}In addition to the
places where @LegalityTitle normally apply (see
@RefSecNum{Generic Instantiation}), these rules also apply in the private part
of an instance of a generic unit.]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[These rules are subtly different than those for
  subprograms (see @RefSecNum{Overriding Indicators}) because there cannot be
  @lquotes@;late@rquotes inheritance of primitives from interfaces. Hidden
  (that is, private) interfaces are prohibited explicitly (see
  @RefSecNum{Private Types and Private Extensions}), as are hidden primitive
  operations (as private operations of public abstract types are prohibited
  @em see @RefSecNum{Abstract Types and Subprograms}).]}
@end{Discussion}

@end{Legality}

@begin{RunTime}
@redundant[@PDefn2{Term=[elaboration], Sec=(protected declaration)}
The elaboration of a protected declaration
elaborates the @nt<protected_definition>.
@PDefn2{Term=[elaboration], Sec=(single_protected_declaration)}
The elaboration of a @nt<single_@!protected_@!declaration> also creates
an object of an (anonymous) protected type.]
@begin(TheProof)
  This is redundant with the general rules for the elaboration
  of a @nt<full_type_declaration> and an @nt<object_declaration>.
@end(TheProof)

@PDefn2{Term=[elaboration], Sec=(protected_definition)}
@Redundant[The elaboration of a @nt<protected_definition>
creates the protected type and its first
subtype;] it also includes the elaboration of the
@nt<component_declaration>s and @nt<protected_operation_declaration>s
in the given order.

@redundant[@PDefn2{Term=[initialization], Sec=(of a protected object)}
As part of the initialization of a protected object,
any per-object constraints (see @RefSecNum{Record Types}) are elaborated.]
@begin{Discussion}
  We do not mention pragmas since each pragma has its
  own elaboration rules.
@end{Discussion}

@PDefn2{Term=[elaboration], Sec=(protected_body)}
The elaboration of a @nt{protected_body} has no other effect than to establish
that protected operations of the type can from then on be called without
failing the Elaboration_Check.

@leading@keepnext@;The content of an object of a given protected type includes:
@begin(itemize)
  The values of the components of the
  protected object, including (implicitly)
  an entry queue for each entry declared for the protected object;
  @begin(Ramification)
     "For each entry" implies one queue for each single entry,
      plus one for each entry of each entry family.
  @end(Ramification)

  @PDefn2{Term=[execution resource], Sec=(associated with a protected object)}
  A representation of the state of the execution resource
  @i(associated) with the protected object
  (one such resource is associated with each protected object).
@end(itemize)

@Redundant[The execution resource associated with a protected object
has to be acquired to
read or update any components of the protected object;
it can be acquired (as part of a protected action @em
see @RefSecNum(Protected Subprograms and Protected Actions))
either for concurrent read-only access, or for exclusive
read-write access.]

@PDefn2{Term=[finalization], Sec=(of a protected object)}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
As the first step of the @i{finalization} of a protected object,
each call remaining on any entry queue of the object
is removed from its queue and
Program_Error is raised at the place of the corresponding
@nt<entry_@!call_@!statement>.
@begin(Reason)
  @leading@;This is analogous to the raising of Tasking_Error in callers
  of a task that completes before accepting the calls.
  This situation can only occur due to a
  requeue (ignoring premature unchecked_deallocation), since any task that
  has accessibility to a protected object is awaited before finalizing
  the protected object.
  For example:
@begin{Example}
@key[procedure] Main @key[is]
    @key[task] T @key[is]
        @key[entry] E;
    @key[end] T;

    @key[task] @key[body] T @key[is]
        @key[protected] PO @key[is]
            @key[entry] Ee;
        @key[end] PO;

        @key[protected] @key[body] PO @key[is]
            @key[entry] Ee @key[when] False @key[is]
            @key[begin]
                @key[null];
            @key[end] Ee;
        @key[end] PO;
    @key[begin]
        @key[accept] E @key[do]
            @key[requeue] PO.Ee;
        @key[end] E;
    @key[end] T;
@key[begin]
    T.E;
@key[end] Main;
@end{Example}

The environment task is queued on PO.EE when PO is finalized.

In a real example, a server task might park callers on a local protected
object for some useful purpose, so we didn't want to disallow this case.
@end(Reason)
@end{RunTime}

@begin{Bounded}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00280-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
It is a bounded error to call an entry or subprogram of a
protected object after that object is finalized. If the error is detected,
Program_Error is raised. Otherwise, the call proceeds normally, which may leave
a task queued forever.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is very similar to the finalization rule. It
is a bounded error so that an implementation can avoid the overhead of the
check if it can ensure that the call still will operate properly. Such an
implementation cannot need to return resources (such as locks) to an
executive that it needs to execute calls.]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Type=[Leading],Text=[This case can happen (and has
happened in
production code) when a protected object is accessed from the Finalize routine
of a type. For example:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} Ada.Finalization.Controlled;
@key{package} Window_Manager @key{is}
    ...
    @key{type} Root_Window @key{is new} Ada.Finalization.Controlled @key{with private};
    @key{type} Any_Window @key{is access all} Root_Window;
    ...
@key{private}
    ...
    @key{procedure} Finalize (Object : @key{in out} Root_Window);
    ...
@key{end} Window_Manager;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{package body} Window_Manager @key{is}
   @key{protected type} Lock @key{is}
       @key{entry} Get_Lock;
       @key{procedure} Free_Lock;
   ...
   @key{end} Lock;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   Window_Lock : Lock;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key{procedure} Finalize (Object : @key{in out} Root_Window) @key{is}
   @key{begin}
       Window_Lock.Get_Lock;
       ...
       Window_Lock.Free_Lock;
   @key{end} Finalize;
   ...
   A_Window : Any_Window := @key{new} Root_Window;
@key{end} Window_Manager;]}
@end{Example}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The environment task will call Window_Lock for
the object allocated for A_Window when the collection for Any_Window
is finalized, which
will happen after the finalization of Window_Lock (because finalization of the
package body will occur before that of the package specification).]}
@end{Reason}
@end{Bounded}

@begin{Notes}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
Within the declaration or body of a protected unit@Chg{Version=[2],New=[ other
than in an @nt{access_definition}],Old=[]}, the name of
the protected unit denotes the current instance of the unit
(see @RefSecNum(The Context of Overload Resolution)),
rather than the first subtype of the corresponding protected type (and
thus the name cannot be used as a @nt<subtype_mark>).
@begin(Discussion)
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00382-01]}
  @Chg{Version=[2],New=[It can be used as a @nt{subtype_mark} in an anonymous
  access type. In addition],Old=[However]}, it is possible to refer to
  some other subtype of the protected type within its body,
  presuming such a subtype has been
  declared between the @nt<protected_type_declaration>
  and the @nt<protected_body>.
@end(Discussion)

A @nt<selected_component> can be used to denote a discriminant
of a protected object (see @RefSecNum(Selected Components)).
Within a protected unit, the name of a discriminant of the protected type
denotes the corresponding discriminant of the current instance
of the unit.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
A protected type is a limited type (see @RefSecNum(Limited Types)),
and hence @Chg{Version=[2],New=[precludes use of @nt{assignment_statement}s and],
Old=[has neither an assignment operation nor]} predefined equality operators.

The bodies of the protected operations given in the @nt<protected_body>
define the actions that take place upon calls to the protected operations.

The declarations in the private part are only
visible within the private part and the body of the
protected unit.
@begin{Reason}
@nt{Component_declaration}s are disallowed in a @nt{protected_body}
because, for efficiency, we wish to allow the compiler to
determine the size of protected objects (when not dynamic);
the compiler cannot necessarily see the body.
Furthermore, the semantics of initialization of such objects would be
problematic @em we do not wish to give protected objects complex
initialization semantics similar to task activation.

The same applies to @nt{entry_declaration}s,
since an entry involves an implicit component @em the entry queue.
@end{Reason}

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Example of declaration of protected type and corresponding body:}
@begin{Example}
@key(protected) @key(type) Resource @key(is)
   @key(entry) Seize;
   @key(procedure) Release;
@key(private)
   Busy : Boolean := False;
@key(end) Resource;

@key(protected) @key(body) Resource @key(is)
   @key(entry) Seize @key(when not) Busy @key(is)
   @key(begin)
      Busy := True;
   @key(end) Seize;

   @key(procedure) Release @key(is)
   @key(begin)
      Busy := False;
   @key(end) Release;
@key(end) Resource;
@end{Example}

@begin{wide}
@leading@keepnext@i{Example of a single protected declaration and corresponding body:}
@end{wide}
@begin{Example}
@key(protected) Shared_Array @key(is)
   --@RI[  Index, Item, and Item_Array are global types]
   @key(function)  Component    (N : @key(in) Index) return Item;
   @key(procedure) Set_Component(N : @key(in) Index; E : @key(in)  Item);
@key(private)
   Table : Item_Array(Index) := (others => Null_Item);
@key(end) Shared_Array;

@key(protected) @key(body) Shared_Array @key(is)
   @key(function) Component(N : @key(in) Index) @key(return) Item @key(is)
   @key(begin)
      @key(return) Table(N);
   @key(end) Component;

   @key(procedure) Set_Component(N : @key(in) Index; E : @key(in) Item) @key(is)
   @key(begin)
      Table(N) := E;
   @key(end) Set_Component;
@key(end) Shared_Array;
@end{Example}

@begin{wide}
@leading@keepnext@i{Examples of protected objects:}
@end{wide}
@begin{Example}
Control  : Resource;
Flags    : @key(array)(1 .. 100) @key(of) Resource;
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
This entire clause is new;
protected units do not exist in Ada 83.
@end{Extend83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01],ARef=[AI95-00397-01],ARef=[AI95-00399-01],ARef=[AI95-00401-01],ARef=[AI95-00419-01]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  Protected types and single protected objects can be derived from one or
  more interfaces. Operations declared in the protected type can implement
  the primitive operations of an interface. @nt{Overriding_indicator}s can
  be used to specify whether or not a protected operation implements a
  primitive operation.]}
@end{Extend95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0009],ARef=[AI95-00137-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Changed representation clauses
  to aspect clauses to reflect that they are used for more than just
  representation.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00280-01]}
  @ChgAdded{Version=[2],Text=[Described what happens when an operation of a
  finalized protected object is called.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
  @ChgAdded{Version=[2],Text=[Revised the note on operations of
  protected types to
  reflect that limited types do have an assignment operation, but not
  copying (@nt{assignment_statement}s).]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00382-01]}
  @ChgAdded{Version=[2],Text=[Revised the note on use of the name of
  a protected type within itself to reflect the exception for anonymous
  access types.]}
@end{DiffWord95}


@LabeledClause{Intertask Communication}

@begin{Intro}
@Defn{intertask communication}
@IndexSee{Term=[critical section],See=(intertask communication)}
The primary means for intertask
communication is provided by
calls on entries and protected subprograms.
Calls on protected subprograms allow coordinated access
to shared data objects.
Entry calls allow for blocking the caller until
a given condition is satisfied (namely, that the corresponding entry is open
@em see @RefSecNum(Entry Calls)),
and then communicating data or control information directly
with another task or
indirectly via a shared protected object.

@end{Intro}

@begin{StaticSem}
@leading@Defn2{Term=[target object],
  Sec=(of a call on an entry or a protected subprogram)}
Any call on an entry or on a protected subprogram
identifies a @i(target object) for the operation,
which is either a task (for an entry call) or a protected
object (for an entry call or a protected subprogram call).
The target object is considered an implicit parameter to the operation,
and is determined by the operation
@nt<name> (or @nt<prefix>) used in the call on the operation, as follows:
@begin(Itemize)
  If it is a @nt<direct_name> or expanded name
  that denotes the declaration (or body) of the operation, then
  the target object is implicitly specified to be
  the current instance of the task or protected unit
  immediately enclosing the operation;
  @Defn{internal call}
  such a call is defined to be an @i(internal call);

  @leading@;If it is a @nt<selected_component> that is not
  an expanded name, then the target object is explicitly
  specified to be the task or protected object
  denoted by the @nt<prefix> of the @nt<name>;
  @Defn{external call}
  such a call is defined to be an @i(external call);
  @begin{Discussion}
  For example:
@begin{Example}
@key[protected] @key[type] Pt @key[is]
  @key[procedure] Op1;
  @key[procedure] Op2;
@key[end] Pt;

PO : Pt;
Other_Object : Some_Other_Protected_Type;

@key[protected] @key[body] Pt @key[is]
  @key[procedure] Op1 @key[is] @key[begin] ... @key[end] Op1;

  @key[procedure] Op2 @key[is]
  @key[begin]
    Op1; --@RI{ An internal call.}
    Pt.Op1; --@RI{ Another internal call.}
    PO.Op1; --@RI{ An external call. It the current instance is PO, then}
            --@RI{ this is a bounded error (see @RefSecNum{Protected Subprograms and Protected Actions}).}
    Other_Object.Some_Op; --@RI{ An external call.}
  @key[end] Op2;
@key[end] Pt;
@end{Example}
  @end{Discussion}

  If the @nt<name> or @nt<prefix> is a dereference
  (implicit or explicit) of an
  access-to-protected-subprogram value,
  then the target object is determined by the
  @nt<prefix> of the Access @nt<attribute_reference>
  that produced the access value originally, and the
  call is defined to be an @i(external call);

  If the @nt<name> or @nt<prefix> denotes a
  @nt<subprogram_renaming_declaration>,
  then the target object is as determined by the @nt<name> of the renamed
  entity.

@end(Itemize)

@Defn2{Term=[target object],
  Sec=(of a @nt<requeue_statement>)}
@Defn{internal requeue}
@Defn{external requeue}
A corresponding definition of target object applies
to a @nt<requeue_statement> (see @RefSecNum(Requeue Statements)),
with a corresponding distinction between an @i(internal requeue)
and an @i(external requeue).
@end{StaticSem}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[The view of the target protected object associated
with a call of a protected procedure or entry shall be a variable.]}
@end{Legality}


@begin{RunTime}
Within the body of a protected operation, the current instance
(see @RefSecNum(The Context of Overload Resolution))
of the immediately enclosing protected unit is determined by the target object
specified (implicitly or explicitly) in the call (or requeue) on the
protected operation.
@begin{Honest}
The current instance is defined in the same way
within the body of a subprogram declared immediately within a
@nt{protected_body}.
@end{Honest}

Any call on a protected procedure or entry of a target
protected object is defined to be an update to the object,
as is a requeue on such an entry.
@begin(Reason)
  Read/write access to the components of a protected
  object is granted while inside the body
  of a protected procedure or entry.
  Also, any protected entry call can change the value of the Count
  attribute, which represents an update.
  Any protected procedure call can result in servicing the entries,
  which again might change the value of a Count attribute.
@end(Reason)
@end{RunTime}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
  @ChgAdded{Version=[2],Text=[Added a @LegalityName to make it crystal-clear
  that the protected object of an entry or procedure call must be a variable.
  This rule was implied by the @RuntimeTitle here, along with the
  @StaticSemTitle of @RefSecNum{Objects and Named Numbers}, but it is much
  better to explicitly say it. While many implementations have gotten this
  wrong, this is not an incompatibility @em allowing updates of protected
  constants has always been wrong.]}
@end{DiffWord95}


@LabeledSubClause{Protected Subprograms and Protected Actions}

@begin{Intro}
@Defn{protected subprogram}
@Defn{protected procedure}
@Defn{protected function}
A @i{protected subprogram} is a subprogram declared immediately
within a @nt{protected_definition}.
Protected procedures provide exclusive read-write access
to the data of a protected object; protected functions provide
concurrent read-only access to the data.
@begin{Ramification}
A subprogram declared immediately within a @nt{protected_body} is not a
protected subprogram; it is an intrinsic subprogram.
See @RefSec{Conformance Rules}.
@end{Ramification}
@end{Intro}

@begin{StaticSem}
Within the body of a protected function
(or a function declared immediately within a @nt<protected_body>),
the current instance of the enclosing protected unit is defined to be a
constant
@Redundant[(that is, its subcomponents may be read but not updated)].
Within the body of a protected procedure
(or a procedure declared immediately within a @nt<protected_body>),
and within an @nt<entry_body>,
the current instance is defined to be a variable
@Redundant[(updating is permitted)].
@begin(Ramification)
  The current instance is like an implicit parameter,
  of mode @key(in) for a protected function, and of mode @key(in out)
  for a protected procedure (or protected entry).
@end(Ramification)

@end{StaticSem}

@begin{RunTime}

@PDefn2{Term=[execution], Sec=(protected subprogram call)}
For the execution of a call on a protected subprogram,
the evaluation of the @nt<name> or @nt<prefix>
and of the parameter associations,
and any assigning back of @key[in out] or @key[out] parameters,
proceeds as for a normal subprogram call (see @RefSecNum{Subprogram Calls}).
If the call is an internal call (see @RefSecNum(Intertask Communication)),
the body of the subprogram
is executed as for a normal subprogram call.
If the call is an external call, then
the body of the subprogram is executed as part of a new
@i(protected action) on the target protected object;
the protected action completes after the body of the
subprogram is executed.
@Redundant[A protected action can also be started by an entry call
(see @RefSecNum{Entry Calls}).]

@leading@Defn{protected action}
A new protected action is not started on a protected object
while another protected action on the same protected object is underway,
unless both actions are the result of a call on a protected function.
This rule is expressible in terms of the execution resource
associated with the protected object:
@begin(Itemize)
@Defn2{Term=[protected action], Sec=(start)}
@Defn2{Term=[acquire], Sec=(execution resource associated with protected object)}
@i(Starting) a protected action on a protected object
corresponds to @i(acquiring) the execution resource associated
with the protected object, either for concurrent read-only access
if the protected action is for a call on a protected function,
or for exclusive read-write access otherwise;

@Defn2{Term=[protected action], Sec=(complete)}
@Defn2{Term=[release], Sec=(execution resource associated with protected object)}
@i(Completing) the protected action
corresponds to @i(releasing) the associated execution resource.
@end(Itemize)

@Redundant[After performing an operation on a protected object other than
a call on a protected function, but prior
to completing the associated protected action,
the entry queues (if any)
of the protected object are
serviced (see @RefSecNum(Entry Calls)).]
@end{RunTime}

@begin{Bounded}
@leading@PDefn2{Term=(bounded error),Sec=(cause)}
During a protected action, it is a bounded error to invoke an operation that
is @i(potentially blocking).
@Defn{potentially blocking operation}
@Defn{blocking, potentially}
The following are defined to be potentially blocking operations:
@begin{Reason}
  Some of these operations are not directly blocking.
  However, they are still treated as bounded errors during a protected
  action, because allowing them might impose an undesirable
  implementation burden.
@end{Reason}
@begin{itemize}
a @nt{select_statement};

an @nt{accept_statement};

an @nt{entry_call_statement};

a @nt{delay_statement};

an @nt{abort_statement};

task creation or activation;

an external call on a protected subprogram (or an external requeue)
with the same target object as that of the protected action;
@begin(Reason)
  This is really a deadlocking call, rather than a blocking call,
  but we include it in this list for simplicity.
@end(Reason)

a call on a subprogram whose body contains a
potentially blocking operation.
@begin(Reason)
  This allows an implementation to check and raise Program_Error
  as soon as a subprogram is called, rather than waiting to find out
  whether it actually reaches the potentially blocking operation.
  This in turn allows the potentially blocking operation check
  to be performed prior to run time in some environments.
@end(Reason)
@end{itemize}

@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If the bounded error is detected, Program_Error is raised.
If not detected, the bounded error
might result in deadlock or a (nested)
protected action on the same target object.

@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[By @lquotes@;nested protected action@rquotes,
we mean that an additional protected action can be started by another task
on the same protected object. This means that mutual exclusion may be broken
in this bounded error case. A way to ensure that this does not happen is to use
pragma Detect_Blocking (see @RefSecNum{Pragma Detect_Blocking}).]}
@end{Discussion}

Certain language-defined subprograms are
potentially blocking.
In particular, the subprograms of
the language-defined input-output packages that manipulate
files (implicitly or explicitly) are potentially blocking.
Other potentially blocking subprograms are identified
where they are defined.
When not specified as potentially blocking,
a language-defined subprogram is nonblocking.
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00178-01]}
@ChgAdded{Version=[2],Text=[Any subprogram in a language-defined input-output
package that has a file parameter or result or operates on a default file is
considered to manipulate a file. An instance of a language-defined input-output
generic package provides subprograms that are covered by this rule. The only
subprograms in language-defined input-output packages not covered by this rule
(and thus not potentially blocking) are the Get and Put routines that take
string parameters defined in the packages nested in Text_IO.]}@ChgNote{This
was the resolution of a ramification.}
@end{Discussion}
@end{Bounded}

@begin{Notes}
If two tasks both try to start a protected action
on a protected object, and at most one is calling
a protected function, then only one of the tasks can proceed.
Although the other task cannot proceed, it is not considered
blocked, and it might be consuming processing resources while it
awaits its turn. There is no language-defined ordering or queuing
presumed for tasks competing to start a protected action @em
on a multiprocessor such tasks might use busy-waiting; for
monoprocessor considerations, see @RefSec{Priority Ceiling Locking}.
@begin{Discussion}
The intended implementation on a multi-processor is in terms of
@lquotes@;spin locks@rquotes@; @em the waiting task will spin.
@end{Discussion}

The body of a protected unit may contain declarations and bodies for local
subprograms. These are not visible outside the protected unit.

The body of a protected function can contain internal calls
on other protected functions, but not protected procedures,
because the current instance is a constant.
On the other hand, the body of a protected procedure
can contain internal calls on both protected functions and procedures.

From within a protected action,
an internal call on a protected subprogram,
or an external call on a protected subprogram with a different
target object is not considered a potentially blocking operation.
@begin(Reason)
  This is because a task is not considered blocked
  while attempting to acquire the execution resource associated with
  a protected object. The acquisition of such a resource
  is rather considered part of the normal competition for execution
  resources between the various tasks that are ready.
  External calls that turn out to be on the same target
  object are considered potentially blocking, since they
  can deadlock the task indefinitely.
@end(Reason)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[The @nt{pragma} Detect_Blocking may be used to
ensure that all executions of potentially blocking operations during a
protected action raise Program_Error.
See @RefSecNum{Pragma Detect_Blocking}.]}
@end{Notes}

@begin{Examples}
@leading@i{Examples of protected subprogram calls
(see @RefSecNum(Protected Units and Protected Objects)):}
@begin{Example}
Shared_Array.Set_Component(N, E);
E := Shared_Array.Component(M);
Control.Release;
@end{Example}

@end{Examples}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00305-01]}
  @ChgAdded{Version=[2],Text=[Added a note pointing out the existence of
  @nt{pragma} Detect_Blocking. This pragma can be used to ensure portable
  (somewhat pessimistic) behavior of protected actions by converting the
  Bounded Error into a required check.]}
@end{DiffWord95}


@LabeledSubClause{Entries and Accept Statements}

@begin{Intro}
@nt<Entry_declaration>s, with the corresponding @ntf<entry_bodies>
or @nt<accept_statement>s,
are used to define potentially queued operations on
tasks and protected objects.
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00397-01]}
@Syn{lhs=<entry_declaration>,rhs="@Chg{Version=[2],New=<
   [@Syn2{overriding_indicator}]>,Old=[]}
   @key{entry} @Syn2{defining_identifier} [(@Syn2{discrete_subtype_definition})] @Syn2{parameter_profile};"}


@Syn{lhs=<accept_statement>,rhs="
   @key{accept} @SynI{entry_}@Syn2{direct_name} [(@Syn2{entry_index})] @Syn2{parameter_profile} [@key{do}
     @Syn2{handled_sequence_of_statements}
   @key{end} [@SynI{entry_}@Syn2{identifier}]];"}
@begin{Reason}
  We cannot use @nt{defining_identifier} for @nt<accept_statement>s.
  Although an @nt{accept_statement} is sort of like a body, it can appear
  nested within a @nt{block_statement}, and therefore be hidden from
  its own entry by an outer homograph.
@end{Reason}

@Syn{lhs=<entry_index>,rhs="@Syn2{expression}"}


@Syn{lhs=<entry_body>,rhs="
  @key{entry} @Syn2{defining_identifier}  @Syn2{entry_body_formal_part}  @Syn2{entry_barrier} @key{is}
    @Syn2{declarative_part}
  @key{begin}
    @Syn2{handled_sequence_of_statements}
  @key{end} [@SynI{entry_}@Syn2{identifier}];"}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00397-01]}
  @ChgAdded{Version=[2],Text=[We don't allow an @nt{overriding_indicator} on
  an @nt{entry_body} because entries always implement procedures at the
  point of the type declaration; there is no late implementation. And we
  don't want to have to think about @nt{overriding_indicator}s on
  @nt{accept_statement}s.]}
@end{Discussion}

@Syn{lhs=<entry_body_formal_part>,
  rhs="[(@Syn2{entry_index_specification})] @Syn2{parameter_profile}"}


@Syn{lhs=<entry_barrier>,
  rhs="@key{when} @Syn2{condition}"}


@Syn{lhs=<entry_index_specification>,
  rhs="@key{for} @Syn2{defining_identifier} @key{in} @Syn2{discrete_subtype_definition}"}

@begin{SyntaxText}
If an @SynI{entry_}@nt{identifier} appears at the end of an
@nt{accept_statement}, it shall repeat the @SynI{entry_}@!@nt<direct_@!name>.
If an @SynI{entry_}@!@nt{identifier} appears at the end of an @nt{entry_@!body}, it shall repeat the
@nt{defining_@!identifier}.

@Redundant[An @nt{entry_declaration} is allowed only in a protected or task
declaration.]
@begin(TheProof)
  This follows from the BNF.
@end(TheProof)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[An @nt{overriding_indicator} is not allowed in an
@nt{entry_declaration} that includes a @nt{discrete_subtype_definition}.]}
@begin(Reason)
  @ChgRef{Version=[2],Kind=[Added]}
  @ChgAdded{Version=[2],Text=[An entry family can never implement something,
  so allowing an indicator is felt by the majority of the ARG to be redundant.]}
@end(Reason)
@end{SyntaxText}
@end{Syntax}

@begin{Resolution}

@PDefn2{Term=[expected profile],
  Sec=(accept_statement @i{entry_}@nt<direct_name>)}
In an @nt<accept_statement>,
the expected profile for the @SynI{entry_}@nt<direct_name>
is that of the @nt<entry_@!declaration>;
@PDefn2{Term=[expected type],
  Sec=(entry_index)}
the expected type for an @nt<entry_index> is that
of the subtype defined by the @nt<discrete_@!subtype_@!definition>
of the corresponding @nt<entry_@!declaration>.

Within the @nt<handled_sequence_of_statements> of an @nt<accept_statement>,
if a @nt<selected_@!component> has a @nt<prefix> that denotes
the corresponding @nt<entry_@!declaration>, then the
entity denoted by the @nt<prefix> is the @nt<accept_@!statement>, and
the @nt<selected_@!component> is interpreted as an expanded name
(see @RefSecNum(Selected Components))@Redundant[; the @nt<selector_name>
of the @nt<selected_@!component> has to be the @nt<identifier> for
some formal parameter of the @nt<accept_@!statement>].
@begin{TheProof}
  The only declarations that occur immediately within the
  declarative region of an @nt<accept_statement> are those
  for its formal parameters.
@end{TheProof}
@end{Resolution}

@begin{Legality}

An @nt<entry_declaration> in a task declaration shall not contain
a specification for an access parameter (see @RefSecNum(Access Types)).
@begin(Reason)
  @leading@;Access parameters for task entries would require a complex
  implementation. For example:
  @begin(Example)
@key(task) T @key(is)
   @key(entry) E(Z : @key(access) Integer); --@RI{ Illegal!}
@key(end) T;

@key(task body) T @key(is)
@key(begin)
   @key(declare)
      @key(type) A @key(is access all) Integer;
      X : A;
      Int : @key(aliased) Integer;
      @key(task) Inner;
      @key(task body) Inner @key(is)
      @key(begin)
         T.E(Int'Access);
      @key(end) Inner;
   @key(begin)
      @key(accept) E(Z : @key(access) Integer) @key(do)
         X := A(Z); --@RI{ Accessibility_Check}
      @key(end) E;
   @key(end);
@key(end) T;
@end(Example)

Implementing the Accessibility_Check inside the @nt<accept_statement> for
E is difficult, since one does not know whether the entry caller
is calling from inside the immediately enclosing declare block or from
outside it. This means that the lexical nesting level associated with
the designated object is not sufficient to determine whether the
Accessibility_Check should pass or fail.

Note that such problems do not arise with protected entries, because
@ntf<entry_bodies> are always nested immediately within the
@nt<protected_body>; they cannot be further nested as can
@nt<accept_statement>s, nor can they be called from within the
@nt<protected_body> (since no entry calls are permitted inside
a @nt<protected_body>).
@end(Reason)

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[If an @nt{entry_declaration} has an
@nt{overriding_indicator}, then at
the point of the declaration:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{overriding}, then the entry shall implement an inherited subprogram;]}

@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[if the @nt{overriding_indicator} is
@key{not overriding}, then the entry shall not implement any inherited
subprogram.]}

@end{Itemize}

@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@PDefn{generic contract issue}In addition to the
places where @LegalityTitle normally apply (see
@RefSecNum{Generic Instantiation}), these rules also apply in the private part
of an instance of a generic unit.]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[These rules are subtly different than those for
  subprograms (see @RefSecNum{Overriding Indicators}) because there cannot be
  @lquotes@;late@rquotes inheritance of primitives from interfaces. Hidden
  (that is, private) interfaces are prohibited explicitly (see
  @RefSecNum{Private Types and Private Extensions}), as are hidden primitive
  operations (as private operations of public abstract types are prohibited
  @em see @RefSecNum{Abstract Types and Subprograms}).]}
@end{Discussion}

For an @nt<accept_statement>,
the innermost enclosing body shall be a @nt<task_body>,
and the @i(entry_)@!@nt<direct_@!name> shall
denote an @nt<entry_@!declaration> in the corresponding task declaration;
the profile of the @nt{accept_@!statement} shall
conform fully to that of the corresponding @nt<entry_@!declaration>.
@Defn2{Term=[full conformance],Sec=(required)}
An @nt<accept_@!statement> shall have a parenthesized @nt<entry_@!index> if
and only if the corresponding @nt<entry_@!declaration> has a
@nt<discrete_@!subtype_@!definition>.

An @nt<accept_statement> shall not be within another
@nt{accept_statement} that corresponds to the same @nt<entry_@!declaration>,
nor within an @nt<asynchronous_@!select> inner to
the enclosing @nt<task_body>.
@begin(Reason)
@nt<Accept_statement>s are required to be immediately within
the enclosing @nt<task_body> (as opposed to being in a nested
subprogram) to ensure that a nested task does not
attempt to accept the entry of its enclosing task. We considered
relaxing this restriction, either by making the check a run-time
check, or by allowing a nested task to accept an entry of its
enclosing task. However, neither change seemed to provide sufficient
benefit to justify the additional implementation burden.

Nested @nt<accept_statement>s for the same entry (or entry family)
are prohibited to ensure that there is no ambiguity in the
resolution of an expanded name for a formal parameter of the
entry. This could be relaxed by allowing the inner
one to hide the outer one from all visibility, but again the
small added benefit didn't seem to justify making the change for Ada 95.

@nt<Accept_statement>s are not permitted within @nt<asynchronous_select>
statements to simplify the semantics and implementation:
an @nt<accept_statement> in an @nt<abortable_part> could result
in Tasking_Error being propagated from an entry call even though
the target task was still callable; implementations that use
multiple tasks implicitly to implement an @nt<asynchronous_select>
might have trouble supporting "up-level" accepts.
Furthermore, if @nt<accept_statement>s were permitted in
the @nt<abortable_part>, a task could call its own
entry and then accept it in the @nt<abortable_part>, leading
to rather unusual and possibly difficult-to-specify semantics.
@end(Reason)

@PDefn2{Term=[requires a completion], Sec=(protected @nt{entry_declaration})}
An @nt{entry_declaration} of a protected unit requires
a completion@redundant[, which shall be an @nt{entry_body},]
@PDefn2{Term=[only as a completion], Sec=(@nt<entry_body>)}
and every @nt<entry_@!body> shall be the completion
of an @nt<entry_@!declaration> of a protected unit.
@PDefn2{Term=[completion legality], Sec=(@nt<entry_body>)}
The profile of the @nt<entry_@!body> shall conform fully to that
of the corresponding declaration.
@Defn2{Term=[full conformance],Sec=(required)}
@begin{Ramification}
An @nt<entry_declaration>, unlike a @nt<subprogram_declaration>,
cannot be completed with a @nt<renaming_@!declaration>.
@end{Ramification}
@begin(Honest)
  The completion can be a @nt{pragma} Import,
  if the implementation supports it.
@end(Honest)
@begin{Discussion}
The above applies only to protected entries,
which are the only ones completed with @ntf{entry_bodies}.
Task entries have corresponding @nt{accept_statement}s
instead of having @ntf{entry_bodies}, and
we do not consider an @nt{accept_statement} to be a @lquotes@;completion,@rquotes@;
because a task @nt{entry_declaration} is allowed to have zero, one, or more
than one corresponding @nt{accept_statement}s.
@end{Discussion}

An @nt{entry_body_formal_part} shall have an @nt{entry_@!index_@!specification}
if and only if the corresponding @nt{entry_@!declaration} has
a @nt<discrete_@!subtype_@!definition>.
In this case, the @nt<discrete_@!subtype_@!definition>s of the
@nt<entry_@!declaration> and the @nt<entry_@!index_@!specification>
shall fully conform to one another (see @RefSecNum(Conformance Rules)).
@Defn2{Term=[full conformance],Sec=(required)}

A name that denotes a formal parameter of an @nt<entry_body> is not
allowed within the @nt<entry_barrier> of the @nt<entry_body>.

@end{Legality}

@begin{StaticSem}
The parameter modes defined for parameters in the @nt<parameter_profile>
of an @nt{entry_declaration}
are the same as for a @nt<subprogram_declaration> and have
the same meaning (see @RefSecNum(Formal Parameter Modes)).
@begin{Discussion}
Note that access parameters are not allowed for task entries (see above).
@end{Discussion}

@Defn2{Term=[family], Sec=(entry)}
@Defn{entry family}
@Defn{entry index subtype}
An @nt<entry_declaration> with a @nt<discrete_subtype_definition>
(see @RefSecNum(Array Types)) declares a @i(family) of distinct
entries having the same profile, with one such entry for each
value of the @i(entry index subtype) defined
by the @nt<discrete_@!subtype_@!definition>.
@Redundant[A name for an entry of a family takes the form of
an @nt<indexed_component>, where the @nt<prefix> denotes
the @nt<entry_declaration> for the family, and the index value
identifies the entry within the family.]
@Defn{single entry}
@Defn2{Term=[entry], Sec=(single)}
The term @i(single entry) is used to refer to any entry other
than an entry of an entry family.

In the @nt<entry_body> for an entry family,
the @nt<entry_index_specification> declares a named constant
whose subtype is the entry index subtype defined by the
corresponding @nt<entry_declaration>;
@Defn{named entry index}
the value of the @i(named entry index) identifies
which entry of the family was called.
@begin{Ramification}
The @nt<discrete_subtype_definition> of the @nt<entry_index_specification>
is not elaborated; the subtype of the named constant declared
is defined by the @nt<discrete_subtype_definition> of the corresponding
@nt<entry_declaration>, which is elaborated, either when the
type is declared, or when the object is created, if its constraint
is per-object.
@end{Ramification}

@end{StaticSem}

@begin{RunTime}

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0002],ARef=[AI95-00171-01]}
@PDefn2{Term=[elaboration], Sec=(entry_declaration)}
@Chg{New=[The elaboration of an @nt<entry_declaration> for an entry family
consists of the elaboration of the @nt<discrete_@!subtype_@!definition>, as
described in @RefSecNum(Record Types).],
Old=[For the elaboration of an @nt<entry_@!declaration> for an
entry family, if the
@nt{discrete_@!subtype_@!definition} contains no per-object expressions
(see @RefSecNum(Record Types)), then the @nt<discrete_@!subtype_@!definition>
is elaborated. Otherwise, the elaboration of the
@nt<entry_@!declaration> consists of the evaluation of any
expression of the @nt<discrete_@!subtype_@!definition>
that is not a per-object expression (or part of one).]}
The elaboration of an @nt<entry_@!declaration> for a single entry
has no effect.
@begin{Discussion}
The elaboration of the declaration of a protected subprogram has
no effect, as specified in clause @RefSecNum(Subprogram Declarations).
The default initialization of an object of a task or protected
type is covered in @RefSecNum(Object Declarations).
@end{Discussion}

@Redundant[The actions to be performed when
an entry is called are specified by the
corresponding @nt{accept_@!statement}s (if any) for an entry of a task unit,
and by the corresponding @nt<entry_@!body> for an entry of a protected unit.]

@PDefn2{Term=[execution], Sec=(accept_statement)}
For the execution of an @nt{accept_statement}, the @nt<entry_index>, if
any, is first evaluated and converted to the entry index subtype;
this index value identifies which entry of the family is to be accepted.
@PDefn2{Term=[implicit subtype conversion],Sec=(entry index)}
@PDefn2{Term=[blocked], Sec=(on an @nt<accept_statement>)}
@Defn2{Term=[selection], Sec=(of an entry caller)}
Further execution of the @nt<accept_statement> is then blocked
until a caller of the corresponding entry is selected
(see @RefSecNum(Entry Calls)), whereupon
the @nt<handled_sequence_of_statements>, if any, of the @nt<accept_statement>
is executed, with the formal parameters associated with the
corresponding actual parameters of the selected entry call.
Upon completion of the @nt<handled_sequence_of_statements>,
the @nt<accept_statement> completes and is left.
When an exception is propagated from the
@nt{handled_sequence_of_statements} of an @nt{accept_statement},
the same exception is also raised by the execution of the corresponding
@nt{entry_call_statement}.
@begin{Ramification}
This is in addition to propagating it to the construct
containing the @nt{accept_statement}.
In other words, for a rendezvous, the raising splits in two,
and continues concurrently in both tasks.

The caller gets a new occurrence;
this isn't considered propagation.

Note that we say @lquotes@;propagated from the
@nt{handled_sequence_of_statements} of an @nt{accept_statement}@rquotes@;,
not @lquotes@;propagated from an @nt{accept_statement}.@rquotes@;
The latter would be wrong @em we don't want exceptions propagated by
the @nt<entry_index> to be sent to the caller (there is none yet!).
@end{Ramification}

@Defn{rendezvous}
The above interaction between a calling task and an
accepting task is called a @i(rendezvous).
@Redundant[After a rendezvous, the two tasks continue
their execution independently.]

@Redundant[An @nt<entry_body> is executed when the @nt<condition> of the
@nt<entry_barrier> evaluates to True and a caller of the corresponding
single entry, or entry of the corresponding entry family,
has been selected (see @RefSecNum(Entry Calls)).]
@PDefn2{Term=[execution], Sec=(entry_body)}
For the execution of the @nt<entry_@!body>,
the @nt<declarative_@!part> of the @nt<entry_@!body> is elaborated,
and the @nt<handled_@!sequence_of_@!statements>
of the body is executed, as for the execution
of a @nt<subprogram_body>. The value of the named entry index, if any,
is determined by the value of the entry index specified in the
@i(entry_)@nt<name> of the selected entry call (or intermediate
@nt<requeue_@!statement> @em see @RefSecNum(Requeue Statements)).
@begin(Honest)
If the entry had been renamed as a subprogram,
and the call was a @nt<procedure_call_statement> using
the name declared by the renaming, the entry index (if any) comes from
the entry @nt<name> specified in the
@nt<subprogram_renaming_declaration>.
@end(Honest)

@end{RunTime}

@begin{Notes}

A task entry has corresponding accept_statements (zero or more),
whereas a protected entry has a corresponding entry_body (exactly
one).

A consequence of the rule regarding the allowed placements of
@nt{accept_statement}s is that a task can execute @nt{accept_statement}s
only for its own entries.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
A @Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]}
(see @RefSecNum(Return Statements))
or a @nt<requeue_statement> (see @RefSecNum(Requeue Statements))
may be used to complete the execution of
an @nt<accept_statement> or an @nt<entry_body>.
@begin{Ramification}
An @nt<accept_statement> need not have a @nt<handled_sequence_of_statements>
even if the corresponding entry has parameters. Equally, it can have
a @nt<handled_sequence_of_statements> even if the corresponding entry
has no parameters.
@end{Ramification}
@begin{Ramification}
A single entry overloads a subprogram, an enumeration literal, or another
single entry if they have the same @nt{defining_identifier}. Overloading is
not allowed for entry family names.
A single entry or an entry of an entry family
can be renamed as a procedure as explained in
@RefSecNum{Subprogram Renaming Declarations}.
@end{Ramification}

The @nt<condition> in the @nt{entry_barrier} may reference
anything visible except the formal parameters of the entry.
This
includes the entry index (if any), the components (including discriminants) of
the protected object, the Count attribute of an entry of that protected object,
and data global to the protected unit.

@NoPrefix@;The restriction against referencing the formal parameters within an
@nt{entry_barrier} ensures that all calls of the same entry see
the same barrier value.
If it is necessary to look at the parameters of an entry
call before deciding whether to handle it, the @nt<entry_barrier>
can be @lquotes@;@key(when) True@rquotes@; and the caller can
be requeued (on some private entry)
when its parameters indicate that it cannot be handled immediately.
@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of entry declarations:}
@begin{Example}
@key(entry) Read(V : @key(out) Item);
@key(entry) Seize;
@key(entry) Request(Level)(D : Item);  --@RI[  a family of entries]
@end{Example}

@begin{Wide}
@leading@keepnext@i{Examples of accept statements:}
@end{Wide}
@begin{Example}
@key(accept) Shut_Down;

@key(accept) Read(V : @key(out) Item) @key(do)
   V := Local_Item;
@key(end) Read;

@key(accept) Request(Low)(D : Item) @key(do)
   ...
@key(end) Request;
@end{Example}

@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax rule for @nt{entry_body} is new.

@nt{Accept_statement}s can now have @nt{exception_handler}s.
@end{Extend83}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0002],ARef=[AI95-00171-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified the elaboration of
  per-object constraints.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00397-01]}
  @ChgAdded{Version=[2],Text=[@nt{Overriding_indicator}s can be used on
  entries; this is only useful when a task or protected type inherits
  from an interface.]}
@end{DiffWord95}


@LabeledSubClause{Entry Calls}

@begin{Intro}
@Defn{entry call}
@Redundant[An @nt<entry_call_statement> (an @i(entry call)) can appear in
various contexts.]
@Defn{simple entry call}
@Defn2{Term={entry call}, Sec=(simple)}
A @i(simple) entry call is a stand-alone statement that
represents an unconditional call on an entry of a target
task or a protected object.
@Redundant[Entry calls can also appear
as part of @nt<select_statement>s
(see @RefSecNum(Select Statements)).]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<entry_call_statement>,rhs="@SynI{entry_}@Syn2{name} [@Syn2{actual_parameter_part}];"}
@end{Syntax}

@begin{Resolution}
The @i(entry_)@nt<name> given in an @nt<entry_call_statement> shall resolve
to denote an entry. The rules for parameter
associations are the same as for subprogram calls (see @RefSecNum(Subprogram Calls)
and @RefSecNum(Parameter Associations)).
@end{Resolution}

@begin{StaticSem}
@Redundant[The @i(entry_)@nt<name> of an @nt<entry_call_statement> specifies
(explicitly or implicitly) the target object of the call,
the entry or entry family, and the entry index, if any
(see @RefSecNum(Intertask Communication)).]
@end{StaticSem}

@begin{RunTime}
@leading@Defn{open entry}
@Defn2{Term=[entry], Sec=(open)}
@Defn{closed entry}
@Defn2{Term=[entry], Sec=(closed)}
Under certain circumstances (detailed below), an entry of a task
or protected
object is checked to see whether it is @i(open) or @i(closed):
@begin(Itemize)
@Defn2{Term=[open entry], Sec=(of a task)}
@Defn2{Term=[closed entry], Sec=(of a task)}
An entry of a task is open if the task
is blocked on an @nt<accept_statement>
that corresponds to the entry (see @RefSecNum(Entries and Accept Statements)),
or on a @nt<selective_accept>
(see @RefSecNum(Selective Accept)) with an open
@nt<accept_alternative> that corresponds to the entry; otherwise
it is closed.

@Defn2{Term=[open entry], Sec=(of a protected object)}
@Defn2{Term=[closed entry], Sec=(of a protected object)}
An entry of a protected object is open if
the @nt<condition> of the @nt<entry_barrier> of the
corresponding @nt<entry_body> evaluates to True; otherwise it is closed.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If the evaluation of the @nt<condition> propagates an exception, the
exception Program_Error is propagated
to all current callers of all entries of the protected object.
@begin(Reason)
  An exception during barrier evaluation is considered essentially
  a fatal error. All current entry callers are notified with a Program_Error.
  In a fault-tolerant system, a protected object might provide a Reset
  protected procedure, or equivalent, to support attempts to restore such
  a "broken" protected object to a reasonable state.
@end(Reason)
@end(Itemize)
@begin(Discussion)
  Note that the definition of when a task entry is open is
  based on the state of the (accepting) task, whereas the
  "openness" of a protected entry is defined only
  when it is explicitly checked, since the barrier expression needs to
  be evaluated. Implementation permissions are given (below) to
  allow implementations to evaluate the barrier expression more or
  less often than it is checked, but the basic semantic model presumes
  it is evaluated at the times when it is checked.
@end(Discussion)

@leading@PDefn2{Term=[execution], Sec=(entry_call_statement)}
For the execution of an @nt{entry_call_statement},
evaluation of the @nt<name>
and of the parameter associations
is as for a subprogram call (see @RefSecNum{Subprogram Calls}).
@Defn2{Term=[issue], Sec=(an entry call)}
The entry call is then @i(issued):
For a call on an entry of a protected object, a new protected
action is started on the object (see @RefSecNum(Protected Subprograms and Protected Actions)).
The named entry is checked to see if it is open;
@Defn2{Term=[select an entry call], Sec=(immediately)}
if open, the entry call is said to be @i(selected immediately),
and the execution of the call proceeds as follows:
@begin(Itemize)
  For a call on an open entry of a task, the accepting task becomes ready and
  continues the execution of the corresponding @nt<accept_statement>
  (see @RefSecNum(Entries and Accept Statements)).

  For a call on an open entry of a protected object, the corresponding
  @nt<entry_body> is executed (see @RefSecNum(Entries and Accept Statements))
  as part of the protected action.
@end(Itemize)

If the @nt<accept_statement> or @nt<entry_body> completes other than
by a requeue (see @RefSecNum(Requeue Statements)), return is made to the
caller (after servicing the entry queues @em see below);
any necessary assigning back
of formal to actual parameters occurs,
as for a subprogram call (see @RefSecNum(Parameter Associations));
such assignments take
place outside of any protected action.
@begin(Ramification)
  The return to the caller will generally not occur until
  the protected action completes, unless some other thread of
  control is given the job of completing the protected action
  and releasing the associated execution resource.
@end(Ramification)

If the named entry is closed, the entry call is added to an @i(entry queue)
(as part of the protected action, for a call on a protected entry),
and the call remains queued until it is selected or cancelled;
@Defn{entry queue}
there is a separate (logical) entry queue for each entry of a
given task or protected object
@Redundant[(including each entry of an entry family)].

@Leading@Defn2{Term=[service], Sec=(an entry queue)}
@Defn2{Term=[select an entry call], Sec=(from an entry queue)}
When a queued call is @i{selected}, it is removed from its entry queue.
Selecting a queued call from a particular entry queue is
called @i{servicing} the entry queue.
An entry with queued calls can be serviced under
the following circumstances:
@begin(Itemize)
  When the associated task reaches a corresponding @nt<accept_statement>, or
  a @nt<selective_accept> with a corresponding
  open @nt<accept_alternative>;

  If after performing, as part of a protected action on the
  associated protected object, an operation on the object other than
  a call on a protected function,
  the entry is checked and found to be open.
@end(Itemize)

@Defn2{Term=[select an entry call], Sec=(from an entry queue)}
If there is at least one call on a queue corresponding to
an open entry, then one such call is selected according to the
@i(entry queuing policy) in effect (see below), and the
corresponding @nt<accept_statement> or @nt<entry_body> is
executed as above for an entry call that is selected immediately.

@Defn{entry queuing policy}
The entry queuing policy controls selection among queued calls
both for task and protected entry queues.
@Defn{default entry queuing policy}
@Defn2{Term=[entry queuing policy], Sec=(default policy)}
The default entry queuing policy is to select calls on a given entry
queue in order of arrival. If calls from two or more queues are
simultaneously eligible for selection, the default entry queuing policy
does not specify which queue is serviced first.
Other entry queuing policies can be specified by @nt{pragma}s
(see @RefSecNum(Entry Queuing Policies)).

For a protected object, the above servicing of entry queues continues
until there are no open entries with queued calls, at which point
the protected action completes.
@begin(Discussion)
  While servicing the entry queues of a protected object, no new calls
  can be added to any entry queue of the object,
  except due to an internal requeue (see @RefSecNum(Requeue Statements)).
  This is because the first step of a call on a protected entry
  is to start a new protected action, which implies acquiring
  (for exclusive read-write access)
  the execution resource associated with the protected object, which cannot
  be done while another protected action is already in progress.
@end(Discussion)

@PDefn2{Term=[blocked], Sec=(during an entry call)}
For an entry call that is added to a queue,
and that is not the @nt<triggering_statement> of an
@nt<asynchronous_@!select>
(see @RefSecNum{Asynchronous Transfer of Control}),
the calling task is blocked until the call is cancelled,
or the call is selected and a corresponding @nt<accept_statement>
or @nt<entry_body> completes without requeuing.
In addition, the calling task is blocked during a rendezvous.

@begin{Ramification}

For a call on a protected entry,
the caller is not blocked if the call is selected immediately,
unless a requeue causes the call to be queued.

@end{Ramification}

@Defn2{Term=[cancellation], Sec=(of an entry call)}
An attempt can be made to cancel an entry call upon an abort
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements))
and as part of certain forms of @nt<select_statement>
(see @RefSecNum(Timed Entry Calls),
@RefSecNum(Conditional Entry Calls), and
@RefSecNum(Asynchronous Transfer of Control)).
The cancellation does not take place until
a point (if any) when the call is on some entry queue,
and not protected from cancellation as part of a requeue
(see @RefSecNum(Requeue Statements)); at such a point, the
call is removed from the entry queue and the call completes due
to the cancellation.
The cancellation of a call on an entry of a protected object
is a protected action@Redundant[, and as such cannot take place
while any other protected action is occurring on the protected object.
Like any protected action, it includes servicing of the entry queues
(in case some entry barrier depends on a Count attribute).]
@begin(ImplNote)
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
  In the case of an attempted cancellation due to abort,
  this removal might have to be performed by the calling task
  itself if the ceiling priority of the protected object
  is lower than the @Chg{Version=[2],New=[priority of the ],Old=[]}task
  initiating the abort.
@end(ImplNote)

@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
A call on an entry of a task that has already completed its execution
raises the exception Tasking_Error at the point of the call;
similarly, this exception is raised at the point of the call if the
called task completes its execution or becomes abnormal before accepting
the call or completing the rendezvous
(see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)).
This applies equally to a simple entry call and to an entry call as part
of a @nt<select_statement>.

@end{RunTime}

@begin{ImplPerm}

An implementation may perform the sequence of steps of a protected action
using any thread of control; it need not be that of the task
that started the protected action.
If an @nt<entry_body> completes without requeuing, then the
corresponding calling task may be made ready
without waiting for the entire protected action to complete.
@begin(Reason)
  These permissions are intended to allow flexibility for implementations
  on multiprocessors. On a monoprocessor, which thread of control executes
  the protected action is essentially invisible, since the thread is
  not abortable in any case, and the "current_task" function is not
  guaranteed to work during a protected action
  (see @Chg{Version=[2],New=[@RefSecNum(The Package Task_Identification)],
  Old=[@RefSecNum(Task Information)]}).
@end(Reason)

When the entry of a protected object is checked to see whether it
is open, the implementation need not reevaluate
the @nt<condition> of the corresponding @nt<entry_barrier>
if no variable or attribute referenced by
the @nt<condition> (directly or indirectly)
has been altered
by the execution (or cancellation) of a protected procedure or entry call
on the object since the @nt<condition> was last evaluated.
@begin(Ramification)
  Changes to variables referenced by an entry barrier that
  result from actions outside of a protected procedure or entry call on the
  protected object need not be "noticed." For example, if
  a global variable is referenced by an entry barrier, it should not
  be altered (except as part of a protected action on the object) any
  time after the barrier is first evaluated.
  In other words, globals can be used to "parameterize" a protected object,
  but they cannot reliably be used to control it after the first
  use of the protected object.
@end(Ramification)
@begin{ImplNote}
  Note that even if a global variable is volatile,
  the implementation need only reevaluate a barrier if the
  global is updated during a protected action on the protected object.
  This ensures that an entry-open bit-vector implementation
  approach is possible, where the bit-vector is computed at
  the end of a protected action, rather than upon each entry call.
@end{ImplNote}

An implementation may evaluate the @nt<condition>s of all @nt<entry_barrier>s
of a given protected object any time any entry of the object
is checked to see if it is open.
@begin(Ramification)
  In other words, any side-effects of evaluating an entry barrier
  should be innocuous, since an entry barrier might be evaluated more
  or less often than is implied by the "official" dynamic semantics.
@end(Ramification)
@begin(ImplNote)
  It is anticipated that when the number of entries is known to be small,
  all barriers will be evaluated any time one of them needs to be,
  to produce an "entry-open bit-vector." The appropriate bit will
  be tested when the entry is called, and only if the bit is false
  will a check be made to see whether the bit-vector might need to
  be recomputed. This should allow an implementation to maximize
  the performance of a call on an open entry, which seems like the
  most important case.

  In addition to the entry-open bit-vector, an "is-valid"
  bit is needed per object, which indicates whether the current
  bit-vector setting is valid.
  A "depends-on-Count-attribute" bit is needed per type.
  The "is-valid" bit is set to false
  (as are all the bits of the bit-vector) when the protected object is first
  created, as well as any time an exception is propagated from computing
  the bit-vector. Is-valid would also be set false any time the
  Count is changed and
  "depends-on-Count-attribute" is true for the type, or a
  protected procedure or entry returns indicating it might have updated a
  variable referenced in some barrier.

  A single procedure can be compiled to evaluate all of the barriers,
  set the entry-open bit-vector accordingly, and set the is-valid bit to true.
  It could have a "when others" handler to set them all false,
  and call a routine to propagate Program_Error to all queued callers.

  For protected types where the number of entries is not known to be
  small, it makes more sense to evaluate a barrier only when the
  corresponding entry is checked to see if it is open. It isn't worth
  saving the state of the entry between checks, because of the space
  that would be required. Furthermore, the entry queues probably want
  to take up space only when there is actually a caller on them, so
  rather than an array of all entry queues, a linked list of nonempty
  entry queues make the most sense in this case, with the first caller
  on each entry queue acting as the queue header.
@end(ImplNote)

When an attempt is made to cancel an entry call, the implementation
need not make the attempt using the thread of control of the
task (or interrupt) that initiated the cancellation; in particular,
it may use the thread of control of the caller itself to attempt the
cancellation, even if this might allow the entry call to be
selected in the interim.
@begin{Reason}
  Because cancellation of a protected entry call is a protected
  action (which helps make the Count attribute of a protected
  entry meaningful), it might
  not be practical to attempt the cancellation from the thread
  of control that initiated the cancellation. For example,
  if the cancellation is due to the expiration of a delay,
  it is unlikely that the handler of the timer interrupt could
  perform the necessary protected action itself (due to being
  on the interrupt level). Similarly, if the cancellation
  is due to an abort, it is possible that the task initiating
  the abort has a priority higher than the ceiling priority of the
  protected object (for implementations that support ceiling priorities).
  Similar considerations could apply in a multiprocessor situation.
@end{Reason}

@end{ImplPerm}

@begin{Notes}

If an exception is raised during the execution of an @nt{entry_body}, it is
propagated to the corresponding caller (see @RefSecNum(Exception Handling)).

For a call on a protected entry, the entry is checked to see if
it is open prior to queuing the call, and again thereafter
if its Count attribute (see @RefSecNum{Task and Entry Attributes})
is referenced in some entry barrier.
@begin(Ramification)
  Given this, extra care is required if
  a reference to the Count attribute of an entry
  appears in the entry's own barrier.
@end(Ramification)
@begin(Reason)
  An entry is checked to see if it is open prior to queuing
  to maximize the performance of a call on an open entry.
@end(Reason)

In addition to simple entry calls,
the language permits timed, conditional, and asynchronous entry calls
(see @RefSecNum(Timed Entry Calls), @RefSecNum(Conditional Entry Calls),
and see @RefSecNum(Asynchronous Transfer of Control)).
@begin{Ramification}
A task can call its own entries, but
the task will deadlock if the call is a simple entry call.
@end{Ramification}

The @nt<condition> of an @nt<entry_barrier> is allowed to be evaluated by
an implementation more often than strictly necessary, even if the
evaluation might have side effects. On the other hand, an implementation
need not reevaluate the @nt<condition> if nothing it references was
updated by an intervening protected action on the protected object,
even if the @nt<condition> references some global variable that might
have been updated by an action performed from outside of a protected action.
@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of entry calls:}
@begin{Example}
Agent.Shut_Down;                      --@RI[  see @RefSecNum(Task Units and Task Objects)]
Parser.Next_Lexeme(E);                --@RI[  see @RefSecNum(Task Units and Task Objects)]
Pool(5).Read(Next_Char);              --@RI[  see @RefSecNum(Task Units and Task Objects)]
Controller.Request(Low)(Some_Item);   --@RI[  see @RefSecNum(Task Units and Task Objects)]
Flags(3).Seize;                       --@RI[  see @RefSecNum(Protected Units and Protected Objects)]
@end{Example}
@end{Examples}

@LabeledSubClause{Requeue Statements}

@begin{Intro}
@redundant[A @nt<requeue_statement>
can be used to complete an @nt<accept_statement> or @nt<entry_body>,
while redirecting the corresponding entry call to a new (or the same)
entry queue.
@Defn{requeue}
Such a @i(requeue) can be performed with or without allowing
an intermediate cancellation of the call, due to an abort or
the expiration of a delay.
@IndexSee{Term=[preference control],See=(requeue)}
@IndexSee{Term=[broadcast signal],See=(requeue)}]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<requeue_statement>,
  rhs="@key{requeue} @SynI{entry_}@Syn2{name} [@key{with} @key{abort}];"}
@end{Syntax}

@begin{Resolution}

@Defn2{Term=[target entry], Sec=(of a @nt<requeue_statement>)}
The @i(entry_)@nt{name} of a @nt{requeue_statement} shall resolve
to denote an entry (the @i(target entry))
that either has no parameters, or that has
a profile that is type conformant (see @RefSecNum(Conformance Rules)) with
the profile of the innermost enclosing @nt<entry_@!body> or
@nt<accept_@!statement>.
@Defn2{Term=[type conformance],Sec=(required)}

@end{Resolution}

@begin{Legality}

A @nt{requeue_statement} shall be within a callable
construct that is either an @nt{entry_body} or an
@nt{accept_statement}, and this construct shall
be the innermost enclosing body or callable construct.

If the target entry has parameters,
then its profile shall be subtype conformant with
the profile of the innermost enclosing callable construct.
@Defn2{Term=[subtype conformance],Sec=(required)}

@PDefn2{Term=[accessibility rule],Sec=(requeue statement)}
In a @nt<requeue_statement> of an @nt<accept_statement> of
some task unit, either the target object shall be a part of a
formal parameter of the @nt<accept_statement>,
or the accessibility level of the target object
shall not be equal to or statically deeper than any
enclosing @nt<accept_statement> of the task unit.
In a @nt<requeue_@!statement> of an @nt<entry_@!body>
of some protected unit, either the target object shall be
a part of a formal parameter of the @nt<entry_@!body>,
or the accessibility level of the target object
shall not be statically deeper than that
of the @nt<entry_declaration>.

@begin{Ramification}
  In the @nt{entry_body} case, the intent is that the target object can
  be global,
  or can be a component of the protected unit,
  but cannot be a local variable of the @nt{entry_body}.
@end{Ramification}
@begin(Reason)
  These restrictions ensure that the target object of the requeue outlives the
  completion and finalization of the enclosing callable construct.
  They also prevent requeuing from a nested
  @nt<accept_statement> on a parameter of an outer @nt<accept_statement>,
  which could create some strange "long-distance" connections between
  an entry caller and its server.

  Note that in the strange case where a @nt<task_body> is nested inside
  an @nt<accept_statement>, it is permissible to requeue from an
  @nt<accept_statement> of the inner @nt<task_body> on parameters of
  the outer @nt<accept_statement>. This is not
  a problem because all calls on the inner task have to complete before
  returning from the outer @nt<accept_statement>, meaning no "dangling
  calls" will be created.
@end(Reason)
@begin(ImplNote)
  By disallowing certain requeues,
  we ensure that the normal @nt<terminate_alternative> rules remain
  sensible, and that explicit clearing of the entry queues of a protected
  object during finalization is rarely necessary. In particular, such
  clearing of the entry queues is necessary only (ignoring premature
  Unchecked_Deallocation) for protected objects declared in a
  @nt<task_body> (or created by an allocator for an access type declared
  in such a body) containing one or more @nt<requeue_statement>s.
  Protected objects declared in subprograms, or at the library level,
  will never need to have their entry queues explicitly cleared during
  finalization.
@end(ImplNote)
@end{Legality}

@begin{RunTime}

@PDefn2{Term=[execution], Sec=(requeue_statement)}
The execution of a @nt{requeue_statement} proceeds by first evaluating the
@i(entry_)@nt<name>@Redundant[, including the @nt<prefix>
identifying the target task
or protected object and the @nt<expression>
identifying the entry
within an entry family, if any].
The @nt{entry_body} or @nt{accept_statement}
enclosing the @nt{requeue_statement} is then
completed@Redundant[, finalized, and left
(see @RefSecNum(Completion and Finalization))].

@PDefn2{Term=[execution], Sec=(requeue task entry)}
For the execution of a requeue on an entry of a target task,
after leaving the enclosing callable construct, the named entry
is checked to see if it is open and the requeued call is either
selected immediately or queued, as for a normal entry call
(see @RefSecNum(Entry Calls)).

@leading@PDefn2{Term=[execution], Sec=(requeue protected entry)}
For the execution of a requeue on an entry of a target protected
object, after leaving the enclosing callable construct:
@begin(Itemize)
  if the requeue is an internal requeue
  (that is, the requeue is back on an entry of the same protected object @em
  see @RefSecNum(Intertask Communication)),
  the call is added to the queue of the named entry and
  the ongoing protected action continues (see @RefSecNum(Protected Subprograms and Protected Actions));
  @begin(Ramification)
    Note that for an internal requeue, the call
    is queued without checking whether the target entry is open.
    This is because the entry queues will be serviced before the
    current protected action completes anyway, and considering the
    requeued call immediately might allow it to "jump" ahead of
    existing callers on the same queue.
  @end(Ramification)

  if the requeue is an external requeue (that is, the target protected
  object is not implicitly the same as the current object @em
  see @RefSecNum(Intertask Communication)),
  a protected action is started on the target object and proceeds
  as for a normal entry call (see @RefSecNum(Entry Calls)).
@end(Itemize)

If the new entry named in the @nt<requeue_statement>
has formal parameters, then during the execution of the
@nt<accept_statement> or @nt<entry_body> corresponding to the new entry,
the formal parameters denote the same objects as
did the corresponding formal parameters
of the callable construct completed by the requeue.
@Redundant[In any case, no parameters are specified in a
@nt<requeue_statement>; any parameter passing is implicit.]

@leading@Defn{requeue-with-abort}
If the @nt<requeue_statement> includes the reserved words @key(with abort)
(it is a @i(requeue-with-abort)), then:
@begin(Itemize)
  if the original entry call has been aborted
  (see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)), then
  the requeue acts as an abort completion point for the call,
  and the call is cancelled and no requeue is
  performed;

  if the original entry call was timed (or conditional),
  then the original expiration time is the expiration
  time for the requeued call.
@end(Itemize)

If the reserved words @key(with abort) do not appear, then the
call remains protected against cancellation while queued as the result
of the @nt<requeue_statement>.
@begin(Ramification)
  This protection against cancellation lasts only until the
  call completes or a subsequent requeue-with-abort is performed
  on the call.
@end(Ramification)
@begin(Reason)
  We chose to protect a requeue, by default, against abort or cancellation.
  This seemed safer, since it is likely that extra steps need to be taken
  to allow for possible cancellation once the servicing of an entry
  call has begun. This also means that in the absence of @key(with abort)
  the usual Ada 83 behavior is preserved, namely that once an
  entry call is accepted, it cannot be cancelled until it completes.
@end(Reason)
@end{RunTime}

@begin{Notes}

A requeue is permitted from a single entry to an entry of
an entry family, or vice-versa. The entry index, if any,
plays no part in the subtype conformance check between the
profiles of the two entries; an entry index
is part of the @i(entry_)@nt<name> for an entry of a family.
@PDefn{subtype conformance}

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of requeue statements:}
@begin{Example}
@key[requeue] Request(Medium) @key[with abort];
                    --@RI[ requeue on a member of an entry family of the current task, see @RefSecNum{Task Units and Task Objects}]

@key[requeue] Flags(I).Seize;
                    --@RI[ requeue on an entry of an array component, see @RefSecNum{Protected Units and Protected Objects}]
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
The @nt<requeue_statement> is new.
@end{Extend83}


@LabeledClause{Delay Statements, Duration, and Time}

@begin{Intro}
@redundant[@PDefn{expiration time}
A @nt<delay_statement> is used to block further execution until
a specified @i(expiration time) is reached.
The expiration time
can be specified either as a particular point in time (in a
@nt<delay_@!until_@!statement>), or in seconds from the current time
(in a @nt<delay_@!relative_@!statement>).
The language-defined
package Calendar provides definitions for a type Time and associated
operations, including a function Clock that returns the current time.
@IndexSee{Term=[timing],See=(delay_statement)}]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<delay_statement>,
  rhs="@Syn2{delay_until_statement} | @Syn2{delay_relative_statement}"}


@Syn{lhs=<delay_until_statement>,
  rhs="@key{delay until} @SynI(delay_)@Syn2{expression};"}

@Syn{lhs=<delay_relative_statement>,
  rhs="@key{delay} @SynI(delay_)@Syn2{expression};"}
@end{Syntax}

@begin{Resolution}

@PDefn2{Term=[expected type],
  Sec=(delay_relative_statement expression)}
The expected type for the @i(delay_)@nt{expression} in a
@nt{delay_relative_statement} is the predefined type Duration.
@PDefn2{Term=[expected type],
  Sec=(delay_until_statement expression)}
The @i(delay_)@nt<expression> in a @nt<delay_until_statement>
is expected to be of any nonlimited type.

@end{Resolution}

@begin{Legality}

@Defn{time type}
@Defn{time base}
@Defn{clock}
There can be multiple time bases, each with a corresponding
clock, and a corresponding @i{time type}.
The type of the @i(delay_)@nt<expression>
in a @nt{delay_until_statement} shall be a time type @em either the
type Time defined in the language-defined package Calendar (see below),
or some other implementation-defined time type
(see @RefSecNum(Monotonic Time)).
@ImplDef{Any implementation-defined time types.}
@end{Legality}

@begin{StaticSem}
@Redundant[There is a predefined fixed point type
named Duration, declared in the visible part of package Standard;]
a value of type Duration is used to represent the length
of an interval of time, expressed in seconds.
@Redundant[The type Duration is not specific to a particular time base,
but can be used with any time base.]

A value of the type Time in package Calendar, or of some other
implementation-defined time type, represents a time as reported
by a corresponding clock.

@leading@keepnext@;The following language-defined library package exists:
@begin{Example}
@ChildUnit{Parent=[Ada],Child=[Calendar]}
@key(package) Ada.Calendar @key(is)
  @key(type) @AdaTypeDefn{Time} @key(is) @key(private);

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
  @key(subtype) @AdaSubtypeDefn{Name=[Year_Number],Of=[Integer]}  @key(is) Integer @key(range) 1901 .. @Chg{Version=[2],New=[2399],Old=[2099]};
  @key(subtype) @AdaSubtypeDefn{Name=[Month_Number],Of=[Integer]} @key(is) Integer @key(range) 1 .. 12;
  @key(subtype) @AdaSubtypeDefn{Name=[Day_Number],Of=[Integer]}   @key(is) Integer @key(range) 1 .. 31;
  @key(subtype) @AdaSubtypeDefn{Name=[Day_Duration],Of=[Duration]} @key(is) Duration @key(range) 0.0 .. 86_400.0;

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
  @ChgAdded{Version=[2],Text=[A range of 500 years was chosen, as that only
  requires one extra bit for the year as compared to Ada 95. This was done
  to minimize disruptions with existing implementations. (One implementor
  reports that their time values represent nanoseconds, and this year range
  requires 63.77 bits to represent.)]}
@end{Reason}

  @key(function) @AdaSubDefn{Clock} @key(return) Time;

  @key(function) @AdaSubDefn{Year}   (Date : Time) @key(return) Year_Number;
  @key(function) @AdaSubDefn{Month}  (Date : Time) @key(return) Month_Number;
  @key(function) @AdaSubDefn{Day}    (Date : Time) @key(return) Day_Number;
  @key(function) @AdaSubDefn{Seconds}(Date : Time) @key(return) Day_Duration;

  @key(procedure) @AdaSubDefn{Split} (Date  : @key(in) Time;
                   Year    : @key(out) Year_Number;
                   Month   : @key(out) Month_Number;
                   Day     : @key(out) Day_Number;
                   Seconds : @key(out) Day_Duration);

  @key(function) @AdaSubDefn{Time_Of}(Year  : Year_Number;
                   Month   : Month_Number;
                   Day     : Day_Number;
                   Seconds : Day_Duration := 0.0)
   @key(return) Time;

  @key(function) "+" (Left : Time;   Right : Duration) @key(return) Time;
  @key(function) "+" (Left : Duration; Right : Time) @key(return) Time;
  @key(function) "-" (Left : Time;   Right : Duration) @key(return) Time;
  @key(function) "-" (Left : Time;   Right : Time) @key(return) Duration;

  @key(function) "<" (Left, Right : Time) @key(return) Boolean;
  @key(function) "<="(Left, Right : Time) @key(return) Boolean;
  @key(function) ">" (Left, Right : Time) @key(return) Boolean;
  @key(function) ">="(Left, Right : Time) @key(return) Boolean;

  @AdaExcDefn{Time_Error} : @key(exception;)

@key(private)
   ... -- @RI{not specified by the language}
@key(end) Ada.Calendar;

@end{Example}

@end{StaticSem}

@begin{RunTime}
@PDefn2{Term=[execution], Sec=(delay_statement)}
For the execution of a @nt<delay_statement>, the @i(delay_)@nt<expression>
is first evaluated.
@Defn2{Term=[expiration time], Sec=(for a @nt<delay_until_statement>)}
For a @nt<delay_until_statement>, the expiration time for the
delay is the value of the @i(delay_)@nt<expression>, in the time
base associated with the type of the @nt<expression>.
@Defn2{Term=[expiration time], Sec=(for a @nt<delay_relative_statement>)}
For a @nt<delay_relative_statement>, the expiration time is
defined as the current time, in the time base associated
with relative delays, plus
the value of the @i(delay_)@nt<expression>
converted to the type Duration, and then rounded up
to the next clock tick.
@PDefn2{Term=[implicit subtype conversion],Sec=(delay expression)}
The time base associated with relative delays
is as defined in @RefSec{Delay Accuracy} or is
implementation defined.
@ImplDef{The time base associated with relative delays.}
@begin{Ramification}
  Rounding up to the next clock tick means that the reading of the
  delay-relative clock when the delay expires should be no less than
  the current reading of the delay-relative
  clock plus the specified duration.
@end{Ramification}

@PDefn2{Term=[blocked], Sec=(on a @nt<delay_statement>)}
The task executing a @nt<delay_statement> is blocked
until the expiration time is reached, at which point it
becomes ready again. If the expiration time
has already passed, the task is not blocked.
@begin(Discussion)
  For a @nt<delay_relative_statement>, this case corresponds to
  when the value of the @i(delay_)@nt<expression> is zero
  or negative.

  Even though the task is not blocked,
  it might be put back on the end of its ready queue.
  See @RefSec(Priority Scheduling).
@end(Discussion)

@Defn2{Term=[cancellation], Sec=(of a @nt<delay_statement>)}
If an attempt is made to @i(cancel) the @nt<delay_statement>
@Redundant[(as part of an @nt<asynchronous_@!select> or abort @em
see @RefSecNum{Asynchronous Transfer of Control} and
@RefSecNum{Abort of a Task - Abort of a Sequence of Statements})],
the @ntf<_statement> is cancelled if
the expiration time has not yet passed,
thereby completing the @nt<delay_statement>.
@begin(Reason)
  This is worded this way so that in an @nt<asynchronous_select>
  where the @nt<triggering_statement> is a @nt<delay_statement>,
  an attempt to cancel the delay when the @nt<abortable_part> completes
  is ignored if the expiration time has already passed, in which case the
  optional statements of the @nt<triggering_alternative> are executed.
@end(Reason)

The time base associated with the type Time of package Calendar
is implementation defined. The function Clock of package Calendar
returns a value representing the current time for this time base.
@Redundant[The implementation-defined value of the
named number System.Tick (see @RefSecNum(The Package System))
is an approximation of the length of the real-time
interval during which the value of Calendar.Clock remains constant.]
@ImplDef{The time base of the type Calendar.Time.}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
The functions Year,
Month, Day, and Seconds return the corresponding values for
a given value of the type Time,
as appropriate to an implementation-defined
@Chg{Version=[2],New=[time zone],Old=[timezone]}; the procedure Split
returns all four
corresponding values. Conversely, the function Time_Of combines a
year number, a month number, a day number, and a duration, into
a value of type Time. The operators "+" and "@en@;" for addition
and subtraction of times and durations, and the relational operators
for times, have the conventional meaning.
@ChgImplDef{Version=[2],Kind=[Revised],
Text=[The @Chg{Version=[2],New=[time zone],Old=[timezone]} used for
package Calendar operations.]}

If Time_Of is called with a seconds value of 86_400.0, the value
returned is equal to the value of Time_Of for the next day
with a seconds value of 0.0.
The value returned by the function
Seconds or through the Seconds parameter of the procedure
Split is always less than 86_400.0.

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0030],ARef=[AI95-00113-01]}
The exception Time_Error is raised by the function Time_Of if the
actual parameters do not form a proper date. This exception
is also raised by the operators "+" and "@en@;" if the
result is not representable in the type Time or Duration, as appropriate.
This exception is also raised by the
function@Chg{New=[s],Old=[]} Year@Chg{New=[, Month, Day, and Seconds and],
Old=[or]} the procedure Split if the year number of the given date is
outside of the range of the subtype Year_Number.
@begin(Honest)
  @ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0106],ARef=[AI95-00160-01]}
  By "proper date" above we mean that the given year has
  a month with the given day. For example, February 29th is
  a proper date only for a leap year. @Chg{New=[We do not mean to include
  the Seconds in this notion; in particular, we do not mean to require
  implementations to check for the @lquotes@;missing hour@rquotes that occurs
  when Daylight Savings Time starts in the spring.],Old=[]}
@end(Honest)
@begin(Reason)
  @ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0030],ARef=[AI95-00113-01]}
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
  We allow Year and Split to raise Time_Error because the arithmetic operators
  are allowed (but not required) to produce times that are outside the range
  of years from 1901 to @Chg{Version=[2],New=[2399],Old=[2099]}. This is
  similar to the way integer operators may
  return values outside the base range of their type so long as the value is
  mathematically correct.
  @Chg{New=[We allow the functions Month, Day and Seconds to raise Time_Error
  so that they can be implemented in terms of Split.],Old=[]}
@end(Reason)
@end{RunTime}

@begin{ImplReq}
The implementation of the type Duration shall allow representation of
time intervals (both positive and negative) up to at least 86400 seconds (one
day); Duration'Small shall not be greater than twenty milliseconds.
The implementation of the type Time shall allow representation of
all dates with year numbers in the range of Year_Number@Redundant[; it
may allow representation of other dates as well (both earlier and later).]
@end{ImplReq}

@begin{ImplPerm}

An implementation may define additional time
types (see @RefSecNum{Monotonic Time}).

An implementation may raise Time_Error if the
value of a @i{delay_}@nt<expression> in a @nt<delay_until_statement>
of a @nt<select_statement> represents a time more than 90 days past the
current time. The actual limit, if any, is implementation-defined.
@ImplDef{Any limit on @nt<delay_until_statement>s of @nt<select_statement>s.}
@begin{ImplNote}
  This allows an implementation to implement @nt<select_statement>
  timeouts using
  a representation that does not support the full range of a time type.
  In particular 90 days of seconds can be represented in 23 bits,
  allowing a signed 24-bit representation for the seconds part of
  a timeout.
  There is no similar restriction allowed for stand-alone
  @nt<delay_until_statement>s, as these can be implemented
  internally using a loop if necessary to accommodate a long delay.
@end{ImplNote}

@end{ImplPerm}

@begin{ImplAdvice}

Whenever possible in an implementation, the value of
Duration'Small should be no greater than 100 microseconds.
@begin(ImplNote)
  This can be satisfied using a 32-bit 2's complement representation
  with a @i(small) of 2.0**(@en@;14) @em that is, 61 microseconds @em and a
  range of @PorM 2.0**17 @em that is, 131_072.0.
@end(ImplNote)
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The value of Duration'Small should be no greater than 100 microseconds.]}]}

The time base for @nt{delay_relative_statement}s should be monotonic;
it need not be the same time base as used for Calendar.Clock.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The time base for @nt{delay_relative_statement}s should be monotonic.]}]}

@end{ImplAdvice}

@begin{Notes}

A @nt{delay_relative_statement} with a negative value of the
@i(delay_)@nt<expression> is equivalent to one with a zero value.

A @nt{delay_statement} may be executed by the environment task;
consequently @nt{delay_statement}s may be executed as part of
the elaboration of a @nt{library_item} or the execution of the main subprogram.
Such statements delay the environment task (see @RefSecNum(Program Execution)).

@PDefn2{Term=[potentially blocking operation],Sec=(delay_statement)}
@PDefn2{Term=[blocking, potentially],Sec=(delay_statement)}
A @nt{delay_statement} is an abort completion point and
a potentially blocking operation,
even if the task is not actually blocked.

There is no necessary relationship between System.Tick (the
resolution of the clock of package Calendar)
and Duration'Small (the @i(small) of type Duration).
@begin{Ramification}
The inaccuracy of the @nt{delay_statement} has no relation to System.Tick.
In particular, it is possible that the clock used for the
@nt{delay_statement} is less accurate than Calendar.Clock.

We considered making Tick a run-time-determined quantity,
to allow for easier configurability.
However, this would not be upward compatible,
and the desired configurability can be achieved using
functionality defined in @RefSec{Real-Time Systems}.
@end{Ramification}

Additional requirements associated with @nt<delay_statement>s
are given in @RefSec(Delay Accuracy).

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Example of a relative delay statement:}
@begin{example}
@key(delay) 3.0;  --@RI[ delay 3.0 seconds]
@end{example}

@begin{Wide}
@leading@keepnext@Defn2{Term=[periodic task],Sec=(example)}
@IndexSee{Term=[periodic task],See=(delay_until_statement)}
@i{Example of a periodic task:}
@end{Wide}
@begin{example}
@key(declare)
   @key(use) Ada.Calendar;
   Next_Time : Time := Clock + Period;
                      --@RI[ Period is a global constant of type Duration]
@key(begin)
   @key(loop)               --@RI[ repeated every Period seconds]
      @key(delay) @key(until) Next_Time;
      ... --@RI[ perform some actions]
      Next_Time := Next_Time + Period;
   @key(end) @key(loop;)
@key(end;)
@end{example}
@end{Examples}

@begin{Inconsistent83}
@Defn{inconsistencies with Ada 83}
For programs that raise Time_Error on "+" or "@en@;" in Ada 83,the exception
might be deferred until a call on Split or Year_Number, or might
not be raised at all (if the offending time is never Split after being
calculated). This should not affect typical programs,
since they deal only with times corresponding to the relatively
recent past or near future.
@end{Inconsistent83}

@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax rule for @nt{delay_statement} is modified to allow
@nt{delay_until_statement}s.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00351-01]}
The type Time may represent dates with year numbers outside of Year_Number.
Therefore, the operations "+" and
"@en@;" need only raise Time_Error if the result is not representable
in Time (or Duration); also, Split or Year will now raise Time_Error
if the year number is outside of Year_Number.
This change is intended to simplify the implementation
of "+" and "@en@;" (allowing them to depend on overflow for
detecting when to raise Time_Error) and to allow local
@Chg{Version=[2],New=[time zone],Old=[timezone]} information to be
considered at the time of Split rather than Clock (depending on
the implementation approach). For example, in a POSIX environment,
it is natural for the type Time to be based on GMT, and
the results of procedure Split (and the functions
Year, Month, Day, and Seconds) to depend on local time zone information.
In other environments, it is more natural for the type Time to
be based on the local time zone, with the results of
Year, Month, Day, and Seconds being pure functions of their input.

@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00351-01]}
@ChgDeleted{Version=[2],Text=[We anticipate that implementations will provide
child packages of Calendar to provide more explicit control over time zones
and other environment-dependent time-related issues.
These would be appropriate for standardization in a given
environment (such as POSIX).]}
@end{Extend83}

@begin{Inconsistent95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
  @ChgAdded{Version=[2],Text=[@Defn{inconsistencies with Ada 95}The upper bound
  of Year_Number has been changed to avoid a year 2100 problem. A program
  which expects years past 2099 to raise Constraint_Error will fail in Ada 2005.
  We don't expect there to be many programs which are depending on an exception
  to be raised. A program that uses Year_Number'Last as a magic number may also
  fail if values of Time are stored outside of the program.
  Note that the lower bound of Year_Number wasn't changed, because
  it is not unusual to use that value in a constant to represent an unknown
  time.]}
@end{Inconsistent95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0002],ARef=[AI95-00171-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that Month, Day, and
  Seconds can raise Time_Error.]}
@end{DiffWord95}


@LabeledAddedSubclause{Version=[2],Name=[Formatting, Time Zones, and other operations for Time]}

@begin{StaticSem}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Text=[The following language-defined library packages exist:]}

@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@ChildUnit{Parent=[Ada.Calendar],Child=[Time_Zones]}@key(package) Ada.Calendar.Time_Zones @key(is)]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   -- @RI[Time zone manipulation:]]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<type> @AdaTypeDefn{Time_Offset} @key<is range> -28*60 .. 28*60;]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[We want to be able to specify the difference
  between any two arbitrary time zones. You might think that 1440 (24 hours)
  would be enough, but there are places (like Tonga, which is UTC+13hr) which
  are more than 12 hours than UTC. Combined with summer time (known as daylight
  saving time in some parts of the world) @en which switches opposite in the
  northern and souther hemispheres @en and even greater differences are
  possible. We know of cases of a 26 hours difference, so we err on the safe
  side by selecting 28 hours as the limit.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @AdaExcDefn{Unknown_Zone_Error} : @key<exception>;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{UTC_Time_Offset} (Date : Time := Clock) @key<return> Time_Offset;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Calendar.Time_Zones;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@ChildUnit{Parent=[Ada.Calendar],Child=[Arithmetic]}
@key(package) Ada.Calendar.Arithmetic @key(is)]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   -- @RI[Arithmetic on days:]]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<type> @AdaTypeDefn{Day_Count} @key<is range>
     -366*(1+Year_Number'Last - Year_Number'First)
     ..
     366*(1+Year_Number'Last - Year_Number'First);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<subtype> @AdaSubtypeDefn{Name=[Leap_Seconds_Count],Of=[Integer]} @key<is> Integer @key<range> -2047 .. 2047;]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The maximum number of leap seconds is likely
  to be much less than this, but we don't want to reach the limit too soon
  if the earth's behavior suddenly changes. We believe that the maximum number
  is 1612, based on the current rules, but that number is too weird to use here.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Difference} (Left, Right : @key<in> Time;
                         Days : @key<out> Day_Count;
                         Seconds : @key<out> Duration;
                         Leap_Seconds : @key<out> Leap_Seconds_Count);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> "+" (Left : Time; Right : Day_Count) @key<return> Time;
   @key<function> "+" (Left : Day_Count; Right : Time) @key<return> Time;
   @key<function> "-" (Left : Time; Right : Day_Count) @key<return> Time;
   @key<function> "-" (Left, Right : Time) @key<return> Day_Count;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Calendar.Arithmetic;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@ChildUnit{Parent=[Ada.Calendar],Child=[Formatting]}
@key<with> Ada.Calendar.Time_Zones;
@key(package) Ada.Calendar.Formatting @key(is)]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   -- @RI[Day of the week:]]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<type> @AdaTypeDefn{Day_Name} @key<is> (@AdaObjDefn{Monday}, @AdaObjDefn{Tuesday}, @AdaObjDefn{Wednesday}, @AdaObjDefn{Thursday},
       @AdaObjDefn{Friday}, @AdaObjDefn{Saturday}, @AdaObjDefn{Sunday});]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Day_of_Week} (Date : Time) @key<return> Day_Name;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   -- @RI[Hours:Minutes:Seconds access:]]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<subtype> @AdaSubtypeDefn{Name=[Hour_Number],Of=[Natural]}         @key<is> Natural @key<range> 0 .. 23;
   @key<subtype> @AdaSubtypeDefn{Name=[Minute_Number],Of=[Natural]}       @key<is> Natural @key<range> 0 .. 59;
   @key<subtype> @AdaSubtypeDefn{Name=[Second_Number],Of=[Natural]}       @key<is> Natural @key<range> 0 .. 59;
   @key<subtype> @AdaSubtypeDefn{Name=[Second_Duration],Of=[Day_Duration]}     @key<is> Day_Duration @key<range> 0.0 .. 1.0;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Year}       (Date : Time;
                        Time_Zone  : Time_Zones.Time_Offset := 0)
                           @key<return> Year_Number;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Month}      (Date : Time;
                        Time_Zone  : Time_Zones.Time_Offset := 0)
                           @key<return> Month_Number;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Day}        (Date : Time;
                        Time_Zone  : Time_Zones.Time_Offset := 0)
                           @key<return> Day_Number;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Hour}       (Date : Time;
                        Time_Zone  : Time_Zones.Time_Offset := 0)
                           @key<return> Hour_Number;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Minute}     (Date : Time;
                        Time_Zone  : Time_Zones.Time_Offset := 0)
                           @key<return> Minute_Number;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Second}     (Date : Time)
                           @key<return> Second_Number;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Sub_Second} (Date : Time)
                           @key<return> Second_Duration;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Seconds_Of} (Hour   :  Hour_Number;
                        Minute : Minute_Number;
                        Second : Second_Number := 0;
                        Sub_Second : Second_Duration := 0.0)
       @key<return> Day_Duration;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Split} (Seconds    : @key<in> Day_Duration;
                    Hour       : @key<out> Hour_Number;
                    Minute     : @key<out> Minute_Number;
                    Second     : @key<out> Second_Number;
                    Sub_Second : @key<out> Second_Duration);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Time_Of} (Year       : Year_Number;
                     Month      : Month_Number;
                     Day        : Day_Number;
                     Hour       : Hour_Number;
                     Minute     : Minute_Number;
                     Second     : Second_Number;
                     Sub_Second : Second_Duration := 0.0;
                     Leap_Second: Boolean := False;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                             @key<return> Time;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Time_Of} (Year       : Year_Number;
                     Month      : Month_Number;
                     Day        : Day_Number;
                     Seconds    : Day_Duration := 0.0;
                     Leap_Second: Boolean := False;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                             @key<return> Time;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Split} (Date       : @key<in> Time;
                    Year       : @key<out> Year_Number;
                    Month      : @key<out> Month_Number;
                    Day        : @key<out> Day_Number;
                    Hour       : @key<out> Hour_Number;
                    Minute     : @key<out> Minute_Number;
                    Second     : @key<out> Second_Number;
                    Sub_Second : @key<out> Second_Duration;
                    Time_Zone  : @key<in> Time_Zones.Time_Offset := 0);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Split} (Date       : @key<in> Time;
                    Year       : @key<out> Year_Number;
                    Month      : @key<out> Month_Number;
                    Day        : @key<out> Day_Number;
                    Hour       : @key<out> Hour_Number;
                    Minute     : @key<out> Minute_Number;
                    Second     : @key<out> Second_Number;
                    Sub_Second : @key<out> Second_Duration;
                    Leap_Second: @key<out> Boolean;
                    Time_Zone  : @key<in> Time_Zones.Time_Offset := 0);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Split} (Date       : @key<in> Time;
                    Year       : @key<out> Year_Number;
                    Month      : @key<out> Month_Number;
                    Day        : @key<out> Day_Number;
                    Seconds    : @key<out> Day_Duration;
                    Leap_Second: @key<out> Boolean;
                    Time_Zone  : @key<in> Time_Zones.Time_Offset := 0);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   -- @RI[Simple image and value:]
   @key<function> @AdaSubDefn{Image} (Date : Time;
                   Include_Time_Fraction : Boolean := False;
                   Time_Zone  : Time_Zones.Time_Offset := 0) @key<return> String;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Value} (Date : String;
                   Time_Zone  : Time_Zones.Time_Offset := 0) @key<return> Time;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Image} (Elapsed_Time : Duration;
                   Include_Time_Fraction : Boolean := False) @key<return> String;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<function> @AdaSubDefn{Value} (Elapsed_Time : String) @key<return> Duration;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Calendar.Formatting;]}

@end{Example}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[Type Time_Offset represents the number of minutes
difference between the implementation-defined time zone used by Calendar
and another time zone.]}

@begin{DescribeCode}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> UTC_Time_Offset (Date : Time := Clock) @key<return> Time_Offset;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns, as a number of minutes, the
difference between the implementation-defined time zone of Calendar, and
UTC time, at the time Date. If the time zone of the Calendar implementation is
unknown, then Unknown_Zone_Error is raised.]}
@begin{Discussion}
    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[The Date parameter is needed to take
    into account time differences caused by daylight-savings time and other
    time changes. This parameter is measured in the time zone of Calendar,
    if any, not necessarily the UTC time zone.]}

    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[Other time zones can be supported with a
    child package. We don't define one because of the lack of agreement
    on the definition of a time zone.]}

    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[The accuracy of this routine is not specified;
    the intent is that the facilities of the underlying target operating system
    are used to implement it.]}
@end{Discussion}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Difference (Left, Right : @key<in> Time;
                      Days : @key<out> Day_Count;
                      Seconds : @key<out> Duration;
                      Leap_Seconds : @key<out> Leap_Seconds_Count);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the difference between
Left and Right. Days is the number of days of difference, Seconds is the
remainder seconds of difference excluding leap seconds, and Leap_Seconds is
the number of leap seconds. If Left < Right, then Seconds <= 0.0, Days <= 0,
and Leap_Seconds <= 0. Otherwise, all values are nonnegative.
The absolute value of Seconds is always less than 86_400.0.
For the returned values, if Days =
0, then Seconds + Duration(Leap_Seconds) = Calendar."@en" (Left, Right).]}
@begin{Discussion}
    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[Leap_Seconds, if any, are not included in
    Seconds. However, Leap_Seconds should be included in calculations
    using the operators defined in Calendar, as is specified for "@en" above.]}
@end{Discussion}


@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> "+" (Left : Time; Right : Day_Count) @key<return> Time;
@key<function> "+" (Left : Day_Count; Right : Time) @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Adds a number of days to a time value.
Time_Error is raised if the result is not representable as a value of type
Time.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> "-" (Left : Time; Right : Day_Count) @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Subtracts a number of days from a time value.
Time_Error is raised if the result is not representable as a value of type
Time.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> "-" (Left, Right : Time) @key<return> Day_Count;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Subtracts two time values, and returns the
number of days between them. This is the same value that Difference would
return in Days.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Day_of_Week (Date : Time) @key<return> Day_Name;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the day of the week for Time. This is
based on the Year, Month, and Day values of Time.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Year       (Date : Time;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                        @key<return> Year_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the year for Date, as
appropriate for the specified time zone offset.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Month      (Date : Time;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                        @key<return> Month_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the month for Date, as
appropriate for the specified time zone offset.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Day        (Date : Time;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                        @key<return> Day_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the day number for Date, as
appropriate for the specified time zone offset.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Hour       (Date : Time;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                        @key<return> Hour_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the hour for Date, as appropriate for
the specified time zone offset.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Minute     (Date : Time;
                     Time_Zone  : Time_Zones.Time_Offset := 0)
                        @key<return> Minute_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the minute within the hour for Date,
as appropriate for the specified time zone offset.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Second     (Date : Time)
                        @key<return> Second_Number;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the second within the hour and minute
for Date.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Sub_Second (Date : Time)
                        @key<return> Second_Duration;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns the fraction of second for
Date (this has the same accuracy as Day_Duration). The value returned is always
less than 1.0.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Seconds_Of (Hour   : Hour_Number;
                     Minute : Minute_Number;
                     Second : Second_Number := 0;
                     Sub_Second : Second_Duration := 0.0)
    @key<return> Day_Duration;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a Day_Duration value for
the combination of the given Hour, Minute, Second, and Sub_Second.
This value can be used in Calendar.Time_Of as
well as the argument to Calendar."+" and Calendar."@en". If Seconds_Of is
called with a Sub_Second value of 1.0, the value returned is equal to the value
of Seconds_Of for the next second with a Sub_Second value of 0.0.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Seconds    : @key<in> Day_Duration;
                 Hour       : @key<out> Hour_Number;
                 Minute     : @key<out> Minute_Number;
                 Second     : @key<out> Second_Number;
                 Sub_Second : @key<out> Second_Duration);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Splits Seconds into Hour, Minute,
Second and Sub_Second in such a way that the resulting values all belong to
their respective subtypes. The value returned in the Sub_Second
parameter is always less than 1.0.]}

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[There is only one way to do the split which
  meets all of the requirements.]}
@end{Ramification}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Time_Of (Year       : Year_Number;
                  Month      : Month_Number;
                  Day        : Day_Number;
                  Hour       : Hour_Number;
                  Minute     : Minute_Number;
                  Second     : Second_Number;
                  Sub_Second : Second_Duration := 0.0;
                  Leap_Second: Boolean := False;
                  Time_Zone  : Time_Zones.Time_Offset := 0)
                          @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Leap_Second is False,
returns a Time built from the date and time
values, relative to the specified time zone offset. If Leap_Second is True,
returns the Time that represents the time within the leap second that is one
second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time.
If Time_Of is called with a Sub_Second value of 1.0, the value
returned is equal to the value of Time_Of for the next second with
a Sub_Second value of 0.0.]}
@begin{Discussion}
    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[Time_Error should be raised if Leap_Second
    is True, and the date and time values do not represent the second before
    a leap second. A leap second always occurs at midnight UTC,
    and is 23:59:60 UTC in ISO notation. So, if the time zone is UTC and
    Leap_Second is True, if any of Hour /= 23, Minute /= 59, or Second /= 59,
    then Time_Error should be raised.
    However, we do not say that, because other time zones will have different
    values where a leap second is allowed.]}
@end{Discussion}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Time_Of (Year       : Year_Number;
                  Month      : Month_Number;
                  Day        : Day_Number;
                  Seconds    : Day_Duration := 0.0;
                  Leap_Second: Boolean := False;
                  Time_Zone  : Time_Zones.Time_Offset := 0)
                          @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Leap_Second is False, returns
a Time built from the date and time
values, relative to the specified time zone offset. If Leap_Second is True,
returns the Time that represents the time within the leap second that is one
second later than the time specified by the other parameters.
Time_Error is raised if the parameters do not form a proper date or time.
If Time_Of is called with a Seconds value of 86_400.0, the value
returned is equal to the value of Time_Of for the next day with
a Seconds value of 0.0.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Date       : @key<in> Time;
                 Year       : @key<out> Year_Number;
                 Month      : @key<out> Month_Number;
                 Day        : @key<out> Day_Number;
                 Hour       : @key<out> Hour_Number;
                 Minute     : @key<out> Minute_Number;
                 Second     : @key<out> Second_Number;
                 Sub_Second : @key<out> Second_Duration;
                 Leap_Second: @key<out> Boolean;
                 Time_Zone  : @key<in> Time_Zones.Time_Offset := 0);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Date does not represent a time
within a leap second, splits Date into its constituent parts (Year, Month, Day,
Hour, Minute, Second, Sub_Second), relative to the specified time zone offset,
and sets Leap_Second to False. If Date represents a time within a leap second,
set the constituent parts to values corresponding to a time one second earlier
than that given by Date, relative to the specified time zone offset, and sets
Leap_Seconds to True. The value returned in the Sub_Second parameter is always
less than 1.0.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Date       : @key<in> Time;
                 Year       : @key<out> Year_Number;
                 Month      : @key<out> Month_Number;
                 Day        : @key<out> Day_Number;
                 Hour       : @key<out> Hour_Number;
                 Minute     : @key<out> Minute_Number;
                 Second     : @key<out> Second_Number;
                 Sub_Second : @key<out> Second_Duration;
                 Time_Zone  : @key<in> Time_Zones.Time_Offset := 0);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Splits Date into its constituent parts (Year,
Month, Day, Hour, Minute, Second, Sub_Second), relative to the specified time
zone offset. The value returned in the Sub_Second parameter is always less
than 1.0.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<procedure> Split (Date       : @key<in> Time;
                 Year       : @key<out> Year_Number;
                 Month      : @key<out> Month_Number;
                 Day        : @key<out> Day_Number;
                 Seconds    : @key<out> Day_Duration;
                 Leap_Second: @key<out> Boolean;
                 Time_Zone  : @key<in> Time_Zones.Time_Offset := 0);]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00427-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[If Date does not represent a time
within a leap second, splits Date into its constituent parts (Year, Month, Day,
Seconds), relative to the specified time zone offset, and sets Leap_Second to
False. If Date represents a time within a leap second, set the constituent
parts to values corresponding to a time one second earlier than that given by
Date, relative to the specified time zone offset, and sets Leap_Seconds to
True. The value returned in the Seconds parameter is always less than 86_400.0.]}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Image (Date : Time;
                Include_Time_Fraction : Boolean := False;
                Time_Zone  : Time_Zones.Time_Offset := 0) @key<return> String;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a string form of the Date relative to
the given Time_Zone.
The format is "Year-Month-Day Hour:Minute:Second", where the Year is a
4-digit value, and all others are 2-digit values, of the functions
defined in Calendar and Calendar.Formatting, including a leading zero,
if needed. The separators between the values are
a minus, another minus, a colon, and a single space between the Day and Hour.
If Include_Time_Fraction is True, the integer part of Sub_Seconds*100 is
suffixed to the string as a point followed by a 2-digit value.]}
@begin{Discussion}
    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[The Image provides a string in ISO 8601 format, the
    international standard time format. Alternative representations allowed
    in ISO 8601 are not supported here.]}

    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[ISO 8601 allows 24:00:00 for midnight; and a seconds
    value of 60 for leap seconds. These are not allowed here (the routines
    mentioned above cannot produce those results).]}
@end{Discussion}

@begin{Ramification}
    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[The fractional part is truncated, not rounded.
    It would be quite hard to define the result with proper rounding, as it can
    change all of the values of the image. Values can be rounded up by adding
    an appropriate constant (0.5 if Include_Time_Fraction is False,
    0.005 otherwise) to the time before taking the image.]}
@end{Ramification}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Value (Date : String;
                Time_Zone  : Time_Zones.Time_Offset := 0) @key<return> Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a Time value for the image given as
Date, relative to the given time zone. Constraint_Error is raised if the string
is not formatted as described for Image, or the function cannot interpret the
given string as a Time value.]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The intent is that the implementation
  enforce the same range rules on the string as the appropriate function
  Time_Of, except for the hour, so
  @lquotes@;cannot interpret the given string as a Time value@rquotes
  happens when one of the values is out of the required range.
  For example, "2005-08-31 24:0:0" should raise Constraint_Error (the hour
  is out of range).]}
@end{Discussion}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Image (Elapsed_Time : Duration;
                Include_Time_Fraction : Boolean := False) @key<return> String;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a string form of the Elapsed_Time.
The format is "Hour:Minute:Second", where all values are
2-digit values, including a leading zero, if needed.
The separators between the values are colons.
If Include_Time_Fraction is True, the integer part of Sub_Seconds*100 is
suffixed to the string as a point followed by a 2-digit value.
If Elapsed_Time < 0.0, the result is Image (@key<abs> Elapsed_Time,
Include_Time_Fraction) prefixed with a minus sign. If @key<abs> Elapsed_Time
represents 100 hours or more, the result is implementation-defined.]}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The result of Calendar.Formating.Image if its argument represents more
than 100 hours.]}]}
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This cannot be implemented (directly) by calling
    Calendar.Formatting.Split, since it may be out of the range of
    Day_Duration, and thus the number of hours may be out of the range of
    Hour_Number.]}

@ChgAdded{Version=[2],Text=[If a Duration value can represent more then 100 hours,
    the implementation will need to define a format for the return of Image.]}
@end{ImplNote}

@begin{Example}@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Keepnext=[T],Text=[@key<function> Value (Elapsed_Time : String) @key<return> Duration;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[Returns a Duration value for the image given
as Elapsed_Time. Constraint_Error is raised if the string is not formatted as
described for Image, or the function cannot interpret the given string as a
Duration value.]}
@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The intent is that the implementation
  enforce the same range rules on the string as the appropriate function
  Time_Of, except for the hour, so
  @lquotes@;cannot interpret the given string as a Time value@rquotes
  happens when one of the values is out of the required range.
  For example, "10:23:60" should raise Constraint_Error (the seconds value
  is out of range).]}
@end{Discussion}


@end{DescribeCode}

@end{StaticSem}

@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[An implementation should support leap seconds if the
target system supports them. If leap seconds are not supported, Difference
should return zero for Leap_Seconds, Split should return False for Leap_Second,
and Time_Of should raise Time_Error if Leap_Second is True.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Leap seconds should be supported if the target system supports them.
Otherwise, operations in Calendar.Formatting should return results
consistent with no leap seconds.]}]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[An implementation can always support leap seconds
when the target system does not; indeed, this isn't particularly
hard (all that is required is a table of when leap seconds were inserted). As
such, leap second support isn't @lquotes@;impossible or impractical@rquotes
in the sense of @RefSecNum{Conformity of an Implementation with the Standard}.
However, for some purposes, it may be important to follow the target system's
lack of leap second support (if the target is a GPS satellite, which does not
use leap seconds, leap second support would be a handicap to work around).
Thus, this @ImplAdviceTitle should be read as giving permission to not support
leap seconds on target systems that don't support leap seconds. Implementers
should use the needs of their customers to determine whether or not support
leap seconds on such targets.]}
@end{Discussion}
@end{ImplAdvice}

@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[The implementation-defined time zone of package Calendar
may, but need not, be the local time zone. UTC_Time_Offset always returns the
difference relative to the implementation-defined time zone of package
Calendar. If UTC_Time_Offset does not raise Unknown_Zone_Error, UTC time
can be safely calculated (within the accuracy of the underlying time-base).]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
  @ChgAdded{Version=[2],Text=[The time in the time zone known as Greenwich
  Mean Time (GMT) is generally very close to UTC time; for most purposes they
  can be treated the same. GMT is the time based on the rotation of the Earth;
  UTC is the time based on atomic clocks, with leap seconds periodically
  inserted to realign with GMT (because most human activities depend on the
  rotation of the Earth). At any point in time, there will be a sub-second
  difference between GMT and UTC.]}
@end{Discussion}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01]}
@ChgAdded{Version=[2],Text=[Calling Split on the results of subtracting
Duration(UTC_Time_Offset*60) from Clock provides the components (hours,
minutes, and so on) of the UTC time. In the United States, for example,
UTC_Time_Offset will generally be negative.]}
@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This is an illustration to help specify the value of
  UTC_Time_Offset. A user should pass UTC_Time_Offset as the Time_Zone
  parameter of Split, rather than trying to make the above calculation.]}
@end{Discussion}
@end{Notes}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00351-01],ARef=[AI95-00428-01]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  Packages Calendar.Time_Zones, Calendar.Arithmetic, and Calendar.Formatting
  are new.]}
@end{Extend95}


@LabeledClause{Select Statements}

@begin{Intro}
@redundant[There are four forms of the @nt{select_statement}. One form provides a
selective wait for one or more @nt{select_alternative}s. Two provide
timed and conditional entry calls. The fourth provides asynchronous
transfer of control.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<select_statement>,rhs="
   @Syn2{selective_accept}
  | @Syn2{timed_entry_call}
  | @Syn2{conditional_entry_call}
  | @Syn2{asynchronous_select}"}
@end{Syntax}

@begin{Examples}
@leading@keepnext@i{Example of a select statement:}
@begin{Example}
@key(select)
   @key(accept) Driver_Awake_Signal;
@key(or)
   @key(delay) 30.0*Seconds;
   Stop_The_Train;
@key(end) @key(select);
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
@nt{Asynchronous_select} is new.
@end{Extend83}

@LabeledSubClause{Selective Accept}

@begin{Intro}
@redundant[This form of the @nt{select_statement} allows a combination of waiting for,
and selecting from, one or more alternatives. The
selection may depend on conditions associated with each alternative of the
@nt{selective_accept}.
@IndexSee{Term=[time-out],See=(selective_accept)}]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<selective_accept>,rhs="
  @key{select}
   [@Syn2{guard}]
     @Syn2{select_alternative}
{ @key{or}
   [@Syn2{guard}]
     @Syn2{select_alternative} }
[ @key{else}
   @Syn2{sequence_of_statements} ]
  @key{end select};"}

@Syn{lhs=<guard>,rhs="@key{when} @Syn2{condition} =>"}


@Syn{lhs=<select_alternative>,rhs="
   @Syn2{accept_alternative}
  | @Syn2{delay_alternative}
  | @Syn2{terminate_alternative}"}


@Syn{lhs=<accept_alternative>,rhs="
  @Syn2{accept_statement} [@Syn2{sequence_of_statements}]"}

@Syn{lhs=<delay_alternative>,rhs="
  @Syn2{delay_statement} [@Syn2{sequence_of_statements}]"}

@Syn{lhs=<terminate_alternative>,rhs="@key{terminate};"}

@begin(SyntaxText)
@leading@;A @nt{selective_accept} shall contain at least one @nt{accept_alternative}.
In addition, it can contain:
@begin{itemize}
a @nt{terminate_alternative} (only one); or

one or more @nt{delay_alternative}s; or

@Defn2{Term=[else part], Sec=(of a @nt<selective_accept>)}
an @i(else part) (the reserved word @key(else) followed
by a @nt<sequence_of_statements>).
@end{itemize}

These three possibilities are mutually exclusive.
@end(SyntaxText)
@end{Syntax}

@begin{Legality}

If a @nt{selective_accept} contains more than one @nt{delay_alternative},
then all shall be @nt<delay_@!relative_@!statement>s,
or all shall be @nt<delay_@!until_@!statement>s for the same time type.
@begin{Reason}
  This simplifies the implementation and the description of the semantics.
@end{Reason}

@end{Legality}

@begin{RunTime}

@Defn{open alternative}
A @nt<select_alternative> is said to be @i(open) if
it is not immediately preceded by a @nt<guard>, or if
the @nt<condition> of its @nt<guard> evaluates to True. It
is said to be @i(closed) otherwise.

@PDefn2{Term=[execution], Sec=(selective_accept)}
For the execution of a @nt{selective_accept}, any @nt{guard}
@nt{condition}s are evaluated; open alternatives are
thus determined. For an open @nt{delay_alternative}, the
@i(delay_)@nt<expression> is also evaluated. Similarly, for an open
@nt{accept_alternative} for
an entry of a family, the @nt{entry_index} is also evaluated.
These evaluations are performed in an arbitrary order, except that
a @i(delay_)@nt<expression> or @nt<entry_index> is not evaluated until
after evaluating the corresponding @nt<condition>, if any.
Selection and execution of one open alternative, or of the else part, then
completes the execution of the @nt{selective_accept}; the rules for
this selection are described below.

Open @nt{accept_alternative}s are first considered. Selection of one such
alternative takes place immediately if the corresponding
entry already has queued calls. If several alternatives
can thus be selected, one of them is selected according to the
entry queuing policy in effect (see @RefSecNum(Entry Calls) and
@RefSecNum(Entry Queuing Policies)).
When such an
alternative is selected, the selected call is
removed from its entry queue and the @nt<handled_sequence_of_@!statements>
(if any) of the corresponding @nt{accept_statement} is executed; after the
rendezvous completes any subsequent @nt<sequence_of_@!statements>
of the alternative is executed.
@PDefn2{Term=[blocked], Sec=(execution of a @nt<selective_accept>)}
If no selection is immediately possible (in the above sense)
and there is no else part, the task
blocks until an open alternative can be selected.

@leading@;Selection of the other forms of alternative or of an else part is performed
as follows:
@begin{itemize}

An open @nt{delay_alternative} is selected when
its expiration time is reached if no @nt{accept_@!alternative}
or other @nt<delay_@!alternative> can be selected prior to the
expiration time. If several
@nt{delay_@!alternative}s have this same expiration time,
one of them is selected according to the queuing policy in
effect (see @RefSecNum{Entry Queuing Policies}); the default queuing
policy chooses arbitrarily among the @nt<delay_@!alternative>s
whose expiration time has passed.

The else part is selected and its @nt<sequence_of_@!statements> is executed
if no @nt{accept_alternative} can immediately be selected;
in particular, if all alternatives are closed.

An open @nt{terminate_alternative} is selected if the conditions stated at the
end of clause @RefSecNum{Task Dependence - Termination of Tasks}
are satisfied.
@begin(Ramification)
  In the absence of a @nt<requeue_statement>, the conditions stated
  are such that a @nt<terminate_alternative> cannot be selected while
  there is a queued entry call for any entry of the task.
  In the presence of requeues from a task to one of its subtasks,
  it is possible that when a @nt<terminate_alternative> of the
  subtask is selected, requeued calls (for closed entries only) might still
  be queued on some entry of the subtask. Tasking_Error will
  be propagated to such callers, as is usual when a task completes
  while queued callers remain.
@end(Ramification)

@end{itemize}

@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
The exception Program_Error is raised if all alternatives are closed and
there is no else part.

@end{RunTime}

@begin{Notes}

A @nt{selective_accept} is allowed to have several open
@nt{delay_alternative}s. A @nt{selective_accept} is allowed
to have several open
@nt{accept_alternative}s for the same entry.

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Example of a task body with a selective accept:}
@begin{Example}
@key(task) @key(body) Server @key(is)
   Current_Work_Item : Work_Item;
@key(begin)
   @key(loop)
      @key(select)
         @key(accept) Next_Work_Item(WI : @key(in) Work_Item) @key(do)
            Current_Work_Item := WI;
          @key(end);
          Process_Work_Item(Current_Work_Item);
      @key(or)
         @key(accept) Shut_Down;
         @key(exit);       --@RI[ Premature shut down requested]
      @key(or)
         @key(terminate);  --@RI[ Normal shutdown at end of scope]
      @key(end) @key(select);
   @key(end) @key(loop);
@key(end) Server;
@end{Example}
@end{Examples}

@begin{DiffWord83}
The name of @ntf{selective_wait} was changed to @nt{selective_accept} to
better describe what is being waited for.
We kept @nt{select_alternative} as is, because
@ntf<selective_accept_alternative> was too easily confused
with @nt<accept_alternative>.
@end{DiffWord83}


@LabeledSubClause{Timed Entry Calls}

@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@redundant[A @nt{timed_entry_call} issues an entry call that is
cancelled if the call (or a requeue-with-abort of the call)
is not selected before the expiration time is
reached.@Chg{Version=[2],New=[ A procedure call may appear rather than
an entry call for cases where the procedure might be implemented by
an entry.],Old=[]}
@IndexSee{Term=[time-out],See=(timed_entry_call)}]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<timed_entry_call>,rhs="
  @key{select}
   @Syn2{entry_call_alternative}
  @key{or}
   @Syn2{delay_alternative}
  @key{end select};"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<entry_call_alternative>,rhs="
  @Chg{Version=[2],New=[@Syn2{procedure_or_entry_call}],Old=[@Syn2{entry_call_statement}]} [@Syn2{sequence_of_statements}]"}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=[procedure_or_entry_call],Old=[]}>,rhs="
  @Chg{Version=[2],New=[@Syn2{procedure_call_statement} | @Syn2{entry_call_statement}],Old=[]}"}
@end{Syntax}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[If a @nt{procedure_call_statement} is used for a
@nt{procedure_or_entry_call}, the @SynI{procedure_}@nt{name} or
@SynI{procedure_}@nt{prefix} of the @nt{procedure_call_statement} shall
statically denote an entry renamed as a procedure or (a view of) a
primitive subprogram of a limited interface whose first parameter is a
controlling parameter (see @RefSecNum{Dispatching Operations of Tagged Types}).]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This would be a confusing way to call a procedure,
so we only allow it when it is possible that the procedure is actually an
entry. We could have allowed formal subprograms here, but we didn't because
we'd have to allow all formal subprograms, and it would increase the
difficulty of generic code sharing.]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[We say @lquotes@;statically denotes@rquotes
because an access-to-subprogram cannot be primitive, and we don't have
anything like access-to-entry. So only names of entries or procedures are
possible.]}
@end{Reason}
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
@ChgAdded{Version=[2],Text=[If a @nt{procedure_call_statement} is used for a
@nt{procedure_or_entry_call}, and the procedure is implemented by an entry,
then the @SynI{procedure_}@nt{name}, or @SynI{procedure_}@nt{prefix} and
possibly the first parameter of the @nt{procedure_call_statement}, determine
the target object of the call and the entry to be called.]}
@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The above says @lquotes@;possibly the first
    parameter@rquotes@;, because Ada allows entries
    to be renamed and passed as formal subprograms. In those cases, the
    task or protected object is implicit in the name of the routine; otherwise
    the object is an explicit parameter to the call.]}
@end{Discussion}
@end{StaticSem}

@begin{RunTime}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@PDefn2{Term=[execution], Sec=(timed_entry_call)}
For the execution of a @nt{timed_entry_call}, the @SynI(entry_)@nt<name>@Chg{Version=[2],
New=[, @Syni{procedure_}@nt{name}, or @Syni{procedure_}@nt{prefix},],Old=[]}
and any actual parameters are evaluated,
as for a simple entry call (see @RefSecNum(Entry Calls))@Chg{Version=[2],New=[
or procedure call (see @RefSecNum{Subprogram Calls})],Old=[]}.
The expiration time
(see @RefSecNum(Delay Statements, Duration, and Time))
for the call is determined by evaluating
the @i(delay_)@nt<expression> of the
@nt<delay_alternative>@Chg{Version=[2],New=[. If the call is an entry call or
a call on a procedure implemented by an entry,],Old=[;]}
the entry call is then issued.@Chg{Version=[2],New=[ Otherwise, the call
proceeds as described in @RefSecNum{Subprogram Calls} for a procedure call,
followed by the @nt{sequence_of_@!statements} of the @nt{entry_call_@!alternative};
the @nt{sequence_of_@!statements} of the @nt{delay_@!alternative} is ignored.],Old=[]}


If the call is queued (including due to a requeue-with-abort),
and not selected before the expiration
time is reached, an attempt to cancel the call is made.
If the call completes due to the cancellation, the optional
@nt<sequence_of_@!statements> of the @nt<delay_@!alternative> is
executed; if the entry call completes normally, the optional
@nt<sequence_of_@!statements> of the @nt<entry_call_@!alternative> is
executed.
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00345-01]}
@ChgDeleted{Version=[2],Text=[The fact that the syntax calls for
an @nt{entry_call_statement} means
that this fact is used in overload resolution.
For example,
if there is a procedure X and an entry X (both with no parameters),
then "select X; ..." is legal,
because overload resolution knows that the entry is the one that was
meant.]}
@end{Ramification}

@end{RunTime}

@begin{Examples}
@leading@keepnext@i{Example of a timed entry call:}
@begin{Example}
@key(select)
   Controller.Request(Medium)(Some_Item);
@key(or)
   @key(delay) 45.0;
   --@RI[  controller too busy, try something else]
@key(end) @key(select);
@end{Example}
@end{Examples}

@begin{DiffWord83}
This clause comes before the one for Conditional Entry Calls,
so we can define conditional entry calls in terms of timed entry calls.
@end{DiffWord83}

@begin{Incompatible95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
  @ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
  A procedure can be used as the in a timed or
  conditional entry call, if the procedure
  might actually be an entry. Since the fact that something is an entry
  could be used in resolving these calls in Ada 95, it is possible for
  timed or conditional entry calls that resolved in Ada 95 to be ambiguous
  in Ada 2005. That could happen if both an entry and procedure with the
  same name and profile exist, which should be rare.]}
@end{Incompatible95}


@LabeledSubClause{Conditional Entry Calls}

@begin{Intro}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Redundant[A @nt{conditional_entry_call} issues an entry call that is
then cancelled if it is not selected immediately (or if a requeue-with-abort
of the call is not selected immediately).@Chg{Version=[2],New=[ A procedure
call may appear rather than
an entry call for cases where the procedure might be implemented by
an entry.],Old=[]}]
@begin(Honest)
  In the case of an entry call on a protected object, it is OK if the entry
  is closed at the start of the corresponding protected action, so long as
  it opens and the call is selected before the end of that protected
  action (due to changes in the Count attribute).
@end(Honest)

@end{Intro}

@begin{Syntax}
@Syn{lhs=<conditional_entry_call>,rhs="
  @key{select}
   @Syn2{entry_call_alternative}
  @key{else}
   @Syn2{sequence_of_statements}
  @key{end select};"}
@end{Syntax}

@begin{RunTime}

@PDefn2{Term=[execution], Sec=(conditional_entry_call)}
The execution of a @nt<conditional_entry_call> is defined to be equivalent
to the execution of a @nt<timed_@!entry_@!call> with a @nt<delay_@!alternative>
specifying an immediate expiration time and the
same @nt<sequence_of_@!statements> as given after the reserved word @key(else).
@end{RunTime}

@begin{Notes}

A @nt{conditional_entry_call} may briefly increase the Count attribute of
the entry, even if the conditional call is not selected.

@end{Notes}

@begin{Examples}
@leading@keepnext@i{Example of a conditional entry call:}
@begin{Example}
@key(procedure) Spin(R : @key[in] Resource) @key(is)
@key(begin)
   @key(loop)
      @key(select)
         R.Seize;
         @key(return);
      @key(else)
         @key(null);  --@RI[  busy waiting]
      @key(end) @key(select);
   @key(end) @key(loop);
@key(end);
@end{Example}
@end{Examples}

@begin{DiffWord83}
This clause comes after the one for Timed Entry Calls,
so we can define conditional entry calls in terms of timed
entry calls.
We do that so that an "expiration time" is defined for both,
thereby simplifying the definition of what happens on
a requeue-with-abort.
@end{DiffWord83}


@RMNewPage@Comment{For printed Ada 2005 RM}
@LabeledSubClause{Asynchronous Transfer of Control}

@begin{Intro}
@redundant[An asynchronous @nt{select_statement} provides
asynchronous transfer of control
upon completion of an entry call or the expiration of a delay.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<asynchronous_select>,rhs="
  @key{select}
   @Syn2{triggering_alternative}
  @key{then abort}
   @Syn2{abortable_part}
  @key{end select};"}

@Syn{lhs=<triggering_alternative>,rhs="@Syn2{triggering_statement} [@Syn2{sequence_of_statements}]"}


@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@Syn{lhs=<triggering_statement>,rhs="@Chg{Version=[2],New=[@Syn2{procedure_or_entry_call}],Old=[@Syn2{entry_call_statement}]} | @Syn2{delay_statement}"}

@Syn{lhs=<abortable_part>,rhs="@Syn2{sequence_of_statements}"}
@end{Syntax}

@begin{RunTime}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@PDefn2{Term=[execution],
  Sec=(asynchronous_select with an entry call trigger)}
@Chg{Version=[2],New=[@PDefn2{Term=[execution],
  Sec=(asynchronous_select with a procedure call trigger)}],Old=[]}
For the execution of an @nt{asynchronous_select}
whose @nt<triggering_@!statement> is @Chg{Version=[2],
New=[a @nt<procedure_or_entry_call>],Old=[an @nt<entry_call_statement>]},
the @Syni(entry_)@nt<name>@Chg{Version=[2],New=[, @Syni{procedure_}@nt{name},
or @Syni{procedure_}@nt{prefix},],Old=[]} and actual parameters are evaluated
as for a simple entry call (see @RefSecNum(Entry Calls))@Chg{Version=[2],New=[
or procedure call (see @RefSecNum{Subprogram Calls}).
If the call is an entry call or a call on a procedure implemented by an
entry,],Old=[, and]} the entry call is issued.
If the entry call is queued (or requeued-with-abort),
then the @nt<abortable_part> is executed.
@Redundant[If the entry call is selected immediately,
and never requeued-with-abort,
then the @nt<abortable_part> is never started.]@Chg{Version=[2],New=[ If the
call is on a procedure that is not implemented by an entry, the call proceeds
as described in @RefSecNum{Subprogram Calls}, followed by the
@nt{sequence_of_@!statements} of the @nt{triggering_@!alternative}@Redundant[;
the @nt{abortable_part} is never started].],Old=[]}


@PDefn2{Term=[execution],
  Sec=(asynchronous_select with a delay_statement trigger)}
For the execution of an @nt<asynchronous_select> whose
@nt<triggering_@!statement> is a @nt<delay_statement>,
the @i(delay_)@nt<expression> is evaluated
and the expiration time is determined,
as for a normal @nt<delay_statement>.
If the expiration time has not already passed, the @nt<abortable_part>
is executed.

If the @nt<abortable_part> completes and is left prior to completion of the
@nt<triggering_@!statement>,
an attempt to cancel the @nt<triggering_@!statement> is made.
If the attempt to cancel succeeds (see @RefSecNum(Entry Calls) and
@RefSecNum(Delay Statements, Duration, and Time)), the
@nt<asynchronous_select> is complete.

If the @nt<triggering_@!statement> completes other than
due to cancellation,
the @nt<abortable_part>
is aborted (if started but not yet completed @em
see @RefSecNum(Abort of a Task - Abort of a Sequence of Statements)).
If the @nt<triggering_@!statement> completes normally, the optional
@nt<sequence_of_@!statements> of the @nt<triggering_@!alternative> is
executed after the @nt<abortable_part> is left.
@begin(Discussion)
  We currently don't specify when the by-copy [@key(in)] @key(out)
  parameters are assigned back into the actuals. We considered
  requiring that to happen after the @nt<abortable_part> is
  left. However, that doesn't seem useful enough
  to justify possibly overspecifying the implementation approach,
  since some of the parameters are passed by reference anyway.

  In an earlier description, we required that the @nt<sequence_of_@!statements>
  of the @nt<triggering_@!alternative> execute after aborting
  the @nt<abortable_part>, but before waiting for it to complete
  and finalize, to provide more rapid response to the triggering event
  in case the finalization was unbounded. However, various reviewers felt
  that this created unnecessary complexity in the description,
  and a potential for undesirable concurrency (and nondeterminism)
  within a single task. We have now reverted to simpler, more
  deterministic semantics,
  but anticipate that further discussion of this issue might be
  appropriate during subsequent reviews.
  One possibility is to leave this area implementation defined,
  so as to encourage experimentation. The user would then have
  to assume the worst about what kinds of actions are appropriate
  for the @nt<sequence_of_@!statements> of the @nt<triggering_@!alternative>
  to achieve portability.
@end(Discussion)

@end{RunTime}

@begin{Examples}
@leading@keepnext@Defn2{Term=[signal handling], Sec=(example)}
@Defn2{Term=[interrupt],Sec=(example using @nt<asynchronous_select>)}
@Defn2{Term=[terminal interrupt], Sec=(example)}
@i(Example of a main command loop for a command interpreter:)
@begin(Example)
@key(loop)
    @key(select)
        Terminal.Wait_For_Interrupt;
        Put_Line("Interrupted");
    @key(then abort)
        -- @RI(This will be abandoned upon terminal interrupt)
        Put_Line("-> ");
        Get_Line(Command, Last);
        Process_Command(Command(1..Last));
    @key(end) @key(select);
@key(end) @key(loop);
@end(Example)

@begin{Wide}
@leading@keepnext@i(Example of a time-limited calculation:)
@IndexSee{Term=[time-out],See=(asynchronous_select)}
@Defn2{Term=[time-out],Sec=(example)}
@Defn2{Term=[time limit],Sec=(example)}
@Defn2{Term=[interrupt],Sec=(example using @nt<asynchronous_select>)}
@Defn2{Term=[timer interrupt],Sec=(example)}
@end{Wide}
@begin(Example)
@key(select)
   @key(delay) 5.0;
   Put_Line("Calculation does not converge");
@key(then abort)
   -- @RI(This calculation should finish in 5.0 seconds;)
   -- @RI( if not, it is assumed to diverge.)
   Horribly_Complicated_Recursive_Function(X, Y);
@key(end) @key(select);
@end(Example)

@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
@nt<Asynchronous_select> is new.
@end{Extend83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  A procedure can be used as the
  @nt{triggering_@!statement} of an @nt<asynchronous_select>, if the procedure
  might actually be an entry]}
@end{Extend95}


@LabeledClause{Abort of a Task - Abort of a Sequence of Statements}

@begin{Intro}
@redundant[An @nt{abort_statement} causes one or more tasks to become abnormal, thus
preventing any further interaction with such tasks. The completion
of the @nt<triggering_@!statement> of an @nt<asynchronous_select>
causes a @nt{sequence_of_@!statements} to be aborted.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<abort_statement>,
  rhs="@key{abort} @SynI{task_}@Syn2{name} {, @SynI{task_}@Syn2{name}};"}
@end{Syntax}

@begin{Resolution}

@PDefn2{Term=[expected type], Sec=(abort_statement task_name)}
Each @SynI{task_}@nt{name} is expected to be of any task
type@Redundant[; they need not all be of the same task type.]

@end{Resolution}

@begin{RunTime}

@PDefn2{Term=[execution], Sec=(abort_statement)}
For the execution of an @nt<abort_statement>, the given @i(task_)@nt<name>s
are evaluated in an arbitrary order.
@Defn2{Term=[abort], Sec=(of a task)}
@Defn{abnormal task}
@PDefn2{Term=[task state], Sec=(abnormal)}
Each named task is
then @i(aborted), which consists of making the task @i(abnormal)
and aborting the execution of the corresponding @nt<task_body>,
unless it is already completed.
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
Note that aborting those tasks is not defined to be an
abort-deferred operation.
Therefore, if one of the named tasks is the task executing the
@nt{abort_statement}, or if the task executing the
@nt{abort_statement} depends on one of the named tasks,
then it is possible for the execution of the @nt{abort_statement} to be
aborted, thus leaving some of the tasks unaborted.
This allows the implementation to use either a sequence of calls to an
@lquotes@;abort task@rquotes@; @Chg{Version=[2],New=[run-time
system],Old=[RTS]} primitive, or a single call to an @lquotes@;abort list of
tasks@rquotes@; @Chg{Version=[2],New=[run-time system],Old=[RTS]} primitive.
@end{Ramification}

@leading@PDefn2{Term=[execution], Sec=(aborting the execution of a construct)}
@Defn2{Term=[abort], Sec=(of the execution of a construct)}
When the execution of a construct
is @i(aborted) (including that of a @nt<task_@!body> or of a
@nt<sequence_of_@!statements>), the execution of every construct
included within the aborted execution is also aborted,
except for executions included within the execution of an @i(abort-deferred)
operation; the execution of an abort-deferred operation
continues to completion without being affected by the abort;
@Defn{abort-deferred operation}
the following are the abort-deferred operations:
@begin(Itemize)
  a protected action;

  waiting for an entry call to complete (after having
  initiated the attempt to cancel it @em see below);

  waiting for the termination of dependent tasks;

  the execution of an Initialize procedure as the last step
  of the default initialization of a controlled object;

  the execution of a Finalize procedure as part of the
  finalization of a controlled object;

  an assignment operation to an object with a controlled part.
@end(Itemize)

@Redundant[The last three of these are discussed further in
@RefSecNum(User-Defined Assignment and Finalization).]
@begin{Reason}
  Deferring abort during Initialize and finalization allows,
  for example, the result of an allocator performed in
  an Initialize operation to be assigned into an access object without
  being interrupted in the middle, which would cause storage leaks.
  For an object with several controlled parts,
  each individual Initialize is abort-deferred.
  Note that there is generally no semantic difference between
  making each Finalize
  abort-deferred, versus making a group of them abort-deferred,
  because if the task gets aborted, the first thing it will do is
  complete any remaining finalizations.
  Individual objects are finalized prior to an assignment operation
  (if nonlimited controlled) and as part of Unchecked_Deallocation.
@end{Reason}
@begin(Ramification)
Abort is deferred during the entire assignment operation
to an object with a controlled part,
even if only some subcomponents are controlled.
Note that this says "assignment operation,"
not "@nt{assignment_statement}."
Explicit calls to Initialize, Finalize, or Adjust are
not abort-deferred.
@end(Ramification)


When a master is aborted, all tasks
that depend on that master are aborted.

@PDefn{unspecified}
The order in which tasks become abnormal as the result
of an @nt<abort_statement> or the abort of a @nt<sequence_of_@!statements>
is not specified by the language.

@leading@;If the execution of an entry call is aborted,
an immediate attempt is made to cancel the entry call
(see @RefSecNum(Entry Calls)).
If the execution of a construct
is aborted at a time when the execution is blocked,
other than for an entry call, at a point that is outside
the execution of an abort-deferred operation,
then the execution of the construct completes immediately.
For an abort due to an @nt<abort_statement>,
these immediate effects occur before the execution of
the @nt<abort_statement> completes.
Other than for these immediate cases, the execution
of a construct that is aborted does not necessarily
complete before the @nt<abort_statement> completes.
However, the execution of the aborted construct
completes no later than its next @i(abort completion point) (if any)
that occurs outside of an abort-deferred operation;
@Defn{abort completion point}
the following are abort completion points for an execution:
@begin(Itemize)
  the point where the execution initiates the activation of another task;

  the end of the activation of a task;

  the start or end of the execution of an entry call,
  @nt<accept_statement>, @nt<delay_statement>, or @nt<abort_statement>;
  @begin(Ramification)
    Although the abort completion point doesn't occur until the end
    of the entry call or @nt<delay_statement>, these operations might
    be cut short because an abort attempts to cancel them.
  @end(Ramification)

  the start of the execution of a @nt<select_statement>,
  or of the @nt<sequence_of_@!statements> of an @nt<exception_handler>.
  @begin(Reason)
    The start of an @nt<exception_handler> is considered an abort completion
    point simply because it is easy for an implementation to check
    at such points.
  @end(Reason)
  @begin(ImplNote)
    Implementations may of course check for abort more often than at
    each abort completion point; ideally, a fully preemptive
    implementation of abort will be provided.
    If preemptive abort is not supported in a given environment,
    then supporting the checking for abort
    as part of subprogram calls and loop iterations might be a useful option.
  @end(ImplNote)
@end(Itemize)

@end{RunTime}

@begin{Bounded}
@PDefn2{Term=(bounded error),Sec=(cause)}
An attempt to execute an @nt<asynchronous_select> as
part of the execution of an abort-deferred operation is a bounded error.
Similarly, an attempt to create a task that depends on a master
that is included entirely within the execution of
an abort-deferred operation is a bounded error.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
In both cases, Program_Error is raised if the error is detected
by the implementation; otherwise the operations proceed
as they would outside an abort-deferred operation, except
that an abort of the @nt<abortable_part>
or the created task might or might not have an effect.
@begin(Reason)
  An @nt<asynchronous_select> relies on an abort of the
  @nt<abortable_part> to effect the
  asynchronous transfer of control. For an @nt<asynchronous_select>
  within an abort-deferred operation, the abort might
  have no effect.

  Creating a task dependent on a master included within an abort-deferred
  operation is considered an error, because such tasks could be aborted while
  the abort-deferred operation was still progressing, undermining the
  purpose of abort-deferral. Alternatively, we could say that such
  tasks are abort-deferred for their entire execution, but that seems
  too easy to abuse. Note that task creation is already a bounded error
  in protected actions, so this additional rule only applies to local task
  creation as part of Initialize, Finalize, or Adjust.
@end(Reason)
@end{Bounded}

@begin{Erron}
@PDefn{normal state of an object}
@PDefn{abnormal state of an object}
@Defn{disruption of an assignment}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If an assignment operation completes prematurely due to an abort,
the assignment is said to be @i{disrupted};
the target of the assignment or its parts can become abnormal,
and certain subsequent uses of the object can be erroneous,
as explained in @RefSecNum{Data Validity}.
@end{Erron}

@begin{Notes}

An @nt{abort_statement} should be used only in situations
requiring unconditional termination.

A task is allowed to abort any task it can name, including itself.

Additional requirements associated with abort
are given in @RefSec(Preemptive Abort).
@end{Notes}

@begin{DiffWord83}
This clause has been rewritten to accommodate the concept
of aborting the execution of a construct, rather than just of a task.
@end{DiffWord83}


@LabeledClause{Task and Entry Attributes}

@begin{RunTime}

@leading@;
For @PrefixType{a @nt<prefix> T that
is of a task type @Redundant[(after
any implicit dereference)]},
the following attributes are defined:
@begin{Description}
@Comment{@ChgAttribute{Version=[2], Kind=[Revised], ChginAnnex=[F], Leading=[F],
  Prefix=<T>, AttrName=<Callable>, ARef=[AI95-00345],
  Text=<Yields the value True when the task denoted by T
                is @i(callable), and False otherwise;>}
                @PDefn2{Term=[task state], Sec=(callable)}
                @Defn{callable}
                a task is callable unless it is completed or abnormal.
                The value of this attribute is of the predefined
                type Boolean.}
@Attribute{Prefix=<T>, AttrName=<Callable>,
  Text=<Yields the value True when the task denoted by T
                is @i(callable), and False otherwise;>}
                @PDefn2{Term=[task state], Sec=(callable)}
                @Defn{callable}
                a task is callable unless it is completed or abnormal.
                The value of this attribute is of the predefined
                type Boolean.

@Attribute{Prefix=<T>, AttrName=<Terminated>,
  Text=<Yields the value True if the task denoted by T is
                terminated, and False otherwise. The value of this
                attribute is of the predefined type Boolean.>}
@end{Description}
@EndPrefixType{}

For @PrefixType{a @nt<prefix> E that denotes an entry
of a task or protected unit},
the following attribute is defined.
This attribute is only allowed within the body of the task or protected
unit, but excluding, in the case of an entry of a task unit, within any
program unit that is, itself, inner to the body of the task unit.
@begin{Description}

@Attribute{Prefix=<E>, AttrName=<Count>,
  Text=<Yields the number of calls presently queued on the
                entry E of the current instance of the unit.
                The value of this attribute is of the type
                @i{universal_integer}.>}

@end{Description}
@EndPrefixType{}
@end{RunTime}

@begin{Notes}

For the Count attribute, the entry can be either a single entry or an
entry of a family. The name of the entry or entry
family can be either a @nt<direct_name> or an expanded name.

Within task units, algorithms interrogating the attribute E'Count should
take precautions to allow for the increase of the value of this attribute
for incoming entry calls, and its decrease, for example with
@nt{timed_entry_call}s. Also, a @nt{conditional_entry_call} may briefly
increase this value, even if the conditional call is not accepted.

Within protected units, algorithms interrogating the attribute E'Count
in the @nt<entry_barrier> for the entry E should take precautions to
allow for the evaluation of the @nt<condition> of the barrier both before
and after queuing a given caller.
@end{Notes}



@LabeledClause{Shared Variables}

@begin{StaticSem}
@Defn2{Term=[shared variable], Sec=(protection of)}
@Defn{independently addressable}
If two different objects, including nonoverlapping
parts of the same object, are @i{independently addressable},
they can be manipulated concurrently by two different tasks
without synchronization.
Normally, any two nonoverlapping objects are independently addressable.
However, if packing, record layout, or Component_Size
is specified for a given composite object,
then it is implementation defined whether or not
two nonoverlapping parts of that composite object
are independently addressable.
@ImplDef{Whether or not two nonoverlapping parts of a composite
object are independently addressable,
in the case where packing, record layout, or Component_Size
is specified for the object.}
@begin{ImplNote}
Independent addressability is the only high level semantic effect of
a @nt{pragma} Pack.
If two objects are independently addressable,
the implementation should allocate them in such a way
that each can be written by the hardware without writing the other.
For example, unless the user asks for it,
it is generally not feasible to choose a bit-packed
representation on a machine without an atomic bit field
insertion instruction,
because there might be tasks that update neighboring subcomponents
concurrently,
and locking operations on all subcomponents is generally not a good
idea.

Even if packing or one of the other above-mentioned aspects is specified,
subcomponents should still be updated independently if the
hardware efficiently supports it.
@end{ImplNote}
@end{StaticSem}

@begin{RunTime}
@leading@redundant[Separate tasks normally proceed independently and concurrently
with one another. However, task interactions can be used
to synchronize the actions of two or more tasks to allow,
for example, meaningful communication by the direct updating and
reading of variables shared between the tasks.]
The actions of two different tasks are synchronized in this
sense when an
action of one task @i(signals) an action of the other task;
@Defn2{Term=[signal], Sec=(as defined between actions)}
an action A1 is defined to signal an action A2 under the following
circumstances:
@begin(Itemize)
  If A1 and A2 are part of the execution of the same task,
  and the language rules require A1 to be performed before A2;

  If A1 is the action of an activator that initiates the
  activation of a task, and
  A2 is part of the execution of the task that is activated;

  If A1 is part of the activation of a task, and A2
  is the action of
  waiting for completion of the activation;

  If A1 is part of the execution of a task, and A2 is
  the action of waiting for the termination of the task;

  @ChgRef{Version=[1],Kind=[Added],Ref=[8652/0031],ARef=[AI95-00118-01]}
  @ChgAdded{Version=[1],Text=[If A1 is the termination of a task T, and A2 is
  either the evaluation of the expression T'Terminated or a call to
  Ada.Task_Identification.Is_Terminated with an actual parameter that
  identifies T (see @RefSecNum(The Package Task_Identification));]}

  If A1 is the action of issuing an entry call, and A2 is
  part of the corresponding execution of the appropriate
  @nt<entry_body> or @nt<accept_statement>.
  @begin(Ramification)
    Evaluating the @nt<entry_index> of an @nt<accept_statement>
    is not synchronized with a corresponding entry call,
    nor is evaluating the entry barrier of an @nt<entry_body>.
  @end(Ramification)

  If A1 is part of the execution of an @nt<accept_statement> or
  @nt<entry_body>, and A2 is the action of returning
  from the corresponding entry call;

  If A1 is part of the execution of a protected procedure body
  or @nt<entry_body> for a given protected object, and A2 is part of
  a later execution of an @nt<entry_body> for the same
  protected object;
  @begin(Reason)
    The underlying principle here is that
    for one action to @lquotes@;signal@rquotes@; a second, the second action has to follow
    a potentially blocking operation, whose blocking is dependent on
    the first action in some way.
    Protected procedures are not potentially blocking, so they can
    only be "signalers," they cannot be signaled.
  @end(Reason)
  @begin(Ramification)
    Protected subprogram calls are not defined to signal one another,
    which means that such calls alone cannot be used to synchronize
    access to shared data outside of a protected object.
  @end(Ramification)
  @begin(Reason)
    The point of this distinction is so that on multiprocessors with
    inconsistent caches, the caches only need to be refreshed at
    the beginning of an entry body, and forced out at the end of an
    entry body or protected procedure that leaves an entry open.
    Protected function calls, and protected subprogram calls for
    entryless protected objects do not require full cache consistency.
    Entryless protected objects are intended to be treated roughly like
    atomic objects @em each operation is indivisible with respect to
    other operations (unless both are reads), but such operations cannot
    be used to synchronize access to other nonvolatile
    shared variables.
  @end(Reason)

  @Leading@Comment{This "Leading" is to help fit the next example on one page.}
  If A1 signals some action that in turn signals A2.
@end(Itemize)

@end{RunTime}

@begin{Erron}
@Leading@;@PDefn2{Term=(erroneous execution),Sec=(cause)}
Given an action of assigning to an object,
and an action of reading or updating a part of the same object
(or of a neighboring object if the two are not
independently addressable), then the execution of the actions is erroneous
unless the actions are @i(sequential).
@Defn2{Term=[sequential], Sec=(actions)}
Two actions are sequential if one of the following is true:
@begin(Itemize)
  One action signals the other;

  Both actions occur as part of the execution of the same task;
  @begin{Reason}
    Any two actions of the same task are sequential, even
    if one does not signal the other because they can be
    executed in an @lquotes@;arbitrary@rquotes@;
    (but necessarily equivalent to some @lquotes@;sequential@rquotes@;) order.
  @end{Reason}

  Both actions occur as part
  of protected actions on the same protected object, and
  at most one of the actions is part of a call on a protected function
  of the protected object.
  @begin(Reason)
    Because actions within protected actions do not always imply
    signaling, we have to mention them here explicitly to make sure
    that actions occurring within different protected actions of the
    same protected object are sequential with respect to one another
    (unless both are part of calls on protected functions).
  @end(Reason)
  @begin(Ramification)
    It doesn't matter whether or not the variable being assigned is
    actually a subcomponent of the protected object; globals can be
    safely updated from within the bodies of protected procedures or entries.
  @end(Ramification)
@end(Itemize)

A @nt{pragma} Atomic or Atomic_Components may also be used to
ensure that certain reads and updates are sequential @em
see @RefSecNum(Shared Variable Control).
@begin(Ramification)
  If two actions are @lquotes@;sequential@rquotes@; it is known that their executions
  don't overlap in time, but it is not necessarily specified which occurs first.
  For example, all actions of a single task are sequential, even though
  the exact order of execution is not fully specified for all constructs.
@end(Ramification)
@begin(Discussion)
  Note that if two assignments to the same variable are sequential,
  but neither signals the other, then the program is not erroneous,
  but it is not specified which assignment ultimately prevails.
  Such a situation usually corresponds to a programming mistake, but
  in some (rare) cases, the order makes no difference, and for this
  reason this situation is not considered erroneous nor even a bounded error.
  In Ada 83, this was considered an @lquotes@;incorrect order dependence@rquotes@; if
  the @lquotes@;effect@rquotes@; of the program was affected, but @lquotes@;effect@rquotes@; was never
  fully defined. In Ada 95, this situation represents a potential
  nonportability, and a friendly compiler might want to warn the
  programmer about the situation, but it is not considered an error.
  An example where this would come up would be in gathering statistics
  as part of referencing some information, where the assignments
  associated with
  statistics gathering don't need to be ordered since they are
  just accumulating aggregate counts, sums, products, etc.
@end(Discussion)
@end{Erron}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0031],ARef=[AI95-00118-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that a task T2 can rely on
  values of variables that are updated by another task T1, if task T2 first
  verifies that T1'Terminated is True.]}
@end{DiffWord95}


@LabeledClause{Example of Tasking and Synchronization}

@begin{Examples}

@Leading@;The following example defines a buffer protected object
to smooth variations between
the speed of output of a producing task and the speed of input of some
consuming task. For instance, the producing task might have the
following structure:

@begin(Example)
@key(task) Producer;

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(task body) Producer @key(is)
   @Chg{Version=[2],New=[Person : Person_Name; --@RI[ see @RefSecNum{Incomplete Type Declarations}]],Old=[Char : Character;]}
@key(begin)
   @key(loop)
      ... --@RI[  @Chg{Version=[2],New=[simulate arrival of the next customer],Old=[produce the next character Char]}]
      Buffer.@Chg{Version=[2],New=[Append_Wait(Person)],Old=[Write(Char)]};
      @key(exit) @key(when) @Chg{Version=[2],New=[Person = @key(null)],Old=[Char = ASCII.EOT]};
   @key(end) @key(loop);
@key(end) Producer;
@end(Example)

@leading@keepnext@;and the consuming task might have the following structure:

@begin(Example)
@key(task) Consumer;

@Trailing@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}@key(task body) Consumer @key(is)
   @Chg{Version=[2],New=[Person : Person_Name;],Old=[Char : Character;]}
@key(begin)
   @key(loop)
      Buffer.@Chg{Version=[2],New=[Remove_First_Wait(Person)],Old=[Read(Char)]};
      @key(exit) @key(when) @Chg{Version=[2],New=[Person = @key(null)],Old=[Char = ASCII.EOT]};
      ... --@RI[  @Chg{Version=[2],New=[simulate serving a customer],Old=[consume the character Char]}]
   @key(end) @key(loop);
@key(end) Consumer;
@end(Example)

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
The buffer object contains an internal @Chg{Version=[2],New=[array],Old=[pool]}
of @Chg{Version=[2],New=[person names],Old=[characters]} managed in a
round-robin fashion. The @Chg{Version=[2],New=[array],Old=[pool]} has two
indices, an In_Index denoting the @Chg{Version=[2],New=[index],Old=[space]}
for the next input @Chg{Version=[2],New=[person name],Old=[character]} and an
Out_Index denoting the @Chg{Version=[2],New=[index],Old=[space]} for the next
output @Chg{Version=[2],New=[person name],Old=[character]}.

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[The Buffer is defined as an extension of the
Synchronized_Queue interface (see @RefSecNum{Interface Types}), and as such
promises to implement the abstraction defined by that interface. By doing so,
the Buffer can be passed to the Transfer class-wide operation defined for
objects of a type covered by Queue'Class.]}

@begin(Example)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(protected) Buffer @key(is)@Chg{Version=[2],New=[ @key(new) Synchronized_Queue @key(with)  --@RI[ see @RefSecNum{Interface Types}]],Old=[]}
   @key(entry) @Chg{Version=[2],New=[Append_Wait(Person : @key(in) Person_Name);],Old=[Read (C : @key(out) Character);]}
   @key(entry) @Chg{Version=[2],New=[Remove_First_Wait(Person : @key(out) Person_Name);
   @key(function) Cur_Count @key(return) Natural;
   @key(function) Max_Count @key(return) Natural;
   @key(procedure) Append(Person : @key(in) Person_Name);
   @key(procedure) Remove_First(Person : @key(out) Person_Name);],Old=[Write(C : @key(in)  Character);]}
@key(private)
   Pool      : @Chg{Version=[2],New=[Person_Name_Array],Old=[String]}(1 .. 100);
   Count     : Natural := 0;
   In_Index, Out_Index : Positive := 1;
@key(end) Buffer;

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
@key(protected body) Buffer @key(is)
   @key(entry) @Chg{Version=[2],New=[Append_Wait(Person : @key(in) Person_Name)],Old=[Write(C : @key(in) Character)]}
      @key(when) Count < Pool'Length @key(is)
   @key(begin)
      @Chg{Version=[2],New=[Append(Person);],Old=[Pool(In_Index) := C;
      In_Index := (In_Index @key(mod) Pool'Length) + 1;
      Count    := Count + 1;]}
   @key(end) @Chg{Version=[2],New=[Append_Wait],Old=[Write]};

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[   @key(procedure) Append(Person : @key(in) Person_Name) @key(is)
   @key(begin)
      @key(if) Count = Pool'Length @key(then)
         @key(raise) Queue_Error @key(with) "Buffer Full";  --@RI[ see @RefSecNum{Raise Statements}]
      @key(end if);
      Pool(In_Index) := Person;
      In_Index       := (In_Index @key(mod) Pool'Length) + 1;
      Count          := Count + 1;
   @key(end) Append;]}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00433-01]}
   @key(entry) @Chg{Version=[2],New=[Remove_First_Wait(Person : @key(out) Person_Name)],Old=[Read(C : @key(out) Character)]}
      @key(when) Count > 0 @key(is)
   @key(begin)
      @Chg{Version=[2],New=[Remove_First(Person);],Old=[C := Pool(Out_Index);
      Out_Index := (Out_Index @key(mod) Pool'Length) + 1;
      Count     := Count - 1;]}
   @key(end) @Chg{Version=[2],New=[Remove_First_Wait],Old=[Read;
@key(end) Buffer]};

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[   @key(procedure) Remove_First(Person : @key(out) Person_Name) @key(is)
   @key(begin)
      @key(if) Count = 0 @key(then)
         @key(raise) Queue_Error @key(with) "Buffer Empty"; --@RI[ see @RefSecNum{Raise Statements}]
      @key(end if);
      Person    := Pool(Out_Index);
      Out_Index := (Out_Index @key(mod) Pool'Length) + 1;
      Count     := Count - 1;
   @key(end) Remove_First;]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[   @key(function) Cur_Count @key(return) Natural @key(is)
   @key(begin)
       @key(return) Buffer.Count;
   @key(end) Cur_Count;]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[   @key(function) Max_Count @key(return) Natural @key(is)
   @key(begin)
       @key(return) Pool'Length;
   @key(end) Max_Count;
@key(end) Buffer;]}
@end(Example)

@end{Examples}