1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
|
@comment{ $Source: e:\\cvsroot/ARM/Source/interface.mss,v $ }
@comment{ $Revision: 1.48 $ $Date: 2006/10/18 00:25:28 $ $Author: Randy $ }
@Part(interface, Root="ada.mss")
@Comment{$Date: 2006/10/18 00:25:28 $}
@LabeledNormativeAnnex{Interface to Other Languages}
@begin{Intro}
@Defn{interface to other languages}
@Defn2{Term=[language], Sec=(interface to non-Ada)}
@Defn{mixed-language programs}
This Annex describes features for writing mixed-language programs.
General interface support is presented first;
then specific support for C, COBOL, and Fortran is defined,
in terms of language interface packages for each of
these languages.
@begin{Ramification}
This Annex is not a @lquotes@;Specialized Needs@rquotes@; annex.
Every implementation must support all non-optional features defined here
(mainly the package Interfaces).
@end{Ramification}
@end{Intro}
@begin{MetaRules}
Ada should have strong support for mixed-language programming.
@end{MetaRules}
@begin{Extend83}
@Defn{extensions to Ada 83}
Much of the functionality in this Annex is new to Ada 95.
@end{Extend83}
@begin{DiffWord83}
This Annex contains what used to be RM83-13.8.
@end{DiffWord83}
@LabeledClause{Interfacing Pragmas}
@begin{Intro}
A @nt{pragma} Import is used to import an entity defined in a foreign
language into an Ada program,
thus allowing
a foreign-language subprogram to be called from Ada,
or a foreign-language variable to be accessed from Ada.
In contrast,
a @nt{pragma} Export is used to export an Ada entity
to a foreign language, thus allowing
an Ada subprogram to be called from a foreign language,
or an Ada object
to be accessed from a foreign language.
The @nt[pragma]s
Import and Export
are intended primarily for objects and
subprograms, although implementations are allowed to support other
entities.
A @nt{pragma} Convention is used to specify that an Ada entity should use
the conventions of another language.
It is intended primarily for types and @lquotes@;callback@rquotes@; subprograms.
For example,
@lquotes@;@key{pragma} Convention(Fortran, Matrix);@rquotes@;
implies that Matrix should be represented according to the
conventions of the supported Fortran implementation, namely
column-major order.
A @nt{pragma} Linker_Options is used to specify the system linker
parameters needed when a given compilation unit is included in a
partition.
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@Leading@RootDefn{interfacing pragma}
@PDefn2{Term=[interfacing pragma], Sec=(Import)}
@PDefn2{Term=[pragma, interfacing], Sec=(Import)}
@PDefn2{Term=[interfacing pragma], Sec=(Export)}
@PDefn2{Term=[pragma, interfacing], Sec=(Export)}
@PDefn2{Term=[interfacing pragma], Sec=(Convention)}
@PDefn2{Term=[pragma, interfacing], Sec=(Convention)}
@PDefn2{Term=[pragma, interfacing], Sec=(Linker_Options)}
An @i{interfacing pragma} is a representation
@nt[pragma] that is
one of the @nt{pragma}s Import, Export,
or Convention.
Their forms, together with that of the related
@nt[pragma] Linker_Options, are as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Import)(@*
@ @ @ @ @ [Convention =>] @SynI{convention_}@Syn2{identifier}, [Entity =>] @Syn2{local_name}@*
@ @ [, [External_Name =>] @SynI{string_}@Syn2{expression}] [, [Link_Name =>] @SynI{string_}@Syn2{expression}]);'
@PragmaSyn`@key{pragma} @prag(Export)(@*
@ @ @ @ @ [Convention =>] @SynI{convention_}@Syn2{identifier}, [Entity =>] @Syn2{local_name}@*
@ @ [, [External_Name =>] @SynI{string_}@Syn2{expression}] [, [Link_Name =>] @SynI{string_}@Syn2{expression}]);'
@PragmaSyn`@key{pragma} @prag(Convention)([Convention =>] @SynI{convention_}@Syn2{identifier},[Entity =>] @Syn2{local_name});'
@PragmaSyn`@key{pragma} @prag(Linker_Options)(@SynI{string_}@Syn2{expression});'
@begin{SyntaxText}
A @nt[pragma] Linker_Options is allowed only at the place of a
@nt[declarative_item].
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0058],ARef=[AI95-00036-01]}
@ChgAdded{Version=[1],Text=[For @nt{pragma}s Import and Export, the argument
for Link_Name shall not be given without the
@i{pragma_@!argument_}@!@nt{identifier}
unless the argument for External_Name is given.]}
@end{SyntaxText}
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type],
Sec=(link name)}
The expected type for a @SynI{string_}@Syn2{expression}
in an interfacing pragma or in pragma Linker_Options is String.
@begin{Ramification}
There is no language-defined support for
external or link names of type
Wide_String, or of other string types.
Implementations may, of course, have additional pragmas for that
purpose.
Note that allowing both String and Wide_String in the same @nt{pragma} would
cause ambiguities.
@end{Ramification}
@end{Resolution}
@begin{Legality}
@Defn{convention}
The @SynI{convention_}@nt{identifier} of an interfacing pragma
shall be the name of a @i{convention}.
The convention names are implementation defined,
except for certain language-defined ones,
such as Ada and Intrinsic,
as explained in @RefSec{Conformance Rules}.
@Redundant[Additional convention names generally represent
the calling conventions of foreign languages,
language implementations, or specific run-time models.]
@Defn{calling convention}
The convention of a callable entity is its @i{calling convention}.
@ImplDef{Implementation-defined convention names.}
@begin{Discussion}
We considered representing the convention names using an enumeration
type declared in System.
Then, @SynI{convention_}@nt{identifier} would be changed to
@SynI{convention_}@nt{name},
and we would make its expected type be the enumeration type.
We didn't do this because it seems to introduce extra complexity,
and because the list of available languages is better represented as
the list of children of package Interfaces @em a more open-ended sort
of list.
@end{Discussion}
@Leading@Defn2{Term=[compatible],Sec=[a type, with a convention]}
If @i[L] is a @i[convention_]@nt[identifier] for a language, then a
type T is said to be @i{compatible with convention L}, (alternatively,
is said to be an @i[L-compatible type]) if any of the following conditions
are met:
@begin[itemize]
T is declared in a language interface package
corresponding to @i[L] and is defined to be
@i[L]-compatible
(see @refsecnum(Interfacing with C and C++),
@refsecnum(The Package Interfaces.C.Strings),
@refsecnum(The Generic Package Interfaces.C.Pointers),
@refsecnum(Interfacing with COBOL),
@refsecnum(Interfacing with Fortran)),
@Leading@Defn2{Term=[eligible],Sec=[a type, for a convention]}
Convention @i[L] has been specified for T in
a @nt[pragma] Convention, and T is @i{eligible for
convention @i[L]}; that is:
@begin[inneritemize]
T is an array type with either an
unconstrained or statically-constrained first subtype, and
its component type is @i[L]-compatible,
T is a record type that has no discriminants and that only has
components with statically-constrained subtypes, and
each component type is @i[L]-compatible,
T is an access-to-object type, and its designated type is @i[L]-compatible,
T is an access-to-subprogram type,
and its designated profile's parameter and result types are all @i[L]-compatible.
@end[inneritemize]
T is derived from an @i[L]-compatible type,
The implementation permits T as an @i[L]-compatible type.
@begin{discussion}
For example, an implementation might permit Integer as a C-compatible
type, though the C type to which it corresponds might be different
in different environments.@end{discussion}
@end[itemize]
If @nt[pragma] Convention applies to a type,
then the type shall either be
compatible with or eligible for
the convention specified in the pragma.
@begin[ramification]
If a type is derived from an @i[L]-compatible type, the derived type
is by default @i[L]-compatible, but it is also permitted to specify
pragma Convention for the derived type.
It is permitted to specify pragma Convention for an incomplete type,
but in the complete declaration each component must be
@i[L]-compatible.
If each component of a record type is @i[L]-compatible, then
the record type itself is only @i[L]-compatible if it has a pragma
Convention.
@end[Ramification]
A @nt{pragma} Import shall be the completion of a declaration.
@Defn{notwithstanding}
Notwithstanding any rule to the contrary,
a @nt{pragma} Import may serve as the completion of any
kind of (explicit) declaration if supported by an implementation for
that kind of declaration.
If a completion is a @nt{pragma} Import,
then it shall appear in the same
@nt{declarative_part}, @nt{package_specification}, @nt{task_definition}
or @nt{protected_definition}
as the declaration.
For a library unit, it shall appear in the same @nt{compilation},
before any subsequent @nt{compilation_unit}s other than @nt{pragma}s.
If the @nt{local_name} denotes more than one entity,
then the @nt{pragma} Import is the completion of all of them.
@begin(Discussion)
For declarations of deferred constants and subprograms, we mention
pragma Import
explicitly as a possible completion. For other declarations that
require completions, we ignore the possibility of pragma Import.
Nevertheless, if an implementation chooses to allow a @nt{pragma} Import
to complete the declaration of a task, protected type, incomplete
type, private type, etc., it may do so, and the normal completion
is then not allowed for that declaration.
@end(Discussion)
@Defn{imported entity} @Defn{exported entity}
An entity specified as the Entity argument to a @nt[pragma] Import
(or @nt[pragma] Export)
is said to be @i{imported} (respectively, @i{exported}).
The declaration of an imported object shall not include an explicit
initialization expression.
@Redundant[Default initializations are not performed.]
@begin{TheProof}
This follows from the @lquotes@;Notwithstanding ...@rquotes@;
wording in the Dynamics Semantics paragraphs below.
@end{TheProof}
The type of an imported or exported object shall be compatible with the
convention specified in the corresponding @nt[pragma].
@begin[Ramification]
This implies, for example, that importing an Integer object might be illegal,
whereas importing an object of type Interfaces.C.int would be permitted.
@end[Ramification]
For an imported or exported subprogram, the result and parameter types
shall each be compatible with the convention specified in the
corresponding pragma.
The external name and link name @i{string}_@nt[expression]s
of a @nt{pragma} Import or Export, and the @i[string]_@nt[expression]
of a @nt[pragma] Linker_Options, shall be
static.
@end{Legality}
@begin{StaticSem}
@PDefn2{Term=[representation pragma], Sec=(Import)}
@PDefn2{Term=[pragma, representation], Sec=(Import)}
@PDefn2{Term=[representation pragma], Sec=(Export)}
@PDefn2{Term=[pragma, representation], Sec=(Export)}
@PDefn2{Term=[representation pragma], Sec=(Convention)}
@PDefn2{Term=[pragma, representation], Sec=(Convention)}
@PDefn2{Term=[aspect of representation], Sec=(convention, calling convention)}
@Defn2{Term=[convention], Sec=(aspect of representation)}
Import, Export, and Convention @nt{pragma}s are representation pragmas
that specify the @i{convention} aspect of representation.
@PDefn2{Term=[aspect of representation], Sec=(imported)}
@Defn2{Term=[imported], Sec=(aspect of representation)}
@PDefn2{Term=[aspect of representation], Sec=(exported)}
@Defn2{Term=[exported], Sec=(aspect of representation)}
In addition, Import and Export @nt{pragma}s specify the
@i{imported} and @i{exported} aspects of representation,
respectively.
@PDefn2{Term=[program unit pragma], Sec=(Import)}
@PDefn2{Term=[pragma, program unit], Sec=(Import)}
@PDefn2{Term=[program unit pragma], Sec=(Export)}
@PDefn2{Term=[pragma, program unit], Sec=(Export)}
@PDefn2{Term=[program unit pragma], Sec=(Convention)}
@PDefn2{Term=[pragma, program unit], Sec=(Convention)}
An interfacing pragma is a program unit pragma
when applied to a program unit
(see @RefSecNum{Pragmas and Program Units}).
@Leading@;An interfacing pragma defines the convention
of the entity denoted by the @nt{local_name}.
The convention represents the calling convention or representation
convention of the entity.
For an access-to-subprogram type, it represents the calling
convention of designated subprograms.
In addition:
@begin{Itemize}
A @nt{pragma} Import specifies that the entity is defined externally (that is,
outside the Ada program).
A @nt{pragma} Export specifies that the entity is used externally.
A @nt{pragma} Import or Export optionally specifies an
entity's external name, link name, or both.
@end{Itemize}
@Defn{external name}
An @i{external name} is a string value for the
name used by a foreign language program either for an
entity that an Ada program imports, or for referring to
an entity that an Ada program exports.
@Defn{link name}
A @i[link name] is a string value for the name of an exported
or imported entity, based on the conventions of the
foreign language's compiler in interfacing with the
system's linker tool.
The meaning of link names is implementation defined.
If neither a link name nor
the Address attribute of an imported or exported entity is specified,
then a link name is chosen in an implementation-defined manner,
based on the external name if one is specified.
@ImplDef{The meaning of link names.}
@begin{Ramification}
For example,
an implementation might always prepend "_",
and then pass it to the system linker.
@end{Ramification}
@ImplDef{The manner of choosing link names when neither the link name
nor the address of an imported or exported entity is specified.}
@begin{Ramification}
Normally, this will be the entity's defining name,
or some simple transformation thereof.
@end{Ramification}
Pragma Linker_Options has the
effect of passing its string argument as a parameter to
the system linker (if one exists), if the immediately
enclosing compilation unit is included in the partition
being linked. The interpretation of the string argument, and the
way in which the string arguments from
multiple Linker_Options pragmas are combined, is implementation
defined.
@ImplDef(The effect of pragma Linker_Options.)
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[elaboration], Sec=(declaration named by a @nt{pragma} Import)}
@Defn{notwithstanding}
Notwithstanding what this International Standard says elsewhere,
the elaboration of a declaration denoted by the
@nt{local_name} of
a @nt{pragma} Import does not create the entity.
Such an elaboration has no other effect than to allow the defining name
to denote the external entity.
@begin{Ramification}
This implies that default initializations are skipped.
(Explicit initializations are illegal.)
For example, an imported access object is @i{not}
initialized to @key[null].
Note that the @nt{local_name}
in a @nt{pragma} Import might denote
more than one declaration; in that case, the entity of all of those
declarations will be the external entity.
@end{Ramification}
@begin{Discussion}
This @lquotes@;notwithstanding@rquotes@; wording is better than saying
@lquotes@;unless named by a @nt{pragma} Import@rquotes@; on every definition of
elaboration.
It says we recognize the contradiction, and this rule takes
precedence.
@end{Discussion}
@end{RunTime}
@begin{Erron}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00320-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
It is the programmer's responsibility to ensure that the use of interfacing
pragmas does not violate Ada semantics; otherwise, program execution is
erroneous.]}
@end{Erron}
@begin{ImplAdvice}
If an implementation supports pragma Export
to a given language, then it should also
allow the main subprogram to be written in that language.
It should support some mechanism for invoking the elaboration of the
Ada library units included in the system, and for invoking the
finalization of the environment task.
On typical systems, the recommended mechanism is to provide two
subprograms whose link names are "adainit" and "adafinal".
Adainit should contain the elaboration code for library units.
Adafinal should contain the finalization code.
These subprograms should have no effect the second and subsequent
time they are called.
@Chg{New=[@Defn{adainit}@Defn{adafinal}@Defn2{Term=[Elaboration],
Sec=[of library units for a foreign language main subprogram]}
@Defn2{Term=[Finalization],
Sec=[of environment task for a foreign language main subprogram]}],
Old=[]}@ChgNote{Presentation AI-00052. Index entries only; no
real change, so no Chgref}
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[If @nt{pragma} Export is supported for a language, the main program should
be able to be written in that language. Subprograms named "adainit" and
"adafinal"
should be provided for elaboration and finalization of the environment task.]}]}
@begin{ramification}
For example, if the main subprogram is written in C,
it can call adainit before the first call to an Ada subprogram,
and adafinal after the last.@end{ramification}
Automatic elaboration of preelaborated packages should be provided
when @nt[pragma] Export is supported.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Automatic elaboration of preelaborated packages should be provided
when @nt[pragma] Export is supported.]}]}
For each supported convention @i[L] other than Intrinsic,
an implementation should support Import and Export @nt{pragma}s for
objects of @i[L]-compatible types and for
subprograms, and @nt(pragma) Convention for @i[L]-eligible
types and for subprograms,
presuming the other language has corresponding features.
@nt(Pragma) Convention need not be supported for scalar types.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[For each supported convention @i[L] other than Intrinsic,
@nt{pragma}s Import and Export should be supported for
objects of @i[L]-compatible types and for
subprograms, and @nt(pragma) Convention should be supported for @i[L]-eligible
types and for subprograms.]}]}
@begin{reason}
Pragma Convention is not necessary for scalar types,
since the language interface packages declare scalar types corresponding
to those provided by the respective foreign languages.
@end[reason]
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
If an implementation supports interfacing to @Chg{Version=[2],New=[the ],
Old=[]}C++@Chg{Version=[2],New=[ entities not supported by
@RefSecNum{Interfacing with C and C++}],Old=[]},
it should do so via the convention identifier C_Plus_Plus
(in additional to any C++-implementation-specific ones).
@end{ImplNote}
@begin{Reason}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
The reason for giving the advice about C++ is to encourage
uniformity among implementations, given that the name of the language is
not syntactically legal as an @nt{identifier}.@Chg{Version=[2],New=[],Old=[
We place this advice in the AARM, rather than the RM95 proper,
because (as of this writing) C++ is not an international standard,
and we don't want to refer to a such a language from an international
standard.]}
@end{Reason}
@end{ImplAdvice}
@begin{Notes}
Implementations may place restrictions on interfacing
pragmas;
for example, requiring each exported entity to be declared
at the library level.
@begin{TheProof}
Arbitrary restrictions are allowed by
@RefSecNum{Operational and Representation Items}.
@end{TheProof}
@begin{Ramification}
Such a restriction might be to disallow them altogether.
Alternatively, the implementation might allow them only for certain
kinds of entities,
or only for certain conventions.
@end{Ramification}
A @nt{pragma} Import specifies the conventions for accessing external
entities. It is possible that the actual entity is written in assembly
language, but reflects the conventions of a particular
language. For example, @key{pragma} Import(Ada, ...) can be used to
interface to an assembly language routine that obeys the
Ada compiler's calling conventions.
To obtain @lquotes@;call-back@rquotes@; to an Ada subprogram from a foreign language
environment, @key(pragma) Convention should be specified both for the
access-to-subprogram type and the specific subprogram(s) to which 'Access
is applied.
It is illegal to specify more than one of
Import, Export, or Convention for a given entity.
The @nt{local_name}
in an interfacing pragma can denote more than one
entity in the case of overloading.
Such a @nt{pragma} applies to all of the denoted entities.
See also @RefSec{Machine Code Insertions}.
@begin{Ramification}
The Intrinsic convention (see @refsecnum(Conformance Rules))
implies that the entity is somehow @lquotes@;built
in@rquotes@; to the implementation.
Thus, it generally does not make sense for users to specify Intrinsic
in a @nt{pragma} Import.
The intention is that only implementations will specify
Intrinsic in a @nt{pragma} Import.
The language also defines certain subprograms to be Intrinsic.
@end{Ramification}
@begin{Discussion}
There are many imaginable interfacing pragmas that don't make any
sense.
For example, setting the Convention of a protected procedure to Ada
is probably wrong.
Rather than enumerating all such cases, however,
we leave it up to implementations to decide what
is sensible.
@end{Discussion}
If both External_Name and Link_Name are specified for an Import
or Export pragma,
then the External_Name is ignored.
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00320-01]}
@ChgDeleted{Version=[2],Text=[An interfacing pragma might result in an effect
that violates Ada semantics.]}
@end{Notes}
@begin{Examples}
@leading@keepnext@i{Example of interfacing pragmas:}
@begin{Example}
@key[package] Fortran_Library @key[is]
@key[function] Sqrt (X : Float) @key[return] Float;
@key[function] Exp (X : Float) @key[return] Float;
@key[private]
@key[pragma] Import(Fortran, Sqrt);
@key[pragma] Import(Fortran, Exp);
@key[end] Fortran_Library;
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
Interfacing pragmas are new to Ada 95.
Pragma Import replaces Ada 83's pragma Interface.
Existing implementations can continue to support pragma Interface for
upward compatibility.
@end{Extend83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0058],ARef=[AI95-00036-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that @nt{pragma}s
Import and Export work like a subprogram call; parameters cannot be
omitted unless named notation is used. (Reordering is still not permitted,
however.)]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00320-01]}
@ChgAdded{Version=[2],Text=[Added wording to say all bets are off if
foreign code doesn't follow the semantics promised by the Ada
specifications.]}
@end{DiffWord95}
@LabeledClause{The Package Interfaces}
@begin{Intro}
Package Interfaces is the parent of several library
packages that declare types and other entities useful for
interfacing to foreign languages.
It also contains some implementation-defined
types that are useful across more than one language
(in particular for interfacing to assembly
language).
@ImplDef{The contents of the visible part of package Interfaces
and its language-defined descendants.}
@end{Intro}
@begin{StaticSem}
@Leading@Keepnext@;The library package Interfaces has the following skeletal declaration:
@begin{Example}
@RootLibUnit{Interfaces}
@key[package] Interfaces @key[is]
@key[pragma] Pure(Interfaces);
@key[type] Integer_@RI{n} @key[is] @key[range] -2**(@RI{n}-1) .. 2**(@RI{n}-1) - 1; --@RI{2's complement}
@key[type] Unsigned_@RI{n} @key[is] @key[mod] 2**@RI{n};
@key[function] Shift_Left (Value : Unsigned_@RI{n}; Amount : Natural)
@key[return] Unsigned_@RI{n};
@key[function] Shift_Right (Value : Unsigned_@RI{n}; Amount : Natural)
@key[return] Unsigned_@RI{n};
@key[function] Shift_Right_Arithmetic (Value : Unsigned_@RI{n}; Amount : Natural)
@key[return] Unsigned_@RI{n};
@key[function] Rotate_Left (Value : Unsigned_@RI{n}; Amount : Natural)
@key[return] Unsigned_@RI{n};
@key[function] Rotate_Right (Value : Unsigned_@RI{n}; Amount : Natural)
@key[return] Unsigned_@RI{n};
...
@key[end] Interfaces;
@end{Example}
@end{StaticSem}
@begin{ImplReq}
@Leading@;An implementation shall provide the following declarations in the
visible part of package Interfaces:
@begin{Itemize}
Signed and modular integer types of @i{n} bits,
if supported by the target architecture,
for each @i{n} that is at least the size
of a storage element and that is a factor of the word size.
The names of these types are of the form Integer_@i{n} for the
signed types, and Unsigned_@i{n} for the modular types;
@begin{Ramification}
For example, for a typical 32-bit machine the corresponding
types might be Integer_8, Unsigned_8,
Integer_16, Unsigned_16,
Integer_32, and Unsigned_32.
The wording above implies, for example, that Integer_16'Size =
Unsigned_16'Size = 16.
Unchecked conversions between same-Sized types will work as
expected.
@end{Ramification}
@Defn{shift}@Defn{rotate}
For each such modular type in Interfaces,
shifting and rotating subprograms as specified in the declaration of
Interfaces above.
These subprograms are Intrinsic.
They operate on a bit-by-bit basis,
using the binary representation of the
value of the operands
to yield a binary representation for the result.
The Amount parameter gives the number of bits by which to shift
or rotate.
For shifting, zero bits are shifted in, except in the case of
Shift_Right_Arithmetic, where one bits are shifted in if Value is
at least half the modulus.
@begin{Reason}
We considered making shifting and rotating be primitive operations of
all modular types.
However, it is a design principle of Ada that all predefined operations
should be operators (not functions named by identifiers).
(Note that an early version of Ada had "@key[abs]" as an identifier,
but it was changed to a reserved word operator before standardization of
Ada 83.)
This is important because the implicit declarations would hide
non-overloadable declarations with the same name,
whereas operators are always overloadable.
Therefore, we would have had to make shift and rotate
into reserved words,
which would have been upward incompatible,
or else invent new operator symbols,
which seemed like too much mechanism.
@end{Reason}
Floating point types corresponding to each floating point format
fully supported by the hardware.
@begin{ImplNote}
The names for these floating point types are not specified.
@Defn{IEEE floating point arithmetic}
However, if IEEE arithmetic is supported, then the names
should be IEEE_Float_32 and IEEE_Float_64 for single and double
precision, respectively.
@end{ImplNote}
@end{Itemize}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00204-01]}
@ChgAdded{Version=[2],Text=[Support for interfacing to any foreign language is
optional. However, an implementation shall not provide any attribute, library
unit, or pragma having the same name as an attribute, library unit, or pragma
(respectively) specified in the following clauses of this Annex unless the
provided construct is either as specified in those clauses or is more limited
in capability than that required by those clauses. A program that attempts to
use an unsupported capability of this Annex shall either be identified by the
implementation before run time or shall raise an exception at run time.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The intent is that the same rules apply for
language interfacing as apply for Specialized Needs Annexes. See
@RefSecNum{Conformity of an Implementation with the Standard} for a
discussion of the purpose of these rules.]}
@end{Discussion}
@end{ImplReq}
@begin{ImplPerm}
An implementation may provide implementation-defined library units
that are children of Interfaces,
and may add declarations to the visible part of Interfaces
in addition to the ones defined above.
@ChgImplDef{Version=[2],Kind=[Revised],Text=[Implementation-defined
children of package Interfaces.@Chg{Version=[2],New=[],Old=[ The
contents of the visible part of package Interfaces.]}]}
@ChgNote{The latter sentence is given previously!}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00204-01]}
@ChgAdded{Version=[2],Text=[A child package of package Interfaces with the name
of a convention may be provided independently of whether the convention is
supported by the pragma Convention and vice versa. Such a child package should
contain any declarations that would be useful for interfacing to the language
(implementation) represented by the convention. Any declarations useful for
interfacing to any language on the given hardware architecture should be
provided directly in Interfaces.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}@ChgNote{Moved from below}
@ChgAdded{Version=[2],Text=[For example, package Interfaces.XYZ_Pascal might
contain declarations of types that match the data types provided by the XYZ
implementation of Pascal, so that it will be more convenient to pass
parameters to a subprogram whose convention is XYZ_Pascal.]}
@end{Ramification}
@end{ImplPerm}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00204-01]}
@ChgDeleted{Version=[2],Text=[For each implementation-defined convention
identifier, there should be a child package of
package Interfaces with the corresponding name.
This package should contain any declarations that would be useful for
interfacing to the language (implementation) represented by the convention.
Any declarations useful for interfacing to any language on the
given hardware architecture should be provided directly in Interfaces.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[For example, package Interfaces.XYZ_Pascal might contain
declarations of types that match the data types provided by the
XYZ implementation of Pascal,
so that it will be more convenient to pass parameters to a subprogram
whose convention is XYZ_Pascal.]}
@end{Ramification}
An implementation supporting an interface to C, COBOL, or Fortran
should provide the corresponding
package or packages described in the following clauses.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[If an interface to C, COBOL, or Fortran is provided, the corresponding
package or packages described in @RefSec{Interface to Other Languages}
should also be provided.]}]}
@begin{ImplNote}
@Leading@;The intention is that an implementation might support several
implementations of the foreign language: Interfaces.This_Fortran and
Interfaces.That_Fortran might both exist.
The @lquotes@;default@rquotes@; implementation, overridable by the user,
should be declared as a renaming:
@begin{Example}
@key[package] Interfaces.Fortran @key[renames] Interfaces.This_Fortran;
@end{Example}
@end{ImplNote}
@end{ImplAdvice}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00204-01]}
@ChgAdded{Version=[2],Text=[Clarified that interfacing to foreign languages
is optional and has the same restrictions as a Specialized Needs Annex.]}
@end{DiffWord95}
@LabeledRevisedClause{Version=[2],New=[Interfacing with C and C++],
Old=[Interfacing with C]}
@begin{Intro}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00376-01]}
@Defn{interface to C}
@Defn{C interface}
The facilities relevant to interfacing with
the C language @Chg{Version=[2],New=[and the corresponding subset of
the C++ language ],Old=[]}are the package Interfaces.C and its children;
@Chg{New=[],Old=[and ]}support for the Import, Export, and
Convention pragmas with @i{convention}_@nt{identifier}
C@Chg{New=[; and support for the Convention pragma with
@i{convention}_@nt{identifier} C_Pass_By_Copy],Old=[]}.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00376-01]}
The package Interfaces.C contains the basic types, constants and
subprograms that allow an Ada program to pass scalars and strings to C
@Chg{Version=[2],New=[and C++ ],Old=[]}functions.@Chg{Version=[2],New=[ When
this clause mentions a C entity,
the reference also applies to the corresponding entity in C++.],Old=[]}
@end{Intro}
@begin{StaticSem}
@Leading@Keepnext@;The library package Interfaces.C has the following declaration:
@begin{Example}
@key(package) Interfaces.C @key(is)@ChildUnit{Parent=[Interfaces],Child=[C]}
@key(pragma) Pure(C);
@RI{-- Declarations based on C's <limits.h>}
@AdaObjDefn{CHAR_BIT} : @key(constant) := @RI{implementation-defined}; @RI{-- typically 8}
@AdaObjDefn{SCHAR_MIN} : @key(constant) := @RI{implementation-defined}; @RI{-- typically @en@;128}
@AdaObjDefn{SCHAR_MAX} : @key(constant) := @RI{implementation-defined}; @RI{-- typically 127}
@AdaObjDefn{UCHAR_MAX} : @key(constant) := @RI{implementation-defined}; @RI{-- typically 255}
@RI{-- Signed and Unsigned Integers}
@key(type) @AdaTypeDefn{int} @key(is) @key(range) @RI{implementation-defined};
@key(type) @AdaTypeDefn{short} @key(is) @key(range) @RI{implementation-defined};
@key(type) @AdaTypeDefn{long} @key(is) @key(range) @RI{implementation-defined};
@key(type) @AdaTypeDefn{signed_char} @key(is) @key(range) SCHAR_MIN .. SCHAR_MAX;
@key(for) signed_char'Size @key(use) CHAR_BIT;
@key(type) @AdaTypeDefn{unsigned} @key(is) @key(mod) @RI{implementation-defined};
@key(type) @AdaTypeDefn{unsigned_short} @key(is) @key(mod) @RI{implementation-defined};
@key(type) @AdaTypeDefn{unsigned_long} @key(is) @key(mod) @RI{implementation-defined};
@key(type) @AdaTypeDefn{unsigned_char} @key(is) @key(mod) (UCHAR_MAX+1);
@key(for) unsigned_char'Size @key(use) CHAR_BIT;
@key(subtype) @AdaTypeDefn{plain_char} @key(is) @RI{implementation-defined};
@key(type) @AdaTypeDefn{ptrdiff_t} @key(is) @key(range) @RI{implementation-defined};
@key(type) @AdaTypeDefn{size_t} @key(is) @key(mod) @RI{implementation-defined};
@RI{-- Floating Point}
@key(type) @AdaTypeDefn{C_float} @key(is) @key(digits) @RI{implementation-defined};
@key(type) @AdaTypeDefn{double} @key(is) @key(digits) @RI{implementation-defined};
@key(type) @AdaTypeDefn{long_double} @key(is) @key(digits) @RI{implementation-defined};
@RI{-- Characters and Strings }
@key(type) @AdaTypeDefn{char} @key(is) @RI{<implementation-defined character type>};
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0060],ARef=[AI95-00037-01]}
@AdaObjDefn{nul} : @key(constant) char := @Chg{New=[@RI{implementation-defined}],Old=[char'First]};
@key[function] @AdaSubDefn{To_C} (Item : @key[in] Character) @key[return] char;
@key[function] @AdaSubDefn{To_Ada} (Item : @key[in] char) @key[return] Character;
@key(type) @AdaTypeDefn{char_array} @key(is) @key(array) (size_t @key(range) <>) @key(of) @key[aliased] char;
@key[pragma] Pack(char_array);
@key(for) char_array'Component_Size @key(use) CHAR_BIT;
@key(function) @AdaSubDefn{Is_Nul_Terminated} (Item : @key(in) char_array) @key(return) Boolean;
@key(function) @AdaSubDefn{To_C} (Item : @key(in) String;
Append_Nul : @key(in) Boolean := True)
@key(return) char_array;
@key(function) @AdaSubDefn{To_Ada} (Item : @key(in) char_array;
Trim_Nul : @key(in) Boolean := True)
@key(return) String;
@key(procedure) @AdaSubDefn{To_C} (Item : @key(in) String;
Target : @key(out) char_array;
Count : @key(out) size_t;
Append_Nul : @key(in) Boolean := True);
@key(procedure) @AdaSubDefn{To_Ada} (Item : @key(in) char_array;
Target : @key(out) String;
Count : @key(out) Natural;
Trim_Nul : @key(in) Boolean := True);
@RI{-- Wide Character and Wide String}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0060],ARef=[AI95-00037-01]}
@key(type) @AdaTypeDefn{wchar_t} @key(is) @Chg{New=[@RI{<implementation-defined character type>}],
Old=[@RI{implementation-defined}]};
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0060],ARef=[AI95-00037-01]}
@AdaObjDefn{wide_nul} : @key(constant) wchar_t := @Chg{New=[@RI{implementation-defined}],Old=[wchar_t'First]};
@key(function) @AdaSubDefn{To_C} (Item : @key(in) Wide_Character) @key(return) wchar_t;
@key(function) @AdaSubDefn{To_Ada} (Item : @key(in) wchar_t ) @key(return) Wide_Character;
@key(type) @AdaTypeDefn{wchar_array} @key(is) @key(array) (size_t @key(range) <>) @key(of) @key(aliased) wchar_t;
@key(pragma) Pack(wchar_array);
@key(function) @AdaSubDefn{Is_Nul_Terminated} (Item : @key(in) wchar_array) @key(return) Boolean;
@key(function) @AdaSubDefn{To_C} (Item : @key(in) Wide_String;
Append_Nul : @key(in) Boolean := True)
@key(return) wchar_array;
@key(function) @AdaSubDefn{To_Ada} (Item : @key(in) wchar_array;
Trim_Nul : @key(in) Boolean := True)
@key(return) Wide_String;
@key(procedure) @AdaSubDefn{To_C} (Item : @key(in) Wide_String;
Target : @key(out) wchar_array;
Count : @key(out) size_t;
Append_Nul : @key(in) Boolean := True);
@key(procedure) @AdaSubDefn{To_Ada} (Item : @key(in) wchar_array;
Target : @key(out) Wide_String;
Count : @key(out) Natural;
Trim_Nul : @key(in) Boolean := True);
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Text=[ -- @RI[ISO/IEC 10646:2003 compatible types defined by ISO/IEC TR 19769:2004.]]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{char16_t} @key<is> @RI{<implementation-defined character type>};]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @AdaObjDefn{char16_nul} : @key<constant> char16_t := @RI{implementation-defined};]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{To_C} (Item : @key<in> Wide_Character) @key<return> char16_t;
@key<function> @AdaSubDefn{To_Ada} (Item : @key<in> char16_t) @key<return> Wide_Character;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{char16_array} @key<is array> (size_t @key<range> <>) @key<of aliased> char16_t;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<pragma> Pack(char16_array);]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Is_Nul_Terminated} (Item : @key<in> char16_array) @key<return> Boolean;
@key<function> @AdaSubDefn{To_C} (Item : @key<in> Wide_String;
Append_Nul : @key<in> Boolean := True)
@key<return> char16_array;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{To_Ada} (Item : @key<in> char16_array;
Trim_Nul : @key<in> Boolean := True)
@key<return> Wide_String;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{To_C} (Item : @key<in> Wide_String;
Target : @key<out> char16_array;
Count : @key<out> size_t;
Append_Nul : @key<in> Boolean := True);]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{To_Ada} (Item : @key<in> char16_array;
Target : @key<out> Wide_String;
Count : @key<out> Natural;
Trim_Nul : @key<in> Boolean := True);]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{char32_t} @key<is> @RI{<implementation-defined character type>};]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @AdaObjDefn{char32_nul} : @key<constant> char32_t := @RI{implementation-defined};]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{To_C} (Item : @key<in> Wide_Wide_Character) @key<return> char32_t;
@key<function> @AdaSubDefn{To_Ada} (Item : @key<in> char32_t) @key<return> Wide_Wide_Character;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{char32_array} @key<is array> (size_t @key<range> <>) @key<of aliased> char32_t;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<pragma> Pack(char32_array);]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{Is_Nul_Terminated} (Item : @key<in> char32_array) @key<return> Boolean;
@key<function> @AdaSubDefn{To_C} (Item : @key<in> Wide_Wide_String;
Append_Nul : @key<in> Boolean := True)
@key<return> char32_array;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<function> @AdaSubDefn{To_Ada} (Item : @key<in> char32_array;
Trim_Nul : @key<in> Boolean := True)
@key<return> Wide_Wide_String;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{To_C} (Item : @key<in> Wide_Wide_String;
Target : @key<out> char32_array;
Count : @key<out> size_t;
Append_Nul : @key<in> Boolean := True);]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{To_Ada} (Item : @key<in> char32_array;
Target : @key<out> Wide_Wide_String;
Count : @key<out> Natural;
Trim_Nul : @key<in> Boolean := True);]}
@AdaExcDefn{Terminator_Error} : @key(exception);
@key(end) Interfaces.C;
@end{Example}
@ChgImplDef{Version=[2],Kind=[Added],Text=[@Chg{New=[The definitions of
@Chg{Version=[2],New=[certain ],Old=[]}types and constants in
Interfaces.C.],Old=[]}]}
Each of the types declared in Interfaces.C is C-compatible.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01]}
The types int, short, long, unsigned,
ptrdiff_t, size_t, double,
char, @Chg{Version=[2],New=[],Old=[and ]}wchar_t@Chg{Version=[2],New=[,
char16_t, and char32_t],Old=[]}
correspond respectively to the C types having the same names.
The types signed_char, unsigned_@!short, unsigned_@!long, unsigned_@!char,
C_float, and long_@!double correspond respectively
to the C types signed char,
unsigned short, unsigned long, unsigned char, float, and long double.
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The C types wchar_t and char16_t seem to be the
same. However, wchar_t has an implementation-defined size, whereas
char16_t is guaranteed to be an unsigned type of at least 16
bits. Also, char16_t and char32_t are encouraged to have UTF-16 and UTF-32
representations; that means that they are not directly the same as the Ada
types, which most likely don't use any UTF encoding.]}
@end{Discussion}
@Trailing@;The type of the subtype plain_char is either signed_char or
unsigned_char, depending on the C implementation.
@begin{DescribeCode}
@begin{Example}@Keepnext
@key(function) To_C (Item : @key(in) Character) @key(return) char;
@key(function) To_Ada (Item : @key(in) char ) @key(return) Character;
@end{Example}
@Trailing@;The functions To_C and To_Ada map between the Ada type Character
and the C type char.
@begin{ImplNote}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0114],ARef=[AI95-00038-01]}
@ChgAdded{Version=[1],Text=[The To_C and To_Ada functions map between
corresponding characters, not necessarily between characters with the same
internal representation. Corresponding characters are characters defined by the
same enumeration literal, if such exist; otherwise, the correspondence
is unspecified.@PDefn{Unspecified}]}
@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Type=[Leading],Text=[The following definition is
equivalent to the above summary:]}
@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Text=[@f{To_C (Latin_1_Char) = char'Value(Character'Image(Latin_1_Char))}@*
provided that char'Value does not raise an exception; otherwise the result
is unspecified.]}
@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Text=[@f{To_Ada (Native_C_Char) = Character'Value(char'Image(Native_C_Char))}@*
provided that Character'Value does not raise an exception;
otherwise the result is unspecified.]}
@end{ImplNote}
@begin{Example}@Keepnext
@key(function) Is_Nul_Terminated (Item : @key(in) char_array) @key(return) Boolean;
@end{Example}
@Trailing@;The result of Is_Nul_Terminated is True if Item contains nul, and is
False otherwise.
@begin{Example}@Keepnext
@key(function) To_C (Item : @key(in) String; Append_Nul : @key(in) Boolean := True)
@key(return) char_array;
@Comment{Blank line}
@key(function) To_Ada (Item : @key(in) char_array; Trim_Nul : @key(in) Boolean := True)
@key(return) String;
@end{Example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00258-01]}
The result of To_C is a char_array value of length Item'Length (if
Append_Nul is False) or Item'Length+1 (if Append_Nul is True).
The lower bound is 0.
For each component Item(I), the corresponding component in the result
is To_C applied to Item(I).
The value nul is appended if Append_Nul is True.@Chg{Version=[2],New=[ If
Append_Nul is False and Item'Length is 0, then To_C propagates
Constraint_Error.],Old=[]}
@Trailing@;The result of To_Ada is a String whose length is Item'Length (if Trim_Nul is
False) or the length of the slice of Item preceding the first
nul (if Trim_Nul is True). The lower bound of the result is 1.
If Trim_Nul is False, then for each component Item(I)
the corresponding component in the result
is To_Ada applied to Item(I).
If Trim_Nul is True, then for each component Item(I) before
the first nul the corresponding component in the result
is To_Ada applied to Item(I).
The function propagates Terminator_Error if Trim_Nul is True and
Item does not contain nul.
@begin{Example}@Keepnext
@key(procedure) To_C (Item : @key(in) String;
Target : @key(out) char_array;
Count : @key(out) size_t;
Append_Nul : @key(in) Boolean := True);
@Comment{Blank line}
@key(procedure) To_Ada (Item : @key(in) char_array;
Target : @key(out) String;
Count : @key(out) Natural;
Trim_Nul : @key(in) Boolean := True);
@end{Example}
For procedure To_C, each element of Item is converted (via the To_C function)
to a char, which is assigned to the corresponding element
of Target. If Append_Nul is True, nul
is then assigned to the next
element of Target. In either case, Count is set to the
number of Target elements assigned.
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
If Target is not long enough, Constraint_Error is propagated.
@Trailing@;For procedure To_Ada, each element of Item (if Trim_Nul is False) or
each element of Item preceding the first nul (if Trim_Nul is True) is
converted (via the To_Ada function) to a Character, which is
assigned to the corresponding element of Target. Count
is set to the number of Target elements assigned.
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
If Target is not long enough, Constraint_Error is propagated.
If Trim_Nul is True and Item does not contain nul,
then Terminator_Error is propagated.
@begin{Example}@Keepnext
@key(function) Is_Nul_Terminated (Item : @key(in) wchar_array) @key(return) Boolean;
@end{Example}
@Trailing@;The result of Is_Nul_Terminated is True if Item contains wide_nul,
and is False otherwise.
@begin{Example}@Keepnext
@key(function) To_C (Item : @key(in) Wide_Character) @key(return) wchar_t;
@key(function) To_Ada (Item : @key(in) wchar_t ) @key(return) Wide_Character;
@end{Example}
@Trailing@;To_C and To_Ada provide the mappings between the Ada and C wide
character types.
@begin{Example}
@key(function) To_C (Item : @key(in) Wide_String;
Append_Nul : @key(in) Boolean := True)
@key(return) wchar_array;
@Comment{Blank line}
@key(function) To_Ada (Item : @key(in) wchar_array;
Trim_Nul : @key(in) Boolean := True)
@key(return) Wide_String;
@Comment{Blank line}
@key(procedure) To_C (Item : @key(in) Wide_String;
Target : @key(out) wchar_array;
Count : @key(out) size_t;
Append_Nul : @key(in) Boolean := True);
@Comment{Blank line}
@key(procedure) To_Ada (Item : @key(in) wchar_array;
Target : @key(out) Wide_String;
Count : @key(out) Natural;
Trim_Nul : @key(in) Boolean := True);
@end{Example}
The To_C and To_Ada subprograms that convert between Wide_String and
wchar_array have analogous effects to the To_C and To_Ada
subprograms that convert between String and char_array, except that
wide_nul is used instead of nul.
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],KeepNext=[T],Text=[@key<function> Is_Nul_Terminated (Item : @key<in> char16_array) @key<return> Boolean;]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[The result of Is_Nul_Terminated is True if Item contains char16_nul,
and is False otherwise.]}
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],KeepNext=[T],Text=[@key<function> To_C (Item : @key<in> Wide_Character) @key<return> char16_t;
@key<function> To_Ada (Item : @key<in> char16_t ) @key<return> Wide_Character;]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[To_C and To_Ada provide mappings
between the Ada and C 16-bit character types.]}
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@key<function> To_C (Item : @key<in> Wide_String;
Append_Nul : @key<in> Boolean := True)
@key<return> char16_array;
@Comment{Blank line}
@key<function> To_Ada (Item : @key<in> char16_array;
Trim_Nul : @key<in> Boolean := True)
@key<return> Wide_String;
@Comment{Blank line}
@key<procedure> To_C (Item : @key<in> Wide_String;
Target : @key<out> char16_array;
Count : @key<out> size_t;
Append_Nul : @key<in> Boolean := True);
@Comment{Blank line}
@key<procedure> To_Ada (Item : @key<in> char16_array;
Target : @key<out> Wide_String;
Count : @key<out> Natural;
Trim_Nul : @key<in> Boolean := True);]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[The To_C and To_Ada subprograms that
convert between Wide_String and char16_array have analogous effects to the To_C
and To_Ada subprograms that convert between String and char_array, except that
char16_nul is used instead of nul.]}
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],KeepNext=[T],Text=[@key<function> Is_Nul_Terminated (Item : @key<in> char32_array) @key<return> Boolean;]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[The result of Is_Nul_Terminated is
True if Item contains char16_nul, and is False otherwise.]}
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],KeepNext=[T],Text=[@key<function> To_C (Item : @key<in> Wide_Wide_Character) @key<return> char32_t;
@key<function> To_Ada (Item : @key<in> char32_t ) @key<return> Wide_Wide_Character;]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[To_C and To_Ada provide mappings
between the Ada and C 32-bit character types.]}
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@key<function> To_C (Item : @key<in> Wide_Wide_String;
Append_Nul : @key<in> Boolean := True)
@key<return> char32_array;
@Comment{Blank line}
@key<function> To_Ada (Item : @key<in> char32_array;
Trim_Nul : @key<in> Boolean := True)
@key<return> Wide_Wide_String;
@Comment{Blank line}
@key<procedure> To_C (Item : @key<in> Wide_Wide_String;
Target : @key<out> char32_array;
Count : @key<out> size_t;
Append_Nul : @key<in> Boolean := True);
@Comment{Blank line}
@key<procedure> To_Ada (Item : @key<in> char32_array;
Target : @key<out> Wide_Wide_String;
Count : @key<out> Natural;
Trim_Nul : @key<in> Boolean := True);]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Type=[Trailing],Text=[The To_C and To_Ada subprograms
that convert between Wide_Wide_String and char32_array have analogous effects
to the To_C and To_Ada subprograms that convert between String and char_array,
except that char32_nul is used instead of nul.]}
@begin{Discussion}
The Interfaces.C package provides an implementation-defined character type,
char, designed to model the C run-time character set, and mappings
between the types char and Character.
@Leading@;One application of the C interface package is
to compose a C string and pass it to a C function.
One way to do this is for the programmer to declare an
object that will hold the C array, and then pass this array to the C
function. This is realized via the type char_array:
@begin{Example}
@key(type) char_array @key(is) @key(array) (size_t @key(range) <>) of Char;
@end{Example}
The programmer can declare an Ada String, convert it to a char_array, and
pass the char_array as actual parameter to the C function that is expecting
a char *.
An alternative approach is for the programmer to obtain a C char pointer
from an Ada String (or from a char_array) by invoking an allocation
function. The package Interfaces.C.Strings (see below) supplies
the needed facilities, including a
private type chars_ptr that corresponds to C's
char *, and two allocation functions. To avoid storage
leakage, a Free procedure releases the storage that was
allocated by one of these allocate functions.
It is typical for a C function that deals with strings to adopt the
convention that the string is delimited by a nul char. The C interface
packages support this convention. A constant nul of type Char is declared,
and the function Value(Chars_Ptr) in Interfaces.C.Strings
returns a char_array up to and including
the first nul in the array that the chars_ptr points to. The Allocate_Chars
function allocates an array that is nul terminated.
Some C functions that deal with strings take an explicit length as a
parameter, thus allowing strings to be passed that contain nul as
a data element. Other C functions take an explicit length that is
an upper bound: the prefix of the string up to the char before nul,
or the prefix of the given length, is used by the
function, whichever is shorter.
The C Interface packages support calling such functions.
@end{Discussion}
@end{DescribeCode}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgAdded{Version=[1],Text=[A Convention pragma with @i{convention}_@nt{identifier}
C_Pass_By_Copy shall only be applied to a type.]}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgRef{Version=[2],Kind=[RevisedAdded],ARef=[AI95-00216-01]}
@ChgAdded{Version=[1],Text=[The eligibility rules in @RefSecNum(Interfacing Pragmas) do not apply
to convention C_Pass_By_Copy. Instead, a type T is eligible for convention
C_Pass_By_Copy @Chg{Version=[2],New=[if T is an unchecked union type or ],
Old=[]}if T is a record type that has no discriminants and that only
has components with statically constrained subtypes, and each component is
C-compatible.]}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgAdded{Version=[1],Text=[If a type is C_Pass_By_Copy-compatible then it is
also C-compatible.]}
@end{StaticSem}
@begin{ImplReq}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0059],ARef=[AI95-00131-01]}
An implementation shall support pragma Convention
with a C @i{convention}_@nt{identifier} for a
C-eligible type (see @refsecnum(Interfacing Pragmas))@Chg{New=[. An
implementation shall support pragma Convention with a C_Pass_By_Copy
@i{convention}_@nt{identifier} for a C_Pass_By_Copy-eligible type.],Old=[]}
@end{ImplReq}
@begin{ImplPerm}
An implementation may provide additional declarations in the C
interface packages.
@end{ImplPerm}
@begin{ImplAdvice}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0060],ARef=[AI95-00037-01]}
@ChgRef{Version=[2],Kind=[RevisedAdded],ARef=[AI95-00285-01]}
@ChgAdded{Version=[1],Text=[The constants nul@Chg{Version=[2],New=[,],Old=[ and]}
wide_nul@Chg{Version=[2],New=[, char16_nul, and char32_nul],Old=[]} should
have a representation of zero.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The constants nul, wide_nul, char16_nul, and char32_nul in package
Interfaces.C should have a representation of zero.]}]}
An implementation should support the following interface
correspondences between Ada and C.
@begin[itemize]
An Ada procedure corresponds to
a void-returning C function.
@begin{discussion}
The programmer can also choose an Ada procedure when
the C function returns an int that is to be discarded.@end{discussion}
An Ada function corresponds to a non-void C function.
An Ada @key[in] scalar parameter is passed as a scalar argument to a C function.
An Ada @key[in] parameter of an access-to-object type with designated
type T is passed as a t* argument to a C function, where t is the C type
corresponding to the Ada type T.
An Ada @key[access] T parameter,
or an Ada @key[out] or @key[in out] parameter of an elementary type T,
is passed as a t* argument
to a C function, where t is the C type corresponding to the
Ada type T. In the case of an elementary @key[out] or @key[in out]
parameter, a pointer to a temporary copy is used to preserve
by-copy semantics.
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgRef{Version=[2],Kind=[RevisedAdded],ARef=[AI95-00343-01]}
@ChgAdded{Version=[1],Text=[An Ada parameter of a @Chg{Version=[2],
New=[(record) type T of convention ],Old=[]}C_Pass_By_Copy@Chg{Version=[2],
New=[],Old=[-compatible (record) type T]}, of
mode @key{in}, is passed as a t argument to a C function, where t is the
C struct corresponding to the Ada type T.]}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00343-01]}
An Ada parameter of a record type T, of any mode,
@Chg{New=[other than an @key{in} parameter of a @Chg{Version=[2],
New=[type of convention ],Old=[]}C_Pass_By_Copy@Chg{Version=[2],
New=[],Old=[-compatible type]},],Old=[]}
is passed as a t* argument to a C function, where t is the
C struct corresponding to the Ada type T.
An Ada parameter of an array type with component type
T, of any mode, is passed as a t* argument to a
C function, where t is the C type corresponding to the
Ada type T.
An Ada parameter of an access-to-subprogram type
is passed as a pointer to a
C function whose prototype corresponds to the designated subprogram's
specification.
@end[itemize]
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00337-01]}
@ChgAdded{Version=[2],Text=[An Ada parameter of a private type is passed
as specified for the full view of the type.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If C interfacing is supported, the interface correspondences between Ada
and C should be supported.]}]}
@end{ImplAdvice}
@begin{Notes}
Values of type char_array are not implicitly terminated with nul.
If a char_array is to be passed as a parameter to an imported
C function requiring nul termination, it is the programmer's
responsibility to obtain this effect.
To obtain the effect of C's sizeof(item_type),
where Item_Type is the corresponding Ada type,
evaluate the expression: size_t(Item_Type'Size/CHAR_BIT).
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00216-01]}
@ChgDeleted{Version=[2],Text=[There is no explicit support for C's union types.
Unchecked conversions can be used to obtain
the effect of C unions.]}
A C function that takes a variable number of arguments
can correspond to several Ada subprograms, taking various
specific numbers and types of parameters.
@end{Notes}
@begin{Examples}
@Leading@Keepnext@i{Example of using the Interfaces.C package:}
@begin{Example}
@RI{--Calling the C Library Function strcpy}
@key(with) Interfaces.C;
@key(procedure) Test @key(is)
@key(package) C @key(renames) Interfaces.C;
@key(use) @key(type) C.char_array;
@RI{-- Call <string.h>strcpy:}
@RI{-- C definition of strcpy: char *strcpy(char *s1, const char *s2);}
@RI{-- This function copies the string pointed to by s2 (including the terminating null character)}
@RI{-- into the array pointed to by s1. If copying takes place between objects that overlap, }
@RI{-- the behavior is undefined. The strcpy function returns the value of s1.}
@RI{-- Note: since the C function's return value is of no interest, the Ada interface is a procedure}
@key(procedure) Strcpy (Target : @key(out) C.char_array;
Source : @key(in) C.char_array);
@key(pragma) Import(C, Strcpy, "strcpy");
Chars1 : C.char_array(1..20);
Chars2 : C.char_array(1..20);
@key(begin)
Chars2(1..6) := "qwert" & C.nul;
Strcpy(Chars1, Chars2);
@RI{-- Now Chars1(1..6) = "qwert" & C.Nul}
@key(end) Test;
@end{Example}
@end{Examples}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00285-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
Types char16_t and char32_t and their related
types and operations are newly added to Interfaces.C. If Interfaces.C is
referenced in a @nt{use_clause}, and an entity @i<E> with the same
@nt{defining_identifier} as a new entity in Interfaces.C is defined in a
package that is also referenced in a @nt{use_clause}, the entity @i<E> may no
longer be use-visible, resulting in errors. This should be rare and is easily
fixed if it does occur.]}
@end{Incompatible95}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0059],ARef=[AI95-00131-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
@b<Corrigendum:> Convention C_Pass_By_Copy is new.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0060],ARef=[AI95-00037-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified the intent for
Nul and Wide_Nul.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[Specified that an unchecked union type (see
@RefSecNum{Pragma Unchecked_Union}) is eligible for convention
C_Pass_By_Copy.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00258-01]}
@ChgAdded{Version=[2],Text=[Specified what happens if the To_C function
tries to return a null string.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00337-01]}
@ChgAdded{Version=[2],Text=[Clarified that the interface correspondences
also apply to private types whose full types have the specified
characteristics.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00343-01]}
@ChgAdded{Version=[2],Text=[Clarified that a type must have convention
C_Pass_By_Copy in order to be passed by copy (not just a type that could
have that convention).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00376-01]}
@ChgAdded{Version=[2],Text=[Added wording to make it clear that these
facilities can also be used with C++.]}
@end{DiffWord95}
@LabeledSubClause{The Package Interfaces.C.Strings}
@begin{Intro}
The package Interfaces.C.Strings declares types and subprograms
allowing an Ada program to allocate, reference, update, and free C-style
strings.
In particular, the private type chars_ptr
corresponds to a common
use of @lquotes@;char *@rquotes@; in C programs, and an object of this type can be
passed to a subprogram to which @nt(pragma) Import(C,...) has been applied,
and for which @lquotes@;char *@rquotes@;
is the type of the argument of the C function.
@end{Intro}
@begin{StaticSem}
@Leading@;The library package Interfaces.C.Strings has the following
declaration:
@begin{example}
@key(package) Interfaces.C.Strings @key(is)@ChildUnit{Parent=[Interfaces.C],Child=[Strings]}
@key[pragma] Preelaborate(Strings);
@key(type) @AdaTypeDefn{char_array_access} @key(is) @key(access) @key(all) char_array;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00161-01]}
@key(type) @AdaTypeDefn{chars_ptr} @key(is) @key(private);@Chg{Version=[2],New=[
@key(pragma) Preelaborable_Initialization(chars_ptr);],Old=[]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00276-01]}
@key(type) @AdaTypeDefn{chars_ptr_array} @key(is) @key(array) (size_t @key(range) <>) @key(of) @Chg{Version=[2],New=[@key(aliased) ],Old=[]}chars_ptr;
@AdaObjDefn{Null_Ptr} : @key(constant) chars_ptr;
@key(function) @AdaSubDefn{To_Chars_Ptr} (Item : @key(in) char_array_access;
Nul_Check : @key(in) Boolean := False)
@key(return) chars_ptr;
@key(function) @AdaSubDefn{New_Char_Array} (Chars : @key(in) char_array) @key(return) chars_ptr;
@key(function) @AdaSubDefn{New_String} (Str : @key(in) String) @key(return) chars_ptr;
@key(procedure) @AdaSubDefn{Free} (Item : @key(in) @key(out) chars_ptr);
@AdaSubDefn{Dereference_Error} : @key(exception);
@key(function) @AdaSubDefn{Value} (Item : @key(in) chars_ptr) @key(return) char_array;
@key(function) @AdaSubDefn{Value} (Item : @key(in) chars_ptr; Length : @key(in) size_t)
@key(return) char_array;
@key(function) @AdaSubDefn{Value} (Item : @key(in) chars_ptr) @key(return) String;
@key(function) @AdaSubDefn{Value} (Item : @key(in) chars_ptr; Length : @key(in) size_t)
@key(return) String;
@key(function) @AdaSubDefn{Strlen} (Item : @key(in) chars_ptr) @key(return) size_t;
@key(procedure) @AdaSubDefn{Update} (Item : @key(in) chars_ptr;
Offset : @key(in) size_t;
Chars : @key(in) char_array;
Check : @key(in) Boolean := True);
@key(procedure) @AdaSubDefn{Update} (Item : @key(in) chars_ptr;
Offset : @key(in) size_t;
Str : @key(in) String;
Check : @key(in) Boolean := True);
@AdaSubDefn{Update_Error} : @key(exception);
@key(private)
... -- @RI{not specified by the language}
@key(end) Interfaces.C.Strings;
@end{Example}
@begin{discussion}
The string manipulation types and subprograms appear in a
child of Interfaces.C versus being there directly, since it is
useful to have Interfaces.C specified as @nt(pragma) Pure.
Differently named functions New_String and New_Char_Array
are declared, since if there were a single overloaded function
a call with a string literal as actual parameter would be
ambiguous.
@end{discussion}
The type chars_ptr is C-compatible and
corresponds to the use of C's @lquotes@;char *@rquotes@; for
a pointer to the first char in a char array terminated by nul.
When an object of type chars_ptr is declared, its value is
by default set to Null_Ptr, unless the object is imported
(see @RefSecNum(Interfacing Pragmas)).
@begin{discussion}
The type char_array_access is not necessarily C-compatible, since
an object of this type may carry @lquotes@;dope@rquotes@; information.
The programmer should convert from char_array_access to chars_ptr
for objects imported from, exported to, or passed to C.@end{discussion}
@begin{DescribeCode}
@begin{Example}@Keepnext
@key(function) To_Chars_Ptr (Item : @key(in) char_array_access;
Nul_Check : @key(in) Boolean := False)
@key(return) chars_ptr;
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0061],ARef=[AI95-00140-01]}
@Trailing@;If Item is @key(null), then To_Chars_Ptr returns Null_Ptr.
@Chg{New=[If Item is not @key(null),], Old=[Otherwise, if]} Nul_Check is
True@Chg{New=[,],Old=[]} and Item.@key(all) does not contain nul, then
the function propagates Terminator_Error;
@Chg{New=[otherwise],
Old=[if Nul_Check is True and Item.@key(all) does contain nul,]}
To_Chars_Ptr performs a pointer conversion with no allocation of memory.
@begin{Example}@Keepnext
@key(function) New_Char_Array (Chars : @key(in) char_array) @key(return) chars_ptr;
@end{Example}
This function returns a pointer to an allocated object initialized to
Chars(Chars'First .. Index) & nul, where
@begin{itemize}
Index = Chars'Last if Chars does not contain nul, or
Index is the smallest size_t value I such that Chars(I+1) = nul.
@end{itemize}
@ChgNote{The following paragraph is missing a number in the original version.
To give it a number in the new version, it is marked as an insertion.}
@ChgRef{Version=[0],Kind=[Added]}@Trailing
@Chg{New=[],Old=[@Noparanum@;]}Storage_Error is propagated if the allocation
fails.
@begin{Example}@Keepnext
@key(function) New_String (Str : @key(in) String) @key(return) chars_ptr;
@end{Example}
@Trailing@;This function is equivalent to New_Char_Array(To_C(Str)).
@begin{Example}@Keepnext
@key(procedure) Free (Item : @key(in) @key(out) chars_ptr);
@end{Example}
@Trailing@;If Item is Null_Ptr, then Free has no effect.
Otherwise, Free releases the storage occupied by Value(Item),
and resets Item to Null_Ptr.
@begin{Example}@Keepnext
@key(function) Value (Item : @key(in) chars_ptr) @key(return) char_array;
@end{Example}
@Trailing@;If Item = Null_Ptr then Value propagates Dereference_Error.
Otherwise Value returns the prefix of the array
of chars pointed to by Item, up to and including the
first nul.
The lower bound of the result is 0.
If Item does not point to a nul-terminated string, then
execution of Value is erroneous.
@begin{Example}@Keepnext
@key(function) Value (Item : @key(in) chars_ptr; Length : @key(in) size_t)
@key(return) char_array;
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0062],ARef=[AI95-00139-01]}
@Trailing@;If Item = Null_Ptr then Value@Chg{New=[],Old=[(Item)]} propagates
Dereference_Error.
Otherwise Value returns the shorter of two arrays@Chg{New=[, either],Old=[:]}
the first Length chars pointed to by Item, @Chg{New=[or],Old=[and]}
Value(Item). The lower bound of the result is 0.
@Chg{New=[If Length is 0, then Value propagates Constraint_Error.],Old=[]}
@begin{Ramification}
Value(New_Char_Array(Chars)) = Chars if Chars does not contain
nul; else Value(New_Char_Array( Chars)) is the prefix of Chars
up to and including the first nul.
@end{Ramification}
@begin{Example}@Keepnext
@key(function) Value (Item : @key(in) chars_ptr) @key(return) String;
@end{Example}
@Trailing@;Equivalent to To_Ada(Value(Item), Trim_Nul=>True).
@begin{Example}@Keepnext
@key(function) Value (Item : @key(in) chars_ptr; Length : @key(in) size_t)
@key(return) String;
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0063],ARef=[AI95-00177-01]}
@Trailing@;Equivalent to To_Ada(Value(Item, Length)@Chg{New=[ & nul],Old=[]}, Trim_Nul=>True).
@begin{Example}@Keepnext
@key(function) Strlen (Item : @key(in) chars_ptr) @key(return) size_t;
@end{Example}
@Trailing@;Returns @i[Val]'Length@en@;1 where @i[Val] = Value(Item);
propagates Dereference_Error if Item = Null_Ptr.
@begin{ramification}
Strlen returns the number of chars in the array pointed to by Item, up to
and including the char immediately before the first nul.
Strlen has the same possibility for erroneous execution
as Value, in cases where the string has not been nul-terminated.
Strlen has the effect of C's strlen function.
@end{Ramification}
@begin{Example}@Keepnext
@key(procedure) Update (Item : @key(in) chars_ptr;
Offset : @key(in) size_t;
Chars : @key(in) char_array;
Check : Boolean := True);
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0064],ARef=[AI95-00039-01]}
@Leading@;@Chg{New=[If Item = Null_Ptr, then Update propagates
Dereference_Error. Otherwise, t],Old=[T]}his procedure updates the value
pointed to by Item, starting at position Offset, using Chars as the data to be
copied into the array. Overwriting the nul terminator,
and skipping with the Offset past the nul terminator,
are both prevented if Check is True, as follows:
@begin[itemize]
Let N = Strlen(Item).
If Check is True, then:
@begin{inneritemize}
If Offset+Chars'Length>N, propagate Update_Error.
Otherwise, overwrite the data in the array pointed to by Item,
starting at the char at position Offset, with the data in Chars.
@end{inneritemize}
@Trailing@;If Check is False, then
processing is as above, but with no check that Offset+Chars'Length>N.
@begin{Ramification}
If Chars contains nul, Update's effect may be
to @lquotes@;shorten@rquotes@; the pointed-to char array.@end{ramification}
@end[itemize]
@begin{Example}@Keepnext
@key(procedure) Update (Item : @key(in) chars_ptr;
Offset : @key(in) size_t;
Str : @key(in) String;
Check : @key(in) Boolean := True);
@end{Example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00242-01]}
Equivalent to Update(Item, Offset, To_C(Str@Chg{Version=[2],
New=[, Append_Nul => False],Old=[]}), Check).
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00242-01]}
@ChgAdded{Version=[2],Text=[To truncate the Item to the length of Str, use
Update(Item, Offset, To_C(Str), Check) instead of Update(Item, Offset, Str, Check).
Note that when truncating Item, Item must be longer than Str.]}
@end{Discussion}
@end{DescribeCode}
@end{StaticSem}
@begin{erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of any of the following is erroneous if the Item
parameter is not null_ptr and Item
does not point to a nul-terminated array of chars.
@begin[itemize]
a Value function not taking a Length parameter,
the Free procedure,
the Strlen function.
@end[itemize]
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Free(X) is also erroneous if the chars_ptr X was not returned
by New_Char_Array or New_String.
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Reading or updating a freed char_array is erroneous.
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Update is erroneous if Check is False and a call with
Check equal to True would have propagated Update_Error.
@end{erron}
@begin{Notes}
New_Char_Array and New_String might be
implemented either through
the allocation function from the C environment (@lquotes@;malloc@rquotes@;) or through
Ada dynamic memory allocation (@lquotes@;new@rquotes@;). The key points are
@begin{itemize}
the returned value (a chars_ptr) is
represented as a C @lquotes@;char *@rquotes@; so
that it may be passed to C functions;
the allocated object should be freed by the programmer via a call of
Free, not by a called C function.
@end{itemize}
@end{Notes}
@begin{Inconsistent95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00242-01]}
@ChgAdded{Version=[2],Text=[@Defn{inconsistencies with Ada 95}
@b[Amendment Correction:] Update for a String parameter is now defined to not
add a nul character. It did add a nul in Ada 95. This means that programs
that used this behavior of Update to truncate a string will no longer work
(the string will not be truncated). This change makes Update for a string
consistent with Update for a char_array (no implicit nul is added to the end
of a char_array).]}
@end{Inconsistent95}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00161-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
@b[Amendment Correction:] Added @nt{pragma} Preelaborable_Initialization to
type chars_ptr, so that it can be used in preelaborated units.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00276-01]}
@ChgAdded{Version=[2],Text=[@b[Amendment Correction:] The components of
chars_ptr_array are aliased so that it can be used to instantiate
Interfaces.C.Pointers (that is its intended purpose, which is otherwise
mysterious as it has no operations).]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0061],ARef=[AI95-00140-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Fixed the missing semantics
of To_Char_Ptr when Nul_Check is False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0062],ARef=[AI95-00139-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Fixed the missing semantics
of Value when the Length is 0.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0063],ARef=[AI95-00177-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected the definition of
Value to avoid raising Terminator_Error.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0064],ARef=[AI95-00039-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Fixed the missing semantics
of Update when Item is Null_Ptr.]}
@end{DiffWord95}
@LabeledSubClause{The Generic Package Interfaces.C.Pointers}
@begin{Intro}
The generic package Interfaces.C.Pointers allows the Ada programmer to
perform C-style operations on pointers. It includes an access type
Pointer, Value functions that dereference a Pointer and deliver the
designated array, several pointer arithmetic operations, and @lquotes@;copy@rquotes@;
procedures that copy the contents of a source pointer into the array
designated by a destination pointer. As in C, it treats an object Ptr of
type Pointer as a pointer to the first element of an array, so that for
example, adding 1 to Ptr yields a pointer to the
second element of the array.
The generic allows two styles of usage: one in which the array is
terminated by a special terminator element; and another in which the
programmer needs to keep track of the length.
@end{Intro}
@begin{StaticSem}
@Leading@;The generic library package Interfaces.C.Pointers has the
following declaration:
@begin{Example}
@key(generic)
@key(type) Index @key(is) (<>);
@key(type) Element @key(is) @key(private);
@key(type) Element_Array @key(is) @key(array) (Index @key(range) <>) @key(of) @key(aliased) Element;
Default_Terminator : Element;
@key(package) Interfaces.C.Pointers @key(is)@ChildUnit{Parent=[Interfaces.C],Child=[Pointers]}
@key[pragma] Preelaborate(Pointers);
@key(type) @AdaTypeDefn{Pointer} @key(is) @key(access) @key(all) Element;
@key(function) @AdaSubDefn{Value}(Ref : @key(in) Pointer;
Terminator : @key(in) Element := Default_Terminator)
@key(return) Element_Array;
@key(function) @AdaSubDefn{Value}(Ref : @key(in) Pointer;
Length : @key(in) ptrdiff_t)
@key(return) Element_Array;
@AdaExcDefn{Pointer_Error} : @key(exception);
@RI{-- C-style Pointer arithmetic}
@key(function) "+" (Left : @key(in) Pointer; Right : @key(in) ptrdiff_t) @key(return) Pointer;
@key(function) "+" (Left : @key(in) ptrdiff_t; Right : @key(in) Pointer) @key(return) Pointer;
@key(function) "-" (Left : @key(in) Pointer; Right : @key(in) ptrdiff_t) @key(return) Pointer;
@key(function) "-" (Left : @key(in) Pointer; Right : @key(in) Pointer) @key(return) ptrdiff_t;
@key(procedure) @AdaSubDefn{Increment} (Ref : @key(in) @key(out) Pointer);
@key(procedure) @AdaSubDefn{Decrement} (Ref : @key(in) @key(out) Pointer);
@key(pragma) Convention (Intrinsic, "+");
@key(pragma) Convention (Intrinsic, "-");
@key(pragma) Convention (Intrinsic, Increment);
@key(pragma) Convention (Intrinsic, Decrement);
@key(function) @AdaSubDefn{Virtual_Length} (Ref : @key(in) Pointer;
Terminator : @key(in) Element := Default_Terminator)
@key(return) ptrdiff_t;
@key(procedure) @AdaSubDefn{Copy_Terminated_Array}
(Source : @key(in) Pointer;
Target : @key(in) Pointer;
Limit : @key(in) ptrdiff_t := ptrdiff_t'Last;
Terminator : @key(in) Element := Default_Terminator);
@key(procedure) @AdaSubDefn{Copy_Array} (Source : @key(in) Pointer;
Target : @key(in) Pointer;
Length : @key(in) ptrdiff_t);
@key(end) Interfaces.C.Pointers;
@end{Example}
@Leading@;The type Pointer is C-compatible and
corresponds to one use of C's @lquotes@;Element *@rquotes@;.
An object of type Pointer is interpreted as a pointer to the
initial Element in an Element_Array.
Two styles are supported:
@begin{Itemize}
Explicit termination of an array value with
Default_Terminator (a special terminator value);
@Trailing@;Programmer-managed length, with
Default_Terminator treated simply as a data element.
@end{Itemize}
@begin{DescribeCode}
@begin{Example}@Keepnext
@key(function) Value(Ref : @key(in) Pointer;
Terminator : @key(in) Element := Default_Terminator)
@key(return) Element_Array;
@end{Example}
@Trailing@;This function returns an Element_Array whose value is the array
pointed to by Ref, up to and including the first Terminator; the lower bound
of the array is Index'First. Interfaces.C.Strings.Dereference_Error is
propagated if Ref is @key(null).
@begin{Example}@Keepnext
@key(function) Value(Ref : @key(in) Pointer;
Length : @key(in) ptrdiff_t)
@key(return) Element_Array;
@end{Example}
@Trailing@;This function returns an Element_Array comprising the first Length
elements pointed to by Ref. The exception
Interfaces.C.Strings.Dereference_Error is propagated if Ref is @key(null).
@end{DescribeCode}
@Trailing@;The "+" and "@en@;" functions perform arithmetic on Pointer values,
based on the Size of the array elements. In each of these functions,
Pointer_Error is propagated if a Pointer parameter is @key(null).
@begin{DescribeCode}
@begin{Example}@Keepnext
@key(procedure) Increment (Ref : @key(in) @key(out) Pointer);
@end{Example}
@Trailing@;Equivalent to Ref := Ref+1.
@begin{Example}@Keepnext
@key(procedure) Decrement (Ref : @key(in) @key(out) Pointer);
@end{Example}
@Trailing@;Equivalent to Ref := Ref@en@;1.
@begin{Example}@Keepnext
@key(function) Virtual_Length (Ref : @key(in) Pointer;
Terminator : @key(in) Element := Default_Terminator)
@key(return) ptrdiff_t;
@end{Example}
@Trailing@;Returns the number of Elements, up to the one just before the first
Terminator, in Value(Ref, Terminator).
@begin{Example}@Keepnext
@key(procedure) Copy_Terminated_Array
(Source : @key(in) Pointer;
Target : @key(in) Pointer;
Limit : @key(in) ptrdiff_t := ptrdiff_t'Last;
Terminator : @key(in) Element := Default_Terminator);
@end{Example}
@Trailing@;This procedure copies Value(Source, Terminator) into the array
pointed to by Target; it stops either after Terminator has been copied, or the
number of elements copied is Limit, whichever occurs first.
Dereference_Error is propagated if either Source or Target is @key(null).
@begin{ramification}
It is the programmer's responsibility to ensure that
elements are not copied beyond the logical length of the target array.
@end{ramification}
@begin{ImplNote}
The implementation has to take care to check the Limit first.
@end{ImplNote}
@begin{Example}@Keepnext
@key(procedure) Copy_Array (Source : @key(in) Pointer;
Target : @key(in) Pointer;
Length : @key(in) ptrdiff_t);
@end{Example}
This procedure copies the first Length elements from the array pointed
to by Source, into the array pointed to by Target.
Dereference_Error is propagated if either
Source or Target is @key(null).
@end{DescribeCode}
@end{StaticSem}
@begin{erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
It is erroneous to dereference a Pointer that does not designate
an aliased Element.
@begin{Discussion}
Such a Pointer could arise via "+", "@en@;", Increment, or
Decrement.@end{discussion}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Value(Ref, Terminator) is erroneous if
Ref does not designate an aliased Element in an Element_Array
terminated by Terminator.
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Value(Ref, Length) is erroneous if
Ref does not designate an aliased Element in an Element_Array
containing at least Length Elements between the designated Element and
the end of the array, inclusive.
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Virtual_Length(Ref, Terminator) is erroneous if
Ref does not designate an aliased Element in an Element_Array
terminated by Terminator.
@Leading@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Copy_Terminated_Array(Source, Target, Limit, Terminator)
is erroneous in either of the following situations:
@begin[itemize]
Execution of both Value(Source, Terminator) and
Value(Source, Limit) are erroneous, or
Copying writes past the end of the array containing the Element
designated by Target.
@end[Itemize]
@PDefn2{Term=(erroneous execution),Sec=(cause)}
Execution of Copy_Array(Source, Target, Length) is erroneous if either
Value(Source, Length) is erroneous, or copying writes past the end of
the array containing the Element designated by Target.
@end{erron}
@begin{Notes}
@Leading@;To compose a Pointer from an Element_Array, use 'Access on
the first element. For example (assuming appropriate instantiations):
@begin{example}
Some_Array : Element_Array(0..5) ;
Some_Pointer : Pointer := Some_Array(0)'Access;
@end{example}
@end{Notes}
@begin{Examples}
@Leading@Keepnext@i{Example of Interfaces.C.Pointers:}
@begin{Example}
@key(with) Interfaces.C.Pointers;
@key(with) Interfaces.C.Strings;
@key(procedure) Test_Pointers @key(is)
@key(package) C @key(renames) Interfaces.C;
@key(package) Char_Ptrs @key(is)
@key(new) C.Pointers (Index => C.size_t,
Element => C.char,
Element_Array => C.char_array,
Default_Terminator => C.nul);
@key(use) @key(type) Char_Ptrs.Pointer;
@key(subtype) Char_Star @key(is) Char_Ptrs.Pointer;
@key(procedure) Strcpy (Target_Ptr, Source_Ptr : Char_Star) @key(is)
Target_Temp_Ptr : Char_Star := Target_Ptr;
Source_Temp_Ptr : Char_Star := Source_Ptr;
Element : C.char;
@key(begin)
@key(if) Target_Temp_Ptr = @key(null) @key(or) Source_Temp_Ptr = @key(null) @key(then)
@key(raise) C.Strings.Dereference_Error;
@key(end if);
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0065],ARef=[AI95-00142-01]}
@key(loop)
Element := Source_Temp_Ptr.@key(all);
Target_Temp_Ptr.@key(all) := Element;
@key(exit) @key(when) @Chg{New=[C."="(Element, C.nul)],Old=[Element = C.nul]};
Char_Ptrs.Increment(Target_Temp_Ptr);
Char_Ptrs.Increment(Source_Temp_Ptr);
@key(end) @key(loop);
@key(end) Strcpy;
@key(begin)
...
@key(end) Test_Pointers;
@end{Example}
@end{Examples}
@LabeledAddedSubClause{Version=[2],Name=[Pragma Unchecked_Union]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[union],Sec=[C]}
@Redundant[A pragma Unchecked_Union specifies an interface correspondence
between a given discriminated type and some C union. The pragma
specifies that the associated type shall be given a representation
that leaves no space for its discriminant(s).]]}
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],
Text=[The form of a pragma Unchecked_Union is as follows:]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=`@AddedPragmaSyn`Version=[2],@key{pragma} @prag{Unchecked_Union} (@Syni<first_subtype_>@Syn2<local_name>);''}
@end{Syntax}
@begin{Legality}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[Unchecked_Union is a representation pragma,
specifying the unchecked union aspect of representation.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[The @SynI{first_subtype_}@nt{local_name} of a
@nt{pragma} Unchecked_Union shall denote an unconstrained discriminated record
subtype having a @nt{variant_part}.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[@Defn{unchecked union type}
@Defn{unchecked union subtype}
@Defn{unchecked union object}
A type to which a pragma Unchecked_Union applies is called an
@i<unchecked union type>. A subtype of an
unchecked union type is defined to be an @i<unchecked union subtype>.
An object of an unchecked union type is defined to be an @i<unchecked union
object>.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[All component subtypes of an unchecked union type
shall be C-compatible.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[If a component subtype of an unchecked union type
is subject to a per-object constraint, then the component subtype shall be an
unchecked union subtype.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[Any name that denotes a discriminant of an object
of an unchecked union type shall occur within the declarative region of the
type.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[A component declared in a @nt{variant_part} of an
unchecked union type shall not have a controlled, protected, or task part.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[The completion of an incomplete or private type
declaration having a @nt{known_discriminant_part} shall not be an unchecked
union type.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[An unchecked union subtype shall only be passed as
a generic actual parameter if the corresponding formal type has no known
discriminants or is an unchecked union type.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This includes formal private types without a
@nt{known_discriminant_part}, formal derived types that do not inherit any
discriminants (formal derived types do not have @nt{known_discriminant_part}s),
and formal derived types that are unchecked union types.]}
@end{Ramification}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[An unchecked union type is eligible for convention
C.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[All objects of an unchecked union type have the
same size.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[Discriminants of objects of an unchecked union type
are of size zero.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],
Text=[Any check which would require reading a discriminant
of an unchecked union object is suppressed (see @RefSecNum{Suppressing Checks}).
These checks include:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The check performed when addressing a variant
component (i.e., a component that was declared in a variant part) of an
unchecked union object that the object has this component (see
@RefSecNum{Selected Components}).]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Any checks associated with a type or subtype
conversion of a value of an unchecked union type (see
@RefSecNum{Type Conversions}). This includes, for example, the check
associated with the implicit subtype conversion of an assignment statement.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The subtype membership check associated with the
evaluation of a qualified expression (see @RefSecNum{Qualified Expressions})
or an uninitialized allocator (see @RefSecNum{Allocators}).]}
@end{Itemize}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[If a suppressed check would have failed,
execution is erroneous (see @RefSecNum{Suppressing Checks}). An
implementation is always allowed to make a suppressed check if it can
somehow determine the discriminant value.]}
@end{Discussion}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[A view of an unchecked union object (including a
type conversion or function call) has @i<inferable discriminants> if it has a
constrained nominal subtype, unless the object is a component of an enclosing
unchecked union object that is subject to a per-object constraint and the
enclosing object lacks inferable discriminants.@Defn{inferable discriminants}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[An expression of an unchecked union type has
inferable discriminants if it is either a name of an object with inferable
discriminants or a qualified expression whose @nt{subtype_mark} denotes a
constrained subtype.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],
Text=[Program_Error is raised in the following
cases:@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Evaluation of the predefined equality operator
for an unchecked union type if either of the operands lacks inferable
discriminants.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Evaluation of the predefined equality operator
for a type which has a subcomponent of an unchecked union type whose nominal
subtype is unconstrained.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Evaluation of a membership test if the
@nt{subtype_mark} denotes a constrained unchecked union subtype and the
expression lacks inferable discriminants.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Conversion from a derived unchecked union type to
an unconstrained non-unchecked-union type if the operand of the conversion
lacks inferable discriminants.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Execution of the default implementation of the
Write or Read attribute of an unchecked union type.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Execution of the default implementation of the
Output or Input attribute of an unchecked union type if the type lacks default
discriminant values.]}
@end{Itemize}
@end{RunTime}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[An implementation may require that @nt{pragma}
Controlled be specified for the type of an access subcomponent of an unchecked
union type.]}
@end{ImplPerm}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],
Text=[The use of an unchecked union to obtain the effect of an
unchecked conversion results in erroneous execution (see @RefSecNum{Suppressing Checks}).
Execution of the following example is erroneous even if
Float'Size = Integer'Size:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<type> T (Flag : Boolean := False) @key<is>
@key<record>
@key<case> Flag @key<is>
@key<when> False =>
F1 : Float := 0.0;
@key<when> True =>
F2 : Integer := 0;
@key<end case>;
@key<end record>;
@key<pragma> Unchecked_Union (T);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[X : T;
Y : Integer := X.F2; -- @RI[erroneous]]}
@end{Example}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00216-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
@nt{Pragma} Unchecked_Union is new.]}
@end{Extend95}
@RMNewPage@Comment{For printed RM Ada 2005}
@LabeledClause{Interfacing with COBOL}
@begin{Intro}
@Defn{interface to COBOL}
@Defn{COBOL interface}
The facilities relevant to interfacing with
the COBOL language
are the package
Interfaces.COBOL
and support for the Import, Export and
Convention pragmas with @i{convention}_@nt{identifier} COBOL.
@Leading@;The COBOL interface package supplies several sets of facilities:
@begin{itemize}
A set of types corresponding to the native
COBOL types of the supported COBOL implementation
(so-called @lquotes@;internal COBOL representations@rquotes@;),
allowing Ada data to be passed as parameters to COBOL programs
A set of types and constants reflecting external data representations
such as might be found in files or databases, allowing COBOL-generated
data to be read by an Ada program, and Ada-generated data to be read
by COBOL programs
A generic package for converting between an Ada decimal type value and
either an internal or external COBOL representation
@end{itemize}
@end{Intro}
@begin{StaticSem}
@Leading@Keepnext@;The library package Interfaces.COBOL has the following declaration:
@begin{Example}
@key(package) Interfaces.COBOL @key(is)@ChildUnit{Parent=[Interfaces],Child=[COBOL]}
@key[pragma] Preelaborate(COBOL);
@RI{-- Types and operations for internal data representations}
@key(type) @AdaTypeDefn{Floating} @key(is) @key(digits) @RI{implementation-defined};
@key(type) @AdaTypeDefn{Long_Floating} @key(is) @key(digits) @RI{implementation-defined};
@key(type) @AdaTypeDefn{Binary} @key(is) @key(range) @RI{implementation-defined};
@key(type) @AdaTypeDefn{Long_Binary} @key(is) @key(range) @RI{implementation-defined};
@AdaObjDefn{Max_Digits_Binary} : @key(constant) := @RI{implementation-defined};
@AdaObjDefn{Max_Digits_Long_Binary} : @key(constant) := @RI{implementation-defined};
@key(type) @AdaTypeDefn{Decimal_Element} @key(is) @key(mod) @RI{implementation-defined};
@key(type) @AdaTypeDefn{Packed_Decimal} @key(is) @key(array) (Positive @key(range) <>) @key(of) Decimal_Element;
@key(pragma) Pack(Packed_Decimal);
@key(type) @AdaTypeDefn{COBOL_Character} @key(is) @RI{implementation-defined character type};
@AdaObjDefn{Ada_To_COBOL} : @key(array) (Character) @key(of) COBOL_Character := @RI{implementation-defined};
@AdaObjDefn{COBOL_To_Ada} : @key(array) (COBOL_Character) @key(of) Character := @RI{implementation-defined};
@key(type) @AdaTypeDefn{Alphanumeric} @key(is) @key(array) (Positive range <>) @key(of) COBOL_Character;
@key(pragma) Pack(Alphanumeric);
@key(function) @AdaSubDefn{To_COBOL} (Item : @key(in) String) @key(return) Alphanumeric;
@key(function) @AdaSubDefn{To_Ada} (Item : @key(in) Alphanumeric) @key(return) String;
@key(procedure) @AdaSubDefn{To_COBOL} (Item : @key(in) String;
Target : @key(out) Alphanumeric;
Last : @key(out) Natural);
@key(procedure) @AdaSubDefn{To_Ada} (Item : @key(in) Alphanumeric;
Target : @key(out) String;
Last : @key(out) Natural);
@key(type) @AdaTypeDefn{Numeric} @key(is) @key(array) (Positive @key[range] <>) @key(of) COBOL_Character;
@key(pragma) Pack(Numeric);
@RI{-- Formats for COBOL data representations}
@key(type) @AdaTypeDefn{Display_Format} @key(is) @key(private);
@AdaObjDefn{Unsigned} : @key(constant) Display_Format;
@AdaObjDefn{Leading_Separate} : @key(constant) Display_Format;
@AdaObjDefn{Trailing_Separate} : @key(constant) Display_Format;
@AdaObjDefn{Leading_Nonseparate} : @key(constant) Display_Format;
@AdaObjDefn{Trailing_Nonseparate} : @key(constant) Display_Format;
@key(type) @AdaTypeDefn{Binary_Format} @key(is) @key(private);
@AdaObjDefn{High_Order_First} : @key(constant) Binary_Format;
@AdaObjDefn{Low_Order_First} : @key(constant) Binary_Format;
@AdaObjDefn{Native_Binary} : @key(constant) Binary_Format;
@key(type) @AdaTypeDefn{Packed_Format} @key(is) @key(private);
@AdaObjDefn{Packed_Unsigned} : @key(constant) Packed_Format;
@AdaObjDefn{Packed_Signed} : @key(constant) Packed_Format;
@RI{-- Types for external representation of COBOL binary data}
@key(type) @AdaTypeDefn{Byte} @key(is) @key(mod) 2**COBOL_Character'Size;
@key(type) @AdaTypeDefn{Byte_Array} @key(is) @key(array) (Positive @key(range) <>) @key(of) Byte;
@key(pragma) Pack (Byte_Array);
@AdaExcDefn{Conversion_Error} : @key(exception);
@key(generic)
@key(type) Num @key(is) @key(delta) <> @key(digits) <>;
@key(package) @AdaPackDefn{Decimal_Conversions} @key(is)
@RI{-- Display Formats: data values are represented as Numeric}
@key(function) @AdaSubDefn{Valid} (Item : @key(in) Numeric;
Format : @key(in) Display_Format) @key(return) Boolean;
@key(function) @AdaSubDefn{Length} (Format : @key(in) Display_Format) @key(return) Natural;
@key(function) @AdaSubDefn{To_Decimal} (Item : @key(in) Numeric;
Format : @key(in) Display_Format) @key(return) Num;
@key(function) @AdaSubDefn{To_Display} (Item : @key(in) Num;
Format : @key(in) Display_Format) @key(return) Numeric;
@RI{-- Packed Formats: data values are represented as Packed_Decimal}
@key(function) @AdaSubDefn{Valid} (Item : @key(in) Packed_Decimal;
Format : @key(in) Packed_Format) @key(return) Boolean;
@key(function) @AdaSubDefn{Length} (Format : @key(in) Packed_Format) @key(return) Natural;
@key(function) @AdaSubDefn{To_Decimal} (Item : @key(in) Packed_Decimal;
Format : @key(in) Packed_Format) @key(return) Num;
@key(function) @AdaSubDefn{To_Packed} (Item : @key(in) Num;
Format : @key(in) Packed_Format) @key(return) Packed_Decimal;
@RI{-- Binary Formats: external data values are represented as Byte_Array}
@key(function) @AdaSubDefn{Valid} (Item : @key(in) Byte_Array;
Format : @key(in) Binary_Format) @key(return) Boolean;
@key(function) @AdaSubDefn{Length} (Format : @key(in) Binary_Format) @key(return) Natural;
@key(function) @AdaSubDefn{To_Decimal} (Item : @key(in) Byte_Array;
Format : @key(in) Binary_Format) @key(return) Num;
@key(function) @AdaSubDefn{To_Binary} (Item : @key(in) Num;
Format : @key(in) Binary_Format) @key(return) Byte_Array;
@RI{-- Internal Binary formats: data values are of type Binary or Long_Binary}
@key(function) @AdaSubDefn{To_Decimal} (Item : @key(in) Binary) @key(return) Num;
@key(function) @AdaSubDefn{To_Decimal} (Item : @key(in) Long_Binary) @key(return) Num;
@key(function) @AdaSubDefn{To_Binary} (Item : @key(in) Num) @key(return) Binary;
@key(function) @AdaSubDefn{To_Long_Binary} (Item : @key(in) Num) @key(return) Long_Binary;
@key(end) Decimal_Conversions;
@key(private)
... -- @RI{not specified by the language}
@key(end) Interfaces.COBOL;
@end{Example}
@ChgImplDef{Version=[1],Kind=[Revised],Text=[The types Floating, Long_Floating, Binary, Long_Binary,
Decimal_Element, and COBOL_Character; and the initializations
of the variables Ada_To_COBOL and COBOL_To_Ada, in Interfaces.COBOL@Chg{New=[.],Old=[]}]}
Each of the types in Interfaces.COBOL is COBOL-compatible.
The types Floating and Long_Floating correspond to the
native types in COBOL for data items with computational usage
implemented by floating point.
The types Binary and Long_Binary correspond to the
native types in COBOL for data items with binary usage,
or with computational usage implemented by binary.
Max_Digits_Binary is the largest number of decimal digits in a
numeric value that is represented as Binary.
Max_Digits_Long_Binary is the largest number of decimal digits in a
numeric value that is represented as Long_Binary.
The type Packed_Decimal corresponds to COBOL's packed-decimal
usage.
The type COBOL_Character defines the run-time character set used in the
COBOL implementation.
Ada_To_COBOL and COBOL_To_Ada are the mappings between the Ada and
COBOL run-time character sets.
@begin{reason}
The character mappings are visible variables, since the
user needs the ability to modify them at run time.
@end{reason}
Type Alphanumeric corresponds to COBOL's alphanumeric data category.
Each of the functions To_COBOL and To_Ada converts its parameter
based on the mappings Ada_To_COBOL and COBOL_To_Ada, respectively.
The length of the result for each is the length of the parameter,
and the lower bound of the result is 1. Each component of the result
is obtained by applying the relevant mapping to the corresponding
component of the parameter.
Each of the procedures To_COBOL and To_Ada copies converted elements
from Item to Target, using the appropriate mapping (Ada_To_COBOL or
COBOL_To_Ada, respectively). The index in Target of the last element
assigned is returned in Last (0 if Item is a null array).
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
If Item'Length exceeds Target'Length, Constraint_Error is propagated.
Type Numeric corresponds to COBOL's numeric data category with
display usage.
@Trailing@;The types Display_Format, Binary_Format, and Packed_Format
are used in conversions between Ada decimal type values and
COBOL internal or external data representations. The value of the
constant Native_Binary is either High_Order_First or Low_Order_First,
depending on the implementation.
@begin{DescribeCode}
@begin{Example}@Keepnext
@key(function) Valid (Item : @key(in) Numeric;
Format : @key(in) Display_Format) @key(return) Boolean;
@end{Example}
@Leading@;The function Valid checks that the
Item parameter has a value consistent with the value of Format.
If the value of Format is other than
Unsigned, Leading_Separate, and Trailing_Separate,
the effect is implementation defined. If Format does have one
of these values, the following rules apply:
@begin{itemize}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0066],ARef=[AI95-00071-01]}
Format=Unsigned: if Item comprises @Chg{New=[],Old=[zero or more leading
space characters followed by ]}one or more decimal digit
characters then Valid returns True, else it returns False.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0066],ARef=[AI95-00071-01]}
Format=Leading_Separate: if Item comprises
@Chg{New=[],Old=[zero or more leading space characters, followed by ]}a
single occurrence of the plus or minus sign character, and then one or more
decimal digit characters, then Valid returns True, else it returns False.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0066],ARef=[AI95-00071-01]}
@Trailing@;Format=Trailing_Separate: if Item comprises
@Chg{New=[],Old=[zero or more leading space characters, followed by ]}one or
more decimal digit characters and finally a plus or minus sign character,
then Valid returns True, else it returns False.
@end{itemize}
@begin{Example}@Keepnext
@key(function) Length (Format : @key(in) Display_Format) @key(return) Natural;
@end{Example}
@Trailing@;The Length function returns the minimal length of a Numeric value
sufficient to hold any value of type Num when represented as Format.
@begin{Example}@Keepnext
@key(function) To_Decimal (Item : @key(in) Numeric;
Format : @key(in) Display_Format) @key(return) Num;
@end{Example}
@Trailing@;Produces a value of type Num corresponding to Item as represented by
Format.
The number of digits after the assumed
radix point in Item is Num'Scale.
Conversion_Error is propagated if the value
represented by Item is outside the range of Num.
@begin{discussion}
There is no issue of truncation versus rounding, since
the number of decimal places is established by Num'Scale.@end{discussion}
@begin{Example}@Keepnext
@key(function) To_Display (Item : @key(in) Num;
Format : @key(in) Display_Format) @key(return) Numeric;
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0067],ARef=[AI95-00072-01]}
@Trailing@;This function returns the Numeric value for Item, represented in
accordance with Format.
@Chg{New=[The length of the returned value is Length(Format), and the
lower bound is 1. ],Old=[]}Conversion_Error is propagated if Num is negative
and Format is Unsigned.
@begin{Example}@Keepnext
@key(function) Valid (Item : @key(in) Packed_Decimal;
Format : @key(in) Packed_Format) @key(return) Boolean;
@end{Example}
@Trailing@;This function returns True if Item has a value consistent with Format,
and False otherwise. The rules for the formation of Packed_Decimal
values are implementation defined.
@begin{Example}@Keepnext
@key(function) Length (Format : @key(in) Packed_Format) @key(return) Natural;
@end{Example}
@Trailing@;This function returns the minimal length of a Packed_Decimal value
sufficient to hold any value of type Num when represented as Format.
@begin{Example}@Keepnext
@key(function) To_Decimal (Item : @key(in) Packed_Decimal;
Format : @key(in) Packed_Format) @key(return) Num;
@end{Example}
@Trailing@;Produces a value of type Num corresponding to Item as represented by
Format. Num'Scale is the number of digits after the assumed radix point
in Item. Conversion_Error is propagated if the value represented by Item is
outside the range of Num.
@begin{Example}@Keepnext
@key(function) To_Packed (Item : @key(in) Num;
Format : @key(in) Packed_Format) @key(return) Packed_Decimal;
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0067],ARef=[AI95-00072-01]}
@Trailing@;This function returns the Packed_Decimal value for Item, represented in
accordance with Format.
@Chg{New=[The length of the returned value is Length(Format), and the
lower bound is 1. ],Old=[]}Conversion_Error is propagated if Num is negative
and Format is Packed_Unsigned.
@begin{Example}@Keepnext
@key(function) Valid (Item : @key(in) Byte_Array;
Format : @key(in) Binary_Format) @key(return) Boolean;
@end{Example}
@Trailing@;This function returns True if Item has a value consistent with Format,
and False otherwise.
@begin{ramification}
This function returns False only when the represented
value is outside the range of Num.@end{ramification}
@begin{Example}@Keepnext
@key(function) Length (Format : @key(in) Binary_Format) @key(return) Natural;
@end{Example}
@Trailing@;This function returns the minimal length of a Byte_Array value
sufficient to hold any value of type Num when represented as Format.
@begin{Example}@Keepnext
@key(function) To_Decimal (Item : @key(in) Byte_Array;
Format : @key(in) Binary_Format) @key(return) Num;
@end{Example}
@Trailing@;Produces a value of type Num corresponding to Item as represented by
Format. Num'Scale is the number of digits after the assumed radix point
in Item. Conversion_Error is propagated if the value represented by Item is
outside the range of Num.
@begin{Example}@Keepnext
@key(function) To_Binary (Item : @key(in) Num;
Format : @key(in) Binary_Format) @key(return) Byte_Array;
@end{Example}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0067],ARef=[AI95-00072-01]}
@Trailing@;This function returns the Byte_Array value for Item, represented in
accordance with Format.
@Chg{New=[The length of the returned value is Length(Format), and the
lower bound is 1.],Old=[]}
@begin{Example}@Keepnext
@key(function) To_Decimal (Item : @key(in) Binary) @key(return) Num;
@comment{Blank line}
@key(function) To_Decimal (Item : @key(in) Long_Binary) @key(return) Num;
@end{Example}
@Trailing@;These functions convert from COBOL binary format to a corresponding
value of the decimal type Num. Conversion_Error is propagated if Item is
too large for Num.
@begin{Ramification}
There is no rescaling performed on the conversion. That
is, the returned value in each case is a @lquotes@;bit copy@rquotes@; if Num has a
binary radix. The programmer is responsible for maintaining the correct
scale.
@end{ramification}
@begin{Example}@Keepnext
@key(function) To_Binary (Item : @key(in) Num) @key(return) Binary;
@comment{Blank line}
@key(function) To_Long_Binary (Item : @key(in) Num) @key(return) Long_Binary;
@end{Example}
These functions convert from Ada decimal to COBOL binary format.
Conversion_Error is propagated if the value of Item is too large to be
represented in the result type.
@begin{discussion}
One style of interface supported for COBOL, similar to
what is provided for C, is the ability to call and pass parameters to an
existing COBOL program. Thus the interface package supplies types
that can be used in an Ada program as parameters to subprograms whose
bodies will be in COBOL. These types map to COBOL's alphanumeric and
numeric data categories.
Several types are provided for support of alphanumeric data.
Since COBOL's run-time character
set is not necessarily the same as Ada's, Interfaces.COBOL declares
an implementation-defined character type
COBOL_Character, and mappings
between Character and COBOL_Character.
These mappings are visible variables (rather than, say,
functions or constant arrays),
since in the situation where
COBOL_Character is EBCDIC, the
flexibility of dynamically modifying the mappings is needed.
Corresponding to COBOL's alphanumeric data is the string
type Alphanumeric.
Numeric data may have either a @lquotes@;display@rquotes@; or @lquotes@;computational@rquotes@; representation
in COBOL. On the Ada side, the data is of a decimal fixed point type.
Passing an Ada decimal data item to
a COBOL program requires conversion from the Ada decimal type to some type
that reflects the representation expected on the COBOL side.
@begin{Itemize}
Computational Representation
@NoPrefix@;Floating point representation is modeled by Ada floating point types,
Floating and Long_Floating. Conversion between these types and Ada decimal
types is obtained directly, since the type name serves as a conversion
function.
@NoPrefix@;Binary representation is modeled by an Ada integer type, Binary, and
possibly other types such as Long_Binary. Conversion between, say, Binary
and a decimal type is through functions from an instantiation of the
generic package Decimal_Conversions.
@NoPrefix@;Packed decimal representation is modeled by the Ada array type Packed_Decimal.
Conversion between packed decimal and a decimal type is through functions
from an instantiation of the generic package Decimal_Conversions.
Display Representation
@NoPrefix@;Display representation for numeric data
is modeled by the array type Numeric.
Conversion between display representation and a decimal type is through
functions from an instantiation of the generic package Decimal_Conversions.
A parameter to the conversion function indicates the desired interpretation
of the data (e.g., signed leading separate, etc.)
@end{Itemize}
Pragma Convention(COBOL, T) may be applied to a record type T to direct the
compiler to choose a COBOL-compatible representation for objects of the
type.
The package Interfaces.COBOL allows the
Ada programmer to deal with data from files (or databases) created by a
COBOL program. For data that is alphanumeric, or in display
or packed decimal format, the
approach is the same as for passing parameters (instantiate
Decimal_Conversions to obtain the needed conversion functions). For binary
data, the external representation is treated as a Byte array, and an
instantiation of Decimal_IO produces a package that declares the needed
conversion functions. A parameter to the conversion function indicates the
desired interpretation of the data (e.g., high- versus low-order byte
first).
@end{discussion}
@end{DescribeCode}
@end{StaticSem}
@begin{ImplReq}
An implementation shall support pragma Convention with
a COBOL @i[convention]_@nt[identifier] for a COBOL-eligible type
(see @RefSecNum(Interfacing Pragmas)).
@begin{ramification}
An implementation supporting this package shall ensure that if the bounds of
a Packed_Decimal, Alphanumeric, or Numeric variable are static,
then the representation of the
object comprises solely the array components (that is, there is no implicit
run-time @lquotes@;descriptor@rquotes@;
that is part of the object).
@end{ramification}
@end{ImplReq}
@begin{ImplPerm}
An implementation may
provide additional constants of the private types
Display_Format, Binary_Format, or Packed_Format.
@begin{Reason}
This is to allow exploitation of other external formats that may
be available in the COBOL implementation.@end{reason}
An implementation may
provide further floating point and integer types
in Interfaces.COBOL to match additional native COBOL types,
and may also supply corresponding conversion functions in the
generic package Decimal_Conversions.
@end{ImplPerm}
@begin{ImplAdvice}
An Ada implementation should support the following interface
correspondences between Ada and COBOL.
@begin[itemize]
An Ada @key[access] T parameter
is passed as a
@lquotes@;BY REFERENCE@rquotes@; data item of the COBOL type corresponding
to T.
An Ada @key[in] scalar parameter is passed as a @lquotes@;BY CONTENT@rquotes@; data item
of the corresponding COBOL type.
Any other Ada parameter is passed as a
@lquotes@;BY REFERENCE@rquotes@; data item of the COBOL type corresponding
to the Ada parameter type; for scalars, a local copy is
used if necessary to ensure by-copy semantics.
@end[itemize]
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If COBOL interfacing is supported, the interface correspondences between
Ada and COBOL should be supported.]}]}
@end{ImplAdvice}
@begin[Notes]
An implementation is not required to support pragma Convention
for access types, nor is it required to support pragma Import, Export
or Convention for functions.
@begin{reason}
COBOL does not have a pointer facility, and a COBOL program
does not return a value.@end{reason}
If an Ada subprogram is exported to COBOL, then a call from COBOL
call may specify
either @lquotes@;BY CONTENT@rquotes@; or @lquotes@;BY REFERENCE@rquotes@;.
@end[Notes]
@begin{Examples}
@Leading@Keepnext@i{Examples of Interfaces.COBOL:}
@begin{Example}
@key(with) Interfaces.COBOL;
@key(procedure) Test_Call @key(is)
@RI{-- Calling a foreign COBOL program}
@RI{-- Assume that a COBOL program PROG has the following declaration}
@RI{-- in its LINKAGE section:}
@RI{-- 01 Parameter-Area}
@RI{-- 05 NAME PIC X(20).}
@RI{-- 05 SSN PIC X(9).}
@RI{-- 05 SALARY PIC 99999V99 USAGE COMP.}
@RI{-- The effect of PROG is to update SALARY based on some algorithm}
@key(package) COBOL @key(renames) Interfaces.COBOL;
@key(type) Salary_Type @key(is) @key(delta) 0.01 @key(digits) 7;
@key(type) COBOL_Record @key(is)
@key(record)
Name : COBOL.Numeric(1..20);
SSN : COBOL.Numeric(1..9);
Salary : COBOL.Binary; @RI{-- Assume Binary = 32 bits}
@key(end) @key(record);
@key(pragma) Convention (COBOL, COBOL_Record);
@key(procedure) Prog (Item : @key(in) @key(out) COBOL_Record);
@key(pragma) Import (COBOL, Prog, "PROG");
@key(package) Salary_Conversions @key(is)
@key(new) COBOL.Decimal_Conversions(Salary_Type);
Some_Salary : Salary_Type := 12_345.67;
Some_Record : COBOL_Record :=
(Name => "Johnson, John ",
SSN => "111223333",
Salary => Salary_Conversions.To_Binary(Some_Salary));
@key(begin)
Prog (Some_Record);
...
@key(end) Test_Call;
@end{Example}
@begin{Example}
@key(with) Interfaces.COBOL;
@key(with) COBOL_Sequential_IO; @RI{-- Assumed to be supplied by implementation}
@key(procedure) Test_External_Formats @key(is)
@RI{-- Using data created by a COBOL program}
@RI{-- Assume that a COBOL program has created a sequential file with}
@RI{-- the following record structure, and that we need to}
@RI{-- process the records in an Ada program}
@RI{-- 01 EMPLOYEE-RECORD}
@RI{-- 05 NAME PIC X(20).}
@RI{-- 05 SSN PIC X(9).}
@RI{-- 05 SALARY PIC 99999V99 USAGE COMP.}
@RI{-- 05 ADJUST PIC S999V999 SIGN LEADING SEPARATE.}
@RI{-- The COMP data is binary (32 bits), high-order byte first}
@key(package) COBOL @key(renames) Interfaces.COBOL;
@key(type) Salary_Type @key(is) @key(delta) 0.01 @key(digits) 7;
@key(type) Adjustments_Type @key(is) @key(delta) 0.001 @key(digits) 6;
@key(type) COBOL_Employee_Record_Type @key(is) @RI{-- External representation}
@key(record)
Name : COBOL.Alphanumeric(1..20);
SSN : COBOL.Alphanumeric(1..9);
Salary : COBOL.Byte_Array(1..4);
Adjust : COBOL.Numeric(1..7); @RI{-- Sign and 6 digits}
@key(end) @key(record);
@key(pragma) Convention (COBOL, COBOL_Employee_Record_Type);
@key(package) COBOL_Employee_IO @key(is)
@key(new) COBOL_Sequential_IO(COBOL_Employee_Record_Type);
@key(use) COBOL_Employee_IO;
COBOL_File : File_Type;
@key(type) Ada_Employee_Record_Type @key(is) @RI{-- Internal representation}
@key(record)
Name : String(1..20);
SSN : String(1..9);
Salary : Salary_Type;
Adjust : Adjustments_Type;
@key(end) @key(record);
COBOL_Record : COBOL_Employee_Record_Type;
Ada_Record : Ada_Employee_Record_Type;
@key(package) Salary_Conversions @key(is)
@key(new) COBOL.Decimal_Conversions(Salary_Type);
@key(use) Salary_Conversions;
@key(package) Adjustments_Conversions @key(is)
@key(new) COBOL.Decimal_Conversions(Adjustments_Type);
@key(use) Adjustments_Conversions;
@key(begin)
Open (COBOL_File, Name => "Some_File");
@key(loop)
Read (COBOL_File, COBOL_Record);
Ada_Record.Name := To_Ada(COBOL_Record.Name);
Ada_Record.SSN := To_Ada(COBOL_Record.SSN);
Ada_Record.Salary :=
To_Decimal(COBOL_Record.Salary, COBOL.High_Order_First);
Ada_Record.Adjust :=
To_Decimal(COBOL_Record.Adjust, COBOL.Leading_Separate);
... @RI{-- Process Ada_Record}
@key(end) @key(loop);
@key(exception)
@key[when] End_Error => ...
@key(end) Test_External_Formats;
@end{Example}
@end{Examples}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0066],ARef=[AI95-00071-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected the definition of
Valid to match COBOL.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0067],ARef=[AI95-00072-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Specified the bounds of the
results of To_Display, To_Packed, and To_Binary.]}
@end{DiffWord95}
@LabeledClause{Interfacing with Fortran}
@begin{Intro}
@Defn{interface to Fortran}
@Defn{Fortran interface}
The facilities relevant to interfacing with the Fortran language
are the package Interfaces.Fortran and support for the
Import, Export and Convention pragmas with
@i{convention}_@nt{identifier} Fortran.
The package Interfaces.Fortran defines Ada types whose representations are
identical to the default representations of the Fortran intrinsic types
Integer, Real, Double Precision, Complex, Logical, and Character in a
supported Fortran implementation. These Ada types can therefore be used to
pass objects between Ada and Fortran programs.
@end{Intro}
@begin{StaticSem}
@Leading@Keepnext@;The library package Interfaces.Fortran has the following
declaration:
@begin{Example}
@key[with] Ada.Numerics.Generic_Complex_Types; @RI{-- see @RefSecNum{Complex Types}}
@key[pragma] Elaborate_All(Ada.Numerics.Generic_Complex_Types);
@key[package] Interfaces.Fortran @key[is]@ChildUnit{Parent=[Interfaces],Child=[Fortran]}
@key[pragma] Pure(Fortran);
@key[type] @AdaTypeDefn{Fortran_Integer} @key[is] @key[range] @RI{implementation-defined};
@key[type] @AdaTypeDefn{Real} @key[is] @key[digits] @RI{implementation-defined};
@key[type] @AdaTypeDefn{Double_Precision} @key[is] @key[digits] @RI{implementation-defined};
@key[type] @AdaTypeDefn{Logical} @key[is] @key[new] Boolean;
@key[package] @AdaPackDefn{Single_Precision_Complex_Types} @key[is]
@key[new] Ada.Numerics.Generic_Complex_Types (Real);
@key[type] @AdaTypeDefn{Complex} @key[is] @key[new] Single_Precision_Complex_Types.Complex;
@key[subtype] @AdaSubtypeDefn{Name=[Imaginary],Of=[Imaginary]} @key[is] Single_Precision_Complex_Types.Imaginary;
@AdaObjDefn{i} : Imaginary @key[renames] Single_Precision_Complex_Types.i;
@AdaObjDefn{j} : Imaginary @key[renames] Single_Precision_Complex_Types.j;
@key[type] @AdaTypeDefn{Character_Set} @key[is] @RI{implementation-defined character type};
@key[type] @AdaTypeDefn{Fortran_Character} @key[is] @key[array] (Positive @key[range] <>) @key[of] Character_Set;
@key[pragma] Pack (Fortran_Character);
@key[function] @AdaSubDefn{To_Fortran} (Item : @key[in] Character) @key[return] Character_Set;
@key[function] @AdaSubDefn{To_Ada} (Item : @key[in] Character_Set) @key[return] Character;
@key(function) @AdaSubDefn{To_Fortran} (Item : @key(in) String) @key(return) Fortran_Character;
@key(function) @AdaSubDefn{To_Ada} (Item : @key(in) Fortran_Character) @key(return) String;
@key(procedure) @AdaSubDefn{To_Fortran} (Item : @key(in) String;
Target : @key(out) Fortran_Character;
Last : @key(out) Natural);
@key(procedure) @AdaSubDefn{To_Ada} (Item : @key(in) Fortran_Character;
Target : @key(out) String;
Last : @key(out) Natural);
@key[end] Interfaces.Fortran;
@end{Example}
@ChgImplDef{Version=[1],Kind=[Added],Text=[@Chg{New=[The types Fortran_Integer,
Real, Double_Precision, and Character_Set in Interfaces.Fortran.],Old=[]}]}
@begin{Ramification}
The means by which the Complex type is provided in Interfaces.Fortran
creates a dependence of Interfaces.Fortran on Numerics.Generic_Complex_Types
(see @RefSecNum{Complex Types}).
This dependence is intentional and unavoidable,
if the Fortran-compatible Complex type is to be useful in Ada code
without duplicating facilities defined elsewhere.
@end{Ramification}
The types Fortran_Integer, Real, Double_Precision, Logical,
Complex, and Fortran_Character are Fortran-compatible.
The To_Fortran and To_Ada functions map between the
Ada type Character and the Fortran type Character_Set,
and also between the Ada type String and the Fortran type
Fortran_Character.
The To_Fortran and To_Ada procedures
have analogous effects to the string conversion subprograms
found in Interfaces.COBOL.
@end{StaticSem}
@begin[ImplReq]
An implementation shall support @nt[pragma] Convention
with a Fortran @i[convention]_@nt[identifier] for a Fortran-eligible
type (see @RefSecNum(Interfacing Pragmas)).
@end[ImplReq]
@begin{ImplPerm}
An implementation may add additional declarations to the Fortran interface
packages. For example, the Fortran interface package for an implementation of
Fortran 77 (ANSI X3.9-1978) that defines types like Integer*@i{n}, Real*@i{n},
Logical*@i{n}, and Complex*@i{n} may contain the declarations of types named
Integer_@!Star_@i{n}, Real_@!Star_@i{n}, Logical_@!Star_@i{n}, and
Complex_@!Star_@i{n}. (This convention should not apply to Character*@i{n}, for
which the Ada analog is the constrained array subtype Fortran_Character
(1..@i{n}).) Similarly, the Fortran interface package for an implementation of
Fortran 90 that provides multiple @i{kinds} of intrinsic types, e.g. Integer
(Kind=@i{n}), Real (Kind=@i{n}), Logical (Kind=@i{n}), Complex (Kind=@i{n}),
and Character (Kind=@i{n}), may contain the declarations of types
with the recommended names
Integer_Kind_@i{n}, Real_Kind_@i{n}, Logical_Kind_@i{n}, Complex_Kind_@i{n},
and Character_Kind_@i{n}.
@begin[discussion]
Implementations may add auxiliary declarations as needed to assist in the
declarations of additional Fortran-compatible types. For example, if a double
precision complex type is defined, then Numerics.@!Generic_@!Complex_@!Types may be
instantiated for the double precision type. Similarly, if a wide character
type is defined to match a Fortran 90 wide character type (accessible in
Fortran 90 with the Kind modifier), then an auxiliary character set may be
declared to serve as its component type.
@end[discussion]
@end{ImplPerm}
@begin{ImplAdvice}
@Leading@;An Ada implementation should support the following interface
correspondences between Ada and Fortran:
@begin[itemize]
An Ada procedure corresponds to
a Fortran subroutine.
An Ada function corresponds to a Fortran function.
An Ada parameter of an elementary, array, or
record type T is passed as a T@-(F) argument to a Fortran procedure,
where T@-(F) is the Fortran type corresponding to the
Ada type T, and where the INTENT attribute of the corresponding
dummy argument matches the Ada formal parameter mode;
the Fortran
implementation's parameter passing conventions are used.
For elementary types, a local copy is used if necessary to ensure
by-copy semantics.
An Ada parameter of an access-to-subprogram type
is passed as a reference to a Fortran
procedure whose interface corresponds to the designated subprogram's
specification.
@end[itemize]
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If Fortran interfacing is supported, the interface correspondences
between Ada and Fortran should be supported.]}]}
@end{ImplAdvice}
@begin[Notes]
An object of a Fortran-compatible record type,
declared in a library package or subprogram,
can correspond to a Fortran common
block; the type also corresponds to
a Fortran @lquotes@;derived type@rquotes@;.
@end[Notes]
@begin{Examples}
@Leading@Keepnext@i{Example of Interfaces.Fortran:}
@begin{Example}
@key[with] Interfaces.Fortran;
@key[use] Interfaces.Fortran;
@key[procedure] Ada_Application @key[is]
@key[type] Fortran_Matrix @key[is] @key[array] (Integer @key[range] <>,
Integer @key[range] <>) @key[of] Double_Precision;
@key[pragma] Convention (Fortran, Fortran_Matrix); @RI{-- stored in Fortran's}
@RI{-- column-major order}
@key[procedure] Invert (Rank : @key[in] Fortran_Integer; X : @key[in] @key[out] Fortran_Matrix);
@key[pragma] Import (Fortran, Invert); @RI{-- a Fortran subroutine}
Rank : @key[constant] Fortran_Integer := 100;
My_Matrix : Fortran_Matrix (1 .. Rank, 1 .. Rank);
@key[begin]
...
My_Matrix := ...;
...
Invert (Rank, My_Matrix);
...
@key[end] Ada_Application;
@end{Example}
@end{Examples}
|