1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
|
@Comment{ $Source: e:\\cvsroot/ARM/Source/rt.mss,v $ }
@comment{ $Revision: 1.75 $ $Date: 2006/10/19 06:40:31 $ $Author: Randy $ }
@Part(realtime, Root="ada.mss")
@Comment{$Date: 2006/10/19 06:40:31 $}
@LabeledNormativeAnnex{Real-Time Systems}
@begin{Intro}
@Defn{real-time systems}
@Defn{embedded systems}
This Annex specifies additional characteristics of Ada implementations
intended for real-time systems software. To conform to this Annex, an
implementation shall also conform to the Systems Programming Annex.
@end{Intro}
@begin{Metrics}
The metrics are documentation requirements; an implementation shall
document the values of the language-defined metrics for at least one
configuration @Redundant[of hardware or an underlying system] supported by
the implementation, and shall document the details of that configuration.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Values of all @MetricsTitle.]}]}@ChgNote{We're going to document the
individual metrics sections.}
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The details of the configuration used to generate the values of all
metrics.]}]}
@begin{Reason}
The actual values of the metrics are likely to depend on hardware
configuration details that are variable and generally outside the control
of a compiler vendor.
@end{Reason}
The metrics do not necessarily yield a simple number.
@Redundant[For some, a range is more suitable, for others a formula
dependent on some parameter is appropriate, and for
others,
it may be more suitable to break the metric into several cases.]
Unless specified otherwise, the metrics in this annex are expressed in
processor clock cycles.
For metrics that require documentation of an upper bound,
if there is no upper bound,
the implementation shall report that the metric is unbounded.
@begin{Discussion}
There are several good reasons to specify metrics in seconds; there are however
equally good reasons to specify them in processor clock cycles. In
defining the metrics, we have tried to strike a balance on a case-by-case
basis.
It has been suggested that all metrics should be given names,
so that @lquotes@;data-sheets@rquotes@; could be formulated and published
by vendors.
However the paragraph number can serve that purpose.
@end{Discussion}
@end{Metrics}
@begin{Notes}
The specification of the metrics makes a distinction between upper bounds
and simple execution times. Where something is just specified as @lquotes@;the
execution time of@rquotes@; a piece of code, this leaves one
the freedom
to choose a nonpathological case. This kind of metric is of the form
@lquotes@;there exists a program such that the value of the metric is V@rquotes@;.
Conversely, the meaning of upper bounds is @lquotes@;there is no program such
that the value of the metric is greater than V@rquotes@;.
This kind of metric can only be partially tested, by finding the value
of V for one or more test programs.
The metrics do not cover the whole language; they are limited
to features that are specified in @RefSec{Systems Programming}
and in this Annex. The metrics are intended
to provide guidance to potential users as to whether a particular
implementation of such a feature is going to be adequate for a
particular real-time application. As such, the metrics are aimed
at known implementation choices that can result in significant
performance differences.
The purpose of the metrics is not necessarily to provide fine-grained
quantitative results or to serve as a comparison between different
implementations on the same or different platforms. Instead, their
goal is rather qualitative; to define a standard set of approximate values
that can be measured and used to estimate the general suitability of an
implementation, or to evaluate the comparative utility of certain features
of an implementation for a particular real-time application.
@end{Notes}
@begin{Extend83}
@Defn{extensions to Ada 83}
This Annex is new to Ada 95.
@end{Extend83}
@LabeledClause{Task Priorities}
@begin{Intro}
@Redundant[This clause specifies the priority model for real-time systems.
In addition, the methods for specifying priorities are defined.]
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@leading@keepnext@;The form of a @nt{pragma} Priority is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Priority)(@Syn2{expression});'
@begin{SyntaxText}
@leading@keepnext@;The form of a @nt{pragma} Interrupt_Priority is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Interrupt_Priority)[(@Syn2{expression})];'
@end{Syntax}
@begin{Resolution}
@PDefn2{Term=[expected type],
Sec=(Priority pragma argument)}
@PDefn2{Term=[expected type],
Sec=(Interrupt_Priority pragma argument)}
The expected type for the @nt{expression} in a Priority
or Interrupt_Priority pragma is Integer.
@end{Resolution}
@begin{Legality}
A Priority pragma is allowed only immediately within a @nt{task_definition},
a @nt{protected_definition}, or the @nt{declarative_part} of a
@nt{subprogram_body}. An Interrupt_Priority pragma is allowed only
immediately within a @nt{task_definition} or a @nt{protected_definition}.
At most one such pragma shall appear within a given construct.
For a Priority pragma that appears in the @nt{declarative_part} of a
@nt{subprogram_body}, the @nt{expression} shall be static, and its value shall
be in the range of System.Priority.
@begin{Reason}
This value is needed before it gets elaborated, when the environment task
starts executing.
@end{Reason}
@end{Legality}
@begin{StaticSem}
@leading@keepnext@;The following declarations exist in package System:
@begin{example}
@key{subtype} Any_Priority @key{is} Integer @key{range} @RI{implementation-defined};
@key{subtype} Priority @key{is} Any_Priority
@key{range} Any_Priority'First .. @RI{implementation-defined};
@key{subtype} Interrupt_Priority @key{is} Any_Priority
@key{range} Priority'Last+1 .. Any_Priority'Last;
Default_Priority : @key{constant} Priority := (Priority'First + Priority'Last)/2;
@end{example}
@ImplDef{The declarations of Any_Priority and Priority.}
The full range of priority values supported by an implementation is specified
by the subtype Any_Priority. The subrange of priority values that are high
enough to require the blocking of one or more interrupts is specified by the
subtype Interrupt_@!Priority. @Redundant[The subrange of priority values below
System.@!Interrupt_@!Priority'First is specified by the subtype System.@!Priority.]
The priority specified by a Priority or Interrupt_Priority pragma is the
value of the @nt{expression} in the pragma, if any. If there is no
@nt{expression} in an Interrupt_Priority pragma, the priority value is
Interrupt_Priority'Last.
@end{StaticSem}
@begin{RunTime}
A Priority pragma has no effect
if it occurs in the @nt{declarative_part} of the @nt{subprogram_body} of a
subprogram other than the main subprogram.
@Defn{task priority}
@Defn{priority}
@Defn{priority inheritance}
@Defn{base priority}
@Defn{active priority}
A @i{task priority} is an integer value that indicates a degree of urgency
and is the basis for resolving competing demands of tasks for
resources. Unless otherwise specified, whenever tasks compete
for processors or other implementation-defined resources, the
resources are allocated to the task with the highest priority
value.
The @i{base priority} of a task is the priority with which it was
created, or to which it was later set by Dynamic_Priorities.Set_Priority
(see @RefSecNum{Dynamic Priorities}). At all times, a task also has
an @i{active priority}, which generally reflects its base priority
as well as any priority it inherits from other sources.
@i{Priority inheritance} is the process by which the priority of a
task or other entity (e.g. a protected object;
see @RefSecNum{Priority Ceiling Locking}) is used in the evaluation of another
task's active priority.
@ImplDef{Implementation-defined execution resources.}
The effect of specifying such a pragma in a @nt{protected_definition}
is discussed in @RefSecNum{Priority Ceiling Locking}.
@Defn2{Term=[creation], Sec=(of a task object)}
The @nt{expression} in a Priority or Interrupt_Priority pragma that
appears in a @nt{task_definition} is evaluated for each task object
(see @RefSecNum{Task Units and Task Objects}).
For a Priority pragma, the
value of the @nt{expression} is converted to the subtype Priority; for an
Interrupt_Priority pragma, this value is converted to the subtype Any_Priority.
The priority value is then associated with the task object whose
@nt{task_definition} contains the pragma.
@PDefn2{Term=[implicit subtype conversion],Sec=(pragma Priority)}
@PDefn2{Term=[implicit subtype conversion],Sec=(pragma Interrupt_Priority)}
Likewise, the priority value is associated with the environment task if the
pragma appears in the @nt{declarative_part} of the main subprogram.
The initial value of a task's base priority is specified by default or
by means of a Priority or Interrupt_Priority pragma.
@Redundant[After a task is created,
its base priority can be changed only by a call to
Dynamic_Priorities.Set_Priority (see @RefSecNum{Dynamic Priorities}).]
The initial base priority of a task in the absence of a pragma is the
base priority of the task that creates it at the time of creation
(see @RefSecNum{Task Units and Task Objects}).
If a pragma Priority does not apply to the main subprogram,
the initial base priority of the environment task is
System.Default_Priority.
@Redundant[The task's active priority is used when the task competes for
processors.
Similarly, the task's active priority is used
to determine the task's position in any queue when Priority_Queuing is
specified (see @RefSecNum{Entry Queuing Policies}).]
@Leading@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00357-01]}
At any time, the active priority of a task is the maximum of all the
priorities the task is inheriting at that instant. For a task that is not
held (see @RefSecNum{Asynchronous Task Control}), its base priority is
@Chg{Version=[2],New=[],Old=[always ]}a source of priority inheritance
@Chg{Version=[2],New=[unless otherwise
specified for a particular task dispatching policy],Old=[]}.
Other sources of priority inheritance are specified under the following
conditions:
@begin{Discussion}
Other parts of the annex, e.g.
@RefSecNum{Asynchronous Task Control}, define
other sources of priority inheritance.
@end{Discussion}
@begin{itemize}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0072],ARef=[AI95-00092-01]}
During activation, a task being activated inherits the active priority
@Chg{New=[that],Old=[of the]} its activator (see
@RefSecNum{Task Execution - Task Activation})@Chg{New=[ had at the time
the activation was initiated],Old=[]}.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0072],ARef=[AI95-00092-01]}
During rendezvous, the task accepting the entry call inherits the
@Chg{New=[],Old=[active ]}priority of the @Chg{New=[entry call],Old=[caller]}
(see @RefSecNum{Entry Calls}@Chg{New=[ and @RefSecNum{Entry Queuing Policies}],Old=[]}).
During a protected action on a protected object, a task inherits the ceiling
priority of the protected object (see @RefSecNum{Intertask Communication} and
@RefSecNum{Priority Ceiling Locking}).
@end{itemize}
In all of these cases, the priority ceases to be
inherited as soon as the condition calling for the inheritance no longer
exists.
@end{RunTime}
@begin{ImplReq}
The range of System.Interrupt_Priority shall include at least one value.
The range of System.Priority shall include at least 30 values.
@end{ImplReq}
@begin{Notes}
The priority expression can include references to
discriminants of the enclosing type.
It is a consequence of the active priority rules that at the point when
a task stops inheriting a priority from another source, its active priority
is re-evaluated. This is in addition to other instances described in this
Annex for such re-evaluation.
An implementation may provide a non-standard mode in which tasks
inherit priorities under conditions other than those specified
above.
@begin{Ramification}
The use of a Priority or Interrupt_Priority pragma does not
require the package System to be named in a @nt{with_clause} for the
enclosing @nt{compilation_unit}.
@end{Ramification}
@end{Notes}
@begin{Extend83}
@Defn{extensions to Ada 83}
The priority of a task is per-object and not per-type.
Priorities need not be static anymore (except for the main subprogram).
@end{Extend83}
@begin{DiffWord83}
The description of the Priority pragma has been moved to this annex.
@end{DiffWord83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0072],ARef=[AI95-00092-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that dynamic
priority changes are not transitive - that is, they don't apply to tasks
that are being activated by or in rendezvous with the task that had its
priority changed.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[Generalized the definition of priority
inheritance to take into account the differences between the existing and
new dispatching policies.]}
@end{DiffWord95}
@LabeledClause{Priority Scheduling}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
@Redundant[This clause describes the rules that determine which task is
selected for execution when more than one task is ready
(see @Chg{Version=[2],New=[@RefSecNum{Tasks and Synchronization}],
Old=[@RefSecNum{Task Execution - Task Activation}]}).@Chg{Version=[2],
New=[],Old=[ The rules have two parts: the task dispatching model
(see @RefSecNum{The Task Dispatching Model}),
and a specific task dispatching policy
(see @RefSecNum{Task Dispatching Pragmas}).]}]
@end{Intro}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[This introduction is simplified in order to
reflect the rearrangement and expansion of this clause.]}
@end{DiffWord95}
@LabeledSubClause{The Task Dispatching Model}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
@Redundant[The task dispatching model specifies @Chg{Version=[2],
New=[task],Old=[preemptive]} scheduling, based on conceptual
priority-ordered ready queues.]
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[@key<package> Ada.Dispatching @key<is>@ChildUnit{Parent=[Ada],Child=[Dispatching]}
@key<pragma> Pure(Dispatching);
@AdaExcDefn{Dispatching_Policy_Error} : @key<exception>;
@key<end> Ada.Dispatching;]}
@end{Example}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[Dispatching serves as the parent of other
language-defined library units concerned with task dispatching.]}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
A task @Chg{Version=[2],New=[can become],Old=[runs (that is, it becomes]} a
@i{running task}@Chg{Version=[2],New=[],Old=[)]} only @Chg{Version=[2],
New=[if],Old=[when]} it is ready (see @Chg{Version=[2],New=[@RefSecNum{Tasks and Synchronization}],
Old=[@RefSecNum{Task Execution - Task Activation}]}) and
the execution resources required by that task are available.
Processors are allocated to tasks based on each task's active priority.
It is implementation defined whether, on a multiprocessor, a task that
is waiting for access to a protected object keeps its processor busy.
@ImplDef{Whether, on a multiprocessor, a task that
is waiting for access to a protected object keeps its processor busy.}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
@Defn{task dispatching}
@Defn{dispatching, task}
@RootDefn{task dispatching point}
@RootDefn{dispatching point}
@i{Task dispatching} is the process by which one ready task is selected
for execution on a processor. This selection is done at certain points
during the execution of a task called @i{task dispatching points}.
A task reaches a task dispatching point whenever it becomes blocked,
and @Chg{Version=[2],New=[when it terminates],Old=[whenever it becomes ready.
In addition, the completion of an @nt{accept_statement}
(see @RefSecNum{Entries and Accept Statements}), and task termination are
task dispatching points for the executing task]}.
@Redundant[Other task dispatching points are defined
throughout this Annex@Chg{Version=[2],New=[ for specific policies],Old=[]}.]
@begin{Ramification}
On multiprocessor systems, more than one task can be chosen, at the
same time, for execution on more than one processor, as explained below.
@end{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
@Defn{ready queue}
@Defn{head (of a queue)}
@Defn{tail (of a queue)}
@Defn{ready task}
@PDefn{task dispatching policy}
@PDefn{dispatching policy for tasks}
@i{Task dispatching policies} are specified in terms of conceptual
@i{ready queues}@Chg{Version=[2],New=[ and],Old=[,]} task states@Chg{Version=[2],
New=[],Old=[, and task preemption]}.
A ready queue is an ordered list of ready tasks.
The first position in a queue is called the
@i{head of the queue}, and the last position is called the
@i{tail of the queue}.
A task is @i{ready} if it is in a ready queue,
or if it is running.
Each processor has one ready queue for each priority value. At any instant,
each ready queue of a processor contains exactly the set of tasks of that
priority that are ready for execution on that
processor, but are not running on any processor; that is, those tasks
that are ready, are not running on any processor, and can be
executed using that processor and other available resources.
A task can be on the ready queues of more than one processor.
@begin{Discussion}
The core language defines a ready task as one that is not
blocked. Here we refine this definition and
talk about ready queues.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
@Defn{running task}
Each processor also has one @i{running task},
which is the task currently being executed by that processor.
Whenever a task running on a processor reaches a task dispatching
point@Chg{Version=[2],New=[ it goes back to one or more ready queues; a],
Old=[, one]} task @Chg{Version=[2],New=[(possibly the same task) ],Old=[]}is
@Chg{Version=[2],New=[then ],Old=[]}selected to run on that processor.
The task selected is the one at the head of the highest priority
nonempty ready queue;
this task is then removed from all ready queues to which it
belongs.
@begin{Discussion}
There is always at least one task to run,
if we count the idle task.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[@Defn{preemptible resource}
A preemptible resource is a resource that while allocated
to one task can be allocated (temporarily) to another
instead.
Processors are preemptible resources. Access to a protected object
(see @RefSecNum{Protected Subprograms and Protected Actions})
is a nonpreemptible resource.
@Defn{preempted task}
When a higher-priority task is dispatched to the processor, and the previously
running task is placed on the appropriate ready queue, the latter task
is said to be @i{preempted}.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[A processor that is executing a task is available
to execute tasks of higher priority, within the set of tasks that that
processor is able to execute. Write access to a protected object, on the other
hand, cannot be granted to a new task before the old task has released it.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[@PDefn{task dispatching point}
@PDefn{dispatching point}
A new running task is also selected whenever there is a nonempty ready queue
with a higher priority than the priority of the running
task, or when the task dispatching policy requires a
running task to go back to a ready queue.
@Redundant[These are also task dispatching points.]]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[Thus, when a task becomes ready, this is a task
dispatching point for all running tasks of lower priority.]}
@end{Ramification}
@end{RunTime}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
An implementation is allowed to define additional resources as execution
resources, and to define the corresponding allocation policies for them.
Such resources may have an implementation@Chg{Version=[2],New=[-],Old=[ ]}defined
effect on task dispatching@Chg{Version=[2],New=[],
Old=[ (see @RefSecNum{Task Dispatching Pragmas})]}.
@ChgImplDef{Version=[2],Kind=[Revised],
Text=[The @Chg{Version=[2],New=[effect],Old=[affect]} of
implementation@Chg{Version=[2],New=[-],Old=[ ]}defined
execution resources on task dispatching.]}
An implementation may place implementation-defined restrictions on
tasks whose active priority is in the Interrupt_Priority range.
@begin{Ramification}
For example, on some operating systems,
it might be necessary to disallow them altogether.
This permission applies to tasks whose priority is set to interrupt
level for any reason: via a pragma,
via a call to Dynamic_Priorities.Set_Priority,
or via priority inheritance.
@end{Ramification}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00321-01]}
@ChgNote{This was moved up from the previous section.}
@ChgAdded{Version=[2],Text=[@Redundant[For optimization purposes,]
an implementation may alter the points at which task dispatching occurs, in an
implementation-defined manner. However, a @nt{delay_statement} always
corresponds to at least one task dispatching point.]}
@end{ImplPerm}
@begin{Notes}
Section 9 specifies under which circumstances a task
becomes ready.
The ready state is affected by the rules for
task activation and termination, delay statements, and entry calls.
@PDefn{blocked}
When a task is not ready, it is said to be blocked.
An example of a possible implementation-defined execution
resource is a page of physical memory, which needs to be loaded
with a particular page of virtual memory before a task can
continue execution.
The ready queues are purely conceptual; there is no requirement that such
lists physically exist in an implementation.
While a task is running, it is not on any ready queue. Any time
the task that is running on a processor is added to a ready queue,
a new running task is selected for that processor.
In a multiprocessor system, a task can be on the ready queues of more than
one processor. At the extreme, if several processors share the same set of
ready tasks, the contents of their ready queues is identical, and so
they can be viewed as sharing one ready queue, and can be implemented that
way.
@Redundant[Thus, the dispatching model covers
multiprocessors where dispatching is implemented using a single
ready queue, as well as those with separate dispatching domains.]
The priority of a task is determined by rules specified in this subclause, and
under @RefSec{Task Priorities}, @RefSec{Priority Ceiling Locking}, and
@RefSec{Dynamic Priorities}.
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgNote{This note is moved up from the next subclause.}
@ChgAdded{Version=[2],Text=[The setting of a task's base priority as a result
of a call to Set_Priority does not always take effect immediately when
Set_Priority is called. The effect of setting the task's base priority is
deferred while the affected task performs a protected action.]}
@end{Notes}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[This description is simplified to describe only
the parts of the dispatching model common to all policies. In particular,
rules about preemption are moved elsewhere. This makes
it easier to add other policies (which may not involve preemption).]}
@end{DiffWord95}
@LabeledRevisedSubClause{Version=[2],
New=[Task Dispatching Pragmas],
Old=[The Standard Task Dispatching Policy]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause allows a single task
dispatching policy to be defined for all priorities, or the range of priorities
to be split into subranges that are assigned individual dispatching
policies.]]}
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Task_Dispatching_Policy is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Task_Dispatching_Policy)(@SynI{policy_}@Syn2{identifier});'
@begin{SyntaxText}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],Text=[The form of a
@nt{pragma} Priority_Specific_Dispatching is as follows:]}
@end{SyntaxText}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=`@AddedPragmaSyn`Version=[2],@key{pragma} @prag<Priority_Specific_Dispatching> (@*
@ @ @ @ @ @SynI{policy_}@Syn2{identifier}, @SynI{first_priority_}@Syn2{expression}, @SynI{last_priority_}@Syn2{expression});''}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The expected type for @SynI{first_priority_}@nt{expression}
and @SynI{last_priority_}@nt{expression} is Integer.]}
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01],ARef=[AI95-00355-01]}
The @SynI{policy_}@nt{identifier} @Chg{Version=[2],New=[used in a @nt{pragma}
Task_Dispatching_Policy shall be the name of a task dispatching policy],
Old=[shall either be FIFO_Within_Priorities or
an implementation-defined @Syn2{identifier}]}.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined @SynI{policy_}@Syn2{identifier}s allowed
in a @nt{pragma} Task_Dispatching_Policy.]}]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The @SynI{policy_}@nt{identifier}
used in a @nt{pragma}
Priority_Specific_Dispatching shall be the name of a task dispatching policy.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[Both @Syni{first_priority_}@!@nt{expression} and
@Syni{last_priority_}@!@nt{expression} shall be static expressions in the range
of System.Any_Priority; @SynI{last_priority_}@!@nt{expression} shall have a
value greater than or equal to @SynI{first_priority_}@!@nt{expression}.]}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@nt{Pragma} Task_Dispatching_Policy specifies the
single task dispatching policy.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@nt{Pragma} Priority_Specific_Dispatching specifies
the task dispatching policy for the specified range of priorities. Tasks with
base priorities within the range of priorities specified in a
Priority_Specific_Dispatching pragma have their active priorities determined
according to the specified dispatching policy. Tasks with active priorities
within the range of priorities specified in a Priority_Specific_Dispatching
pragma are dispatched according to the specified dispatching policy.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[Each ready queue is managed by exactly one
policy. Anything else would be chaos. The ready queue is determined by
the active priority. However, how the active priority is calculated is
determined by the policy; in order to break out of this circle, we have
to say that the active priority is calculated by the method determined
by the policy of the base priority.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[If a partition contains one or more
Priority_Specific_Dispatching pragmas the dispatching policy for priorities not
covered by any Priority_Specific_Dispatching pragmas is
FIFO_Within_Priorities.]}
@end{StaticSem}
@begin{LinkTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00355-01]}
@PDefn2{Term=[configuration pragma], Sec=(Task_Dispatching_Policy)}
@PDefn2{Term=[pragma, configuration], Sec=(Task_Dispatching_Policy)}
A Task_Dispatching_Policy pragma is a configuration pragma.@Chg{Version=[2],
New=[ A Priority_Specific_Dispatching pragma is a configuration pragma.
@PDefn2{Term=[configuration pragma], Sec=(Priority_Specific_Dispatching)}
@PDefn2{Term=[pragma, configuration], Sec=(Priority_Specific_Dispatching)}],Old=[]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The priority ranges specified in more than one
Priority_Specific_Dispatching pragma within the same partition shall not be
overlapping.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[If a partition contains one or more
Priority_Specific_Dispatching pragmas it shall not contain a
Task_Dispatching_Policy pragma.]}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00333-01]}
@ChgDeleted{Version=[2],Text=[If the FIFO_Within_Priorities policy is specified
for a partition, then the Ceiling_Locking policy
(see @RefSecNum{Priority Ceiling Locking}) shall also be specified for
the partition.]}
@end{LinkTime}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00355-01]}
@Defn{task dispatching policy}
@Redundant[A @i{task dispatching policy} specifies the details of task
dispatching that are not covered by the basic task dispatching model.
These rules govern when tasks are inserted into and
deleted from the ready queues@Chg{Version=[2],New=[],Old=[,
and whether a task is inserted at the head or the tail of the
queue for its active priority]}.]
@Chg{Version=[2],New=[A single],Old=[The]} task dispatching policy is
specified by a Task_Dispatching_Policy @Chg{Version=[2],New=[],Old=[configuration ]}pragma.
@Chg{Version=[2],New=[Pragma Priority_Specific_Dispatching assigns distinct
dispatching policies to subranges of System.Any_Priority.],
Old=[@PDefn{unspecified}If no such pragma appears in any of the program
units comprising a partition, the task dispatching policy for
that partition is unspecified.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@PDefn{unspecified}If neither @nt{pragma} applies
to any of the program units comprising a partition, the task dispatching policy
for that partition is unspecified.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[If a partition contains one or more
Priority_Specific_Dispatching pragmas a task dispatching point occurs for the
currently running task of a processor whenever there is a non-empty ready queue
for that processor with a higher priority than the priority of the running
task.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[If we have priority specific dispatching then we
want preemption across the entire range of priorities. That prevents higher
priority tasks from being blocked by lower priority tasks that have a
different policy. On the other hand, if we have a single policy for the
entire partition, we want the characteristics of that policy to apply for
preemption; specifically, we may not require any preemption. Note that policy
Non_Preemptive_FIFO_Within_Priorities is not allowed in a priority specific
dispatching pragma.]}
@end{Discussion}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[A task that has its base priority changed may move
from one dispatching policy to another. It is immediately subject
to the new dispatching policy.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Once subject to the new dispatching policy, it
may be immediately preempted or dispatched, according the rules of the new
policy.]}
@end{Ramification}
@ChgNote{The following stuff is moved to the next subclause}
@begin{NotIso}
@ChgAdded{Version=[2],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 7
through 13 were moved to D.2.3.>}]}@Comment{This message should be deleted if the
paragraphs are ever renumbered.}
@end{NotIso}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Type=[Leading],Text=[The language defines only one task
dispatching policy, FIFO_Within_Priorities; when this policy is in effect,
modifications to the ready queues occur only as follows:]}
@begin{itemize}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[When a blocked task becomes ready,
it is added at the tail of the ready queue for its active priority.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[When the active priority of a ready task that is
not running changes, or the setting of its base priority takes effect, the task
is removed from the ready queue for its old active priority and is added at the
tail of the ready queue for its new active priority, except in the case where
the active priority is lowered due to the loss of inherited priority, in which
case the task is added at the head of the ready queue for its new active
priority.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[When the setting of the base priority of a
running task takes effect, the task is added to the tail of the ready queue for
its active priority.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[When a task executes a @nt{delay_statement} that
does not result in blocking, it is added to the tail of the ready queue for its
active priority.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
@ChgDeleted{Version=[2],Text=[If the delay does result in blocking,
the task moves to the @lquotes@;delay queue@rquotes@;,
not to the ready queue.]}
@end{Ramification}
@end{itemize}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[@PDefn{task dispatching point}
@PDefn{dispatching point}
Each of the events specified above is a task dispatching point
(see @RefSecNum{The Task Dispatching Model}).]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[In addition, when a task is preempted, it is
added at the head of the ready queue for its active priority.]}
@end{RunTime}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00333-01],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[An implementation shall allow, for a single
partition, both the locking policy (see @RefSecNum{Priority Ceiling Locking})
to be specified as Ceiling_Locking
and also one or more Priority_Specific_Dispatching pragmas to be given.]}
@end{ImplReq}
@begin{DocReq}
@begin{NotIso}
@ChgAdded{Version=[2],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 14
through 16 were moved to D.2.3.>}]}@Comment{This message should be deleted if the
paragraphs are ever renumbered.}
@end{NotIso}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Type=[Leading],Text=[@Defn{priority inversion}
@i{Priority inversion} is the duration for which a task remains at the
head of the highest priority ready queue while the processor executes
a lower priority task. The implementation shall document:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[The maximum priority inversion a user task can experience due to activity
of the implementation (on behalf of lower priority tasks), and]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[whether execution of a task can be preempted by
the implementation processing of delay
expirations for lower priority tasks, and if so, for how long.]}
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of priority inversion.]}]}
@end{Itemize}
@end{DocReq}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00256-01]}
Implementations are allowed to define other task dispatching policies, but
need not support more than one @Chg{Version=[2],New=[task dispatching],
Old=[such]} policy per partition.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00355-01]}
@Chg{Version=[2],New=[An implementation need not support @nt{pragma}
Priority_Specific_Dispatching if it is infeasible to support it in the
target environment.],
Old=[@Redundant[For optimization purposes,]
an implementation may alter the points at which task dispatching occurs,
in an implementation defined manner.
However, a @nt{delay_statement} always corresponds to at least one task
dispatching point.]}
@ChgImplDef{Version=[2],Kind=[Revised],Text=[Implementation defined task
dispatching@Chg{Version=[2],New=[ policies],Old=[]}.]}
@end{ImplPerm}
@begin{Notes}
@begin{NotIso}
@ChgAdded{Version=[2],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 19
through 21 were deleted.>}]}@Comment{This message should be deleted if the
paragraphs are ever renumbered.}
@end{NotIso}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[If the active priority of a running task is
lowered due to loss of inherited priority (as it is on completion of a
protected operation) and there is a ready task of the same active priority that
is not running, the running task continues to run (provided that there is no
higher priority task).]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[The setting of a task's base priority as a result
of a call to Set_Priority does not always take effect immediately when
Set_Priority is called. The effect of setting the task's base priority is
deferred while the affected task performs a protected action.]}
@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00321-01]}
@ChgDeleted{Version=[2],Text=[Setting the base priority of a ready task causes
the task to move to the end of the queue for its active priority,
regardless of whether the active priority of the task actually changes.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00333-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
@B[Amendment Correction:] It is no longer required to specify Ceiling_Locking
with the language-defined task dispatching policies; we only require that
implementations @i<allow> them to be used together.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@key{Pragma} Priority_Specific_Dispatching is
new; it allows specifying different policies for different priorities.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00256-01]}
@ChgAdded{Version=[2],Text=[Clarified that an implementation need support
only one task dispatching policy (of any kind, language-defined or otherwise)
per partition.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[This description is simplified to describe only
the rules for the Task_Dispatching_Policy pragma that are common to
all policies. In particular, rules about preemption are moved elsewhere. This
makes it easier to add other policies (which may not involve preemption).]}
@end{DiffWord95}
@LabeledAddedSubClause{Version=[2],Name=[Preemptive Dispatching]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause defines a preemptive task
dispatching policy.]]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The @SynI{policy_}@nt{identifier}
FIFO_Within_Priorities is a task dispatching policy.]}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[When FIFO_Within_Priorities is in effect,
modifications to the ready queues occur only as follows:]}
@begin{itemize}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[When a blocked task becomes ready, it is added at
the tail of the ready queue for its active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When the active priority of a ready task that is
not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for
its old active priority and is added at the tail of the ready queue for its new
active priority, except in the case where the active priority is lowered due to
the loss of inherited priority, in which case the task is added at the
head of the ready queue for its new active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When the setting of the base priority of a running task takes effect, the
task is added to the tail of the ready queue for its active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When a task executes a @nt{delay_statement} that
does not result in blocking, it is added to the tail of the ready queue for
its active priority.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[If the delay does result in blocking,
the task moves to the @lquotes@;delay queue@rquotes@;,
not to the ready queue.]}
@end{Ramification}
@end{itemize}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[@PDefn{task dispatching point}
@PDefn{dispatching point}
Each of the events specified above is a task dispatching point
(see @RefSecNum{The Task Dispatching Model}).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[A task dispatching point occurs for the currently
running task of a processor whenever there is a nonempty ready queue for that
processor with a higher priority than the priority of the running task. The
currently running task is said to be @i<preempted> and it is added at the head
of the ready queue for its active priority.@Defn2{Term=[preempt],Sec=[a running task]}]}
@end{RunTime}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00333-01]}
@ChgAdded{Version=[2],Text=[An implementation shall allow, for a single
partition, both the task dispatching policy to be specified as
FIFO_Within_Priorities and also the locking policy (see
@RefSecNum{Priority Ceiling Locking}) to be specified as Ceiling_Locking.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is the preferred combination of the
FIFO_Within_Priorities policy with a locking policy, and we want that
combination to be portable.]}
@end{Reason}
@end{ImplReq}
@begin{DocReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[@Defn{priority inversion}
@i{Priority inversion} is the duration for which a task remains at the
head of the highest priority nonempty ready queue while the processor executes
a lower priority task. The implementation shall document:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The maximum priority inversion a user task
can experience due to activity
of the implementation (on behalf of lower priority tasks), and]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The maximum priority inversion a user task can experience from
the implementation.]}]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[whether execution of a task can be preempted
by the implementation processing of delay
expirations for lower priority tasks, and if so, for how long.]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The amount of time that a task can be preempted for processing on
behalf of lower-priority tasks.]}]}
@end{Itemize}
@end{DocReq}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[If the active priority of a running task is
lowered due to loss of
inherited priority (as it is on completion of a protected
operation) and there is a ready task of the same active priority
that is not running,
the running task continues to run (provided that there is no higher
priority task).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[Setting the base priority of a ready task causes
the task to move to the tail of the queue for its active priority,
regardless of whether the active priority of the task actually changes.]}
@end{Notes}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[This subclause is new; it mainly consists of
text that was found in @RefSecNum{The Task Dispatching Model} and
@RefSecNum{Task Dispatching Pragmas} in Ada 95. This was
separated out so the definition of additional policies was easier.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00333-01]}
@ChgAdded{Version=[2],Text=[We require that implementations allow
this policy and Ceiling_Locking together.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[We explicitly defined FIFO_Within_Priorities
to be a task dispatching policy.]}
@end{DiffWord95}
@LabeledAddedSubClause{Version=[2],Name=[Non-Preemptive Dispatching]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00298-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause defines a non-preemptive task
dispatching policy.]]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00298-01],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The @SynI{policy_}@nt{identifier}
Non_Preemptive_FIFO_Within_Priorities is a task dispatching policy.]}
@end{StaticSem}
@begin{Legality}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[Non_Preemptive_FIFO_Within_Priorities shall not be
specified as the @SynI{policy_}@nt{identifier} of @nt{pragma}
Priority_Specific_Dispatching (see
@RefSecNum{Task Dispatching Pragmas}).]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The non-preemptive nature of this policy could
cause the policies of higher priority tasks to malfunction, missing deadlines
and having unlimited priority inversion. That would render the use of such
policies impotent and misleading. As such, this policy only makes sense
for a complete system.]}
@end{Reason}
@end{Legality}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00298-01]}
@ChgAdded{Version=[2],Text=[When Non_Preemptive_FIFO_Within_Priorities is in
effect, modifications to the ready queues occur only as follows:]}
@begin{itemize}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00298-01]}
@ChgAdded{Version=[2],Text=[When a blocked task becomes ready, it is added at
the tail of the ready queue for its active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When the active priority of a ready task that is
not running changes, or the setting of its base
priority takes effect, the task is removed from the ready queue for
its old active priority and is added at the tail of the ready queue for its new
active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When the setting of the base priority of a running task takes effect, the
task is added to the tail of the ready queue for its active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When a task executes a @nt{delay_statement} that
does not result in blocking, it is added to the tail of the ready queue for
its active priority.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[If the delay does result in blocking,
the task moves to the @lquotes@;delay queue@rquotes@;,
not to the ready queue.]}
@end{Ramification}
@end{itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[For this policy, a non-blocking @nt{delay_statement}
is the only non-blocking event that is a task dispatching point (see
@RefSecNum{The Task Dispatching Model}).@PDefn{task dispatching point}
@PDefn{dispatching point}]}
@end{RunTime}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00333-01]}
@ChgAdded{Version=[2],Text=[An implementation shall allow, for a single
partition, both the task dispatching policy to be specified as
Non_Preemptive_FIFO_Within_Priorities and also the locking policy (see
@RefSecNum{Priority Ceiling Locking}) to be specified as Ceiling_Locking.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is the preferred combination of the
Non_Preemptive_FIFO_Within_Priorities policy with a locking policy, and we
want that combination to be portable.]}
@end{Reason}
@end{ImplReq}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00298-01]}
@ChgAdded{Version=[2],Text=[Since implementations are allowed to round all
ceiling priorities in subrange System.Priority to System.Priority'Last (see
@RefSecNum{Priority Ceiling Locking}), an implementation may allow a task to
execute within a protected object without raising its active priority provided
the associated protected unit does not contain pragma Interrupt_Priority,
Interrupt_Handler, or Attach_Handler.]}
@end{ImplPerm}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00298-01],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Policy Non_Preemptive_FIFO_Within_Priorities is new.]}
@end{Extend95}
@LabeledAddedSubClause{Version=[2],Name=[Round Robin Dispatching]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause defines the task dispatching
policy Round_Robin_Within_Priorities and the package Round_Robin.]]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The @SynI{policy}_@nt{identifier}
Round_Robin_Within_Priorities is a task dispatching policy.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} System;
@key{with} Ada.Real_Time;
@key{package} Ada.Dispatching.Round_Robin @key{is}@ChildUnit{Parent=[Ada.Dispatching],Child=[Round_Robin]}
@AdaObjDefn{Default_Quantum} : @key{constant} Ada.Real_Time.Time_Span :=
@RI[implementation-defined];
@key{procedure} @AdaSubDefn{Set_Quantum} (Pri : @key{in} System.Priority;
Quantum : @key{in} Ada.Real_Time.Time_Span);
@key{procedure} @AdaSubDefn{Set_Quantum} (Low, High : @key{in} System.Priority;
Quantum : @key{in} Ada.Real_Time.Time_Span);
@key{function} @AdaSubDefn{Actual_Quantum} (Pri : System.Priority) @key{return} Ada.Real_Time.Time_Span;
@key{function} @AdaSubDefn{Is_Round_Robin} (Pri : System.Priority) @key{return} Boolean;
@key{end} Ada.Dispatching.Round_Robin;]}
@end{Example}
@ChgImplDef{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The value of Default_Quantum in Dispatching.Round_Robin.]}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[When task dispatching policy Round_Robin_Within_Priorities is the single
policy in effect for a partition, each task with priority in the range of
System.Interrupt_Priority is dispatched according to policy
FIFO_Within_Priorities.]}
@end{StaticSem}
@begin{Runtime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The procedures Set_Quantum set the required Quantum
value for a single priority level Pri or a range of priority levels Low .. High.
If no quantum is set for a Round Robin priority level, Default_Quantum is used.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The function Actual_Quantum returns the actual
quantum used by the implementation for the priority level Pri.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The function Is_Round_Robin returns True if
priority Pri is covered by task dispatching policy
Round_Robin_Within_Priorities; otherwise it returns False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[A call of Actual_Quantum or Set_Quantum raises
exception Dispatching.Dispatching_Policy_Error if a predefined policy other
than Round_Robin_Within_Priorities applies to the specified priority
or any of the priorities in the specified range.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For Round_Robin_Within_Priorities,
the dispatching rules for FIFO_Within_Priorities apply with the following
additional rules:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When a task is added or moved to the tail of the
ready queue for its base priority, it has an execution time budget equal to the
quantum for that priority level. This will also occur when a blocked task
becomes executable again.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When a task is preempted (by a higher priority
task) and is added to the head of the ready queue for its priority level, it
retains its remaining budget.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[While a task is executing, its budget is decreased
by the amount of execution time it uses. The accuracy of this accounting is the
same as that for execution time clocks (see @RefSecNum{Execution Time}).]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Note that this happens even when the task
is executing at a higher, inherited priority, and even if that higher
priority is dispatched by a different policy than round robin.]}
@end{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[When a task has exhausted its budget and is without
an inherited priority (and is not executing within a protected operation), it
is moved to the tail of the ready queue for its priority level. This is a task
dispatching point.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[In this case, it will be given
a budget as described in the first bullet.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The rules for FIFO_Within_Priority (to which
these bullets are added) say that a task that has its base priority set to a
Round Robin priority is moved to the tail of the ready queue for its new
priority level, and then will be given a budget as described in the first
bullet. That happens whether or not the task's original base priority was
a Round Robin priority.]}
@end{Ramification}
@end{Itemize}
@end{Runtime}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00333-01],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[An implementation shall allow, for a single
partition, both the task dispatching policy to be specified as
Round_Robin_Within_Priorities and also the locking policy (see
@RefSecNum{Priority Ceiling Locking}) to be specified as Ceiling_Locking.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is the preferred combination of the
Round_Robin_Within_Priorities policy with a locking policy, and we
want that combination to be portable.]}
@end{Reason}
@end{ImplReq}
@begin{DocReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[An implementation shall document the quantum values
supported.]}
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The quantum values supported for round robin dispatching.]}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[An implementation shall document the accuracy with
which it detects the exhaustion of the budget of a task.]}
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The accuracy of the detection of the exhaustion of the budget of a task
for round robin dispatching.]}]}
@end{DocReq}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[Due to implementation constraints, the quantum
value returned by Actual_Quantum might not be identical to that set with
Set_Quantum.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[A task that executes continuously with an inherited
priority will not be subject to round robin dispatching.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Policy Round_Robin_Within_Priorities and package
Dispatching.Round_Robin are new.]}
@end{Extend95}
@RMNewPage@Comment{For printed Ada 2005 RM}
@LabeledAddedSubClause{Version=[2],Name=[Earliest Deadline First Dispatching]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The deadline of a task is an indication of the
urgency of the task; it represents a point on an ideal physical time line.
The deadline might affect how resources are allocated to the task.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[This clause defines a package for representing the
deadline of a task and a dispatching policy that defines Earliest Deadline
First (EDF) dispatching. A pragma is defined to assign an initial deadline to a
task.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This pragma is the only way of assigning an
initial deadline to a task so that its activation can be controlled by EDF
scheduling. This is similar to the way pragma Priority is used to give an
initial priority to a task.]}
@end{Discussion}
@end{Intro}
@begin{MetaRules}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[To predict the behavior of a multi-tasking program
it is necessary to control access to the processor which is preemptive, and
shared objects which are usually non-preemptive and embodied in protected
objects. Two common dispatching policies for the processor are fixed priority
and EDF. The most effective control over shared objects is via preemption
levels. With a pure priority scheme a single notion of priority is used for
processor dispatching and preemption levels. With EDF and similar schemes
priority is used for preemption levels (only), with another measure used for
dispatching. T.P. Baker showed (@i<Real-Time Systems>, March 1991, vol. 3, num.
1, @i<Stack-Based Scheduling of Realtime Processes>) that for EDF a newly
released task should only preempt the currently running task if it has an
earlier deadline and a higher preemption level than any currently
@lquotes@;locked@rquotes protected object. The rules of this clause implement
this scheme including the case where the newly released task should execute
before some existing tasks but not preempt the currently executing task.]}
@end{MetaRules}
@begin{Syntax}
@begin{SyntaxText}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],Text=[The form of a
@nt{pragma} Relative_Deadline is as follows:]}
@end{SyntaxText}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=`@AddedPragmaSyn`Version=[2],@key{pragma} @prag<Relative_Deadline> (@SynI{relative_deadline_}@Syn2{expression});''}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The expected type for
@SynI{relative_deadline_}@nt{expression} is Real_Time.Time_Span.]}
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[A Relative_Deadline pragma is allowed only
immediately within a @nt{task_definition} or the @nt{declarative_part} of a
@nt{subprogram_body}. At most one such pragma shall appear within a given
construct.]}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The @SynI{policy_}@nt{identifier}
EDF_Across_Priorities is a task dispatching policy.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} Ada.Real_Time;
@key{with} Ada.Task_Identification;
@key{package} Ada.Dispatching.EDF @key{is}@ChildUnit{Parent=[Ada.Dispatching],Child=[EDF]}
@key{subtype} @AdaSubtypeDefn{Name=[Deadline],Of=[Time]} @key{is} Ada.Real_Time.Time;
@AdaObjDefn{Default_Deadline} : @key{constant} Deadline :=
Ada.Real_Time.Time_Last;
@key{procedure} @AdaSubDefn{Set_Deadline} (D : @key{in} Deadline;
T : @key{in} Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task);
@key{procedure} @AdaSubDefn{Delay_Until_And_Set_Deadline} (
Delay_Until_Time : @key{in} Ada.Real_Time.Time;
Deadline_Offset : @key{in} Ada.Real_Time.Time_Span);
@key{function} @AdaSubDefn{Get_Deadline} (T : Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task) @key{return} Deadline;
@key{end} Ada.Dispatching.EDF;]}
@end{Example}
@end{StaticSem}
@begin{LinkTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[If the EDF_Across_Priorities policy is specified
for a partition, then the Ceiling_Locking policy (see
@RefSecNum{Priority Ceiling Locking}) shall also be
specified for the partition.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[If the EDF_Across_Priorities policy appears in a
Priority_Specific_Dispatching pragma
(see @RefSecNum{Task Dispatching Pragmas})
in a partition, then the
Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) shall also
be specified for the partition.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Unlike the other language-defined dispatching
policies, the semantic description of EDF_Across_Priorities assumes
Ceiling_Locking (and a ceiling priority) in order to make the mapping between
deadlines and priorities work. Thus, we require both policies to be specified
if EDF is used in the partition.]}
@end{Reason}
@end{LinkTime}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[A Relative_Deadline pragma has no effect if it
occurs in the @nt{declarative_part} of the @nt{subprogram_body} of a
subprogram other than the main subprogram.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The initial absolute deadline of a task containing
pragma Relative_Deadline is the value of Real_Time.Clock +
@SynI{relative_deadline_}@nt{expression}, where the call of Real_Time.Clock is made
between task creation and the start of its activation. If there is no
Relative_Deadline pragma then the initial absolute deadline of a task is the
value of Default_Deadline. @Redundant[The environment task is also given
an initial deadline by this rule.]]}
@begin{TheProof}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The environment task is a normal task by
@RefSecNum{Program Execution}, so of course this rule applies to it.]}
@end{TheProof}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The procedure Set_Deadline changes the absolute
deadline of the task to D. The function Get_Deadline returns the absolute
deadline of the task.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The procedure Delay_Until_And_Set_Deadline delays
the calling task until time Delay_Until_Time. When the task becomes runnable
again it will have deadline Delay_Until_Time + Deadline_Offset.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[On a system with a single processor, the setting of
the deadline of a task to the new value occurs immediately at the first point
that is outside the execution of a protected action. If the task is currently
on a ready queue it is removed and re-entered on to the ready queue determined
by the rules defined below.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[When EDF_Across_Priorities is specified for
priority range @i<Low>..@i<High> all ready queues in this range are ordered by
deadline. The task at the head of a queue is the one with the earliest
deadline.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[A task dispatching point occurs
for the currently running task @i<T> to
which policy EDF_Across_Priorities applies:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[when a change to the deadline of @i<T> occurs;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[there is a task on the ready queue for the
active priority of @i<T> with a deadline earlier than the deadline of @i<T>; or]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[there is a non-empty ready queue for that processor
with a higher priority than the active priority of the running task.]}
@end{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[In these cases, the currently running task is said
to be preempted and is returned to
the ready queue for its active priority.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For a task @i<T> to which policy
EDF_Across_Priorities applies, the base priority is not a source of
priority inheritance; the active priority when first activated or
while it is blocked is defined as the maximum of the following:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[the lowest priority in the range specified as
EDF_Across_Priorities that includes the base priority of @i<T>;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[the priorities, if any, currently inherited by
@i<T>;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[the highest priority @i<P>, if any, less than the
base priority of @i<T> such that one or more tasks are executing within a
protected object with ceiling priority @i<P> and task @i<T>
has an earlier deadline than all such tasks.]}
@end{Itemize}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The active priority of @i<T> might be lower than
its base priority.]}
@end{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[When a task @i<T> is first activated or becomes
unblocked, it is added to the ready queue corresponding to this active
priority. Until it becomes blocked again, the active priority of @i<T>
remains no less than this value; it will exceed this value only while it is
inheriting a higher priority.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[These rules ensure that a task executing in
a protected object is preempted only by a task with a shorter deadline and a
higher base priority. This matches the traditional preemption level
description without the need to define a new kind of protected object
locking.]}
@end{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[When the setting of the base priority of a ready
task takes effect and the new priority is in a range specified as
EDF_Across_Priorities, the task is added to the ready queue
corresponding to its new active priority, as determined above.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[For all the operations defined in Dispatching.EDF,
Tasking_Error is raised if the task identified by T has terminated.
Program_Error is raised if the value of T is Null_Task_Id.]}
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
If EDF_Across_Priorities is specified for priority range @i<Low>..@i<High>, it
is a bounded error to declare a protected object with ceiling priority
@i<Low> or to assign the value @i<Low> to attribute 'Priority. In either case
either Program_Error is raised or the ceiling of the protected
object is assigned the value @i<Low>+1.]}
@end{Bounded}
@begin{Erron}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
If a value of Task_Id is passed as a parameter to any of the subprograms
of this package and the corresponding task object no longer exists,
the execution of the program is erroneous.]}
@end{Erron}
@begin{DocReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[On a multiprocessor, the implementation shall
document any conditions that cause the completion of the setting of the deadline
of a task to be delayed later than what is specified for a single processor.]}
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Any conditions that cause the completion of the setting of the deadline
of a task to be delayed for a multiprocessor.]}]}
@end{DocReq}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[If two adjacent priority ranges, @i<A>..@i<B> and
@i<B>+1..@i<C> are specified to have policy
EDF_Across_Priorities then this is not equivalent to this policy being
specified for the single range, @i<A>..@i<C>.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The above rules implement the preemption-level
protocol (also called Stack Resource Policy protocol) for resource sharing
under EDF dispatching. The preemption-level for a task is denoted by its base
priority. The definition of a ceiling preemption-level for a protected object
follows the existing rules for ceiling locking.]}
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[An implementation may support additional
dispatching policies by replacing absolute deadline with an alternative
measure of urgency.]}
@end{ImplNote}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Policy EDF_Across_Priorities and package Dispatching.EDF are new.]}
@end{Extend95}
@LabeledClause{Priority Ceiling Locking}
@begin{Intro}
@Redundant[This clause specifies the interactions between priority task
scheduling and protected object ceilings. This interaction is based on
the concept of the @i{ceiling priority} of a protected object.]
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Locking_Policy is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Locking_Policy)(@SynI{policy_}@Syn2{identifier});'
@end{Syntax}
@begin{Legality}
The @SynI{policy_}@Syn2{identifier} shall either be Ceiling_Locking
or an implementation-defined @Syn2{identifier}.
@ImplDef{Implementation-defined @SynI{policy_}@Syn2{identifier}s allowed
in a @nt{pragma} Locking_Policy.}
@end{Legality}
@begin{LinkTime}
@PDefn2{Term=[configuration pragma], Sec=(Locking_Policy)}
@PDefn2{Term=[pragma, configuration], Sec=(Locking_Policy)}
A Locking_Policy pragma is a configuration pragma.
@end{LinkTime}
@begin{RunTime}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0073],ARef=[AI95-00091-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00327-01]}
@Defn{locking policy}
@Redundant[A locking policy specifies the details of protected object
locking. @Chg{Version=[2],New=[All protected objects have a priority.
The locking policy specifies the meaning of
the priority of a],Old=[These rules specify whether or not]} protected @Chg{Version=[2],
New=[object],Old=[objects have
priorities]}, and the relationships between these priorities and
task priorities. In addition, the policy specifies the state of a task
when it executes a protected action, and how its active priority is
affected by the locking.]
The @i{locking policy} is specified by a Locking_Policy pragma. For
implementation-defined locking policies, the @Chg{Version=[2],New=[meaning of
the priority of],Old=[effect of a Priority or
Interrupt_Priority pragma on]} a protected object is
implementation defined.
If no Locking_Policy pragma @Chg{New=[applies to],Old=[appears in]} any
of the program units comprising a partition, the locking policy for that
partition, as well as the @Chg{Version=[2],New=[meaning of
the priority of],Old=[effect of specifying either a Priority or
Interrupt_Priority pragma for]} a protected object, are implementation defined.
@Chg{Version=[2],New=[@Defn2{Term=[Priority],Sec=[of a protected object]}],Old=[]}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The locking policy if no Locking_Policy pragma applies to any unit of
a partition.]}]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[The @nt{expression} of a Priority or Interrupt_Priority
pragma (see @RefSecNum{Task Priorities}) is evaluated as part of the creation
of the corresponding
protected object and converted to the subtype System.Any_Priority or
System.Interrupt_Priority, respectively. The value of the expression is the
initial priority of the corresponding protected object. If no Priority or
Interrupt_Priority pragma applies to a protected object, the initial priority
is specified by the locking policy.
@PDefn2{Term=[implicit subtype conversion],Sec=(pragma Priority)}
@PDefn2{Term=[implicit subtype conversion],Sec=(pragma Interrupt_Priority)}]}
@Leading@;There is one predefined locking policy, Ceiling_Locking; this policy is
defined as follows:
@begin{itemize}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00327-01]}
@Defn2{Term=[ceiling priority], Sec=(of a protected object)}
Every protected object has a @i{ceiling priority}, which
is determined by either a Priority or Interrupt_Priority pragma as
defined in @RefSecNum{Task Priorities}@Chg{Version=[2],New=[, or by
assignment to the Priority attribute as described
in @RefSecNum{Dynamic Priorities for Protected Objects}],Old=[]}.
The ceiling priority of a protected object (or ceiling, for short) is an
upper bound on the active priority a task can have when
it calls protected operations of that protected object.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00327-01]}
The @Chg{Version=[2],New=[initial ceiling priority of a],Old=[@nt{expression}
of a Priority or Interrupt_Priority pragma is evaluated
as part of the creation of the corresponding]}
protected object
@Chg{Version=[2],New=[is
equal to the initial priority for that object.],Old=[and converted
to the subtype System.Any_Priority or System.Interrupt_Priority, respectively.
The value of the @nt{expression} is the ceiling priority of
the corresponding protected object.
@PDefn2{Term=[implicit subtype conversion],Sec=(pragma Priority)}
@PDefn2{Term=[implicit subtype conversion],Sec=(pragma Interrupt_Priority)}]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00327-01]}
If an Interrupt_Handler or Attach_Handler pragma
(see @RefSecNum{Protected Procedure Handlers}) appears in a
@nt{protected_definition} without an Interrupt_Priority pragma, the
@Chg{Version=[2],New=[initial],Old=[ceiling]} priority of protected objects
of that type is implementation defined,
but in the range of the subtype System.Interrupt_Priority.
@ImplDef{Default ceiling priorities.}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00327-01]}
If no @nt{pragma} Priority, Interrupt_Priority,
Interrupt_Handler, or Attach_Handler is specified in the
@nt{protected_definition}, then the @Chg{Version=[2],New=[initial],Old=[ceiling]}
priority of the corresponding protected object is System.Priority'Last.
While a task executes a protected action, it inherits the ceiling
priority of the corresponding protected object.
@IndexCheck{Ceiling_Check}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
When a task calls a protected operation, a check is made that its active
priority is not higher than the ceiling of the corresponding protected object;
Program_Error is raised if this check fails.
@end{Itemize}
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[Following any change of priority,
it is a bounded error for the active priority of any task with a call queued on
an entry of a protected object to be higher than the ceiling priority of the
protected object.
@PDefn2{Term=(bounded error),Sec=(cause)}
In this case one of the following applies:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[at any time prior to executing the entry body
Program_Error is raised in the calling task;
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[when the entry is open the entry body is executed
at the ceiling priority of the protected object;]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[when the entry is open the entry body is executed
at the ceiling priority of the protected object and then Program_Error is
raised in the calling task; or
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[when the entry is open the entry body
is executed at the ceiling priority of the protected object that was in effect
when the entry call was queued.]}
@end{Itemize}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Added]}@Comment{This note was moved along with the above rules}
@ChgAdded{Version=[2],Text=[Note that the error is @lquotes@;blamed@rquotes@;
on the task that did the entry call, not the task that changed the
priority of the task or protected object.
This seems to make sense for the case of changing the priority of a task
blocked on a call, since if the Set_Priority had happened a
little bit sooner, before the task queued a call,
the entry-calling task would get the error.
Similarly, there is no reason not to raise the priority of a
task that is executing in an @nt{abortable_part}, so long as its
priority is lowered before it gets to the end and needs to cancel the
call.
The priority might need to be lowered to allow it to remove the call
from the entry queue,
in order to avoid violating the ceiling.
This seems relatively harmless, since there is an error,
and the task is about to start raising an exception anyway.]}
@end{Ramification}
@end{Bounded}
@begin{ImplPerm}
The implementation is allowed to round all ceilings in a certain
subrange of System.Priority or System.Interrupt_Priority up to
the top of that subrange, uniformly.
@begin{Discussion}
For example, an implementation might use Priority'Last for all ceilings
in Priority, and Interrupt_Priority'Last for all ceilings in
Interrupt_Priority.
This would be equivalent to having two ceiling priorities for protected objects,
@lquotes@;nonpreemptible@rquotes@; and @lquotes@;noninterruptible@rquotes@;, and is an allowed behavior.
Note that the implementation cannot choose a subrange that crosses the
boundary between normal and interrupt priorities.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00256-01]}
Implementations are allowed to define other locking policies,
but need not support more than one @Chg{Version=[2],New=[locking],Old=[such]}
policy per partition.
@Redundant[Since implementations are allowed to place restrictions
on code that runs at an interrupt-level active priority
(see @RefSecNum{Protected Procedure Handlers}
and @RefSecNum{The Task Dispatching Model}),
the implementation may implement a language feature in terms
of a protected object with an implementation-defined ceiling,
but the ceiling shall be no less than Priority'Last.]
@ImplDef{The ceiling of any protected object used internally by the
implementation.}
@begin{TheProof}
This permission follows from the fact that
the implementation can place restrictions on interrupt
handlers and on any other code that runs at an interrupt-level
active priority.
The implementation might protect a storage pool with a
protected object whose ceiling is Priority'Last, which would cause
@nt{allocator}s to fail when evaluated at interrupt priority.
Note that the ceiling of such an object has to be at least
Priority'Last,
since there is no permission for @nt{allocator}s to fail when evaluated at
a non-interrupt priority.
@end{TheProof}
@end{ImplPerm}
@begin{ImplAdvice}
The implementation should use names that end with
@lquotes@;_Locking@rquotes@; for implementation-defined locking policies.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Names that end with @lquotes@;_Locking@rquotes@; should be used for
implementation-defined locking policies.]}]}
@end{ImplAdvice}
@begin{Notes}
While a task executes in a protected action, it can be preempted
only by tasks whose active priorities are higher than the
ceiling priority of the protected object.
If a protected object has a ceiling priority in the range
of Interrupt_Priority, certain interrupts are blocked while
protected actions of that object execute. In the extreme, if
the ceiling is Interrupt_Priority'Last, all blockable interrupts
are blocked during that time.
The ceiling priority of a protected object has to be in the
Interrupt_Priority range if one of its procedures is to be used as
an interrupt handler (see @RefSecNum{Interrupt Support}).
When specifying the ceiling of a protected object, one should
choose a value that is at least as high as the highest active priority
at which tasks can be executing when they call
protected operations of that object. In determining this
value the following factors, which can affect active priority,
should be considered: the effect of Set_Priority, nested
protected operations, entry calls, task activation, and other
implementation-defined factors.
Attaching a protected procedure whose ceiling is below the
interrupt hardware priority to an interrupt causes the execution of the
program to be erroneous
(see @RefSecNum{Protected Procedure Handlers}).
On a single processor implementation, the ceiling priority
rules guarantee that there is no possibility of deadlock involving
only protected subprograms (excluding the case where a protected operation
calls another protected operation on the same protected object).
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
All protected objects now have a priority, which
is the value of the Priority attribute of
@RefSecNum{Dynamic Priorities for Protected Objects}. How this value
is interpreted depends on the locking policy; for instance, the ceiling
priority is derived from this value when the locking policy is
Ceiling_Locking.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0073],ARef=[AI95-00091-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected the wording to
reflect that pragma Locking_Policy cannot be inside of a program unit.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00256-01]}
@ChgAdded{Version=[2],Text=[Clarified that an implementation need support
only one locking policy (of any kind, language-defined or otherwise)
per partition.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[The bounded error for the priority of a task
being higher than the ceiling of an object it is currently in was moved here
from @RefSecNum{Dynamic Priorities}, so that it applies no matter how the
situation arises.]}
@end{DiffWord95}
@Comment{@RMNewPage Break here so printed Ada 95 RM looks better.}
@LabeledClause{Entry Queuing Policies}
@begin{Intro}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0074],ARef=[AI95-00068-01]}
@Redundant[@Defn{queuing policy}
This clause specifies a mechanism for a user to choose an entry
@i{queuing policy}. It also defines @Chg{New=[two],Old=[one]}
such polic@Chg{New=[ies],Old=[y]}. Other policies are implementation defined.]
@ImplDef{Implementation-defined queuing policies.}
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Queuing_Policy is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Queuing_Policy)(@SynI{policy_}@Syn2{identifier});'
@end{Syntax}
@begin{Legality}
The @SynI{policy_}@Syn2{identifier} shall be either FIFO_Queuing,
Priority_Queuing or an implementation-defined @Syn2{identifier}.
@end{Legality}
@begin{LinkTime}
@PDefn2{Term=[configuration pragma], Sec=(Queuing_Policy)}
@PDefn2{Term=[pragma, configuration], Sec=(Queuing_Policy)}
A Queuing_Policy pragma is a configuration pragma.
@end{LinkTime}
@begin{RunTime}
@Defn{queuing policy}
@Redundant[A @i{queuing policy} governs the order in which tasks are queued
for entry service, and the order in which different entry queues are
considered for service.]
The queuing policy is specified by a Queuing_Policy pragma.
@begin{Ramification}
The queuing policy includes entry queuing order,
the choice among open alternatives of a @nt{selective_accept},
and the choice among queued entry calls of
a protected object when more than one @nt{entry_barrier} @nt{condition} is True.
@end{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00355-01]}
Two queuing policies, FIFO_Queuing and Priority_Queuing,
are language defined. If no Queuing_Policy pragma
@Chg{Version=[2],New=[applies to],Old=[appears in]} any of the program units
comprising the partition, the queuing policy for that partition
is FIFO_Queuing. The rules for this policy are specified in
@RefSecNum{Entry Calls} and @RefSecNum{Selective Accept}.
@Leading@Keepnext@;The Priority_Queuing policy is defined as follows:
@begin{itemize}
@Defn{priority of an entry call}
The calls to an entry @Redundant[(including a member of an entry family)]
are queued in an order consistent with the priorities of the calls. The
@i{priority of an entry call} is initialized from the active
priority of the calling task at the time
the call is made, but can change later. Within the same priority,
the order is consistent with the calling (or requeuing,
or priority setting) time (that is, a FIFO order).
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0075],ARef=[AI95-00205-01]}
After a call is first queued, changes to the active priority of a task do
not affect the priority of the call, unless the base priority of the task is
set@Chg{New=[ while the task is blocked on an entry call],Old=[]}.
When the base priority of a task is set (see @RefSecNum{Dynamic Priorities}),
if the task is blocked on an entry call, and the call is queued,
the priority of the call is updated to the new active priority of the
calling task. This causes the call to be removed from and then reinserted in
the queue at the new active priority.
@begin{Reason}
A task is blocked on an entry call if the entry call is simple,
conditional, or timed.
If the call came from the @nt{triggering_statement} of an
@nt{asynchronous_select}, or a requeue thereof,
then the task is not blocked on that call;
such calls do not have their priority updated.
Thus, there can exist many queued calls from a given task
(caused by many nested ATC's),
but a task can be blocked on only one call at a time.
A previous version of Ada 9X required queue reordering in the
@nt{asynchronous_select} case as well.
If the call corresponds to a @lquotes@;synchronous@rquotes@; entry call, then the task
is blocked while queued, and it makes good sense to move it up in the
queue if its priority is raised.
However, if the entry call is @lquotes@;asynchronous,@rquotes@; that is, it is
due to an @nt{asynchronous_select} whose @nt{triggering_statement}
is an entry call, then the task is not waiting for this
entry call, so the placement of the entry call on the
queue is irrelevant to the rate at which the task proceeds.
Furthermore, when an entry is used for @nt{asynchronous_select}s,
it is almost certain to be a @lquotes@;broadcast@rquotes@; entry or have
only one caller at a time. For example, if the entry is
used to notify tasks of a mode switch, then all tasks on the
entry queue would be signaled when the mode changes. Similarly,
if it is indicating some interrupting event such as a control-C,
all tasks sensitive to the interrupt will want to be informed
that the event occurred. Hence, the order on such a queue is
essentially irrelevant.
Given the above, it seems an unnecessary semantic and implementation
complexity to specify that asynchronous queued calls are moved in
response to dynamic priority changes. Furthermore, it is somewhat
inconsistent, since the call was originally queued based on the active
priority of the task, but dynamic priority changes are changing the base
priority of the task, and only indirectly the active priority. We say
explicitly that asynchronous queued calls are not affected by normal
changes in active priority during the execution of an
@nt{abortable_part}. Saying that, if a change in the base priority
affects the active priority, then we do want the calls reordered, would
be inconsistent.
It would also require the implementation to maintain a readily
accessible list of all queued calls which would not otherwise be
necessary.
Several rules were removed or simplified when we changed the rules so
that calls due to @nt{asynchronous_select}s are never moved due to
intervening changes in active priority, be they due to protected
actions, some other priority inheritance, or changes in the base
priority.
@end{Reason}
When more than one @nt{condition} of an @nt{entry_barrier} of a protected
object becomes True, and more than one of the respective queues is nonempty,
the call with the highest priority is selected. If more than one such
call has the same priority, the call that is queued on the entry whose
declaration is first in textual order in the @nt{protected_definition} is
selected. For members of the same entry family,
the one with the lower family index is selected.
If the expiration time of two or more open
@nt{delay_alternative}s is the same and no other
@nt{accept_alternative}s are open, the
@nt{sequence_of_statements} of the @nt{delay_alternative} that is
first in textual order in the @nt{selective_accept} is executed.
When more than one alternative of a @nt{selective_accept} is
open and has queued calls, an alternative whose queue has the highest-priority
call at its head is selected.
If two or more open alternatives have equal-priority queued calls,
then a call on the entry in the @nt{accept_alternative} that is
first in textual order in the @nt{selective_accept}
is selected.
@end{itemize}
@end{RunTime}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00256-01]}
Implementations are allowed to define other queuing policies, but
need not support more than one @Chg{Version=[2],New=[queuing],Old=[such]}
policy per partition.
@begin{Discussion}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0116],ARef=[AI95-00069-01]}
@ChgRef{Version=[2],Kind=[RevisedAdded],ARef=[AI95-00256-01]}
@ChgAdded{Version=[1],Text=[This rule is really redundant, as
@RefSecNum(Pragmas and Program Units) allows an implementation to limit the
use of configuration pragmas to an empty environment. In that case, there
would be no way to have multiple policies in a partition.@Chg{Version=[2],New=[],
Old=[ In any case, the
wording here really ought to be "...more than one queuing policy per
partition.", since this part of the rule applies to all queuing policies, not
just implementation-defined ones.]}]}
@end{Discussion}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00188-02]}
@ChgAdded{Version=[2],Text=[Implementations are allowed to defer the reordering
of entry queues following a change of base priority of a task blocked on the
entry call if it is not practical to reorder the queue immediately.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[Priority change is immediate, but the effect of the
change on entry queues can be deferred. That is necessary in order to implement
priority changes on top of a non-Ada kernel.]}
@end{Reason}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[The reordering should occur as soon as the blocked
task can itself perform the reinsertion into the entry queue.]}
@end{Discussion}
@end{ImplPerm}
@begin{ImplAdvice}
The implementation should use names that end with
@lquotes@;_Queuing@rquotes@; for implementation-defined queuing policies.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Names that end with @lquotes@;_Queuing@rquotes@; should be used for
implementation-defined queuing policies.]}]}
@end{ImplAdvice}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0074],ARef=[AI95-00068-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected the number of
queuing policies defined.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0075],ARef=[AI95-00205-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected so that a call of
Set_Priority in an abortable part does not change the priority of the
triggering entry call.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00188-02]}
@ChgAdded{Version=[2],Text=[Added a permission to defer queue reordering
when the base priority of a task is changed. This is a counterpart to
stronger requirements on the implementation of priority change.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00256-01]}
@ChgAdded{Version=[2],Text=[Clarified that an implementation need support
only one queuing policy (of any kind, language-defined or otherwise)
per partition.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[Fixed wording to make clear that @nt{pragma}
never appears inside of a unit; rather it @lquotes@;applies to@rquotes the
unit.]}
@end{DiffWord95}
@LabeledClause{Dynamic Priorities}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause describes how the
priority of an entity can be modified or queried at run time.]]}
@end{Intro}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[This clause is turned into two subclauses.
This clause introduction is new.]}
@end{DiffWord95}
@LabeledAddedSubClause{Version=[2],Name=[Dynamic Priorities for Tasks]}
@begin{Intro}
@Redundant[This clause describes how the base priority of a task can be
modified or queried at run time.]
@end{Intro}
@begin{StaticSem}
@Leading@Keepnext@;The following language-defined library package exists:
@begin{Example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00362-01]}
@key[with] System;
@key[with] Ada.Task_Identification; @RI{-- See @RefSecNum[The Package Task_Identification]}
@key[package] Ada.Dynamic_Priorities @key[is]@ChildUnit{Parent=[Ada],Child=[Dynamic_Priorities]}@Chg{Version=[2],New=[
@key[pragma] Preelaborate(Dynamic_Priorities);],Old=[]}
@key[procedure] @AdaSubDefn{Set_Priority}(Priority : @key[in] System.Any_Priority;
T : @key[in] Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task);
@key[function] @AdaSubDefn{Get_Priority} (T : Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task)
@key[return] System.Any_Priority;
@key[end] Ada.Dynamic_Priorities;
@end{example}
@end{StaticSem}
@begin{RunTime}
The procedure Set_Priority sets the base priority of the specified task
to the specified Priority value.
Set_Priority has no effect if the task is terminated.
The function Get_Priority returns T's current base priority.
@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
Tasking_Error is raised if the task is terminated.
@begin{Reason}
There is no harm in setting the priority of a terminated task.
A previous version of Ada 9X made this a run-time error.
However, there is little difference between setting the priority of a
terminated task, and setting the priority of a task that is about to
terminate very soon;
neither case should be an error.
Furthermore, the run-time check is not necessarily feasible to implement
on all systems, since priority changes might be deferred due to
inter-processor communication overhead,
so the error might not be detected until after Set_Priority has
returned.
However, we wish to allow implementations to avoid storing @lquotes@;extra@rquotes@;
information about terminated tasks.
Therefore, we make Get_Priority of a terminated task raise an exception;
the implementation need not continue to store the priority of a task
that has terminated.
@end{Reason}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised by Set_Priority and Get_Priority if T is equal
to Null_Task_Id.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00188-02]}
@Chg{Version=[2],New=[On a system with a single processor, the setting of],
Old=[Setting]} the @Chg{Version=[2],New=[],Old=[task's ]}base
priority@Chg{Version=[2],New=[ of a task @i{T}],Old=[]}
to the new value @Chg{Version=[2],
New=[occurs immediately at the first point when @i{T} is
outside the execution of],Old=[takes place as soon
as is practical but not while the task is performing]} a
protected action@Chg{Version=[2],New=[],Old=[.
This setting occurs no later then the next abort completion point of
the task T
(see @RefSecNum{Abort of a Task - Abort of a Sequence of Statements})]}.
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00188-02]}
@Chg{Version=[2],New=[The priority change is immediate if the target task
is on a delay queue or a ready queue outside of a protected action.
However, consider when],Old=[When]}
Set_Priority is called by a task T1 to set the priority of T2,
if T2 is blocked, waiting on an entry call queued on a protected object,
the entry queue needs to be reordered.
Since T1 might have a priority that is higher than the ceiling of the
protected object, T1 cannot, in general, do the reordering.
One way to implement this is to wake T2 up and have T2 do the work.
This is similar to the disentangling of queues that needs to happen when
a high-priority task aborts a lower-priority task,
which might have a call queued on a protected object with a low
ceiling.@Chg{Version=[2],New=[ We have an @ImplPermName in
@RefSecNum{Entry Queuing Policies} to allow this implementation. We could
have required an immediate priority change if on a ready queue during a
protected action, but that would have required extra checks for ceiling
violations to meet @BoundedName requirements of
@RefSecNum{Priority Ceiling Locking} and potentially could cause a protected
action to be abandoned in the middle (by raising Program_Error). That seems
bad.],Old=[]}
@end{ImplNote}
@begin{Reason}
@Leading@;A previous version of Ada 9X made it a run-time error
for a high-priority task to set the priority of a lower-priority
task that has a queued call on a protected object with a low ceiling.
This was changed because:
@begin{Itemize}
The check was not feasible to implement on all systems,
since priority changes might be deferred due to
inter-processor communication overhead.
The calling task would continue to execute without finding out whether
the operation succeeded or not.
The run-time check would tend to cause intermittent system failures @em
how is the caller supposed to know whether the other task happens to
have a queued call at any given time? Consider for example an
interrupt that needs to trigger a priority change in some task.
The interrupt handler could not safely call Set_Priority without knowing
exactly what the other task is doing,
or without severely restricting the ceilings used in the system.
If the interrupt handler wants to hand the job off to a third task whose
job is to call Set_Priority, this won't help, because one would normally
want the third task to have high priority.
@end{Itemize}
@end{Reason}
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00327-01]}
@ChgDeleted{Version=[2],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
If a task is blocked on a protected entry call, and the call is queued,
it is a bounded error to raise its base priority
above the ceiling priority of the corresponding
protected object.
When an entry call is cancelled, it is a bounded error
if the priority of the calling task is higher than
the ceiling priority of the corresponding
protected object.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
In either of these cases,
either Program_Error is raised in the task that called the entry,
or its priority is temporarily lowered,
or both, or neither.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Deleted]}
@ChgDeleted{Version=[2],Text=[Note that the error is @lquotes@;blamed@rquotes@; on the task that did the entry call,
not the task that called Set_Priority.
This seems to make sense for the case of a task blocked on a call,
since if the Set_Priority had happened a
little bit sooner, before the task queued a call,
the entry-calling task would get the error.
In the other case, there is no reason not to raise the priority of a
task that is executing in an @nt{abortable_part}, so long as its
priority is lowered before it gets to the end and needs to cancel the
call.
The priority might need to be lowered to allow it to remove the call
from the entry queue,
in order to avoid violating the ceiling.
This seems relatively harmless, since there is an error,
and the task is about to start raising an exception anyway.]}
@end{Ramification}
@end{Bounded}
@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If any subprogram in this package is called with a parameter T that
specifies a task object that no longer exists, the execution of the
program is erroneous.
@begin{Ramification}
Note that this rule overrides the above rule saying that
Program_Error is raised on Get_Priority of a terminated task.
If the task object still exists, and the task is terminated,
Get_Priority raises Program_Error.
However, if the task object no longer exists,
calling Get_Priority causes erroneous execution.
@end{Ramification}
@end{Erron}
@begin{DocReq}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00188-02]}
@ChgAdded{Version=[2],Text=[On a multiprocessor, the implementation shall
document any conditions that cause the completion of the setting of the
priority of a task to be delayed later than what is specified for a
single processor.]}
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Any conditions that cause the completion of the setting of the priority
of a task to be delayed for a multiprocessor.]}]}
@end{DocReq}
@begin{Metrics}
@Leading@;The implementation shall document the following metric:
@begin{Itemize}
The execution time of a call to Set_Priority, for the nonpreempting case,
in processor clock cycles. This is measured for a call that modifies the
priority of a ready task that is not running (which
cannot be the calling one), where the new
base priority of the affected task is lower than the active priority of the
calling task, and the affected task is not on any entry queue and is not
executing a protected operation.
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for Set_Priority.]}]}
@end{Metrics}
@begin{Notes}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00321-01]}
Setting a task's base priority affects task dispatching. First, it can
change the task's active priority. Second, under the @Chg{Version=[2],
New=[FIFO_Within_Priorities],Old=[standard
task dispatching]} policy it always causes the task to move to
the tail of the ready queue corresponding to its active priority,
even if the new base priority is unchanged.
Under the priority queuing policy, setting a task's base
priority has an effect on a queued entry call
if the task is blocked waiting for the call. That is, setting the
base priority of a task causes the priority of a queued entry
call from that task to be updated and the call to be removed and
then reinserted in the entry queue at the new priority
(see @RefSecNum{Entry Queuing Policies}),
unless the call originated from the @nt{triggering_statement} of an
@nt{asynchronous_select}.
The effect of two or more Set_Priority calls executed in parallel on
the same task is defined as executing these calls in some serial order.
@begin{TheProof}
This follows from the general reentrancy requirements stated near the
beginning of @RefSec{Predefined Language Environment}.
@end{TheProof}
The rule for when Tasking_Error is raised for Set_Priority or Get_Priority is
different from the rule for when Tasking_Error is raised on an
entry call (see @RefSecNum{Entry Calls}). In particular, setting or
querying the priority of a completed or an abnormal
task is allowed, so long as the task is not yet terminated.
Changing the priorities of a set of tasks can be performed by a
series of calls to Set_Priority for each task separately. For
this to work reliably, it should be done within a protected
operation that has high enough ceiling priority to guarantee that
the operation completes without being preempted by any of the
affected tasks.
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00188-02]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
@b[Amendment Correction:] Priority changes are
now required to be done immediately so long as the target task is not on an
entry queue.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00362-01]}
@ChgAdded{Version=[2],Text=[Dynamic_Priorities is now Preelaborated,
so it can be used in preelaborated units.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[This Ada 95 clause was turned into a subclause.
The paragraph numbers are the same as those for
@RefSecNum{Dynamic Priorities} in Ada 95.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00321-01]}
@ChgAdded{Version=[2],Text=[There is no @lquotes@;standard@rquotes policy
anymore, so that phrase was replaced by the name of a specific policy in
the notes.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[The bounded error for the priority of a task
being higher than the ceiling of an object it is currently in was moved
to @RefSecNum{Priority Ceiling Locking}, so that it applies no matter how
the situation arises.]}
@end{DiffWord95}
@RMNewPage@Comment{For printed Ada 2005 RM}
@LabeledAddedSubClause{Version=[2],Name=[Dynamic Priorities for Protected Objects]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[This clause specifies how the priority of a
protected object can be modified or queried at run time.]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],Text=[The following attribute
is defined for @PrefixType{a @nt{prefix} P that denotes a protected object}:]}
@begin(Description)
@ChgAttribute{Version=[2],Kind=[AddedNormal],ChginAnnex=[T],
Leading=<F>, Prefix=<P>, AttrName=<Priority>, ARef=[AI95-00327-01],
Text=[@Chg{Version=[2],New=[Denotes a non-aliased component of the
protected object P. This component is of type System.Any_Priority and its
value is the priority of P. P'Priority denotes a variable if and only if P
denotes a variable. A reference to this attribute shall appear only
within the body of P.],Old=[]}]}
@EndPrefixType{}
@end{Description}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[The initial value of this attribute is
the initial value of the priority of the protected object@Redundant[, and can
be changed by an assignment].]}
@end{StaticSem}
@begin{Runtime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[If the locking policy Ceiling_Locking (see
@RefSecNum{Priority Ceiling Locking}) is in effect
then the ceiling priority of a protected object @i<P> is set to the value of
@i<P>'Priority at the end of each protected action of @i<P>.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00445-01]}
@ChgAdded{Version=[2],Text=[If the locking policy Ceiling_Locking is in effect,
then for a protected object @i<P> with either an Attach_Handler or
Interrupt_Handler pragma applying to one of its procedures, a check is made
that the value to be assigned to @i<P>'Priority is in the range
System.Interrupt_Priority. If the check fails, Program_Error is
raised.@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}
@end{Runtime}
@begin{Metrics}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[The implementation shall document
the following metric:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Type=[Leading],Text=[The difference in execution time of
calls to the following procedures in protected object P:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<protected> P @key<is>
@key<procedure> Do_Not_Set_Ceiling (Pr : System.Any_Priority);
@key<procedure> Set_Ceiling (Pr : System.Any_Priority);
@key<end> P;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<protected body> P @key<is>
@key<procedure> Do_Not_Set_Ceiling (Pr : System.Any_Priority) @key<is>
@key<begin>
@key<null>;
@key<end>;
@key<procedure> Set_Ceiling (Pr : System.Any_Priority) @key<is>
@key<begin>
P'Priority := Pr;
@key<end>;
@key<end> P;]}
@end{Example}
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for setting the priority of a protected object.]}]}
@end{Metrics}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[Since P'Priority is a normal variable, the value
following an assignment to the attribute immediately reflects the new value
even though its impact on the ceiling priority of P is postponed until
completion of the protected action in which it is executed.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01],ARef=[AI95-00445-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The ability to dynamically change and query the priority of a protected
object is new.]}
@end{Extend95}
@RMNewPage@Comment{For printed RM Ada 2005 only}
@LabeledClause{Preemptive Abort}
@begin{Intro}
@Redundant[This clause specifies requirements on the immediacy with
which an aborted construct is completed.]
@end{Intro}
@begin{RunTime}
On a system with a single processor, an aborted construct is completed
immediately at the first point that is outside the execution of an
abort-deferred operation.
@end{RunTime}
@begin{DocReq}
On a multiprocessor, the implementation shall document any conditions that
cause the completion of an aborted construct to be delayed later than
what is specified for a single processor.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[On a multiprocessor, any conditions that
cause the completion of an aborted construct to be delayed later than
what is specified for a single processor.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[On a multiprocessor, any conditions that
cause the completion of an aborted construct to be delayed later than
what is specified for a single processor.]}]}
@end{DocReq}
@begin{Metrics}
@Leading@;The implementation shall document the following metrics:
@begin{Itemize}
The execution time, in processor clock cycles, that it takes for an
@nt{abort_statement} to cause the completion of the aborted task.
This is measured in a situation where a task T2 preempts task T1
and aborts T1. T1 does not have any finalization code. T2 shall
verify that T1 has terminated, by means of the Terminated attribute.
On a multiprocessor, an upper bound in seconds,
on the time that the completion of an aborted task can be delayed beyond
the point that it is required for a single processor.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
An upper bound on the execution time of an
@nt{asynchronous_select}, in processor clock cycles. This is measured
between a point immediately before a task
T1 executes a protected operation Pr.Set that makes the @nt{condition}
of an @nt{entry_barrier} Pr.Wait @Chg{Version=[2],
New=[True],Old=[true]}, and the point where task T2 resumes
execution immediately after an entry call to Pr.Wait in an
@nt{asynchronous_select}. T1 preempts T2 while
T2 is executing the abortable part, and then blocks itself so that
T2 can execute. The execution time of T1 is measured separately,
and subtracted.
An upper bound on the execution time of an
@nt{asynchronous_select},
in the case that no asynchronous transfer of control takes
place. This is measured between a point immediately before a task
executes the @nt{asynchronous_select} with a nonnull abortable
part, and the point where the task continues execution immediately after
it. The execution time of the abortable part is subtracted.
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for aborts.]}]}
@end{Metrics}
@begin{ImplAdvice}
Even though the @nt{abort_statement} is included in the list of
potentially blocking operations
(see @RefSecNum{Protected Subprograms and Protected Actions}),
it is recommended that this statement be implemented in a way that
never requires the task executing the @nt{abort_statement} to
block.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The @nt{abort_statement} should not require the task executing the
statement to block.]}]}
On a multi-processor,
the delay associated with aborting a task on another processor
should be bounded;
the implementation should use periodic polling,
if necessary, to achieve this.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[On a multi-processor,
the delay associated with aborting a task on another processor
should be bounded.]}]}
@end{ImplAdvice}
@begin{Notes}
Abortion does not change the active or base priority of the aborted task.
Abortion cannot be more immediate than is allowed by the rules for
deferral of abortion during finalization and in protected actions.
@end{Notes}
@LabeledClause{Tasking Restrictions}
@begin{Intro}
@Redundant[This clause defines restrictions that can be used with a
pragma Restrictions (see @RefSecNum{Pragma Restrictions}) to facilitate the
construction of highly efficient tasking run-time systems.]
@end{Intro}
@begin{StaticSem}
@Leading@;The following @SynI{restriction_}@nt{identifier}s are language defined:
@begin{Description}
@Defn2{Term=[Restrictions],Sec=(No_Task_Hierarchy)}No_Task_Hierarchy @\All (nonenvironment) tasks depend directly on
the environment task of the partition.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0042],ARef=[AI95-00130-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00360-01]}
@Defn2{Term=[Restrictions],Sec=(No_Nested_Finalization)}No_Nested_Finalization @\Objects
@Chg{Version=[2],New=[of a type that needs finalization (see
@RefSecNum{User-Defined Assignment and Finalization})],Old=[with
controlled@Chg{New=[, protected, or task],Old=[]} parts]} and
access types that designate @Chg{Version=[2],New=[a type that needs
finalization],Old=[such objects@Chg{New=[,],Old=[]}]} shall be
declared only at library level.
@begin{Ramification}
@ChgRef{Version=[1],Kind=[Deleted],Ref=[8652/0042],ARef=[AI95-00130-01]}
@ChgNote{This is no longer true.}
@ChgDeleted{Version=[1],Text=[Note that protected types with entries and
interrupt-handling protected types have nontrivial finalization actions.
However, this restriction does not restrict those things.]}
@end{Ramification}
@Defn2{Term=[Restrictions],Sec=(No_Abort_Statements)}No_Abort_Statements @\There are no @nt{abort_statement}s, and there are no
calls on Task_Identification.Abort_Task.
@Defn2{Term=[Restrictions],Sec=(No_Terminate_Alternatives)}No_Terminate_Alternatives @\There are no @nt{selective_accept}s with
@nt{terminate_alternative}s.
@Defn2{Term=[Restrictions],Sec=(No_Task_Allocators)}No_Task_Allocators @\There are no @nt{allocator}s for task types or types
containing task subcomponents.
@Defn2{Term=[Restrictions],Sec=(No_Implicit_Heap_Allocations)}No_Implicit_Heap_Allocations @\There are no operations that implicitly require
heap storage allocation to be performed by the
implementation. The operations that implicitly
require heap storage allocation are
implementation defined.
@ImplDef{Any operations that implicitly
require heap storage allocation.}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00327-01]}
No_Dynamic_Priorities @\There are no semantic dependences on the package
Dynamic_Priorities@Chg{Version=[2],New=[, and no occurrences
of the attribute Priority],Old=[]}.
@Defn2{Term=[Restrictions],Sec=(No_Dynamic_Priorities)}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00305-01],ARef=[AI95-00394-01]}
@Chg{Version=[2],New=[@Defn2{Term=[Restrictions],Sec=(No_Dynamic_Attachment)}No_Dynamic_Attachment],
Old=[@Defn2{Term=[Restrictions],Sec=(No_Asynchronous_Control)}No_Asynchronous_Control]}
@\There
@Chg{Version=[2],New=[is no call to any of the operations defined
in package Interrupts (Is_Reserved, Is_Attached, Current_Handler,
Attach_Handler, Exchange_Handler, Detach_Handler, and Reference).],
Old=[are no semantic dependences on the package Asynchronous_Task_Control.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Local_Protected_Objects)}No_Local_Protected_Objects @\Protected
objects shall be declared only at library level.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Local_Timing_Events)}No_Local_Timing_Events @\Timing_Events
shall be declared only at library level.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Protected_Type_Allocators)}No_Protected_Type_Allocators @\There
are no @nt{allocator}s for protected types or types
containing protected type subcomponents.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Relative_Delay)}No_Relative_Delay @\There
are no @nt{delay_relative_statement}s.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Requeue_Statements)}No_Requeue_Statements @\There
are no @nt{requeue_statement}s.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Select_Statements)}No_Select_Statements @\There
are no @nt{select_statement}s.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00394-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Specific_Termination_Handlers)}No_Specific_Termination_Handlers @\There
are no calls to the Set_Specific_Handler and Specific_Handler subprograms
in Task_Termination.]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(Simple_Barriers)}Simple_Barriers @\The
Boolean expression in an entry barrier shall be either a static Boolean
expression or a Boolean component of the enclosing protected object.]}
@end{Description}
@Leading@;The following @SynI{restriction_parameter_}@nt{identifier}s are
language defined:
@begin{Description}
@Defn2{Term=[Restrictions],Sec=(Max_Select_Alternatives)}Max_Select_Alternatives @\Specifies the maximum number of alternatives
in a @nt{selective_accept}.
@Defn2{Term=[Restrictions],Sec=(Max_Task_Entries)}Max_Task_Entries @\Specifies the maximum number of entries per task.
The bounds of every entry family
of a task unit shall be static,
or shall be defined by a discriminant of a subtype whose
corresponding bound is static.
@Redundant[A value of zero indicates that no rendezvous
are possible.]
Max_Protected_Entries @\Specifies the maximum number of entries per
protected type.
The bounds of every entry family
of a protected unit shall be static,
or shall be defined by a discriminant of a subtype whose
corresponding bound is static.
@Defn2{Term=[Restrictions],Sec=(Max_Protected_Entries)}
@end{Description}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[1],Kind=[Deleted],Ref=[8652/0076],ARef=[AI95-00067-01]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[The following
@SynI{restriction_}@nt{identifier} is language defined:]}@Comment{Use ChgAdded so
we get conditional Leading.}@Chg{Version=[1],New=[],Old=[If the following restrictions
are violated, the behavior is implementation defined.
@IndexCheck{Storage_Check}
@Defn2{Term=[Storage_Error],Sec=(raised by failure of run-time check)}
If an implementation chooses to detect such a violation,
Storage_Error should be raised.]}
@begin{Description}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01],ARef=[AI95-00394-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],Sec=(No_Task_Termination)}No_Task_Termination @\All
tasks are non-terminating. It is implementation-defined what happens if
a task attempts to terminate. If there is a fall-back handler (see C.7.3)
set for the partition it should be called when the first task attempts to
terminate.]}
@ChgImplDef{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[When restriction No_Task_Termination applies to a partition, what
happens when a task terminates.]}]}
@end{Description}
@Leading@;The following @SynI{restriction_parameter_}@nt{identifier}s are
language defined:
@begin{Description}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0076],ARef=[AI95-00067-01]}
@Defn2{Term=[Restrictions],Sec=(Max_Storage_At_Blocking)}Max_Storage_At_Blocking @\Specifies
the maximum portion @redundant[(in storage elements)]
of a task's Storage_Size that can be retained by a blocked task@Chg{New=[.
If an implementation chooses to detect a violation of this
restriction, Storage_Error should be raised;
@IndexCheck{Storage_Check}
@Defn2{Term=[Storage_Error],Sec=(raised by failure of run-time check)}
otherwise, the behavior is implementation defined],Old=[]}.
@ChgImplDef{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The behavior when restriction Max_Storage_At_Blocking is violated.]}]}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0076],ARef=[AI95-00067-01]}
@Defn2{Term=[Restrictions],Sec=(Max_Asynchronous_Select_Nesting)}Max_Asynchronous_Select_Nesting @\Specifies
the maximum dynamic nesting level of @nt{asynchronous_select}s.
A value of zero prevents the use of any @nt{asynchronous_@!select}@Chg{New=[ and,
if a program contains an @nt{asynchronous_@!select}, it is illegal.
@ChgNote{Part of the previous rule is redundant, but it is a different part
[all of it for Old; from "prevents" to "and," for New] for each. So we omit it.}
If an implementation chooses to detect a violation of this
restriction for values other than zero, Storage_Error should be raised;
@IndexCheck{Storage_Check}
@Defn2{Term=[Storage_Error],Sec=(raised by failure of run-time check)}
otherwise, the behavior is implementation defined],Old=[]}.
@ChgImplDef{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The behavior when restriction Max_Asynchronous_Select_Nesting is violated.]}]}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0076],ARef=[AI95-00067-01]}
@Defn2{Term=[Restrictions],Sec=(Max_Tasks)}Max_Tasks @\Specifies the maximum
number of task creations that may be executed over the lifetime of a
partition, not counting the creation of the environment task@Chg{New=[.
A value of zero prevents any task creation and, if a program contains a
task creation, it is illegal. If an implementation chooses to detect a
violation of this restriction, Storage_Error should be raised;
@IndexCheck{Storage_Check}
@Defn2{Term=[Storage_Error],Sec=(raised by failure of run-time check)}
otherwise, the behavior is implementation defined],Old=[]}.
@begin{Ramification}
Note that this is not a limit on the
number of tasks active at a given time;
it is a limit on the total number of task creations that occur.
@end{Ramification}
@begin{ImplNote}
We envision an implementation approach that places TCBs or pointers
to them in a fixed-size table, and never reuses table elements.
@end{ImplNote}
@ChgImplDef{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The behavior when restriction Max_Tasks is violated.]}]}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00305-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[Restrictions],
Sec=(Max_Entry_Queue_Length)}Max_Entry_Queue_Length @\Max_Entry_Queue_Length
defines the maximum number of calls
that are queued on an entry. Violation of this restriction
results in the raising of Program_Error at the point of the call or
requeue.@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}
@end{Description}
It is implementation defined whether the use of pragma Restrictions
results in a reduction in executable program size, storage requirements,
or execution time. If possible, the implementation should provide
quantitative descriptions of such effects for each restriction.
@ChgImplDef{Version=[2],Kind=[Revised],Text=[@Chg{Version=[2],
New=[Whether the use of],Old=[Implementation-defined aspects of]}
pragma Restrictions@Chg{Version=[2],New=[ results in a reduction in
program code or data size or execution time],Old=[]}.]}
@end{RunTime}
@begin{ImplAdvice}
When feasible, the implementation should take advantage of the specified
restrictions to produce a more efficient implementation.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[When feasible, specified restrictions should be used to produce a more
efficient implementation.]}]}
@end{ImplAdvice}
@begin{Notes}
The above Storage_Checks can be suppressed with pragma Suppress.
@end{Notes}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00360-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
@b[Amendment Correction:] The No_Nested_Finalization is now defined in terms
of types that need finalization. These types include a variety of
language-defined types that @i<might> be implemented with a controlled type.
If the restriction No_Nested_Finalization (see
@RefSecNum{Tasking Restrictions}) applies to the partition, and one of these
language-defined types does not have a controlled part, it will not be
allowed in local objects in Ada 2005 whereas it would be allowed in original
Ada 95. Such code is not portable, as other Ada compilers may have had a
controlled part, and thus would be illegal under the restriction.]}
@end{Incompatible95}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01],ARef=[AI95-00305-01],ARef=[AI95-00394-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Restrictions No_Dynamic_Attachment, No_Local_Protected_Objects,
No_Protected_Type_Allocators, No_Local_Timing_Events, No_Relative_Delay,
No_Requeue_Statement, No_Select_Statements, No_Specific_Termination_Handlers,
No_Task_Termination, Max_Entry_Queue_Length, and Simple_Barriers are newly
added to Ada.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0042],ARef=[AI95-00130-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that
No_Nested_Finalization covered task and protected parts as well.]}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0076],ARef=[AI95-00067-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Changed the description of
Max_Tasks and Max_Asynchronous_Select_Nested to eliminate conflicts with the
High Integrity Annex (see @RefSecNum{High Integrity Restrictions}).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00327-01]}
@ChgAdded{Version=[2],Text=[Added using of the new Priority attribute to
the restriction No_Dynamic_Priorities.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00394-01]}
@ChgAdded{Version=[2],Text=[Restriction No_Asynchronous_Control is now
obsolescent.]}
@end{DiffWord95}
@LabeledClause{Monotonic Time}
@begin{Intro}
@Redundant[This clause specifies a high-resolution,
monotonic clock package.]
@end{Intro}
@begin{StaticSem}
@Leading@;The following language-defined library package exists:
@begin{example}
@key[package] Ada.Real_Time @key[is]@ChildUnit{Parent=[Ada],Child=[Real_Time]}
@key[type] @AdaTypeDefn{Time} @key[is] @key[private];
@AdaObjDefn{Time_First} : @key[constant] Time;
@AdaObjDefn{Time_Last} : @key[constant] Time;
@AdaObjDefn{Time_Unit} : @key[constant] := @RI{implementation-defined-real-number};
@key[type] @AdaTypeDefn{Time_Span} @key[is] @key[private];
@AdaObjDefn{Time_Span_First} : @key[constant] Time_Span;
@AdaObjDefn{Time_Span_Last} : @key[constant] Time_Span;
@AdaObjDefn{Time_Span_Zero} : @key[constant] Time_Span;
@AdaObjDefn{Time_Span_Unit} : @key[constant] Time_Span;
@AdaObjDefn{Tick} : @key[constant] Time_Span;
@key[function] @AdaSubDefn{Clock} @key[return] Time;
@key[function] "+" (Left : Time; Right : Time_Span) @key[return] Time;
@key[function] "+" (Left : Time_Span; Right : Time) @key[return] Time;
@key[function] "-" (Left : Time; Right : Time_Span) @key[return] Time;
@key[function] "-" (Left : Time; Right : Time) @key[return] Time_Span;
@key[function] "<" (Left, Right : Time) @key[return] Boolean;
@key[function] "<="(Left, Right : Time) @key[return] Boolean;
@key[function] ">" (Left, Right : Time) @key[return] Boolean;
@key[function] ">="(Left, Right : Time) @key[return] Boolean;
@key[function] "+" (Left, Right : Time_Span) @key[return] Time_Span;
@key[function] "-" (Left, Right : Time_Span) @key[return] Time_Span;
@key[function] "-" (Right : Time_Span) @key[return] Time_Span;
@key[function] "*" (Left : Time_Span; Right : Integer) @key{return} Time_Span;
@key[function] "*" (Left : Integer; Right : Time_Span) @key{return} Time_Span;
@key[function] "/" (Left, Right : Time_Span) @key[return] Integer;
@key[function] "/" (Left : Time_Span; Right : Integer) @key[return] Time_Span;
@key[function] "@key[abs]"(Right : Time_Span) @key[return] Time_Span;
@ChgRef{Version=[1], Kind=[Deleted]}
@Chg[New=<>,Old=<@ @;@comment{Empty paragraph to hang junk paragraph number from original RM}>]
@key[function] "<" (Left, Right : Time_Span) @key[return] Boolean;
@key[function] "<="(Left, Right : Time_Span) @key[return] Boolean;
@key[function] ">" (Left, Right : Time_Span) @key[return] Boolean;
@key[function] ">="(Left, Right : Time_Span) @key[return] Boolean;
@key[function] @AdaSubDefn{To_Duration} (TS : Time_Span) @key[return] Duration;
@key[function] @AdaSubDefn{To_Time_Span} (D : Duration) @key[return] Time_Span;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00386-01]}
@key[function] @AdaSubDefn{Nanoseconds} (NS : Integer) @key{return} Time_Span;
@key[function] @AdaSubDefn{Microseconds} (US : Integer) @key{return} Time_Span;
@key[function] @AdaSubDefn{Milliseconds} (MS : Integer) @key{return} Time_Span;@Chg{Version=[2],New=[
@key[function] @AdaSubDefn{Seconds} (S : Integer) @key{return} Time_Span;
@key[function] @AdaSubDefn{Minutes} (M : Integer) @key{return} Time_Span;],Old=[]}
@key[type] @AdaTypeDefn{Seconds_Count} @key[is] @key[range] @RI{implementation-defined};
@key{procedure} @AdaSubDefn{Split}(T : @key{in} Time; SC : @key{out} Seconds_Count; TS : @key{out} Time_Span);
@key{function} @AdaSubDefn{Time_Of}(SC : Seconds_Count; TS : Time_Span) @key{return} Time;
@key[private]
... -- @RI{not specified by the language}
@key[end] Ada.Real_Time;
@end{example}
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of package Real_Time.]}]}
@Defn{real time}
In this Annex, @i{real time} is defined to be the physical time as observed
in the external environment.
The type Time is a @i{time type} as defined by
@RefSecNum{Delay Statements, Duration, and Time};
@Redundant[values of this type may be used in a
@nt{delay_until_statement}.]
Values of this type
represent segments of an ideal time line. The set of values of
the type Time corresponds one-to-one with an
implementation-defined range of mathematical integers.
@begin{Discussion}
Informally, real time is defined to be the International Atomic Time (TAI)
which is monotonic and nondecreasing. We use it here for the purpose of
discussing rate of change and monotonic behavior only. It does not imply
anything about the absolute value of Real_Time.Clock, or about Real_Time.Time
being synchronized with TAI. It is also used for real time in the metrics,
for comparison purposes.
@end{Discussion}
@begin{ImplNote}
The specification of TAI as @lquotes@;real time@rquotes@; does not preclude the
use of a simulated TAI clock for simulated execution environments.
@end{ImplNote}
@Defn{epoch}
@PDefn{unspecified}
The Time value I represents the half-open real time
interval that starts with E+I*Time_Unit and is limited by E+(I+1)*Time_Unit,
where Time_Unit is an implementation-defined real number and E is an
unspecified origin point, the @i{epoch}, that is the same
for all values of the type Time.
It is not specified by the language whether the time values are
synchronized with any standard time reference.
@Redundant[For example, E can correspond to the time of system
initialization or it can correspond to the epoch of some time standard.]
@begin{Discussion}
E itself does not have to be a proper time value.
This half-open interval I consists of all
real numbers R such that E+I*Time_Unit <= R < E+(I+1)*Time_Unit.
@end{Discussion}
Values of the type Time_Span represent length of real time
duration.
The set of values of this type corresponds one-to-one
with an implementation-defined range of mathematical integers.
The Time_Span value corresponding to the integer I
represents the real-time duration I*Time_Unit.
@begin{Reason}
The purpose of this type is similar to Standard.Duration; the idea is to
have a type with a higher resolution.
@end{Reason}
@begin{Discussion}
We looked at many possible names for this type: Real_Time.Duration,
Fine_Duration, Interval, Time_Interval_Length, Time_Measure, and more.
Each of these names had some problems, and we've finally settled for Time_Span.
@end{Discussion}
Time_First and Time_Last are the smallest and largest values of the
Time type, respectively.
Similarly, Time_Span_First and Time_Span_Last are the smallest and
largest values of the Time_Span type, respectively.
A value of type Seconds_Count represents an elapsed time,
measured in seconds,
since the epoch.
@end{StaticSem}
@begin{RunTime}
Time_Unit is the smallest amount of real time representable by the Time type;
it is expressed in seconds. Time_Span_Unit is the difference between
two successive values of the Time type. It is also the smallest positive
value of type Time_Span. Time_Unit and Time_Span_Unit represent
the same real time duration.
@Defn{clock tick}
A @i{clock tick} is a real time interval during
which the clock value (as observed by calling the Clock function) remains
constant. Tick is the average length of such intervals.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00432-01]}
The function To_Duration converts the value TS to a value of type
Duration. Similarly, the function To_Time_Span converts the value D
to a value of type Time_Span. For @Chg{Version=[2],New=[To_Duration],
Old=[both operations]}, the result is
rounded to the nearest @Chg{Version=[2],New=[value of type Duration],
Old=[exactly representable value]} (away from zero if exactly
halfway between two @Chg{Version=[2],New=[],
Old=[exactly representable ]}values).@Chg{Version=[2],New=[ If the result
is outside the range of Duration, Constraint_Error is raised. For To_Time_Span,
the value of D is first rounded to the nearest integral multiple of Time_Unit,
away from zero if exactly halfway between two multiples. If the
rounded value is outside the range of Time_Span, Constraint_Error is
raised. Otherwise, the value is converted to the type Time_Span.],Old=[]}
To_Duration(Time_Span_Zero) returns 0.0,
and To_Time_Span(0.0) returns Time_Span_Zero.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00386-01],ARef=[AI95-00432-01]}
The functions Nanoseconds, Microseconds, @Chg{Version=[2],New=[],
Old=[and ]}Milliseconds@Chg{Version=[2],New=[, Seconds, and Minutes],Old=[]}
convert the input
parameter to a value of the type Time_Span. NS, US,@Chg{Version=[2],New=[],Old=[ and]}
MS@Chg{Version=[2],New=[, S, and M],Old=[]} are interpreted as a number of
nanoseconds, microseconds,@Chg{Version=[2],New=[],Old=[ and]}
milliseconds@Chg{Version=[2],New=[, seconds, and minutes],Old=[]}
respectively.@Chg{Version=[2],New=[ The input parameter is first converted to
seconds and rounded to the nearest integral multiple of Time_Unit, ],
Old=[The result is rounded to the nearest exactly
representable value (]}away from zero if exactly halfway between two
@Chg{Version=[2],New=[multiples. If the rounded value
is outside the range of Time_Span, Constraint_Error is raised.
Otherwise, the rounded value is converted to the type Time_Span],
Old=[exactly representable values)]}.
@begin{Discussion}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00432-01]}
@ChgDeleted{Version=[2],Text=[The above does not imply that the Time_Span
type will have to accommodate Integer'Last of milliseconds; Constraint_Error
is allowed to be raised.]}
@end{Discussion}
The effects of the operators on Time and Time_Span are as for the
operators defined for integer types.
@begin{ImplNote}
Though time values are modeled by integers, the types Time and
Time_Span need not be implemented as integers.
@end{ImplNote}
The function Clock returns
the amount of time since the epoch.
The effects of the Split and Time_Of operations are defined as follows,
treating values of type
Time, Time_Span, and Seconds_Count as mathematical integers.
The effect of Split(T,SC,TS) is to set SC and TS to values
such that T*Time_Unit = SC*1.0 + TS*Time_Unit, and 0.0 <= TS*Time_Unit < 1.0.
The value returned by Time_Of(SC,TS) is the value T such that T*Time_Unit =
SC*1.0 + TS*Time_Unit.
@end{RunTime}
@begin{ImplReq}
The range of Time values shall be sufficient to uniquely
represent the range of real times from program start-up to 50 years later.
Tick shall be no greater than 1 millisecond.
Time_Unit shall be less than or equal to 20 microseconds.
@begin{ImplNote}
The required range and accuracy of Time are such that
32-bits worth of seconds and 32-bits worth of ticks in a second could be
used as the representation.
@end{ImplNote}
Time_Span_First shall be no greater than @en@;3600 seconds, and
Time_Span_Last shall be no less than 3600 seconds.
@begin{Reason}
This is equivalent to @PorM one hour and there is still room for
a two-microsecond resolution.
@end{Reason}
@Defn{clock jump}
A @i{clock jump} is the difference between two successive distinct values of
the clock (as observed by calling the Clock function). There shall be no
backward clock jumps.
@end{ImplReq}
@begin{DocReq}
The implementation shall document the values of Time_First, Time_Last,
Time_Span_@!First, Time_Span_@!Last, Time_Span_@!Unit, and Tick.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The values of Time_First, Time_Last,
Time_Span_@!First, Time_Span_@!Last, Time_Span_@!Unit, and Tick
for package Real_Time.]}]}
The implementation shall document the properties of the underlying
time base used for the clock and for type Time,
such as the range of values supported
and any relevant aspects of the underlying hardware
or operating system facilities used.
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The properties of the underlying
time base used in package Real_Time.]}]}
@begin{Discussion}
If there is an underlying operating system,
this might include information about which system call is used
to implement the clock.
Otherwise, it might include information about which
hardware clock is used.
@end{Discussion}
The implementation shall document whether or not there is any synchronization
with external time references, and if such synchronization exists, the sources
of synchronization information, the frequency of synchronization, and the
synchronization method applied.
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Any synchronization of package Real_Time with external time references.]}]}
@ChgRef{Version=[1],Kind=[Revised]}
The implementation shall document any aspects of the @Chg{New=[], Old=[the]}
@chgnote{Correct typo as noted at Potsdam ARG meeting}
external environment that could interfere with the clock behavior as defined
in this clause.
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Any aspects of the external environment that could interfere with
package Real_Time.]}]}
@begin{Discussion}
For example, the implementation is allowed to rely on the time services of
an underlying operating system, and this operating system clock can
implement time zones or allow the clock to be reset by an operator.
This dependence has to be documented.
@end{Discussion}
@end{DocReq}
@begin{Metrics}
For the purpose of the metrics defined in this clause, real time is
defined to be the International Atomic Time (TAI).
@Leading@;The implementation shall document the following metrics:
@begin{Itemize}
An upper bound on the real-time duration of a clock tick. This is a value
D such that if t1 and t2 are any real times such that t1 < t2 and
Clock@-{t1} = Clock@-{t2} then t2 @en@; t1 <= D.
An upper bound on the size of a clock jump.
@Defn{drift rate}
An upper bound on the @i{drift rate} of Clock with respect to real time.
This is a real number D such that
@begin{display}
E*(1@en@;D) <= (Clock@-{t+E} @en@; Clock@-{t}) <= E*(1+D)
provided that: Clock@-{t} + E*(1+D) <= Time_Last.
@end{display}
where Clock@-{t} is the value of Clock at time t, and E is a real
time duration not less than 24 hours. The value of E used for
this metric shall be reported.
@begin{Reason}
This metric is intended to provide a measurement
of the long term (cumulative) deviation; therefore, 24
hours is the
lower bound on the measurement period. On some implementations,
this is also the maximum period, since the language does not
require that the range of the type Duration be more than 24 hours.
On those implementations that support longer-range Duration, longer
measurements should be performed.
@end{Reason}
An upper bound on the execution time of a call to the Clock
function, in processor clock cycles.
Upper bounds on the execution times of the operators of the types Time
and Time_Span, in processor clock cycles.
@begin{ImplNote}
A fast implementation of the Clock function involves repeated
reading until you get the same value twice.
It is highly improbable that more than three reads will be necessary.
Arithmetic on time values should not be significantly slower
than 64-bit arithmetic in the underlying machine instruction set.
@end{ImplNote}
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The metrics for package Real_Time.]}]}
@end{Metrics}
@begin{ImplPerm}
Implementations targeted to machines with word size smaller than 32
bits need not support the full range and granularity of the
Time and Time_Span types.
@begin{Discussion}
These requirements are based on machines with a word size of 32 bits.
Since the range and granularity are implementation defined, the supported
values need to be documented.
@end{Discussion}
@end{ImplPerm}
@begin{ImplAdvice}
When appropriate, implementations should provide configuration mechanisms to
change the value of Tick.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[When appropriate, mechanisms to change the value of Tick should be
provided.]}]}
@begin{Reason}
This is often needed when the compilation system was originally targeted to a
particular processor with a particular interval timer, but the customer
uses the same processor with a different interval timer.
@end{Reason}
@begin{Discussion}
Tick is a deferred constant and not a named number
specifically for this purpose.
@end{Discussion}
@begin{ImplNote}
This can be achieved either by pre-run-time configuration
tools, or by having Tick be initialized
(in the package private part)
by a function call residing in a board specific module.
@end{ImplNote}
It is recommended that Calendar.Clock and Real_Time.Clock be implemented
as transformations of the same time base.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Calendar.Clock and Real_Time.Clock should be transformations of the
same time base.]}]}
It is recommended that the @lquotes@;best@rquotes@; time base which exists in the
underlying system be available to the application through
Clock. @lquotes@;Best@rquotes@; may mean highest accuracy or largest range.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The @lquotes@;best@rquotes@; time base which exists in the
underlying system should be available to the application through
Real_Time.Clock.]}]}
@end{ImplAdvice}
@begin{Notes}
The rules in this clause do not imply that the implementation can protect
the user from operator or installation errors which could result in the
clock being set incorrectly.
Time_Unit is the granularity of the Time type. In contrast,
Tick represents the granularity of Real_Time.Clock.
There is no requirement that these be the same.
@end{Notes}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00386-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
Functions Seconds and Minutes are newly added to Real_Time. If
Real_Time is referenced in a @nt{use_clause}, and an entity @i<E> with a
@nt{defining_identifier} of Seconds or Minutes is defined in a package that
is also referenced in a @nt{use_clause}, the entity @i<E> may no longer be
use-visible, resulting in errors. This should be rare and is easily fixed if
it does occur.]}
@end{Incompatible95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00432-01]}
@ChgAdded{Version=[2],Text=[Added wording explaining how and when many of
these functions can raise Constraint_Error. While there always was an
intent to raise Constraint_Error if the values did not fit, there never
was any wording to that effect, and since Time_Span was a private type,
the normal numeric type rules do not apply to it.]}
@end{DiffWord95}
@LabeledClause{Delay Accuracy}
@begin{Intro}
@Redundant[This clause specifies performance requirements for the
@nt{delay_statement}.
The rules apply both to @nt{delay_@!relative_@!statement} and to
@nt{delay_@!until_@!statement}. Similarly, they apply equally to a
simple @nt{delay_@!statement} and to one which appears in a
@nt{delay_@!alternative}.]
@end{Intro}
@begin{RunTime}
@Leading@;The effect of the @nt{delay_statement} for Real_Time.Time is
defined in terms of Real_Time.Clock:
@begin{itemize}
If C@-{1} is a value of Clock read before a task executes a
@nt{delay_relative_statement} with duration D, and C@-{2} is a value of
Clock read after the task resumes execution following that
@nt{delay_statement}, then C@-{2} @en@; C@-{1} >= D.
If C is a value of Clock read after a task resumes execution following a
@nt{delay_until_statement} with Real_Time.Time value T, then C >= T.
@end{itemize}
@PDefn2{Term=[potentially blocking operation],Sec=(delay_statement)}
@PDefn2{Term=[blocking, potentially],Sec=(delay_statement)}
A simple @nt{delay_statement} with a negative or zero value for the
expiration time does not cause the calling task to be blocked; it is
nevertheless a potentially blocking operation
(see @RefSecNum{Protected Subprograms and Protected Actions}).
@ChgRef{Version=[2],Kind=[Revised]}
When a @nt{delay_statement} appears in a @nt{delay_alternative} of a
@nt{timed_entry_call} the selection of the entry call is attempted,
regardless of the specified expiration time.
When a @nt{delay_statement} appears in a
@Chg{Version=[2],New=[@nt{select_alternative}],Old=[@ntf{selective_accept_alternative}]},
and a call is queued on one of the open entries, the selection of that
entry call proceeds, regardless of the value of the delay expression.
@begin{Ramification}
The effect of these requirements is that one has to always attempt a rendezvous,
regardless of the value of the delay expression. This can be tested by
issuing a @nt{timed_entry_call} with an expiration time
of zero, to an open entry.
@end{Ramification}
@end{RunTime}
@begin{DocReq}
The implementation shall document the minimum value of the delay expression
of a @nt{delay_relative_statement} that causes the task to actually be blocked.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The minimum value of the delay expression of a
@nt{delay_relative_statement} that causes a task to actually be blocked.]}]}
The implementation shall document the minimum difference between the value of
the delay expression of a @nt{delay_until_statement} and the value of
Real_Time.Clock, that causes the task to actually be blocked.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of @nt{delay_statement}s.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The minimum difference between the value of the delay expression of a
@nt{delay_until_statement} and the value of Real_Time.Clock, that causes the
task to actually be blocked.]}]}
@end{DocReq}
@begin{Metrics}
@Leading@;The implementation shall document the following metrics:
@begin{Itemize}
An upper bound on the execution time, in processor clock cycles, of a
@nt{delay_relative_statement} whose requested value of the delay expression
is less than or equal to zero.
An upper bound on the execution time, in processor clock cycles, of a
@nt{delay_until_statement} whose requested value of the delay expression is
less than or equal to the value of Real_Time.Clock at the
time of executing the statement. Similarly, for Calendar.Clock.
@Defn{lateness}
@Defn{actual duration}
An upper bound on the @i{lateness} of a @nt{delay_relative_statement},
for a positive value of the delay expression, in a situation
where the task has sufficient priority to preempt the processor as
soon as it becomes ready, and does not need to
wait for any other execution resources. The upper bound is
expressed as a function of the value of the delay expression.
The lateness is obtained by subtracting the value of the delay expression
from the @i{actual duration}. The actual duration is measured from a point
immediately before a task executes the @nt{delay_statement} to a point
immediately after the task resumes execution following this statement.
An upper bound on the lateness of a @nt{delay_until_statement}, in a
situation where the value of the requested expiration time is after the time
the task begins executing the statement, the task has sufficient priority
to preempt the processor as soon as it becomes ready, and
it does not need to wait for any other execution resources. The upper
bound is expressed as a function of the difference between the requested
expiration time and the clock value at the time the statement begins
execution. The lateness of a @nt{delay_until_statement} is obtained by
subtracting the requested expiration time from the real time that the task
resumes execution following this statement.
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for delay statements.]}]}
@end{Metrics}
@begin{Notes}
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00355-01]}
@ChgDeleted{Version=[2],Text=[The execution time of a @nt{delay_statement} that
does not cause the task to be blocked (e.g. @lquotes@;@key[delay]
0.0;@rquotes@; ) is of interest in situations where delays are used to achieve
voluntary round-robin task dispatching among equal-priority tasks.]}
@end{Notes}
@begin{DiffWord83}
The rules regarding a @nt{timed_entry_call} with a very small positive
Duration value, have been tightened to always require the check whether
the rendezvous is immediately possible.
@end{DiffWord83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00355-01]}
@ChgAdded{Version=[2],Text=[The note about @lquotes@;voluntary
round-robin@rquote, while still true, has been deleted as potentially
confusing as it is describing a different kind of round-robin than is defined
by the round-robin dispatching policy.]}
@end{DiffWord95}
@LabeledClause{Synchronous Task Control}
@begin{Intro}
@Redundant[This clause describes a language-defined private semaphore
(suspension object), which can be used for @i{two-stage suspend}
operations and as a simple building block for implementing higher-level
queues.]
@end{Intro}
@begin{StaticSem}
@Leading@;The following language-defined package exists:
@begin{example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00362-01]}
@key{package} Ada.Synchronous_Task_Control @key{is}@ChildUnit{Parent=[Ada],Child=[Synchronous_Task_Control]}@Chg{Version=[2],New=[
@key[pragma] Preelaborate(Synchronous_Task_Control);],Old=[]}
@key{type} @AdaTypeDefn{Suspension_Object} @key{is} @key{limited} @key{private};
@key{procedure} @AdaSubDefn{Set_True}(S : @key{in} @key{out} Suspension_Object);
@key{procedure} @AdaSubDefn{Set_False}(S : @key{in} @key{out} Suspension_Object);
@key{function} @AdaSubDefn{Current_State}(S : Suspension_Object) @key{return} Boolean;
@key{procedure} @AdaSubDefn{Suspend_Until_True}(S : @key{in} @key{out} Suspension_Object);
@key{private}
... -- @RI{not specified by the language}
@key{end} Ada.Synchronous_Task_Control;
@end{example}
The type Suspension_Object is a by-reference type.@begin{ImplNote}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}@ChgNote{This is a real term now, let's get it right}
The implementation can ensure this by, for example, making the full view
@Chg{Version=[2],New=[an explicitly],Old=[a]}
limited record type.@end{implnote}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
An object of the type Suspension_Object has two visible states:
@Chg{Version=[2],New=[True],Old=[true]} and
@Chg{Version=[2],New=[False],Old=[false]}. Upon initialization,
its value is set to @Chg{Version=[2],New=[False],Old=[false]}.
@begin{Discussion}
This object is assumed to be private to the declaring task, i.e. only that
task will call Suspend_Until_True on this object, and the count of callers is
at most one. Other tasks can, of course, change and query the state of this
object.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
The operations Set_True and Set_False are atomic with respect to each other
and with respect to Suspend_Until_True; they set the state to
@Chg{Version=[2],New=[True],Old=[true]} and
@Chg{Version=[2],New=[False],Old=[false]} respectively.
Current_State returns the current state of the object.
@begin{Discussion}
This state can change immediately after the operation returns.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
The procedure Suspend_Until_True blocks the calling task until the
state of the object S is @Chg{Version=[2],New=[True],Old=[true]}; at that
point the task becomes ready
and the state of the object becomes @Chg{Version=[2],New=[False],Old=[false]}.
@PDefn2{Term=[potentially blocking operation],Sec=(Suspend_Until_True)}
@PDefn2{Term=[blocking, potentially],Sec=(Suspend_Until_True)}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised upon calling Suspend_Until_True if another
task is already waiting on that suspension object.
Suspend_Until_True is a potentially blocking operation
(see @RefSecNum{Protected Subprograms and Protected Actions}).
@end{RunTime}
@begin{ImplReq}
The implementation is required to allow the calling of Set_False and
Set_True during any protected action, even one that has its ceiling priority
in the Interrupt_Priority range.
@end{ImplReq}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00362-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Synchronous_Task_Control is now Preelaborated,
so it can be used in preelaborated units.]}
@end{Extend95}
@LabeledClause{Asynchronous Task Control}
@begin{Intro}
@Redundant[This clause introduces a language-defined package to do
asynchronous suspend/resume on tasks.
It uses a conceptual @i{held priority} value to represent the task's
@i{held} state.]
@end{Intro}
@begin{StaticSem}
@Leading@;The following language-defined library package exists:
@begin{example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00362-01]}
@key{with} Ada.Task_Identification;
@key{package} Ada.Asynchronous_Task_Control @key{is}@ChildUnit{parent=[Ada],Child=[Asynchronous_Task_Control]}@Chg{Version=[2],New=[
@key[pragma] Preelaborate(Asynchronous_Task_Control);],Old=[]}
@key{procedure} @AdaSubDefn{Hold}(T : @key[in] Ada.Task_Identification.Task_Id);
@key{procedure} @AdaSubDefn{Continue}(T : @key[in] Ada.Task_Identification.Task_Id);
@key{function} @AdaSubDefn{Is_Held}(T : Ada.Task_Identification.Task_Id)
@key{return} Boolean;
@key{end} Ada.Asynchronous_Task_Control;
@end{example}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00357-01]}
@PDefn2{Term=[task state], Sec=(held)}
@Defn{held priority}
@Defn{idle task}
After the Hold operation has been applied to a task, the task becomes
@i{held}. For each processor there is a conceptual @i{idle task},
which is always ready. The base priority of the idle task is below
System.@!Any_@!Priority'First. The @i{held priority} is a
constant of the type @Chg{Version=[2],New=[Integer],Old=[integer]}
whose value is below the base priority of the idle task.
@begin{Discussion}
The held state should not be confused with the blocked state as defined
in @RefSecNum{Task Execution - Task Activation}; the task is still ready.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[For any priority below System.Any_Priority'First,
the task dispatching policy is FIFO_Within_Priorities.]}
@begin{Honest}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This applies even if a Task_Dispatching_Policy
specifies the policy for all of the priorities of the partition.]}
@end{Honest}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[A task at the held priority never runs, so it is
not necessary to implement FIFO_Within_Priorities for systems that have only
one policy (such as EDF_Across_Priorities).]}
@end{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00357-01]}
The Hold operation sets the state of T to held. For a held
task@Chg{Version=[2],New=[, the active
priority is reevaluated as if the base priority of the task were the held
priority],Old=[: the task's own base priority does not constitute an
inheritance source
(see @RefSecNum{Task Priorities}), and the value of the held priority
is defined to be such a source instead]}.
@begin{Ramification}
For example, if T is currently inheriting priorities from other sources (e.g.
it is executing in a protected action), its active priority does not change,
and it continues to execute until it leaves the protected action.
@end{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00357-01]}
The Continue operation resets the state of T to not-held;
@Chg{Version=[2],New=[its],Old=[T's]} active priority
is then reevaluated as @Chg{Version=[2],New=[determined by the
task dispatching policy associated with its base priority.],Old=[described in
@RefSecNum{Task Priorities}.
@Redundant[This time, T's base priority is taken into account.]]}
The Is_Held function returns True if and only if T is in the held state.
@begin{Discussion}
Note that the state of T can be changed immediately after Is_Held returns.
@end{Discussion}
As part of these operations, a check is made that the task
identified by
T is not terminated.
@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
Tasking_Error is raised if the check fails.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if the value of T is Null_Task_Id.
@end{RunTime}
@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If any operation in this package is called with a parameter T that
specifies a task object that no longer exists, the execution of the
program is erroneous.
@end{Erron}
@begin{ImplPerm}
An implementation need not support Asynchronous_Task_Control if it is
infeasible to support it in the target environment.
@begin{Reason}
A direct implementation of the Asynchronous_Task_Control semantics using
priorities is not necessarily efficient enough.
Thus, we envision implementations that use some other mechanism to set
the @lquotes@;held@rquotes@; state.
If there is no other such mechanism,
support for Asynchronous_Task_Control might be infeasible,
because an implementation in terms of priority would require one idle
task per processor.
On some systems, programs are not supposed to know how many processors
are available,
so creating enough idle tasks would be problematic.
@end{Reason}
@end{ImplPerm}
@begin{Notes}
It is a consequence of the priority rules that held tasks cannot be dispatched
on any processor in a partition (unless they are inheriting
priorities) since their priorities are defined to be
below the priority of any idle task.
The effect of calling Get_Priority and Set_Priority on a Held task is the
same as on any other task.
Calling Hold on a held task or Continue on a non-held task has no effect.
@Leading@;The rules affecting queuing are derived from the above rules, in
addition to the normal priority rules:
@begin{itemize}
When a held task is on the ready queue, its priority is so low as to never
reach the top of the queue as long as there are other tasks on that queue.
If a task is executing in a protected action, inside a rendezvous, or is
inheriting priorities from other sources (e.g. when activated), it
continues to execute until it is no longer executing the corresponding
construct.
If a task becomes held while waiting (as a caller) for a rendezvous to
complete, the active priority of the accepting task is not affected.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0077],ARef=[AI95-00111-01]}
If a task becomes held while waiting in a @nt{selective_accept},
and a@Chg{New=[n],Old=[]} entry call is issued to one of the open entries,
the corresponding @Chg{New=[@nt{accept_@!alternative}],Old=[accept body]}
executes. When the rendezvous completes, the active
priority of the accepting task is lowered to the held priority
(unless it is still inheriting from other sources), and the task does
not execute until another Continue.
The same holds if the held task is the only task on a protected entry queue
whose barrier becomes open. The corresponding entry body executes.
@end{itemize}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00362-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Asynchronous_Task_Control is now Preelaborated,
so it can be used in preelaborated units.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0077],ARef=[AI95-00111-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected to eliminate the
use of the undefined term @lquotes@;accept body@rquotes@;.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00357-01]}
@ChgAdded{Version=[2],Text=[The description of held tasks was changed to
reflect that the calculation of active priorities depends on the
dispatching policy of the base priority. Thus, the policy of the held
priority was specified in order to avoid surprises (especially when using
the EDF policy).]}
@end{DiffWord95}
@LabeledClause{Other Optimizations and Determinism Rules}
@begin{Intro}
@Redundant[This clause describes various requirements for
improving the response and determinism in a real-time system.]
@end{Intro}
@begin{ImplReq}
If the implementation blocks interrupts (see @RefSecNum{Interrupt Support}) not
as a result of direct user
action (e.g. an execution of a protected action) there shall be an upper
bound on the duration of this blocking.
@begin{Ramification}
The implementation shall not allow itself to be interrupted when it is in a
state where it is unable to support all the language-defined operations
permitted in the execution of interrupt handlers.
(see @RefSecNum{Protected Subprograms and Protected Actions}).
@end{Ramification}
The implementation shall recognize entry-less protected types.
The overhead of acquiring the execution resource of an object of such a type
(see @RefSecNum{Protected Subprograms and Protected Actions}) shall be
minimized. In particular, there should not be any overhead due to evaluating
@nt{entry_barrier} @nt{condition}s.
@begin{ImplNote}
Ideally the overhead should just be a spin-lock.
@end{ImplNote}
Unchecked_Deallocation shall be supported for terminated tasks that are
designated by access types, and shall have the effect of releasing all
the storage associated with the task. This includes any run-time system
or heap storage that has been implicitly allocated for the task by the
implementation.
@end{ImplReq}
@begin{DocReq}
The implementation shall document the
upper bound on the duration of interrupt blocking caused by the
implementation. If this is different for different interrupts or
interrupt priority levels, it should be documented for each case.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[The upper bound on the duration of interrupt blocking caused by
the implementation.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The upper bound on the duration of interrupt blocking caused by
the implementation.]}]}
@end{DocReq}
@begin{Metrics}
@Leading@;The implementation shall document the following metric:
@begin{Itemize}
The overhead associated with obtaining
a mutual-exclusive access to an entry-less protected object. This shall be
measured in the following way:
@NoPrefix@Leading@keepnext@;For a protected object of the form:
@begin{example}
@key{protected} Lock @key{is}
@key{procedure} Set;
@Key{function} Read @Key{return} Boolean;
@key{private}
Flag : Boolean := False;
@key{end} Lock;
@key{protected body} Lock @key{is}
@key{procedure} Set @key{is}
@key{begin}
Flag := True;
@key{end} Set;
@Key{function} Read @Key{return} Boolean
@key{Begin}
@key{return} Flag;
@key{end} Read;
@key{end} Lock;
@end{example}
@NoPrefix@;The execution time, in processor clock cycles, of a call to
Set. This shall be measured between the point just before
issuing the call, and the point just after the call
completes.
The function Read shall be called later to verify that Set was indeed
called (and not optimized away). The
calling task shall have
sufficiently high priority as to not be preempted during the measurement
period. The protected object shall have sufficiently high ceiling priority
to allow the task to call Set.
@NoPrefix@;For a multiprocessor, if supported, the metric shall be reported for the
case where no contention (on the execution resource) exists
@Redundant[from tasks executing on other processors].
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for entry-less protected objects.]}]}
@end{Metrics}
@LabeledAddedClause{Version=[2],Name=[Run-time Profiles]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause
specifies a mechanism for defining run-time profiles.]]}
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],Text=[The form of a
@nt{pragma} Profile is as follows:]}
@end{SyntaxText}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=`@AddedPragmaSyn`Version=[2],@key{pragma} @prag<Profile> (@SynI{profile_}@Syn2{identifier} {, @SynI{profile_}@Syn2{pragma_argument_association}});''}
@end{Syntax}
@begin{Legality}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[The @SynI{profile_}@nt{identifier} shall be the name
of a run-time profile. The semantics of any
@SynI{profile_}@nt{pragma_@!argument_@!association}s are defined by
the run-time profile specified by the @SynI{profile_}@nt{identifier}.]}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[
A profile is equivalent to the set of configuration pragmas that is
defined for each run-time profile.]}
@end{StaticSem}
@begin{Linktime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[configuration pragma], Sec=(Profile)}
@PDefn2{Term=[pragma, configuration], Sec=(Profile)}
A @nt{pragma} Profile is a configuration pragma.
There may be more than one @nt{pragma} Profile for a partition.]}
@end{Linktime}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
@nt{Pragma} Profile is new.]}
@end{Extend95}
@RMNewPage
@LabeledAddedSubClause{Version=[2],Name=[The Ravenscar Profile]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[@Redundant[This clause
defines the Ravenscar profile.]@Defn{Ravenscar}]}
@end{Intro}
@begin{Legality}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[The @SynI{profile_}@nt{identifier}
Ravenscar is a run-time profile.
For run-time profile Ravenscar, there shall be no
@Syni{profile_}@nt{pragma_argument_association}s.]}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[The run-time profile
Ravenscar is equivalent to the following set of pragmas:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01],ARef=[AI95-00297-01],ARef=[AI95-00394-01]}
@ChgAdded{Version=[2],Text=[
@key{pragma} Task_Dispatching_Policy (FIFO_Within_Priorities);
@key{pragma} Locking_Policy (Ceiling_Locking);
@key{pragma} Detect_Blocking;
@key{pragma} Restrictions (
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,
No_Dependence => Ada.Task_Attributes);]}
@end{Example}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The Ravenscar profile is named for the location
of the meeting that defined its initial version. The name is now in widespread
use, so we stick with existing practice, rather than using a more descriptive
name.@Comment{ This is another example of Ada's lousy marketing sense; casual
readers, especially those outside of Ada, have no conception of what
@lquotes@;Ravenscar@rquotes@; is, and thus are much less likely to investigate
it to find out how it can help them.}]}
@end{Discussion}
@end{StaticSem}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00249-01]}
@ChgAdded{Version=[2],Text=[
The effect of the Max_Entry_Queue_Length => 1 restriction applies
only to protected entry queues due to the accompanying restriction of
Max_Task_Entries => 0.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00296-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The Ravenscar profile is new.]}
@end{Extend95}
@RMNewPage@Comment{For printed Ada 2007 RM}
@LabeledAddedClause{Version=[2],Name=[Execution Time]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[This clause describes a language-defined package to
measure execution time.]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} Ada.Task_Identification;
@key{with} Ada.Real_Time; @key{use} Ada.Real_Time;
@key{package} Ada.Execution_Time @key{is}@ChildUnit{Parent=[Ada],Child=[Execution_Time]}]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{CPU_Time} @key{is private};
@AdaObjDefn{CPU_Time_First} : @key{constant} CPU_Time;
@AdaObjDefn{CPU_Time_Last} : @key{constant} CPU_Time;
@AdaObjDefn{CPU_Time_Unit} : @key{constant} := @RI{implementation-defined-real-number};
@AdaObjDefn{CPU_Tick} : @key{constant} Time_Span;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{function} @AdaSubDefn{Clock}
(T : Ada.Task_Identification.Task_Id
:= Ada.Task_Identification.Current_Task)
@key{return} CPU_Time;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{function} "+" (Left : CPU_Time; Right : Time_Span) @key{return} CPU_Time;
@key{function} "+" (Left : Time_Span; Right : CPU_Time) @key{return} CPU_Time;
@key{function} "-" (Left : CPU_Time; Right : Time_Span) @key{return} CPU_Time;
@key{function} "-" (Left : CPU_Time; Right : CPU_Time) @key{return} Time_Span;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{function} "<" (Left, Right : CPU_Time) @key{return} Boolean;
@key{function} "<=" (Left, Right : CPU_Time) @key{return} Boolean;
@key{function} ">" (Left, Right : CPU_Time) @key{return} Boolean;
@key{function} ">=" (Left, Right : CPU_Time) @key{return} Boolean;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} @AdaSubDefn{Split}
(T : @key{in} CPU_Time; SC : @key{out} Seconds_Count; TS : @key{out} Time_Span);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{function} @AdaSubDefn{Time_Of} (SC : Seconds_Count;
TS : Time_Span := Time_Span_Zero) @key{return} CPU_Time;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{private}
... -- @RI[not specified by the language]
@key{end} Ada.Execution_Time;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[@Defn2{Term=[execution time],Sec=[of a task]}
@Defn2{Term=[CPU time],Sec=[of a task]}
The @i<execution time> or CPU time of a given task is defined as the time spent by
the system executing that task, including the time spent executing run-time or
system services on its behalf. The mechanism used to measure execution time is
implementation defined. It is implementation defined which task, if any, is
charged the execution time that is consumed by interrupt handlers and run-time
services on behalf of the system.]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The implementation-defined properties above
and of the values declared in the package are repeated in @DocReqTitle,
so we don't mark them as implementation-defined.]}
@end{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The type CPU_Time represents the execution time of
a task. The set of values of this type corresponds one-to-one with an
implementation-defined range of mathematical integers.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The CPU_Time value I represents the half-open
execution-time interval that starts with I*CPU_Time_Unit and is limited by
(I+1)*CPU_Time_Unit, where CPU_Time_Unit is an implementation-defined
real number. For each task, the execution time value is set to zero at
the creation of the task.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Since it is implementation-defined which task
is charged execution time for system services, the execution time value
may become non-zero even before the start of the activation of the task.]}
@end{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[CPU_Time_First and CPU_Time_Last are the smallest
and largest values of the CPU_Time type, respectively.]}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[@Defn{CPU clock tick}
CPU_Time_Unit is the smallest amount of execution time representable
by the CPU_Time type; it is expressed in seconds. A @i<CPU clock tick> is an
execution time interval during which the clock value (as observed by
calling the Clock function) remains constant. CPU_Tick is the average
length of such intervals.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The effects of the operators on CPU_Time and
Time_Span are as for the operators defined for integer types.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The function Clock returns the current execution
time of the task identified by T; Tasking_Error is raised if that task has
terminated; Program_Error is raised if the value of T is
Task_Identification.Null_Task_Id.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The effects of the Split and Time_Of operations are defined as
follows, treating values of type CPU_Time, Time_Span, and
Seconds_Count as mathematical integers. The effect of Split (T, SC,
TS) is to set SC and TS to values such that T*CPU_Time_Unit = SC*1.0 +
TS*CPU_Time_Unit, and 0.0 <= TS*CPU_Time_Unit < 1.0. The value
returned by Time_Of(SC,TS) is the execution-time value T such that
T*CPU_Time_Unit=SC*1.0 + TS*CPU_Time_Unit.]}
@end{RunTime}
@begin{Erron}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
For a call of Clock, if the task identified by T no longer exists, the
execution of the program is erroneous.]}
@end{Erron}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The range of CPU_Time values shall be sufficient
to uniquely represent the range of execution times from the task start-up to 50
years of execution time later. CPU_Tick shall be no greater than 1
millisecond.]}
@end{ImplReq}
@begin{DocReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The implementation shall document the values of
CPU_Time_First, CPU_Time_Last, CPU_Time_Unit, and CPU_Tick.]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The values of CPU_Time_First, CPU_Time_Last, CPU_Time_Unit, and CPU_Tick
of package Execution_Time.]}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The implementation shall document the properties of
the underlying mechanism used to measure execution times, such as the range of
values supported and any relevant aspects of the underlying hardware or
operating system facilities used.]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The properties of the mechanism used to implement package Execution_Time.]}]}
@end{DocReq}
@begin{Metrics}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Type=[Leading],Keepnext=[T],Text=[The implementation
shall document the following metrics:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text={An upper bound on the execution-time duration of a
clock tick. This is a value D such that if t1 and t2 are any execution times of
a given task such that t1 < t2 and Clock@-{t1} = Clock@-{t2} then
t2 @en@; t1 <= D.}}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[An upper bound on the size of a clock jump. A clock
jump is the difference between two successive distinct values of an
execution-time clock (as observed by calling the Clock function with the same
Task_Id).]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[An upper bound on the execution time of a call to
the Clock function, in processor clock cycles.]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Upper bounds on the execution times of the
operators of the type CPU_Time, in processor clock cycles.]}
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for execution time.]}]}
@end{Metrics}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[Implementations targeted to machines with word size
smaller than 32 bits need not support the full range and granularity of the
CPU_Time type.]}
@end{ImplPerm}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[When appropriate, implementations should provide
configuration mechanisms to change the value of CPU_Tick.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[When appropriate, implementations should provide
configuration mechanisms to change the value of Execution_Time.CPU_Tick.]}]}
@end{ImplAdvice}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The package Execution_Time is new.]}
@end{Extend95}
@LabeledAddedSubclause{Version=[2],Name=[Execution Time Timers]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[This clause describes a language-defined package
that provides a facility for calling a handler when a task has used a defined
amount of CPU time.]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} System;
@key{package} Ada.Execution_Time.Timers @key{is}@ChildUnit{Parent=[Ada.Execution_Time],Child=[Timers]}]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{Timer} (T : @key{not null access constant}
Ada.Task_Identification.Task_Id) @key{is}
@key{tagged limited private};]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{Timer_Handler} @key{is}
@key{access protected procedure} (TM : @key{in out} Timer);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @AdaObjDefn{Min_Handler_Ceiling} : @key{constant} System.Any_Priority :=
@RI[implementation-defined];]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} @AdaSubDefn{Set_Handler} (TM : @key{in out} Timer;
In_Time : @key{in} Time_Span;
Handler : @key{in} Timer_Handler);
@key{procedure} @AdaSubDefn{Set_Handler} (TM : @key{in out} Timer;
At_Time : @key{in} CPU_Time;
Handler : @key{in} Timer_Handler);
@key{function} @AdaSubDefn{Current_Handler} (TM : Timer) @key{return} Timer_Handler;
@key{procedure} @AdaSubDefn{Cancel_Handler} (TM : @key{in out} Timer;
Cancelled : @key{out} Boolean);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{function} @AdaSubDefn{Time_Remaining} (TM : Timer) @key{return} Time_Span;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @AdaExcDefn{Timer_Resource_Error} : @key{exception};]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{private}
... -- not specified by the language
@key{end} Ada.Execution_Time.Timers;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The type Timer represents an execution-time event
for a single task and is capable of detecting execution-time overruns. The
access discriminant T identifies the task concerned. The type Timer needs
finalization (see @RefSecNum{User-Defined Assignment and Finalization}).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[An object of type Timer is said to be @i<set> if it
is associated with a non-null value of type Timer_Handler and @i<cleared>
otherwise. All Timer objects are initially cleared.
@PDefn2{Term=[set],Sec=[execution timer object]}
@PDefn2{Term=[clear],Sec=[execution timer object]}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The type Timer_Handler identifies a protected
procedure to be executed by the implementation when the timer expires. Such a
protected procedure is called a @i<handler>.
@PDefn2{Term=[handler],Sec=[execution timer]}]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Type Timer is tagged. This makes it possible to
share a handler between several events. In simple cases, 'Access can be used
to compare the parameter with a specific timer object (this works because a
tagged type is a by-reference type). In more complex cases, a type extension
of type Timer can be declared; a double type conversion can be used to access
the extension data. An example of how this can be done can be found for the
similar type Timing_Event, see @RefSecNum{Timing Events}.]}
@end{Discussion}
@end{StaticSem}
@begin{Runtime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[When a Timer object is created, or upon the first
call of a Set_Handler procedure with the timer as parameter, the resources
required to operate an execution-time timer based on the associated
execution-time clock are allocated and initialized. If this operation would
exceed the available resources, Timer_Resource_Error is raised.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The procedures Set_Handler associate the handler
Handler with the timer TM; if Handler is @key[null], the timer is cleared,
otherwise it is set. The first procedure Set_Handler loads the timer TM with an
interval specified by the Time_Span parameter. In this mode, the timer TM
@i<expires> when the execution time of the task identified by TM.T.@key[all]
has increased by In_Time; if In_Time is less than or equal to zero, the timer
expires immediately. The second procedure Set_Handler loads the timer TM with
the absolute value specified by At_Time. In this mode, the timer TM expires
when the execution time of the task identified by TM.T.@key[all] reaches
At_Time; if the value of At_Time has already been reached when Set_Handler is
called, the timer expires immediately.@Defn2{Term=[expires],
Sec=[execution timer]}]}
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Since an access-to-constant can designate a
variable, the Task_Id value designated by the discriminant of a Timer
object can be changed after the object is created. Thus, an implementation
cannot use the value of the Task_Id other than where this Standard specifies.
For instance, the Task_Id should be read when the timer is set, but it
should not be used when the timer expires (as it may designate a different
task at that point.]}
@end{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[A call of a procedure Set_Handler for a timer that
is already set replaces the handler and the (absolute or relative) execution
time; if Handler is not @b<null>, the timer remains set.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[When a timer expires, the associated handler is
executed, passing the timer as parameter. The initial action of the execution
of the handler is to clear the event.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The function Current_Handler returns the handler
associated with the timer TM if that timer is set; otherwise it returns
@b<null>.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The procedure Cancel_Handler clears the timer if it
is set. Cancelled is assigned True if the timer was set prior to it being
cleared; otherwise it is assigned False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The function Time_Remaining returns the execution
time interval that remains until the timer TM would expire, if that timer is
set; otherwise it returns Time_Span_Zero.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[The constant Min_Handler_Ceiling is the
minimum ceiling priority required for a protected object with a handler to
ensure that no ceiling violation will occur when that handler is invoked.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[As part of the finalization of an object of type
Timer, the timer is cleared.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[For all the subprograms defined in this package,
Tasking_Error is raised if the task identified by TM.T.@key[all] has terminated, and
Program_Error is raised if the value of TM.T.@key[all] is
Task_Identification.Null_Task_Id.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[An exception propagated from a handler invoked as
part of the expiration of a timer has no effect.]}
@end{Runtime}
@begin{Erron}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
For a call of any of the subprograms defined in this package, if the task
identified by TM.T.@key[all] no longer exists, the execution of the program is
erroneous.]}
@end{Erron}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[For a given Timer object, the implementation shall
perform the operations declared in this package atomically with respect to any
of these operations on the same Timer object. The replacement of a handler by a
call of Set_Handler shall be performed atomically with respect to the execution
of the handler.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This prevents various race conditions. In
particular it ensures that if an event occurs when Set_Handler is changing
the handler then either the new or old handler is executed in response to the
appropriate event. It is never possible for a new handler to be executed in
response to an old event]}
@end{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[When an object of type Timer is finalized, the
system resources used by the timer shall be deallocated.]}
@end{ImplReq}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[Implementations may limit the number of timers that
can be defined for each task. If this limit is exceeded then
Timer_Resource_Error is raised.]}
@end{ImplPerm}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[A Timer_Handler can be associated with several
Timer objects.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00307-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The package Execution_Time.Timers is new.]}
@end{Extend95}
@RMNewPage@Comment{For printed Ada 2007 RM}
@LabeledAddedSubclause{Version=[2],Name=[Group Execution Time Budgets]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[This clause describes a language-defined package to
assign execution time budgets to groups of tasks.]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{with} System;
@key{package} Ada.Execution_Time.Group_Budgets @key{is}@ChildUnit{Parent=[Ada.Execution_Time],Child=[Group_Budgets]}]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{Group_Budget} @key{is tagged limited private};]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{Group_Budget_Handler} @key{is access}
@key{protected procedure} (GB : @key{in out} Group_Budget);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{Task_Array} @key{is array} (Positive @key{range} <>) @key{of}
Ada.Task_Identification.Task_Id;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @AdaObjDefn{Min_Handler_Ceiling} : @key{constant} System.Any_Priority :=
@RI[implementation-defined];]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} @AdaSubDefn{Add_Task} (GB : @key{in out} Group_Budget;
T : @key{in} Ada.Task_Identification.Task_Id);
@key{procedure} @AdaSubDefn{Remove_Task} (GB: @key{in out} Group_Budget;
T : @key{in} Ada.Task_Identification.Task_Id);
@key{function} @AdaSubDefn{Is_Member} (GB : Group_Budget;
T : Ada.Task_Identification.Task_Id) @key{return} Boolean;
@key{function} @AdaSubDefn{Is_A_Group_Member}
(T : Ada.Task_Identification.Task_Id) @key{return} Boolean;
@key{function} @AdaSubDefn{Members} (GB : Group_Budget) @key{return} Task_Array;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} @AdaSubDefn{Replenish} (GB : @key{in out} Group_Budget; To : @key{in} Time_Span);
@key{procedure} @AdaSubDefn{Add} (GB : @key{in out} Group_Budget; Interval : @key{in} Time_Span);
@key{function} @AdaSubDefn{Budget_Has_Expired} (GB : Group_Budget) @key{return} Boolean;
@key{function} @AdaSubDefn{Budget_Remaining} (GB : Group_Budget) @key{return} Time_Span;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} @AdaSubDefn{Set_Handler} (GB : @key{in out} Group_Budget;
Handler : @key{in} Group_Budget_Handler);
@key{function} @AdaSubDefn{Current_Handler} (GB : Group_Budget)
@key{return} Group_Budget_Handler;
@key{procedure} @AdaSubDefn{Cancel_Handler} (GB : @key{in out} Group_Budget;
Cancelled : @key{out} Boolean);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @AdaExcDefn{Group_Budget_Error} : @key{exception};]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{private}
-- not specified by the language
@key{end} Ada.Execution_Time.Group_Budgets;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The type Group_Budget represents an execution time
budget to be used by a group of tasks. The type Group_Budget needs finalization
(see @RefSecNum{User-Defined Assignment and Finalization}). A task can belong
to at most one group. Tasks of any priority can be added to a group.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[An object of type Group_Budget has an associated
nonnegative value of type Time_Span known as its @i<budget>, which is
initially Time_Span_Zero. The type Group_Budget_Handler identifies a protected
procedure to be executed by the implementation when the budget is
@i<exhausted>, that is, reaches zero. Such a protected procedure is called a
@i<handler>.@Defn{budget}@Defn2{Term=[exhaust],Sec=[a budget]}
@PDefn2{Term=[handler],Sec=[group budget]}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[An object of type Group_Budget also includes a
handler, which is a value of type Group_Budget_Handler. The handler of the
object is said to be @i<set> if it is not null and @i<cleared> otherwise. The
handler of all Group_Budget objects is initially cleared.
@PDefn2{Term=[set],Sec=[group budget object]}
@PDefn2{Term=[clear],Sec=[group budget object]}]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]} @ChgAdded{Version=[2],Text=[Type
Group_Budget is tagged. This makes it possible to share a handler between
several events. In simple cases, 'Access can be used to compare the parameter
with a specific group budget object (this works because a tagged type is a
by-reference type). In more complex cases, a type extension of type
Group_Budget can be declared; a double type conversion can be used to access
the extension data. An example of how this can be done can be found for the
similar type Timing_Event, see @RefSecNum{Timing Events}.]}
@end{Discussion}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The procedure Add_Task adds the task identified by
T to the group GB; if that task is already a member of some other group,
Group_Budget_Error is raised.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The procedure Remove_Task removes the task
identified by T from the group GB; if that task is not a member of the group
GB, Group_Budget_Error is raised. After successful execution of this procedure,
the task is no longer a member of any group.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The function Is_Member returns True if the task
identified by T is a member of the group GB; otherwise it return False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The function Is_A_Group_Member returns True if the
task identified by T is a member of some group; otherwise it returns False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The function Members returns an array of values of
type Task_Identification.Task_Id identifying the members of the group GB. The
order of the components of the array is unspecified.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The procedure Replenish loads the group budget GB
with To as the Time_Span value. The exception Group_Budget_Error is raised if
the Time_Span value To is non-positive. Any execution of any member of the
group of tasks results in the budget counting down, unless exhausted. When the
budget becomes exhausted (reaches Time_Span_Zero), the associated handler is
executed if the handler of group budget GB is set. Nevertheless, the tasks
continue to execute.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The procedure Add modifies the budget of the group
GB. A positive value for Interval increases the budget. A negative value for
Interval reduces the budget, but never below Time_Span_Zero. A zero value for
Interval has no effect. A call of procedure Add that results in the value of
the budget going to Time_Span_Zero causes the associated handler to be executed
if the handler of the group budget GB is set.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The function Budget_Has_Expired returns True if the
budget of group GB is exhausted (equal to Time_Span_Zero); otherwise it
returns False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The function Budget_Remaining returns the remaining
budget for the group GB. If the budget is exhausted it returns Time_Span_Zero.
This is the minimum value for a budget.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The procedure Set_Handler associates the handler
Handler with the Group_Budget GB; if Handler is @b<null>, the handler of
Group_Budget is cleared, otherwise it is set.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[A call of Set_Handler for a Group_Budget that
already has a handler set replaces the handler; if Handler is not @b<null>, the
handler for Group_Budget remains set.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The function Current_Handler returns the handler
associated with the group budget GB if the handler for that group budget is
set; otherwise it returns @b<null>.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The procedure Cancel_Handler clears the handler for
the group budget if it is set. Cancelled is assigned True if the handler for
the group budget was set prior to it being cleared; otherwise it is assigned
False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The constant Min_Handler_Ceiling is the
minimum ceiling priority required for a protected object with a handler to
ensure that no ceiling violation will occur when that handler is invoked.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[The precision of the accounting of task execution
time to a Group_Budget is the same as that defined for execution-time clocks
from the parent package.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[As part of the finalization of an object of type
Group_Budget all member tasks are removed from the group identified by that
object.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[If a task is a member of a Group_Budget when it
terminates then as part of the finalization of the task it is removed from the
group.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[For all the operations defined in this package,
Tasking_Error is raised if the task identified by T has terminated, and
Program_Error is raised if the value of T is
Task_Identification.Null_Task_Id.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[An exception propagated from a handler invoked when
the budget of a group of tasks becomes exhausted has no effect.]}
@end{RunTime}
@begin{Erron}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
For a call of any of the subprograms defined in this package, if the task
identified by T no longer exists, the execution of the program is erroneous.]}
@end{Erron}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[For a given Group_Budget object, the implementation
shall perform the operations declared in this package atomically with respect
to any of these operations on the same Group_Budget object. The replacement of
a handler, by a call of Set_Handler, shall be performed atomically with respect
to the execution of the handler.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This prevents various race conditions. In
particular it ensures that if the budget is exhausted when Set_Handler
is changing the handler then either the new or old handler is executed
and the exhausting event is not lost.]}
@end{Reason}
@end{ImplReq}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[Clearing or setting of the handler of a group
budget does not change the current value of the budget. Exhaustion or loading
of a budget does not change whether the handler of the group budget is set or
cleared.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[A Group_Budget_Handler can be associated with
several Group_Budget objects.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00354-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The package Execution_Time.Group_Budgets is new.]}
@end{Extend95}
@LabeledAddedClause{Version=[2],Name=[Timing Events]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[This clause describes a language-defined package to
allow user-defined protected procedures to be executed at a specified time
without the need for a task or a delay statement.]}
@end{Intro}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{package} Ada.Real_Time.Timing_Events @key{is}@ChildUnit{Parent=[Ada.Real_Time],Child=[Timing_Events]}]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{type} @AdaTypeDefn{Timing_Event} @key{is tagged limited private};
@key{type} @AdaTypeDefn{Timing_Event_Handler}
@key{is access protected procedure} (Event : @key{in out} Timing_Event);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} @AdaSubDefn{Set_Handler} (Event : @key{in out} Timing_Event;
At_Time : @key{in} Time;
Handler : @key{in} Timing_Event_Handler);
@key{procedure} @AdaSubDefn{Set_Handler} (Event : @key{in out} Timing_Event;
In_Time : @key{in} Time_Span;
Handler : @key{in} Timing_Event_Handler);
@key{function} @AdaSubDefn{Current_Handler} (Event : Timing_Event)
@key{return} Timing_Event_Handler;
@key{procedure} @AdaSubDefn{Cancel_Handler} (Event : @key{in out} Timing_Event;
Cancelled : @key{out} Boolean);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{function} @AdaSubDefn{Time_Of_Event} (Event : Timing_Event) @key{return} Time;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{private}
... -- @RI[not specified by the language]
@key{end} Ada.Real_Time.Timing_Events;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The type Timing_Event represents a time in the future
when an event is to occur. The type Timing_Event needs finalization (see
@RefSecNum{User-Defined Assignment and Finalization}).]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[An object of type Timing_Event is said to be
@i<set> if it is associated with a non-null value of type Timing_Event_Handler
and @i<cleared> otherwise. All Timing_Event objects are initially cleared.
@PDefn2{Term=[set],Sec=[timing event object]}
@PDefn2{Term=[clear],Sec=[timing event object]}]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The type Timing_Event_Handler identifies a
protected procedure to be executed by the implementation when the timing event
occurs. Such a protected procedure is called a @i{handler}.
@PDefn2{Term=[handler],Sec=[timing event]}]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Type=[Leading],Text=[Type Timing_Event is tagged. This
makes it possible to share a handler between several events. In simple cases,
'Access can be used to compare the parameter with a specific timing event
object (this works because a tagged type is a by-reference type). In more
complex cases, a type extension of type Timing_Event can be declared; a
double type conversion can be used to access the extension data. For
example:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{type} Toaster_Timing_Event @key{is new} Timing_Event @key{with record}
Slot : Natural;
@key{end record};]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[...]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{protected body} Toaster @key{is}]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key{procedure} Timer(Event : @key{in out} Timing_Event) @key{is}
@key{begin}
Pop_Up_Toast (Toaster_Timing_Event(Timing_Event'Class(Event)).Slot);
@key{end} Timer;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ ...
@key{end} Toaster;]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The extra conversion to the class-wide type
is necessary to make the conversions legal. While this usage is clearly
ugly, we think that the need for this sort of usage will be rare, so
we can live with it. It's certainly better than having no way to associate
data with an event.]}
@end{Discussion}
@end{StaticSem}
@begin{Runtime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The procedures Set_Handler associate the handler
Handler with the event Event; if Handler is @key{null}, the event is cleared,
otherwise it is set. The first procedure Set_Handler sets the execution time
for the event to be At_Time. The second procedure Set_Handler sets the
execution time for the event to be Real_Time.Clock + In_Time.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[A call of a procedure Set_Handler for an event that
is already set replaces the handler and the time of execution; if Handler is
not @key{null}, the event remains set.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[As soon as possible after the time set for the
event, the handler is executed, passing the event as parameter. The handler is
only executed if the timing event is in the set state at the time of execution.
The initial action of the execution of the handler is to clear the event.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The second sentence of this paragraph is because
of a potential race condition. The time might expire and yet before the
handler is executed, some task could call Cancel_Handler (or equivalently
call Set_Handler with a @key{null} parameter) and thus clear the handler.]}
@end{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[If the Ceiling_Locking policy (see
@RefSecNum{Priority Ceiling Locking}) is in effect when a procedure
Set_Handler is called, a check is made that the ceiling priority of
Handler.@key{all} is Interrupt_Priority'Last. If the check fails, Program_Error
is raised.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[If a procedure Set_Handler is called with zero or
negative In_Time or with At_Time indicating a time in the past then the handler
is executed immediately by the task executing the call of Set_Handler. The
timing event Event is cleared.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The function Current_Handler returns the handler
associated with the event Event if that event is set; otherwise it returns
@key{null}.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The procedure Cancel_Handler clears the event if it
is set. Cancelled is assigned True if the event was set prior to it being
cleared; otherwise it is assigned False.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The function Time_Of_Event returns the time of the
event if the event is set; otherwise it returns Real_Time.Time_First.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[As part of the finalization of an object
of type Timing_Event, the Timing_Event is cleared.]}
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is the only finalization defined by the
language that has a visible effect; but an implementation may have other
finalization that it needs to perform. Implementations need to ensure that
the event is cleared before anything else is finalized that would prevent
a set event from being triggered.]}
@end{ImplNote}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[If several timing events are set for the same time,
they are executed in FIFO order of being set.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[An exception propagated from a handler invoked by a
timing event has no effect.]}
@end{Runtime}
@begin{ImplReq}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[For a given Timing_Event object, the implementation
shall perform the operations declared in this package atomically with respect
to any of these operations on the same Timing_Event object. The replacement of
a handler by a call of Set_Handler shall be performed atomically with respect
to the execution of the handler.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This prevents various race conditions. In
particular it ensures that if an event occurs when Set_Handler is changing
the handler then either the new or old handler is executed in response to the
appropriate event. It is never possible for a new handler to be executed in
response to an old event.]}
@end{Reason}
@end{ImplReq}
@begin{Metrics}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Type=[Leading],Text=[The implementation shall document
the following metric:]}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[An upper bound on the lateness of the execution of
a handler. That is, the maximum time between when a handler is actually
executed and the time specified when the event was set.]}
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for timing events.]}]}
@end{Metrics}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[The protected handler procedure should be executed
directly by the real-time clock interrupt mechanism.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[For a timing event, the handler should be executed directly by the
real-time clock interrupt mechanism.]}]}
@end{ImplAdvice}
@begin{Notes}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[Since a call of Set_Handler is not a potentially
blocking operation, it can be called from within a handler.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[A Timing_Event_Handler can be associated with several
Timing_Event objects.]}
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00297-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The package Real_Time.Timing_Events is new.]}
@end{Extend95}
|