1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
|
@comment{ $Source: e:\\cvsroot/ARM/Source/sp.mss,v $ }
@comment{ $Revision: 1.47 $ $Date: 2006/10/18 00:25:28 $ $Author: Randy $ }
@Part(sysprog, Root="ada.mss")
@Comment{$Date: 2006/10/18 00:25:28 $}
@LabeledNormativeAnnex{Systems Programming}
@begin{Intro}
@Redundant[@Defn{systems programming}
@Defn{low-level programming}
@Defn{real-time systems}
@Defn{embedded systems}
@Defn{distributed systems}
@Defn{information systems}
The Systems Programming Annex specifies additional capabilities
provided for low-level programming. These capabilities are also
required in many real-time, embedded, distributed, and information systems.]
@end{Intro}
@begin{Extend83}
@Defn{extensions to Ada 83}
This Annex is new to Ada 95.
@end{Extend83}
@LabeledClause{Access to Machine Operations}
@begin{Intro}
@Redundant[This clause specifies rules regarding access to machine instructions
from within an Ada program.]
@ChgImplDef{Version=[2],Kind=[Revised],Text=[@Chg{Version=[2],
New=[Implementation-defined intrinsic subprograms],
Old=[Support for access to machine instructions]}.]}
@end{Intro}
@begin{ImplReq}
@Defn{machine code insertion}
The implementation shall support machine code insertions
(see @RefSecNum{Machine Code Insertions}) or intrinsic subprograms
(see @RefSecNum{Conformance Rules}) (or both).
Implementation-defined attributes shall be provided to
allow the use of Ada entities as operands.
@end{ImplReq}
@begin{ImplAdvice}
The machine code or intrinsics support should allow access to all
operations normally available to assembly language programmers for the
target environment,
including privileged instructions, if any.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The machine code or intrinsics support should allow access to all
operations normally available to assembly language programmers for the
target environment.]}]}
@begin{Ramification}
Of course, on a machine with protection, an attempt to execute a
privileged instruction in user mode will probably trap.
Nonetheless, we want implementations to provide access to them so that
Ada can be used to write systems programs that run in privileged mode.
@end{Ramification}
@Defn{interface to assembly language}
@Defn2{Term=[language], Sec=(interface to assembly)}
@Defn{mixed-language programs}
@Defn{assembly language}
The interfacing pragmas (see @RefSecNum{Interface to Other Languages})
should support interface to assembler;
the default assembler should be associated with the convention
identifier Assembler.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Interface to assembler should be supported; the default assembler
should be associated with the convention identifier Assembler.]}]}
If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location,
and should ensure that it is retained by the linking process,
even if not otherwise referenced from the Ada code.
The implementation should assume that any call to a machine code or
assembler subprogram is allowed to read or update every object that is
specified as exported.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location even if not otherwise referenced
from the Ada code. A call to a machine code or assembler subprogram should
be treated as if it could read or update every object that is
specified as exported.]}]}
@end{ImplAdvice}
@begin{DocReq}
The implementation shall document the overhead associated with calling
machine-code or intrinsic subprograms, as compared to a fully-inlined
call, and to a regular out-of-line call.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The overhead of calling machine-code or intrinsic subprograms.]}]}
The implementation shall document the types of
the package System.Machine_Code usable for machine code
insertions, and the attributes to be used in
machine code insertions for references to Ada entities.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The types and attributes used in machine code insertions.]}]}
The implementation shall document the subprogram calling conventions
associated with the convention identifiers available for use
with the interfacing pragmas (Ada and Assembler, at a minimum),
including register saving,
exception propagation, parameter passing, and function value returning.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The subprogram calling conventions for all supported convention
identifiers.]}]}
For exported and imported subprograms,
the implementation shall document the mapping
between the Link_Name string, if specified, or
the Ada designator, if not, and the external link name used
for such a subprogram.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of access to machine operations.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The mapping between the Link_Name or Ada designator and the external
link name.]}]}
@end{DocReq}
@begin{ImplAdvice}
The implementation should ensure that little or no overhead is associated
with calling intrinsic and machine-code subprograms.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Little or no overhead should be associated
with calling intrinsic and machine-code subprograms.]}]}
@Leading@;It is recommended that intrinsic subprograms be provided for convenient
access to any machine operations that provide special capabilities
or efficiency and that are not otherwise available through the language
constructs. Examples of such instructions
include:
@begin{itemize}
Atomic read-modify-write operations @em e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.
Standard numeric functions @em e.g., @i{sin}, @i{log}.
String manipulation operations @em e.g., translate and test.
Vector operations @em e.g., compare vector against thresholds.
Direct operations on I/O ports.
@end{itemize}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Intrinsic subprograms should be provided to access any machine operations
that provide special capabilities or efficiency not normally available.]}]}
@end{ImplAdvice}
@LabeledClause{Required Representation Support}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
This clause specifies minimal requirements on the
@Chg{Version=[2],New=[],Old=[implementation's ]}support for representation
items and related features.
@end{Intro}
@begin{ImplReq}
@PDefn2{Term=[recommended level of support], Sec=(required in Systems
Programming Annex)}
The implementation shall support at least the functionality
defined by the recommended levels of support in Section 13.
@end{ImplReq}
@LabeledClause{Interrupt Support}
@begin{Intro}
@Redundant[This clause specifies the language-defined model for hardware interrupts
in addition to mechanisms for handling interrupts.]
@IndexSee{Term=[signal],See=(interrupt)}
@end{Intro}
@begin{RunTime}
@Defn{interrupt}
@Redundant[An @i{interrupt} represents a class of events that are detected by
the hardware or the system software.]
@Defn2{Term=[occurrence], Sec=(of an interrupt)}
Interrupts are said to occur. An @i{occurrence} of an interrupt is
separable into generation and delivery.
@Defn2{Term=[generation], Sec=(of an interrupt)}
@i{Generation} of an interrupt is the event in the underlying hardware
or system that makes the interrupt available to the program.
@Defn2{Term=[delivery], Sec=(of an interrupt)}
@i{Delivery} is the action that invokes part of the program as
response to the interrupt occurrence.
@Defn{pending interrupt occurrence}
Between generation and delivery, the interrupt occurrence @Redundant[(or
interrupt)] is @i{pending}.
@Defn{blocked interrupt}
Some or all interrupts may be @i{blocked}. When an interrupt is blocked, all
occurrences of that interrupt are prevented from being delivered.
@Defn2{Term=[attaching], Sec=(to an interrupt)}
@Defn{reserved interrupt}
Certain interrupts are @i{reserved}. The set of reserved interrupts is
implementation defined. A reserved interrupt is either an interrupt for
which user-defined handlers are not supported, or one which
already has an attached handler by some other implementation-defined means.
@Defn{interrupt handler}@PDefn2{Term=[handler],Sec=[interrupt]}
Program units can be connected to non-reserved interrupts. While
connected, the program unit is said to be @i{attached} to that interrupt.
The execution of that program unit, the @i{interrupt handler}, is invoked upon
delivery of the interrupt occurrence.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of interrupts.]}]}
@begin{Honest}
As an obsolescent feature,
interrupts may be attached to task entries by an address clause.
See @RefSecNum{Interrupt Entries}.
@end{Honest}
While a handler is attached to an interrupt, it is called once for each
delivered occurrence of that interrupt. While the handler executes, the
corresponding interrupt is blocked.
While an interrupt is blocked, all occurrences of that interrupt are prevented
from being delivered. Whether such occurrences remain pending or are lost is
implementation defined.
@Defn{default treatment}
Each interrupt has a @i{default treatment} which determines the system's
response to an occurrence of that interrupt when no user-defined
handler is attached. The set of possible default treatments is
implementation defined, as is the method (if one exists) for configuring
the default treatments for interrupts.
An interrupt is delivered to the handler (or default treatment) that is in
effect for that interrupt at the time of delivery.
An exception propagated from a handler that is invoked by an
interrupt has no effect.
@Redundant[If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect, the interrupt handler executes with the active priority that is the
ceiling priority of the corresponding protected object.]
@end{RunTime}
@begin{ImplReq}
The implementation shall provide a mechanism to determine the minimum
stack space that is needed
for each interrupt handler and to reserve that space for
the execution of the handler. @Redundant{This space should accommodate
nested invocations of the handler where the system permits this.}
If the hardware or the underlying system holds pending interrupt
occurrences, the implementation shall provide for later delivery
of these occurrences to the program.
If the Ceiling_Locking policy is not in effect, the implementation
shall provide means for the application to specify whether interrupts
are to be blocked during protected actions.
@end{ImplReq}
@begin{DocReq}
@Leading@;The implementation shall document the following items:
@begin{Discussion}
This information may be different for different forms of interrupt handlers.
@end{Discussion}
@begin{Enumerate}
For each interrupt, which interrupts are blocked from delivery when a handler
attached to that interrupt executes (either as a result of an interrupt
delivery or of an ordinary call on a procedure of the corresponding
protected object).
Any interrupts that cannot be blocked, and the effect of attaching
handlers to such interrupts, if this is permitted.
Which run-time stack an interrupt handler uses when it executes as a
result of an interrupt delivery; if this is configurable, what is the
mechanism to do so; how to specify how much space to reserve on that stack.
Any implementation- or hardware-specific activity that happens
before a user-defined interrupt handler gets control (e.g.,
reading device registers, acknowledging devices).
Any timing or other limitations imposed on the execution of interrupt handlers.
The state (blocked/unblocked) of the non-reserved interrupts
when the program starts; if some interrupts are unblocked, what
is the mechanism a program can use to protect itself before it
can attach the corresponding handlers.
Whether the interrupted task is allowed to resume execution before the
interrupt handler returns.
The treatment of interrupt occurrences that are generated while
the interrupt is blocked; i.e., whether one or more occurrences
are held for later delivery, or all are lost.
Whether predefined or implementation-defined exceptions are raised as a
result of the occurrence of any interrupt, and the mapping between the
machine interrupts (or traps) and the predefined
exceptions.
On a multi-processor, the rules governing the delivery of an interrupt
to a particular processor.
@end{Enumerate}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The treatment of interrupts.]}]}
@ChgNote{A Bob Duff explanation, but this is just too much junk.}
@end{DocReq}
@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
If the underlying system or hardware does not allow interrupts to be
blocked, then no blocking is required @Redundant[as part of the execution of
subprograms of a protected object @Chg{Version=[2],New=[for which],Old=[whose]}
one of its subprograms is an interrupt handler].
In a multi-processor with more than one interrupt subsystem, it is
implementation defined whether (and how) interrupt sources from
separate subsystems share the same Interrupt_ID type
(see @RefSecNum{The Package Interrupts}).
In particular, the meaning of a blocked or pending interrupt may then be
applicable to one processor only.
@begin{discussion}
This issue is tightly related to the issue of scheduling on a
multi-processor. In a sense, if a particular interrupt source is not
available to all processors, the system is not truly homogeneous.
One way to approach this problem is to assign sub-ranges within
Interrupt_ID to each interrupt subsystem, such that @lquotes@;similar@rquotes@; interrupt
sources (e.g. a timer) in different subsystems get a distinct id.
@end{Discussion}
Implementations are allowed to impose timing or other limitations on the
execution of interrupt handlers.
@begin{Reason}
These limitations are often necessary to ensure proper behavior of the
implementation.
@end{Reason}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
Other forms of handlers are allowed to be supported, in which
case@Chg{Version=[2],New=[],Old=[,]} the
rules of this @Chg{Version=[2],New=[clause],Old=[subclause]} should be adhered
to.
The active priority of the execution of an interrupt handler is allowed to
vary from one occurrence of the same interrupt to another.
@end{ImplPerm}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
If the Ceiling_Locking policy is not in effect, the implementation
should provide means for the application to specify which interrupts
are to be blocked during protected actions, if the underlying system allows
for @Chg{Version=[2],New=[finer-grained],Old=[a finer-grain]} control of
interrupt blocking.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If the Ceiling_Locking policy is not in effect and the target system
allows for finer-grained control of interrupt blocking, a means for the
application to specify which interrupts are to be blocked during protected
actions should be provided.]}]}
@end{ImplAdvice}
@begin{Notes}
The default treatment for an interrupt can be to keep the
interrupt pending or to deliver it to an implementation-defined
handler. Examples of actions that an implementation-defined
handler is allowed to perform include aborting the partition, ignoring
(i.e., discarding occurrences of) the interrupt, or queuing one
or more occurrences of the interrupt for possible later delivery
when a user-defined handler is attached to that interrupt.
It is a bounded error to call Task_Identification.Current_Task
(see @RefSecNum{The Package Task_Identification}) from an interrupt handler.
The rule that an exception propagated from an interrupt handler has no effect
is modeled after the rule about exceptions propagated out of task bodies.
@end{Notes}
@LabeledSubClause{Protected Procedure Handlers}
@begin{Syntax}
@begin{SyntaxText}
@Leading@keepnext@;The form of a @nt{pragma} Interrupt_Handler is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Interrupt_Handler)(@SynI{handler_}@Syn2{name});'
@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Attach_Handler is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Attach_Handler)(@SynI{handler_}@Syn2{name}, @Syn2{expression});'
@end{Syntax}
@begin{Resolution}
For the Interrupt_Handler and Attach_Handler pragmas, the
@SynI{handler_}@nt{name} shall resolve to denote a protected procedure
with a parameterless profile.
For the Attach_Handler pragma, the expected type for the
@nt{expression} is Interrupts.Interrupt_ID
(see @RefSecNum{The Package Interrupts}).
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The Attach_Handler pragma is only allowed immediately within the
@nt{protected_definition}
where the corresponding subprogram is declared.
The corresponding @nt{protected_@!type_@!declaration}
or @nt{single_@!protected_@!declaration}
shall be a library@Chg{Version=[2],New=[-],Old=[]}level declaration.
@begin{Discussion}
In the case of a @nt{protected_type_declaration},
an @nt{object_declaration} of an object of that type
need not be at library level.
@end{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00253-01],ARef=[AI95-00303-01]}
The Interrupt_Handler pragma is only allowed immediately within
@Chg{Version=[2],New=[the],Old=[a]}
@nt{protected_definition}@Chg{Version=[2],New=[ where the
corresponding subprogram is declared],Old=[]}.
The cor@!responding @nt{protected_@!type_declaration} @Chg{Version=[2],New=[or
@nt{single_@!protected_@!declaration} ],Old=[]}shall
be a library@Chg{Version=[2],New=[-],Old=[]}level
declaration.@Chg{Version=[2],New=[],Old=[ In addition, any
@nt{object_@!declaration} of such a type shall be a library level declaration.]}
@end{Legality}
@begin{RunTime}
If the pragma Interrupt_Handler appears in a @nt{protected_definition},
then the corresponding procedure can be attached dynamically, as a handler, to
interrupts (see @RefSecNum{The Package Interrupts}).
@Redundant[Such procedures are allowed to be attached to multiple interrupts.]
@Defn2{Term=[creation], Sec=(of a protected object)}
@Defn2{Term=[initialization], Sec=(of a protected object)}
The @nt{expression} in the Attach_Handler pragma @Redundant[as evaluated at
object creation time] specifies an interrupt. As part
of the initialization of that object, if the Attach_Handler pragma is
specified, the @SynI{handler} procedure is attached to the specified interrupt.
@IndexCheck{Reserved_Check}
A check is made that the corresponding interrupt is not reserved.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if the check fails, and the existing treatment
for the interrupt is not affected.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
@Defn2{Term=[initialization], Sec=(of a protected object)}
@IndexCheck{Ceiling_Check}
If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect@Chg{Version=[2],New=[,],Old=[]} then upon the initialization of a
protected object @Chg{Version=[2],New=[for which],Old=[that]} either an
Attach_Handler or Interrupt_Handler pragma applies to one of its procedures,
a check is made that the ceiling priority defined in the
@nt{protected_definition} is in the range of System.@!Interrupt_Priority.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If the check fails, Program_Error is raised.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0068],ARef=[AI95-00121-01]}
@Defn2{Term=[finalization], Sec=(of a protected object)}
When a protected object is finalized, for any of its procedures that are
attached to interrupts, the handler is detached. If the handler was
attached by a procedure in the Interrupts package or if no user
handler was previously attached to the interrupt, the default treatment is
restored. @Chg{New=[If an Attach_@!Handler pragma was used and the most recently
attached handler for the same interrupt is the same as the one that was
attached at the time the protected object was initialized],
Old=[Otherwise, @Redundant[that is, if an Attach_@!Handler pragma was
used]]}, the previous handler is restored.
@begin{Discussion}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00303-01]}
@Chg{New=[If all protected objects for interrupt handlers are declared at the
library@Chg{Version=[2],New=[ ],Old=[-]}level],Old=[Since only library-level
protected procedures can be attached as
handlers using the Interrupts package]}, the finalization discussed above
occurs only as part of the finalization of all library-level packages in
a partition.
@Chg{New=[However, objects of a protected type containing an Attach_@!Handler
pragma need not be at the library level. Thus, an implementation needs to be
able to restore handlers during the execution of the program.@Chg{Version=[2],
New=[ (An object with an Interrupt_@!Handler pragma also need not be at the
library level, but such
a handler cannot be attached to an interrupt using the Interrupts package.)],
Old=[]}],Old=[]}
@end{Discussion}
When a handler is attached to an interrupt, the interrupt is blocked
@Redundant[(subject to the @ImplPermName in @RefSecNum{Interrupt Support})]
during the execution of every protected action on the protected object
containing the handler.
@end{RunTime}
@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect and an interrupt is delivered to a handler, and the interrupt
hardware priority is higher than the ceiling priority of the corresponding
protected object, the execution of the program is erroneous.
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgAdded{Version=[1],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
If the handlers for a given interrupt attached via pragma
Attach_Handler are not attached and detached in a stack-like (LIFO) order,
program execution is erroneous. In particular, when a protected object is
finalized, the execution is erroneous if any of the procedures of the
protected object are attached to interrupts via pragma Attach_@!Handler and
the most recently attached handler for the same interrupt is not the same as
the one that was attached at the time the protected object was initialized.]}
@begin{Discussion}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgAdded{Version=[1],Text=[This simplifies implementation of the Attach_@!Handler
pragma by not requiring a check that the current handler is the same as the
one attached by the initialization of a protected object.]}
@end{Discussion}
@end{Erron}
@begin{Metrics}
@Leading@Keepnext@;The following metric shall be documented by the implementation:
@ChgNote{This was @begin{enumerate}, which is wrong}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The worst@Chg{Version=[2],New=[-],Old=[ ]}case overhead for an interrupt
handler that is a parameterless
protected procedure, in clock cycles. This is the execution time not
directly attributable to the handler procedure or the interrupted execution.
It is estimated as C @en@; (A+B), where A is how long it takes to complete a given
sequence of instructions without any interrupt, B is how long it takes to
complete a normal call to a given protected procedure, and C is how long it
takes to complete the same sequence of instructions when it is interrupted by
one execution of the same procedure called via an interrupt.
@begin{ImplNote}
The instruction sequence and interrupt handler used to measure interrupt
handling overhead should be chosen so as to maximize the execution time cost
due to cache misses. For example, if the processor has cache memory and the
activity of an interrupt handler could invalidate the contents of cache memory, the handler should be written such that it invalidates all of the cache memory.
@end{ImplNote}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for interrupt handlers.]}]}
@ChgNote{This was @end{enumerate}, which is wrong}
@end{Itemize}
@end{Metrics}
@begin{ImplPerm}
When the pragmas Attach_Handler or Interrupt_Handler apply to a protected
procedure, the implemen@!tation is allowed to impose
implementation-defined restrictions on the
corresponding @nt{protected_@!type_@!declaration} and @nt{protected_@!body}.
@begin{Ramification}
The restrictions may be on the constructs that are allowed within them,
and on ordinary calls (i.e. not via interrupts) on protected operations in
these protected objects.
@end{Ramification}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@Chg{Version=[2],
New=[Any restrictions on a protected procedure or its containing type when
a @nt{pragma} Attach_handler or Interrupt_Handler applies.],Old=[]}]}
An implementation may use a different mechanism for invoking a protected
procedure in response to a hardware interrupt than is used for a call
to that protected procedure from a task.
@begin{Discussion}
This is despite the fact that the priority of an interrupt handler
(see @RefSecNum{Task Priorities}) is modeled after a hardware task calling the
handler.
@end{Discussion}
@Defn{notwithstanding}
Notwithstanding what this subclause says elsewhere,
the Attach_Handler and Interrupt_Handler pragmas are allowed to be used
for other, implementation defined, forms of interrupt handlers.
@begin{Ramification}
For example, if an implementation wishes to allow interrupt
handlers to have parameters, it is allowed to do so via these pragmas;
it need not invent implementation-defined pragmas for the purpose.
@end{Ramification}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@Chg{Version=[2],
New=[Any other forms of interrupt handler supported by the
Attach_Handler and Interrupt_Handler pragmas.],Old=[]}]}
@end{ImplPerm}
@begin{ImplAdvice}
Whenever possible, the implementation should allow interrupt handlers to be
called directly by the hardware.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Interrupt handlers should be called directly by the hardware.]}]}
Whenever practical, the implementation should
detect violations of any implementation-defined restrictions
before run time.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Violations of any implementation-defined restrictions on interrupt
handlers should be detected before run time.]}]}
@end{ImplAdvice}
@begin{Notes}
The Attach_Handler pragma can provide static attachment of handlers to
interrupts if the implementation supports preelaboration of protected
objects. (See @RefSecNum{Preelaboration Requirements}.)
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
@Chg{Version=[2],New=[A],Old=[The ceiling priority of a]}
protected object that
@Chg{Version=[2],New=[has a (protected) procedure],
Old=[one of its procedures is]}
attached to an interrupt should
@Chg{Version=[2],New=[have a ceiling priority],
Old=[be]} at least as high as the highest
processor priority at which that interrupt will ever be delivered.
Protected procedures can also be attached dynamically to interrupts
via operations declared in the predefined package Interrupts.
An example of a possible implementation-defined restriction is
disallowing the use of the standard storage pools within the body of
a protected procedure that is an interrupt handler.
@end{Notes}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00253-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
@b[Amendment Correction:] Corrected the wording so that the rules for the
use of Attach_Handler and Interrupt_Handler are identical. This means
that uses of pragma Interrupt_Handler outside of the target protected type
or single protected object are now illegal.]}
@end{Incompatible95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified the meaning of
@lquotes@;the previous handler@rquotes when finalizing protected objects
containing interrupt handlers.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00303-01]}
@ChgAdded{Version=[2],Text=[Dropped the requirement that an object of a
type containing an Interrupt_Handler pragma must be declared at the library
level. This was a generic contract model violation. This change is not
an extension, as an attempt to attach such a handler with a routine in
package Interrupts will fail an accessibility check anyway. Moreover,
implementations can retain the rule as an implementation-defined
restriction on the use of the type, as permitted by the @ImplPermTitle
above.]}
@end{Diffword95}
@LabeledSubClause{The Package Interrupts}
@begin{StaticSem}
@Leading@Keepnext@;The following language-defined packages exist:
@begin{example}
@key{with} System;@ChildUnit{Parent=[Ada],Child=[Interrupts]}
@key[package] Ada.Interrupts @key[is]
@key[type] @AdaTypeDefn{Interrupt_ID} @key[is] @RI{implementation-defined};
@key[type] @AdaTypeDefn{Parameterless_Handler} @key[is]
@key[access] @key[protected] @key[procedure];
@ChgRef{Version=[1], Kind=[Deleted]}
@Chg[New=<>,Old=<@ @;@comment{Empty paragraph to hang junk paragraph number from original RM}>]
@key[function] @AdaSubDefn{Is_Reserved} (Interrupt : Interrupt_ID)
@key[return] Boolean;
@key[function] @AdaSubDefn{Is_Attached} (Interrupt : Interrupt_ID)
@key[return] Boolean;
@key[function] @AdaSubDefn{Current_Handler} (Interrupt : Interrupt_ID)
@key[return] Parameterless_Handler;
@key[procedure] @AdaSubDefn{Attach_Handler}
(New_Handler : @key[in] Parameterless_Handler;
Interrupt : @key[in] Interrupt_ID);
@key[procedure] @AdaSubDefn{Exchange_Handler}
(Old_Handler : @key[out] Parameterless_Handler;
New_Handler : @key[in] Parameterless_Handler;
Interrupt : @key[in] Interrupt_ID);
@key[procedure] @AdaSubDefn{Detach_Handler}
(Interrupt : @key[in] Interrupt_ID);
@key[function] @AdaSubDefn{Reference}(Interrupt : Interrupt_ID)
@key{return} System.Address;
@key[private]
... -- @RI{not specified by the language}
@key[end] Ada.Interrupts;
@key[package] Ada.Interrupts.Names @key[is]@ChildUnit{Parent=[Ada.Interrupts],Child=[Names]}
@RI{implementation-defined} : @key[constant] Interrupt_ID :=
@RI{implementation-defined};
. . .
@RI{implementation-defined} : @key[constant] Interrupt_ID :=
@RI{implementation-defined};
@key[end] Ada.Interrupts.Names;
@end{example}
@end{StaticSem}
@begin{RunTime}
The Interrupt_ID type is an implementation-defined discrete type used to
identify interrupts.
The Is_Reserved function returns True if and only if the specified
interrupt is reserved.
The Is_Attached function returns True if and only if a user-specified
interrupt handler is attached to the interrupt.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0069],ARef=[AI95-00166-01]}
The Current_Handler function returns a value that represents the
attached handler of the interrupt. If no user-defined handler is attached to
the interrupt, Current_Handler returns @Chg{New=[@key{null}],
Old=[a value that designates the default treatment; calling Attach_Handler
or Exchange_Handler with this value restores the default treatment]}.
The Attach_Handler procedure attaches the specified handler to the
interrupt, overriding any existing treatment (including a user handler)
in effect for that interrupt.
If New_Handler is @key[null], the default treatment is restored.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If New_Handler designates a protected procedure to which the pragma
Interrupt_@!Handler does not apply, Program_Error is raised. In
this case, the operation does not modify the existing interrupt treatment.
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0069],ARef=[AI95-00166-01]}
The Exchange_Handler procedure operates in the same manner as Attach_Handler
with the addition that the value returned in Old_Handler designates the
previous treatment for the specified interrupt.@Chg{New=[ If the previous
treatment is not a user-defined handler, @key[null] is returned.],Old=[]}
@begin{Ramification}
Calling Attach_Handler or Exchange_Handler with this value for New_Handler
restores the previous handler.
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0069],ARef=[AI95-00166-01]}
@ChgAdded{Version=[1],Text=[If the application uses only parameterless procedures as
handlers (other types of handlers may be provided by the implementation, but are not
required by the standard), then if Old_Handler is not @key(null), it may be
called to execute the previous handler. This provides a way to cascade
application interrupt handlers. However, the default handler cannot be
cascaded this way (Old_Handler must be @key(null) for the default handler).]}
@end{Ramification}
The Detach_Handler procedure restores the default treatment for the
specified interrupt.
For all operations defined in this package that take a parameter of type
Interrupt_ID, with the exception of Is_Reserved and Reference, a check is
made that the specified interrupt is not reserved.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if this check fails.
If, by using the Attach_Handler, Detach_Handler, or Exchange_Handler
procedures, an attempt is made to
detach a handler that was attached statically (using the pragma
Attach_Handler), the handler is not detached and Program_Error is
raised.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The Reference function returns a value of type System.Address that can
be used to attach a task entry@Chg{Version=[2],New=[],Old=[,]} via an
address clause (see @RefSecNum{Interrupt Entries}) to the interrupt
specified by Interrupt. This function raises Program_Error if attaching
task entries to interrupts (or to this particular interrupt) is not supported.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
@end{RunTime}
@begin{ImplReq}
At no time during attachment or exchange of handlers shall the current handler
of the corresponding interrupt be undefined.
@end{ImplReq}
@begin{DocReq}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect@Chg{Version=[2],New=[,],Old=[]} the implementation shall document
the default ceiling priority
assigned to a protected object that contains either the Attach_Handler or
Interrupt_Handler pragmas, but not the Interrupt_Priority pragma.
@Redundant[This default need not be the same for all interrupts.]
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If the Ceiling_Locking policy is in effect, the default ceiling priority
for a protected object that contains an interrupt handler pragma.]}]}
@end{DocReq}
@begin{ImplAdvice}
If implementation-defined forms of interrupt handler procedures are supported,
such as protected procedures with parameters, then for each such form of a
handler, a type analogous to Parameterless_@!Handler should be specified in a
child package of Interrupts, with the same operations as in the
predefined package Interrupts.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If implementation-defined forms of interrupt handler procedures are
supported, then for each such form of a
handler, a type analogous to Parameterless_@!Handler should be specified in a
child package of Interrupts, with the same operations as in the
predefined package Interrupts.]}]}
@end{ImplAdvice}
@begin{Notes}
The package Interrupts.Names contains implementation-defined
names (and constant values) for the interrupts that are supported by
the implementation.
@end{Notes}
@begin{Examples}
@Leading@Keepnext@i{Example of interrupt handlers:}
@begin{example}
Device_Priority : @key[constant]
@key[array] (1..5) of System.Interrupt_Priority := ( ... );@Softpage
@key[protected] @key[type] Device_Interface
(Int_ID : Ada.Interrupts.Interrupt_ID) @key[is]
@key[procedure] Handler;
@key[pragma] Attach_Handler(Handler, Int_ID);
...
@key[pragma] Interrupt_Priority(Device_Priority(Int_ID));
@key[end] Device_Interface;@Softpage
...
Device_1_Driver : Device_Interface(1);
...
Device_5_Driver : Device_Interface(5);
...
@end{example}
@end{Examples}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0069],ARef=[AI95-00166-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that the value
returned by Current_Handler and Exchange_Handler for the default treatment
is null.]}
@end{Diffword95}
@LabeledClause{Preelaboration Requirements}
@begin{Intro}
@Redundant[This clause specifies additional implementation and documentation
requirements for the Preelaborate pragma (see @RefSecNum{Elaboration Control}).]
@end{Intro}
@begin{ImplReq}
The implementation shall not incur any run-time overhead for the elaboration
checks of subprograms and @ntf{protected_bodies} declared in preelaborated
library units.
The implementation shall not execute any memory write operations after
load time for the elaboration of constant objects
declared immediately within the
declarative region of a preelaborated library package, so long as the
subtype and initial expression (or default initial expressions if
initialized by default) of the @nt<object_declaration> satisfy the
following restrictions.
@Defn{load time}
The meaning of @i{load time} is implementation defined.
@begin{Discussion}
On systems where the image of the partition is initially copied from
disk to RAM, or from ROM to RAM, prior to starting execution of the
partition,
the intention is that @lquotes@;load time@rquotes@; consist of this initial copying
step.
On other systems, load time and run time might actually be interspersed.
@end{Discussion}
@begin{itemize}
Any @nt<subtype_mark> denotes a statically constrained subtype, with
statically constrained subcomponents, if any;
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00161-01]}
@ChgAdded{Version=[2],Text=[no @nt{subtype_mark} denotes a controlled type, a
private type, a private extension, a generic formal private type, a generic
formal derived type, or a descendant of such a type;]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[For an
implementation that uses the registration method of finalization, a
controlled object will require some code executed to register the object
at the appropriate point. The other types are those that @i{might} have a
controlled component. None of these types were allowed in preelaborated
units in Ada 95. These types are covered by the @ImplAdviceTitle, of course,
so they should still execute as little code as possible.]}
@end{Reason}
any @nt<constraint> is a static constraint;
any @nt<allocator> is for an access-to-constant type;
any uses of predefined operators appear only within static expressions;
any @ntf<primaries> that are @nt<name>s, other than @nt<attribute_reference>s
for the Access or Address attributes, appear only within static expressions;
@begin{ramification}
This cuts out @nt<attribute_reference>s that are not static, except for
Access and Address.
@end{Ramification}
any @nt<name> that is not part of a static expression is an expanded
name or @nt<direct_name> that statically denotes some entity;
@begin{Ramification}
This cuts out @nt<function_call>s and @nt<type_conversion>s that are not
static, including calls on attribute functions like 'Image and 'Value.
@end{Ramification}
any @nt<discrete_choice> of an @nt<array_aggregate> is static;
no language-defined check associated with the elaboration of the
@nt<object_declaration> can fail.
@begin{Reason}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
The intent is that aggregates all of whose scalar subcomponents are static@Chg{Version=[2],New=[],Old=[,]}
and all of whose access subcomponents are @key(null), allocators for
access-to-constant types, or X'Access, will be supported with no run-time
code generated.
@end{Reason}
@end{itemize}
@end{ImplReq}
@begin{DocReq}
The implementation shall document any circumstances under which the
elaboration of a preelaborated package causes code to be executed at run time.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Any circumstances when the elaboration of a preelaborated package
causes code to be executed.]}]}
The implementation shall document whether the method used for initialization
of preelaborated variables allows a partition to be restarted without
reloading.
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Whether a partition can be restarted without reloading.]}]}
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of preelaboration.]}]}
@begin{discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
This covers the issue of the @Chg{Version=[2],New=[run-time system],Old=[RTS]}
itself being restartable,
so that need not be a separate @DocReqName.
@end{discussion}
@end{DocReq}
@begin{ImplAdvice}
It is recommended that preelaborated packages be implemented in such a
way that there should be little or no code executed at run time for the
elaboration of entities not already covered by the @ImplReqName@;s.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Preelaborated packages should be implemented such that little or no
code is executed at run time for the elaboration of entities.]}]}
@end{ImplAdvice}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00161-01]}
@ChgAdded{Version=[2],Text=[Added wording to exclude the additional kinds
of types allowed in preelaborated units from the @ImplReqTitle.]}
@end{DiffWord95}
@LabeledClause{Pragma Discard_Names}
@begin{Intro}
@Redundant[A @nt{pragma} Discard_Names may be used to request a
reduction in storage used for the names of certain entities.]
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Discard_Names is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Discard_Names)[([On => ] @Syn2[local_name])];'
@begin{SyntaxText}
A @nt{pragma} Discard_Names is allowed only immediately within a
@nt{declarative_part}, immediately within a @nt{package_specification},
or as a configuration pragma.
@PDefn2{Term=[configuration pragma], Sec=(Discard_Names)}
@PDefn2{Term=[pragma, configuration], Sec=(Discard_Names)}
@end{SyntaxText}
@end{Syntax}
@begin{Legality}
The @nt{local_name} (if present) shall denote a non-derived
enumeration @Redundant[first] subtype,
a tagged @Redundant[first] subtype, or an exception.
The pragma applies to the type or exception.
Without a @nt{local_name}, the pragma applies to all such entities
declared after the pragma, within the same declarative region.
Alternatively, the pragma can be used as a configuration pragma.
If the pragma applies to a type,
then it applies also to all descendants of the type.
@end{Legality}
@begin{StaticSem}
@PDefn2{Term=[representation pragma], Sec=(Discard_Names)}
@PDefn2{Term=[pragma, representation], Sec=(Discard_Names)}
If a @nt{local_name} is given, then
a @nt{pragma} Discard_Names is a representation pragma.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01],ARef=[AI95-00400-01]}
If the pragma applies to an enumeration type,
then the semantics of the @Chg{Version=[2],New=[Wide_Wide_Image],Old=[Wide_Image]}
and @Chg{Version=[2],New=[Wide_Wide_Value],Old=[Wide_Value]} attributes
are implementation defined for that type@Redundant[; the
semantics of Image@Chg{Version=[2],New=[, Wide_Image,],Old=[ and]}
Value@Chg{Version=[2],New=[, and Wide_Value],Old=[]} are still defined in
terms of @Chg{Version=[2],New=[Wide_Wide_Image],Old=[Wide_Image]}
and @Chg{Version=[2],New=[Wide_Wide_Value],Old=[Wide_Value]}].
In addition, the semantics of Text_IO.Enumeration_IO are implementation
defined.
If the pragma applies to a tagged type,
then the semantics of the Tags.@!@Chg{Version=[2],New=[Wide_Wide_@!Expanded_@!Name],
Old=[Expanded_@!Name]} function
are implementation defined for that type@Chg{Version=[2],New=[@Redundant[; the
semantics of Tags.@!Expanded_@!Name and Tags.@!Wide_@!Expanded_@!Name are still
defined in terms of Tags.@!Wide_Wide_@!Expanded_@!Name]], Old=[]}.
If the pragma applies to an exception,
then the semantics of the Exceptions.@!@Chg{Version=[2],New=[Wide_Wide_@!Exception_@!Name],
Old=[Exception_@!Name]} function
are implementation defined for that exception@Chg{Version=[2],New=[@Redundant[; the
semantics of Exceptions.@!Exception_@!Name and Exceptions.@!Wide_@!Exception_@!Name
are still defined in terms of Exceptions.@!Wide_Wide_@!Exception_@!Name]], Old=[]}.
@ImplDef{The semantics of pragma Discard_Names.}
@begin{Ramification}
The Width attribute is still defined in terms of Image.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01]}
The semantics of S'@Chg{Version=[2],New=[Wide_Wide_Image],Old=[Wide_Image]}
and S'@Chg{Version=[2],New=[Wide_Wide_Value],Old=[Wide_Value]} are
implementation defined for any subtype of an enumeration type to which
the pragma applies. (The pragma actually names the first subtype,
of course.)
@end{Ramification}
@end{StaticSem}
@begin{ImplAdvice}
If the pragma applies to an entity, then the implementation should
reduce the amount of storage used for storing names associated with that
entity.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If @nt{pragma} Discard_Names applies to an entity, then the amount of
storage used for storing names associated with that entity should be reduced.]}]}
@begin{Reason}
A typical implementation of the Image attribute for enumeration types is
to store a table containing the names of all the enumeration literals.
Pragma Discard_Names allows the implementation to avoid storing such a
table without having to prove that the Image attribute is never used
(which can be difficult in the presence of separate compilation).
We did not specify the semantics of the Image attribute in the presence
of this pragma because different semantics might be desirable in
different situations.
In some cases, it might make sense to use the Image attribute to print
out a useful value that can be used to identify the entity given
information in compiler-generated listings.
In other cases, it might make sense to get an error at compile time or
at run time.
In cases where memory is plentiful, the simplest implementation makes
sense: ignore the pragma.
Implementations that are capable of avoiding the extra storage in cases
where the Image attribute is never used might also wish to ignore the
pragma.
The same applies to the Tags.Expanded_Name and Exceptions.Exception_Name
functions.
@end{Reason}
@end{ImplAdvice}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00285-01],ARef=[AI95-00400-01]}
@ChgAdded{Version=[2],Text=[Updated the wording to reflect that the double
wide image and value functions are now the master versions that the others
are defined from.]}
@end{DiffWord95}
@LabeledClause{Shared Variable Control}
@begin{Intro}
@Redundant[This clause specifies representation pragmas that control the use of
shared variables.]
@end{Intro}
@begin{Syntax}
@begin{SyntaxText}
@Leading@;The form for pragmas Atomic, Volatile, Atomic_Components, and
Volatile_Components is as follows:
@end{SyntaxText}
@PragmaSyn`@key{pragma} @prag(Atomic)(@Syn2{local_name});'
@PragmaSyn`@key{pragma} @prag(Volatile)(@Syn2{local_name});'
@PragmaSyn`@key{pragma} @prag(Atomic_Components)(@SynI{array_}@Syn2{local_name});'
@PragmaSyn`@key{pragma} @prag(Volatile_Components)(@SynI{array_}@Syn2{local_name});'
@end{Syntax}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00272-01]}
@Defn{atomic}
An @i{atomic} type is one to which a pragma Atomic applies.
An @i{atomic} object (including a component)
is one to which a
pragma Atomic applies, or a component of an array to which
a pragma Atomic_Components applies, or any object of an atomic type@Chg{Version=[2],
New=[, other than objects obtained by evaluating a slice],Old=[]}.
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00272-01]}
@ChgAdded{Version=[2],Text=[A slice of an atomic array object is not itself
atomic. That's necessary as executing a read or write of a dynamic number
of components in a single instruction is not possible on many targets.]}
@end{Ramification}
@Defn{volatile}
A @i{volatile} type is one to which a pragma Volatile applies.
A @i{volatile} object (including a component)
is one to which a pragma Volatile applies,
or a component of an array to which a pragma Volatile_@!Components applies,
or any object of a volatile type.
In addition, every atomic type or object is also defined to be volatile.
Finally, if an object is volatile, then so
are all of its subcomponents @Redundant[(the same does not apply to atomic)].
@end{Intro}
@begin{Resolution}
The @nt{local_name} in an Atomic or Volatile pragma shall resolve to denote
either an @nt{object_declaration}, a non-inherited @nt{component_@!declaration},
or a @nt{full_type_@!declaration}. The
@SynI{array_}@nt{local_name} in an Atomic_@!Components or
Volatile_@!Components pragma shall resolve to denote the declaration
of an array type or an array object of an anonymous type.
@end{Resolution}
@begin{Legality}
@Defn{indivisible}
It is illegal to apply either an Atomic or Atomic_Components pragma to an
object or type if the implementation cannot support the indivisible reads
and updates required by the pragma (see below).
It is illegal to specify the Size attribute of an atomic object,
the Component_Size attribute for an array type with atomic
components, or the layout attributes of an atomic component,
in a way that prevents the implementation from performing the
required indivisible reads and updates.
If an atomic object is passed as a parameter, then the type of the formal
parameter shall either be atomic or allow pass by copy @Redundant[(that
is, not be a nonatomic by-reference type)]. If an atomic object is used
as an actual for a generic formal object of mode @key{in out}, then the
type of the generic formal object shall be atomic. If the @nt<prefix> of
an @nt<attribute_reference> for an Access attribute denotes an atomic
object @Redundant[(including a component)], then the designated type of
the resulting access type shall be atomic. If an atomic type is used as
an actual for a generic formal derived type, then the ancestor of the
formal type shall be atomic or allow pass by copy. Corresponding rules
apply to volatile objects and types.
If a pragma Volatile, Volatile_Components, Atomic, or Atomic_Components
applies to a stand-alone constant object, then a pragma Import shall
also apply to it.
@begin{Ramification}
Hence, no initialization expression is allowed for such a constant. Note
that a constant that is atomic or volatile because of its type is allowed.
@end{Ramification}
@begin{Reason}
Stand-alone constants that are explicitly specified as Atomic or Volatile
only make sense if they are being manipulated outside the Ada program.
From the Ada perspective the object is read-only. Nevertheless, if
imported and atomic or volatile, the implementation should presume it
might be altered externally.
For an imported stand-alone constant that is not atomic or
volatile, the implementation can assume that it will not be
altered.
@end{Reason}
@end{Legality}
@begin{StaticSem}
@PDefn2{Term=[representation pragma], Sec=(Atomic)}
@PDefn2{Term=[pragma, representation], Sec=(Atomic)}
@PDefn2{Term=[representation pragma], Sec=(Volatile)}
@PDefn2{Term=[pragma, representation], Sec=(Volatile)}
@PDefn2{Term=[representation pragma], Sec=(Atomic_Components)}
@PDefn2{Term=[pragma, representation], Sec=(Atomic_Components)}
@PDefn2{Term=[representation pragma], Sec=(Volatile_Components)}
@PDefn2{Term=[pragma, representation], Sec=(Volatile_Components)}
These @nt{pragma}s are representation pragmas
(see @RefSecNum{Operational and Representation Items}).
@end{StaticSem}
@begin{RunTime}
For an atomic object (including an atomic component) all reads and
updates of the object as a whole are indivisible.
For a volatile object all reads and updates of the
object as a whole are performed directly to memory.
@begin{ImplNote}
This precludes any use of register temporaries, caches, and other
similar optimizations for that object.
@end{ImplNote}
@Defn2{Term=[sequential], Sec=(actions)}
Two actions are sequential (see @RefSecNum{Shared Variables}) if each
is the read or update of the same atomic object.
@PDefn2{Term=[by-reference type], Sec=(atomic or volatile)}
If a type is atomic or volatile and it is not a by-copy type, then the type
is defined to be a by-reference type. If any subcomponent of a type is
atomic or volatile, then the type is defined to be a by-reference type.
If an actual parameter is atomic or volatile, and the corresponding
formal parameter is not, then the parameter is passed by copy.
@begin{ImplNote}
Note that in the case where such a parameter is normally passed by
reference, a copy of the actual will have to be produced at the call-site,
and a pointer to the copy passed to the formal parameter. If the actual
is atomic, any copying has to use indivisible read on the way in, and
indivisible write on the way out.
@end{ImplNote}
@begin{Reason}
It has to be known at compile time whether an atomic or a volatile parameter
is to be passed by copy or by reference. For some types, it is unspecified
whether parameters are passed by copy or by reference. The above rules
further specify the parameter passing rules involving atomic and volatile
types and objects.
@end{Reason}
@end{RunTime}
@begin{ImplReq}
@PDefn2{Term=[external effect], Sec=(volatile/atomic objects)}
The external effect of a program
(see @RefSecNum(Conformity of an Implementation with the Standard))
is defined to include each read and update
of a volatile or atomic object. The implementation shall not
generate any memory reads or updates of atomic or volatile
objects other than those specified by the program.
@begin{Discussion}
The presumption is that volatile or atomic objects might reside in an
@lquotes@;active@rquotes@; part of the address space where each read has a potential
side-effect, and at the very least might deliver a different value.
@Leading@;The rule above and the definition of external effect are intended to
prevent (at least) the following incorrect optimizations, where V is
a volatile variable:
@begin{itemize}
X:= V; Y:=V; cannot be allowed to be translated as Y:=V; X:=V;
Deleting redundant loads: X:= V; X:= V; shall read the value of V from
memory twice.
Deleting redundant stores: V:= X; V:= X; shall write into V twice.
Extra stores: V:= X+Y; should not translate to something like V:= X; V:= V+Y;
Extra loads: X:= V; Y:= X+Z; X:=X+B; should not translate to something like
Y:= V+Z; X:= V+B;
Reordering of loads from volatile variables: X:= V1; Y:= V2; (whether or not
V1 = V2) should not translate to Y:= V2; X:= V1;
Reordering of stores to volatile variables: V1:= X; V2:= X; should not
translate to V2:=X; V1:= X;
@end{itemize}
@end{Discussion}
If a pragma Pack applies to a type any of whose subcomponents are atomic,
the implementation shall not pack the atomic subcomponents more tightly
than that for which it can support indivisible reads and updates.
@begin{ImplNote}
A warning might be appropriate if no packing whatsoever can be achieved.
@end{ImplNote}
@end{ImplReq}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00259-01]}
@ChgAdded{Version=[2],Text=[A load or store of a volatile object whose size is
a multiple of System.Storage_Unit and whose alignment is nonzero, should be
implemented by accessing exactly the bits of the object and no others.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[A load or store of a volatile object whose size is
a multiple of System.Storage_Unit and whose alignment is nonzero, should be
implemented by accessing exactly the bits of the object and no others.]}]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Since any object can be a volatile object,
including packed array components and bit-mapped record components, we
require the above only when it is reasonable to assume that the machine
can avoid accessing bits outside of the object.]}
@end{Reason}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This implies that the load or store of a
volatile object that meets the above requirement should not be combined
with that of any other object, nor should it access any bits not
belonging to any other object. This means that the suitability of the
implementation for memory-mapped I/O can be determined from its
documentation, as any cases where the implementation does not follow
@ImplAdviceTitle must be documented.]}
@end{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00259-01]}
@ChgAdded{Version=[2],Text=[A load or store of an atomic object should, where
possible, be implemented by a single load or store instruction.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[A load or store of an atomic object should be implemented by a single
load or store instruction.]}]}
@end{ImplAdvice}
@begin{Notes}
An imported volatile or atomic constant behaves as a constant (i.e.
read-only) with respect to other parts of the Ada program, but can
still be modified by an @lquotes@;external source.@rquotes@;
@end{Notes}
@begin{Incompatible83}
@Defn{incompatibilities with Ada 83}
Pragma Atomic replaces Ada 83's pragma Shared.
The name @lquotes@;Shared@rquotes@; was confusing,
because the pragma was not used to mark variables as shared.
@end{Incompatible83}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00259-01]}
@ChgAdded{Version=[2],Text=[Added @ImplAdviceTitle to clarify the meaning
of Atomic and Volatile in machine terms. The documentation that this
advice applies will make the use of Ada implementations more predictable
for low-level (such as device register) programming.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00272-01]}
@ChgAdded{Version=[2],Text=[Added wording to clarify that a slice of an
object of an atomic type is not atomic, just like a component of an atomic
type is not (necessarily) atomic.]}
@end{Diffword95}
@LabeledRevisedClause{Version=[2],New=[Task Information],
Old=[Task Identification and Attributes]}
@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00266-02]}
@Redundant[This clause describes operations and attributes that can be
used to obtain the identity of a task. In addition,
a package that associates user-defined information with a task is
defined.@Chg{Version=[2],New=[ Finally, a package that associates
termination procedures with a task or set of tasks is defined.],Old=[]}]
@end{Intro}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The title and text here were updated to reflect
the addition of task termination procedures to this clause.]}
@end{DiffWord95}
@LabeledSubClause{The Package Task_Identification}
@begin{StaticSem}
@Leading@Keepnext@;The following language-defined library package exists:
@begin{example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00362-01]}
@key[package] Ada.Task_Identification @key[is]@ChildUnit{Parent=[Ada],Child=[Task_Identification]}@Chg{Version=[2],New=[
@key[pragma] Preelaborate(Task_Identification);],Old=[]}
@key[type] @AdaTypeDefn{Task_Id} @key[is] @key{private};@Chg{Version=[2],New=[
@key[pragma] Preelaborable_Initialization (Task_Id);],Old=[]}
@AdaSubDefn{Null_Task_Id} : @key{constant} Task_Id;
@key{function} "=" (Left, Right : Task_Id) @key{return} Boolean;
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0070],ARef=[AI95-00101-01]}
@key{function} @AdaSubDefn{Image} (T : Task_Id) @key{return} String;
@key[function] @AdaSubDefn{Current_Task} @key[return] Task_Id;
@Key[procedure] @AdaSubDefn{Abort_Task} (T : @key[in] @Chg{New=[],Old=[@key[out] ]}Task_Id);
@key[function] @AdaSubDefn{Is_Terminated}(T : Task_Id) @key{return} Boolean;
@key[function] @AdaSubDefn{Is_Callable} (T : Task_Id) @key{return} Boolean;
@key[private]
... -- @RI{not specified by the language}
@key[end] Ada.Task_Identification;
@end{example}
@end{StaticSem}
@begin{RunTime}
A value of the type Task_Id identifies an existent task. The constant
Null_Task_Id does not identify any task. Each object of the type Task_Id
is default initialized to the value of Null_Task_Id.
The function "=" returns True if and only if Left and Right identify the same
task or both have the value Null_Task_Id.
The function Image returns an implementation-defined string that identifies
T. If T equals Null_Task_Id, Image returns an empty string.
@ImplDef{The result of the Task_Identification.Image attribute.}
The function Current_Task returns a value that identifies the calling task.
The effect of Abort_Task is the same as the @nt{abort_statement} for the
task identified by T. @Redundant[In addition, if T identifies the
environment task, the entire partition is aborted, See @RefSecNum{Partitions}.]
The functions Is_Terminated and Is_Callable return the value of the
corresponding attribute of the task identified by T.
@begin{Ramification}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0115],ARef=[AI95-00206-01]}
@ChgAdded{Version=[1],Text=[These routines can be called with an argument
identifying the environment task. Is_Terminated will always be False for such a
call, but Is_Callable (usually True) could be False if the environment task is
waiting for the termination of dependent tasks. Thus, a dependent task can use
Is_Callable to determine if the main subprogram has completed.]}
@end{Ramification}
@Leading@;For @PrefixType{a @nt<prefix> T that is of a task type
@Redundant[(after any implicit dereference)]},
the following attribute is defined:
@begin{Description}
@Attribute{Prefix=<T>, AttrName=<Identity>,
Text=[Yields a value of the type Task_Id that identifies
the task denoted by T.]}
@end{Description}
@EndPrefixType{}
@Leading@;For @PrefixType{a @nt<prefix> E that denotes an
@nt<entry_declaration>},
the following attribute is defined:
@begin{Description}
@Attribute{Prefix=<E>, AttrName=<Caller>,
Text=[Yields a value of the type Task_Id that identifies the task
whose call is now being serviced. Use of this attribute is
allowed only inside an @nt{entry_body} or @nt{accept_statement}
corresponding to the @nt{entry_declaration} denoted by E.]}
@end{Description}
@EndPrefixType{}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if a value of Null_Task_Id is passed
as a parameter to Abort_Task, Is_Terminated, and Is_Callable.
@PDefn2{Term=[potentially blocking operation],Sec=(Abort_Task)}
@PDefn2{Term=[blocking, potentially],Sec=(Abort_Task)}
Abort_Task is a potentially blocking operation
(see @RefSecNum{Protected Subprograms and Protected Actions}).
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00237-01]}
@PDefn2{Term=(bounded error),Sec=(cause)}
It is a bounded error to call the Current_Task function from
an entry body@Chg{Version=[2],New=[,],Old=[ or an]} interrupt handler@Chg{Version=[2],
New=[, or finalization of a task attribute],Old=[]}.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised, or an implementation-defined value of the type
Task_Id is returned.
@ChgImplDef{Version=[2],Kind=[Revised],Text=[The value of Current_Task when in
a protected entry@Chg{Version=[2],New=[,],Old=[ or]} interrupt handler@Chg{Version=[2],
New=[, or finalization of a task attribute],Old=[]}.]}
@begin{ImplNote}
This value could be Null_Task_Id, or the ID of some user task, or that of
an internal task created by the implementation.
@end{ImplNote}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00237-01]}@Comment{This really should reference AI05-0004, but we don't have that yet. And that hasn't been approved, either}
@ChgAdded{Version=[2],Text=[An entry barrier is syntactically part of an
@nt{entry_body}, so a call to Current_Task from an entry barrier is also
covered by this rule.]}
@end{Ramification}
@end{Bounded}
@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If a value of Task_Id is passed as a parameter to any of the operations
declared in this package (or any language-defined child of this
package), and the corresponding task object no longer exists,
the execution of the program is erroneous.
@end{Erron}
@begin{DocReq}
The implementation shall document the effect of calling Current_Task
from an entry body or interrupt handler.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[The effect of calling Current_Task from an
entry body or interrupt handler.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The effect of calling Current_Task from an
entry body or interrupt handler.]}]}
@end{DocReq}
@begin{Notes}
This package is intended for use in writing user-defined task scheduling
packages and constructing server tasks. Current_Task can be used in
conjunction with other operations requiring a task as an argument such
as Set_Priority (see @RefSecNum{Dynamic Priorities}).
The function Current_Task and the attribute Caller can return a
Task_Id value that identifies the environment task.
@end{Notes}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00362-01]}
@ChgAdded{Version=[2],Text=[Task_Identification is now preelaborated,
so it can be used in preelaborated units.]}
@end{Extend95}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0070],ARef=[AI95-00101-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected the mode of the
parameter to Abort_Task to @key{in}.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[Corrected the wording to include finalization
of a task attribute in the bounded error case; we don't want to specify
which task does these operations.]}
@end{Diffword95}
@LabeledSubClause{The Package Task_Attributes}
@begin{StaticSem}
@Leading@Keepnext@;The following language-defined generic library package exists:
@begin{example}
@key{with} Ada.Task_Identification; @key{use} Ada.Task_Identification;
@key{generic}
@key{type} Attribute @key{is} @key{private};
Initial_Value : @key[in] Attribute;
@key{package} Ada.Task_Attributes @key{is}@ChildUnit{Parent=[Ada],Child=[Task_Attributes]}
@key{type} @AdaTypeDefn{Attribute_Handle} @key{is} @key{access} @key{all} Attribute;
@key{function} @AdaSubDefn{Value}(T : Task_Id := Current_Task)
@key{return} Attribute;
@key{function} @AdaSubDefn{Reference}(T : Task_Id := Current_Task)
@key{return} Attribute_Handle;
@key{procedure} @AdaSubDefn{Set_Value}(Val : @key[in] Attribute;
T : @key[in] Task_Id := Current_Task);
@key{procedure} @AdaSubDefn{Reinitialize}(T : @key[in] Task_Id := Current_Task);
@key{end} Ada.Task_Attributes;
@end{example}
@end{StaticSem}
@begin{RunTime}
When an instance of Task_Attributes is elaborated in
a given active partition, an object of the
actual type corresponding to the formal type Attribute
is implicitly created for each task (of that partition)
that exists and is not yet terminated.
This object acts as a user-defined attribute of the task.
A task created previously
in the partition and not yet terminated has this attribute
from that point on. Each task subsequently created in the partition
will have this attribute when created. In all these cases, the initial value
of the given attribute is Initial_Value.
The Value operation returns the value of the corresponding attribute of T.
The Reference operation returns an access value that designates the
corresponding attribute of T.
The Set_Value operation performs any finalization on the old value of the
attribute of T and assigns Val to that attribute
(see @RefSecNum{Assignment Statements} and
@RefSecNum{User-Defined Assignment and Finalization}).
The effect of the Reinitialize operation is the same as Set_Value where
the Val parameter is replaced with Initial_Value.
@begin{ImplNote}
In most cases, the attribute memory can be reclaimed at this point.
@end{ImplNote}
@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
For all the operations declared in this package, Tasking_Error is raised
if the task identified by T is terminated.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if the value of T is Null_Task_Id.
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[After a task has terminated, all of its attributes
are finalized, unless they have been finalized earlier. When the master of an
instantiation of Ada.Task_Attributes is finalized, the corresponding attribute
of each task is finalized, unless it has been finalized earlier.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[This is necessary so that a task attribute does
not outlive its type. For instance, that's possible if the instantiation is
nested, and the attribute is on a library-level task.]}
@end{Reason}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[The task owning an attribute cannot, in general,
finalize that attribute. That's because the attributes are finalized @i<after>
the task is terminated; moreover, a task may have attributes as soon as it is
created; the task may never even have been activated.]}
@end{Ramification}
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0071],ARef=[AI95-00165-01]}
@ChgAdded{Version=[1],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
If the package Ada.Task_Attributes is instantiated with a controlled type and
the controlled type has user-defined Adjust or Finalize operations that in
turn access task attributes by any of the above operations, then a call of
Set_Value of the instantiated package constitutes a bounded error. The call
may perform as expected or may result in forever blocking the calling task and
subsequently some or all tasks of the partition.]}
@end{Bounded}
@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
It is erroneous to dereference the access value returned by a given
call on Reference after a subsequent call on Reinitialize for
the same task attribute, or after the associated task terminates.
@begin{Reason}
This allows the storage to be reclaimed for the object
associated with an attribute upon Reinitialize or task termination.
@end{Reason}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If a value of Task_Id is passed as a parameter to any of the operations
declared in this package and the corresponding task object no longer exists,
the execution of the program is erroneous.
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0071],ARef=[AI95-00165-01]}
@ChgRef{Version=[2],Kind=[RevisedAdded],ARef=[AI95-00237-01]}
@ChgAdded{Version=[1],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
@Chg{Version=[2],New=[An access],Old=[Accesses]} to @Chg{Version=[2],New=[a ],Old=[]}task
@Chg{Version=[2],New=[attribute],Old=[attributes]} via a value of type
Attribute_Handle @Chg{Version=[2],New=[is],Old=[are]}
erroneous if executed concurrently with @Chg{Version=[2],New=[another such access],
Old=[each other]} or @Chg{Version=[2],New=[a call],Old=[with calls]} of any of the
operations declared in package Task_Attributes.@Chg{Version=[2],New=[ An access
to a task attribute is erroneous if executed
concurrently with or after the finalization of the task attribute.],Old=[]}]}
@begin{Reason}
@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Text=[There is no requirement of atomicity on accesses
via a value of type Attribute_Handle.]}
@end{Reason}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Added]}
@ChgAdded{Version=[2],Text=[A task attribute can only be accessed after
finalization through a value of type Attribute_Handle. Operations in
package Task_Attributes cannot be used to access a task attribute after
finalization, because either the master of the instance has been or is in the
process of being left (in which case the instance is out of scope and thus
cannot be called), or the associated task is already terminated (in which
case Tasking_Error is raised for any attempt to call a task attribute
operation).]}
@end{Ramification}
@end{Erron}
@begin{ImplReq}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0071],ARef=[AI95-00165-01]}
@Chg{New=[For a given attribute of a given task, the],Old=[The]} implementation
shall perform @Chg{New=[the operations declared in this package],
Old=[each of the above operations for a given attribute of a given task]}
atomically with respect to any @Chg{New=[of these operations of],
Old=[other of the above operations for]} the same attribute of the same task.
@Chg{New=[The granularity of any locking mechanism necessary to achieve such
atomicity is implementation defined.],Old=[]}
@ChgImplDef{Version=[1],Kind=[Added],Text=[@Chg{New=[Granularity of
locking for Task_Attributes.],Old=[]}]}
@begin{Ramification}
Hence, other than by dereferencing an access value returned by
Reference, an attribute of a given task can be safely read and updated
concurrently by multiple tasks.
@end{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00237-01]}
@Chg{Version=[2],New=[After],Old=[When a]} task
@Chg{Version=[2],New=[attributes are finalized],Old=[terminates]},
the implementation shall @Chg{Version=[2],New=[],Old=[finalize
all attributes of the task, and ]}reclaim any
@Chg{Version=[2],New=[],Old=[other ]}storage associated with the attributes.
@end{ImplReq}
@begin{DocReq}
The implementation shall document the limit on the number of attributes
per task, if any, and the limit on the total storage for attribute values
per task, if such a limit exists.
In addition, if these limits can be configured, the implementation shall
document how to configure them.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[@Chg{New=[Limits on the number and size of task attributes, and how to configure them.],
Old=[Implementation-defined aspects of Task_Attributes.]}]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[For package Task_Attributes, limits on the number and size of task
attributes, and how to configure any limits.]}]}
@end{DocReq}
@begin{Metrics}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The implementation shall document the following metrics: A task calling the
following subprograms shall execute @Chg{Version=[2],New=[at],Old=[in]} a
sufficiently high priority as to not
be preempted during the measurement period. This period shall start just
before issuing the call and end just after the call completes. If the
attributes of task T are accessed by the measurement tests, no other task
shall access attributes of that task during the measurement period.
For all measurements described here, the Attribute type shall be a scalar
@Chg{Version=[2],New=[type ],Old=[]}whose size is equal to the size of the
predefined @Chg{Version=[2],New=[type Integer],Old=[integer size]}.
For each measurement, two cases shall be documented: one
where the accessed attributes are of the calling task @Redundant[(that is,
the default value for the T parameter is used)], and the other, where T
identifies another, non-terminated, task.
@Leading@;The following calls (to subprograms in the Task_Attributes package)
shall be measured:
@begin{Itemize}
a call to Value, where the return value is Initial_Value;
a call to Value, where the return value is not equal to Initial_Value;
a call to Reference, where the return value designates a value equal to
Initial_Value;
a call to Reference, where the return value designates a value not equal
to Initial_Value;
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
a call to Set_Value where the Val parameter is not equal to Initial_Value
and the old attribute value is equal to Initial_Value@Chg{Version=[2],New=[;],Old=[.]}
a call to Set_Value where the Val parameter is not equal to Initial_Value
and the old attribute value is not equal to Initial_Value.
@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for the Task_Attributes package.]}]}
@end{Metrics}
@begin{ImplPerm}
An implementation need not actually create the object corresponding
to a task attribute
until its value is set to something other than that of Initial_Value,
or until Reference is called for the task attribute.
Similarly, when the value of the attribute is
to be reinitialized to that of Initial_Value,
the object may instead be finalized and its storage reclaimed, to
be recreated when needed later.
While the object does not exist, the function Value may
simply return Initial_Value, rather than implicitly creating the object.
@begin{Discussion}
The effect of this permission can only be observed if the assignment
operation for the corresponding type has side-effects.
@end{Discussion}
@begin{ImplNote}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
This permission means that even though every task has every
attribute, storage need only be allocated for those attributes
@Chg{Version=[2],New=[for which function Reference has been invoked],Old=[that
have been Reference'd]} or set to a value other than that
of Initial_Value.
@end{ImplNote}
An implementation is allowed to place restrictions on the maximum number of
attributes a task may have, the maximum size of each attribute, and the
total storage size allocated for all the attributes of a task.
@end{ImplPerm}
@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
Some implementations are targeted to domains in which memory use at run
time must be completely deterministic. For such implementations, it is
recommended that the storage for task attributes will be pre-allocated
statically and not from the heap. This can be accomplished by either
placing restrictions on the number and the size of the @Chg{Version=[2],
New=[],Old=[task's ]}attributes@Chg{Version=[2],New=[ of a task],Old=[]},
or by using the pre-allocated storage for the first N attribute objects,
and the heap for the others. In the latter case, N should be documented.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If the target domain requires deterministic memory use at run
time, storage for task attributes should be pre-allocated
statically and the number of attributes pre-allocated should be documented.]}]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[We don't mention @lquotes@;restrictions on the
size and number@rquotes (that is, limits) in the text for the
Annex, because it is covered by the @DocReqName above, and we try not to
repeat requirements in the Annex (they're enough work to meet without
having to do things twice).]}
@end{Discussion}
@end{ImplAdvice}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[Finalization of task attributes and reclamation of
associated storage should be performed as soon as possible after task
termination.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Finalization of task attributes and reclamation of
associated storage should be performed as soon as possible after task
termination.]}]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[This is necessary because the normative wording
only says that attributes are finalized @lquotes@;after@rquotes@;
task termination. Without this advice, waiting until the instance is
finalized would meet the requirements (it is after termination, but may be
a very long time after termination). We can't say anything more specific
than this, as we do not want to require the overhead of an interaction with
the tasking system to be done at a specific point.]}
@end{Reason}
@begin{Notes}
An attribute always exists (after instantiation), and has the initial value.
It need not occupy memory until the first operation that potentially
changes the attribute value. The same holds true after Reinitialize.
The result of the Reference function should be used with care; it is always
safe to use that result in the task body whose attribute is being
accessed. However, when the result is being used by another task, the
programmer must make sure that the task whose attribute is being accessed
is not yet terminated. Failing to do so could make the program execution
erroneous.
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00434-01]}
@ChgDeleted{Version=[2],Text=[As specified in
@RefSecNum{The Package Task_Identification}, if the parameter T (in a call
on a subprogram of an instance of this package) identifies a nonexistent
task, the execution of the program is erroneous.]}
@end{Notes}
@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0071],ARef=[AI95-00165-01]}
@ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that use of task
attribute operations from within a task attribute operation (by an Adjust
or Finalize call) is a bounded error, and that concurrent use of attribute
handles is erroneous.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[Clarified the wording so that the finalization
takes place after the termination of the task or when the instance is
finalized (whichever is sooner).]}
@end{Diffword95}
@LabeledAddedSubClause{Version=[2],Name=[The Package Task_Termination]}
@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<with> Ada.Task_Identification;
@key<with> Ada.Exceptions;
@key<package> Ada.Task_Termination @key<is>@ChildUnit{Parent=[Ada],Child=[Task_Termination]}
@key<pragma> Preelaborate(Task_Termination);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{Cause_Of_Termination} @key<is> (Normal, Abnormal, Unhandled_Exception);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<type> @AdaTypeDefn{Termination_Handler} @key<is access protected procedure>
(Cause : @key<in> Cause_Of_Termination;
T : @key<in> Ada.Task_Identification.Task_Id;
X : @key<in> Ada.Exceptions.Exception_Occurrence);]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Set_Dependents_Fallback_Handler}
(Handler: @key<in> Termination_Handler);
@key<function> @AdaSubDefn{Current_Task_Fallback_Handler} @key<return> Termination_Handler;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[ @key<procedure> @AdaSubDefn{Set_Specific_Handler}
(T : @key<in> Ada.Task_Identification.Task_Id;
Handler : @key<in> Termination_Handler);
@key<function> @AdaSubDefn{Specific_Handler} (T : Ada.Task_Identification.Task_Id)
@key<return> Termination_Handler;]}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Task_Termination;]}
@end{Example}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[@Defn{termination handler}@Defn2{Term=[handler],Sec=[termination]}
The type Termination_Handler identifies a protected
procedure to be executed by the implementation when a task terminates. Such a
protected procedure is called a @i<handler>. In all cases T identifies the task
that is terminating. If the task terminates due to completing the last
statement of its body, or as a result of waiting on a terminate alternative,
then Cause is set to Normal and X is set to Null_Occurrence. If the task
terminates because it is being aborted, then Cause is set to Abnormal and X is
set to Null_Occurrence. If the task terminates because of an exception raised
by the execution of its @nt{task_body}, then Cause is set to
Unhandled_Exception and X is set to the associated exception occurrence.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[@Defn{fall-back handler}@Defn2{Term=[termination handler],Sec=[fall-back]}
@Defn{specific handler}@Defn2{Term=[termination handler],Sec=[specific]}
@Defn2{Term=[set],Sec=[termination handler]}
@Defn2{Term=[cleared],Sec=[termination handler]}
Each task has two termination handlers, a @i<fall-back handler> and a
@i<specific handler>. The specific handler applies only to the task itself,
while the fall-back handler applies only to the dependent tasks of the task.
A handler is said to be @i<set> if it is associated
with a non-null value of type Termination_Handler, and @i<cleared> otherwise.
When a task is created, its specific handler and fall-back handler are cleared.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The procedure Set_Dependents_Fallback_Handler
changes the fall-back handler for the calling task; if Handler is @key{null},
that fall-back handler is cleared, otherwise it is set to be Handler.@key{all}.
If a fall-back handler had previously been set it is replaced.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The function Current_Task_Fallback_Handler returns
the fall-back handler that is currently set for the calling task, if one is
set; otherwise it returns @key{null}.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The procedure Set_Specific_Handler changes the
specific handler for the task identified by T; if Handler is @key{null}, that
specific handler is cleared, otherwise it is set to be Handler.@key{all}. If a
specific handler had previously been set it is replaced.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The function Specific_Handler returns the specific
handler that is currently set for the task identified by T, if one is set;
otherwise it returns @key{null}.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[As part of the finalization of a @nt{task_body},
after performing the actions specified in
@RefSecNum{User-Defined Assignment and Finalization} for finalization of a
master, the specific handler for the task, if one is set, is executed.
If the specific handler is cleared, a search
for a fall-back handler proceeds by recursively following the master
relationship for the task. If a task is found whose fall-back handler is set,
that handler is executed; otherwise, no handler is executed.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[For Set_Specific_Handler or
Specific_Handler, Tasking_Error is raised if the task identified by T has
already terminated. Program_Error is raised if the value of T is
Ada.Task_Identification.Null_Task_Id.]}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[An exception propagated from a handler that is
invoked as part of the termination of a task has no effect.]}
@end{RunTime}
@begin{Erron}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[For a call of Set_Specific_Handler or
Specific_Handler, if the task identified by T no longer exists, the execution
of the program is erroneous.]}
@end{Erron}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Package Task_Termination is new.]}
@end{Extend95}
|