File: sp.mss

package info (click to toggle)
ada-reference-manual 1%3A2012.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,872 kB
  • sloc: ada: 29,393; makefile: 193; python: 92
file content (2030 lines) | stat: -rwxr-xr-x 88,995 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
@comment{ $Source: e:\\cvsroot/ARM/Source/sp.mss,v $ }
@comment{ $Revision: 1.47 $ $Date: 2006/10/18 00:25:28 $ $Author: Randy $ }
@Part(sysprog, Root="ada.mss")
@Comment{$Date: 2006/10/18 00:25:28 $}

@LabeledNormativeAnnex{Systems Programming}

@begin{Intro}
@Redundant[@Defn{systems programming}
@Defn{low-level programming}
@Defn{real-time systems}
@Defn{embedded systems}
@Defn{distributed systems}
@Defn{information systems}
The Systems Programming Annex specifies additional capabilities
provided for low-level programming. These capabilities are also
required in many real-time, embedded, distributed, and information systems.]
@end{Intro}

@begin{Extend83}
@Defn{extensions to Ada 83}
This Annex is new to Ada 95.
@end{Extend83}

@LabeledClause{Access to Machine Operations}

@begin{Intro}
@Redundant[This clause specifies rules regarding access to machine instructions
from within an Ada program.]
@ChgImplDef{Version=[2],Kind=[Revised],Text=[@Chg{Version=[2],
New=[Implementation-defined intrinsic subprograms],
Old=[Support for access to machine instructions]}.]}
@end{Intro}

@begin{ImplReq}
@Defn{machine code insertion}
The implementation shall support machine code insertions
(see @RefSecNum{Machine Code Insertions}) or intrinsic subprograms
(see @RefSecNum{Conformance Rules}) (or both).
Implementation-defined attributes shall be provided to
allow the use of Ada entities as operands.
@end{ImplReq}

@begin{ImplAdvice}
The machine code or intrinsics support should allow access to all
operations normally available to assembly language programmers for the
target environment,
including privileged instructions, if any.
@ChgImplAdvice{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[The machine code or intrinsics support should allow access to all
operations normally available to assembly language programmers for the
target environment.]}]}
@begin{Ramification}
Of course, on a machine with protection, an attempt to execute a
privileged instruction in user mode will probably trap.
Nonetheless, we want implementations to provide access to them so that
Ada can be used to write systems programs that run in privileged mode.
@end{Ramification}

@Defn{interface to assembly language}
@Defn2{Term=[language], Sec=(interface to assembly)}
@Defn{mixed-language programs}
@Defn{assembly language}
The interfacing pragmas (see @RefSecNum{Interface to Other Languages})
should support interface to assembler;
the default assembler should be associated with the convention
identifier Assembler.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Interface to assembler should be supported; the default assembler
should be associated with the convention identifier Assembler.]}]}

If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location,
and should ensure that it is retained by the linking process,
even if not otherwise referenced from the Ada code.
The implementation should assume that any call to a machine code or
assembler subprogram is allowed to read or update every object that is
specified as exported.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location even if not otherwise referenced
from the Ada code. A call to a machine code or assembler subprogram should
be treated as if it could read or update every object that is
specified as exported.]}]}
@end{ImplAdvice}

@begin{DocReq}

The implementation shall document the overhead associated with calling
machine-code or intrinsic subprograms, as compared to a fully-inlined
call, and to a regular out-of-line call.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The overhead of calling machine-code or intrinsic subprograms.]}]}

The implementation shall document the types of
the package System.Machine_Code usable for machine code
insertions, and the attributes to be used in
machine code insertions for references to Ada entities.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The types and attributes used in machine code insertions.]}]}

The implementation shall document the subprogram calling conventions
associated with the convention identifiers available for use
with the interfacing pragmas (Ada and Assembler, at a minimum),
including register saving,
exception propagation, parameter passing, and function value returning.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The subprogram calling conventions for all supported convention
identifiers.]}]}

For exported and imported subprograms,
the implementation shall document the mapping
between the Link_Name string, if specified, or
the Ada designator, if not, and the external link name used
for such a subprogram.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of access to machine operations.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The mapping between the Link_Name or Ada designator and the external
link name.]}]}

@end{DocReq}

@begin{ImplAdvice}

The implementation should ensure that little or no overhead is associated
with calling intrinsic and machine-code subprograms.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Little or no overhead should be associated
with calling intrinsic and machine-code subprograms.]}]}

@Leading@;It is recommended that intrinsic subprograms be provided for convenient
access to any machine operations that provide special capabilities
or efficiency and that are not otherwise available through the language
constructs. Examples of such instructions
include:
@begin{itemize}

Atomic read-modify-write operations @em e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.

Standard numeric functions @em e.g., @i{sin}, @i{log}.

String manipulation operations @em e.g., translate and test.

Vector operations @em e.g., compare vector against thresholds.

Direct operations on I/O ports.

@end{itemize}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Intrinsic subprograms should be provided to access any machine operations
that provide special capabilities or efficiency not normally available.]}]}

@end{ImplAdvice}

@LabeledClause{Required Representation Support}

@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
This clause specifies minimal requirements on the
@Chg{Version=[2],New=[],Old=[implementation's ]}support for representation
items and related features.
@end{Intro}

@begin{ImplReq}
@PDefn2{Term=[recommended level of support], Sec=(required in Systems
Programming Annex)}
The implementation shall support at least the functionality
defined by the recommended levels of support in Section 13.
@end{ImplReq}

@LabeledClause{Interrupt Support}

@begin{Intro}
@Redundant[This clause specifies the language-defined model for hardware interrupts
in addition to mechanisms for handling interrupts.]
@IndexSee{Term=[signal],See=(interrupt)}
@end{Intro}

@begin{RunTime}

@Defn{interrupt}
@Redundant[An @i{interrupt} represents a class of events that are detected by
the hardware or the system software.]
@Defn2{Term=[occurrence], Sec=(of an interrupt)}
Interrupts are said to occur. An @i{occurrence} of an interrupt is
separable into generation and delivery.
@Defn2{Term=[generation], Sec=(of an interrupt)}
@i{Generation} of an interrupt is the event in the underlying hardware
or system that makes the interrupt available to the program.
@Defn2{Term=[delivery], Sec=(of an interrupt)}
@i{Delivery} is the action that invokes part of the program as
response to the interrupt occurrence.
@Defn{pending interrupt occurrence}
Between generation and delivery, the interrupt occurrence @Redundant[(or
interrupt)] is @i{pending}.
@Defn{blocked interrupt}
Some or all interrupts may be @i{blocked}. When an interrupt is blocked, all
occurrences of that interrupt are prevented from being delivered.
@Defn2{Term=[attaching], Sec=(to an interrupt)}
@Defn{reserved interrupt}
Certain interrupts are @i{reserved}. The set of reserved interrupts is
implementation defined. A reserved interrupt is either an interrupt for
which user-defined handlers are not supported, or one which
already has an attached handler by some other implementation-defined means.
@Defn{interrupt handler}@PDefn2{Term=[handler],Sec=[interrupt]}
Program units can be connected to non-reserved interrupts. While
connected, the program unit is said to be @i{attached} to that interrupt.
The execution of that program unit, the @i{interrupt handler}, is invoked upon
delivery of the interrupt occurrence.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of interrupts.]}]}
@begin{Honest}
  As an obsolescent feature,
  interrupts may be attached to task entries by an address clause.
  See @RefSecNum{Interrupt Entries}.
@end{Honest}

While a handler is attached to an interrupt, it is called once for each
delivered occurrence of that interrupt. While the handler executes, the
corresponding interrupt is blocked.

While an interrupt is blocked, all occurrences of that interrupt are prevented
from being delivered. Whether such occurrences remain pending or are lost is
implementation defined.

@Defn{default treatment}
Each interrupt has a @i{default treatment} which determines the system's
response to an occurrence of that interrupt when no user-defined
handler is attached. The set of possible default treatments is
implementation defined, as is the method (if one exists) for configuring
the default treatments for interrupts.

An interrupt is delivered to the handler (or default treatment) that is in
effect for that interrupt at the time of delivery.

An exception propagated from a handler that is invoked by an
interrupt has no effect.

@Redundant[If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect, the interrupt handler executes with the active priority that is the
ceiling priority of the corresponding protected object.]

@end{RunTime}

@begin{ImplReq}

The implementation shall provide a mechanism to determine the minimum
stack space that is needed
for each interrupt handler and to reserve that space for
the execution of the handler. @Redundant{This space should accommodate
nested invocations of the handler where the system permits this.}

If the hardware or the underlying system holds pending interrupt
occurrences, the implementation shall provide for later delivery
of these occurrences to the program.

If the Ceiling_Locking policy is not in effect, the implementation
shall provide means for the application to specify whether interrupts
are to be blocked during protected actions.

@end{ImplReq}

@begin{DocReq}
@Leading@;The implementation shall document the following items:
@begin{Discussion}
This information may be different for different forms of interrupt handlers.
@end{Discussion}
@begin{Enumerate}
For each interrupt, which interrupts are blocked from delivery when a handler
attached to that interrupt executes (either as a result of an interrupt
delivery or of an ordinary call on a procedure of the corresponding
protected object).

Any interrupts that cannot be blocked, and the effect of attaching
handlers to such interrupts, if this is permitted.

Which run-time stack an interrupt handler uses when it executes as a
result of an interrupt delivery; if this is configurable, what is the
mechanism to do so; how to specify how much space to reserve on that stack.

Any implementation- or hardware-specific activity that happens
before a user-defined interrupt handler gets control (e.g.,
reading device registers, acknowledging devices).

Any timing or other limitations imposed on the execution of interrupt handlers.

The state (blocked/unblocked) of the non-reserved interrupts
when the program starts; if some interrupts are unblocked, what
is the mechanism a program can use to protect itself before it
can attach the corresponding handlers.

Whether the interrupted task is allowed to resume execution before the
interrupt handler returns.

The treatment of interrupt occurrences that are generated while
the interrupt is blocked; i.e., whether one or more occurrences
are held for later delivery, or all are lost.

Whether predefined or implementation-defined exceptions are raised as a
result of the occurrence of any interrupt, and the mapping between the
machine interrupts (or traps) and the predefined
exceptions.

On a multi-processor, the rules governing the delivery of an interrupt
to a particular processor.
@end{Enumerate}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The treatment of interrupts.]}]}
@ChgNote{A Bob Duff explanation, but this is just too much junk.}
@end{DocReq}

@begin{ImplPerm}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
If the underlying system or hardware does not allow interrupts to be
blocked, then no blocking is required @Redundant[as part of the execution of
subprograms of a protected object @Chg{Version=[2],New=[for which],Old=[whose]}
one of its subprograms is an interrupt handler].

In a multi-processor with more than one interrupt subsystem, it is
implementation defined whether (and how) interrupt sources from
separate subsystems share the same Interrupt_ID type
(see @RefSecNum{The Package Interrupts}).
In particular, the meaning of a blocked or pending interrupt may then be
applicable to one processor only.
@begin{discussion}
This issue is tightly related to the issue of scheduling on a
multi-processor. In a sense, if a particular interrupt source is not
available to all processors, the system is not truly homogeneous.

One way to approach this problem is to assign sub-ranges within
Interrupt_ID to each interrupt subsystem, such that @lquotes@;similar@rquotes@; interrupt
sources (e.g. a timer) in different subsystems get a distinct id.
@end{Discussion}

Implementations are allowed to impose timing or other limitations on the
execution of interrupt handlers.
@begin{Reason}
These limitations are often necessary to ensure proper behavior of the
implementation.
@end{Reason}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
Other forms of handlers are allowed to be supported, in which
case@Chg{Version=[2],New=[],Old=[,]} the
rules of this @Chg{Version=[2],New=[clause],Old=[subclause]} should be adhered
to.

The active priority of the execution of an interrupt handler is allowed to
vary from one occurrence of the same interrupt to another.

@end{ImplPerm}

@begin{ImplAdvice}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
If the Ceiling_Locking policy is not in effect, the implementation
should provide means for the application to specify which interrupts
are to be blocked during protected actions, if the underlying system allows
for @Chg{Version=[2],New=[finer-grained],Old=[a finer-grain]} control of
interrupt blocking.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If the Ceiling_Locking policy is not in effect and the target system
allows for finer-grained control of interrupt blocking, a means for the
application to specify which interrupts are to be blocked during protected
actions should be provided.]}]}

@end{ImplAdvice}

@begin{Notes}

The default treatment for an interrupt can be to keep the
interrupt pending or to deliver it to an implementation-defined
handler. Examples of actions that an implementation-defined
handler is allowed to perform include aborting the partition, ignoring
(i.e., discarding occurrences of) the interrupt, or queuing one
or more occurrences of the interrupt for possible later delivery
when a user-defined handler is attached to that interrupt.

It is a bounded error to call Task_Identification.Current_Task
(see @RefSecNum{The Package Task_Identification}) from an interrupt handler.

The rule that an exception propagated from an interrupt handler has no effect
is modeled after the rule about exceptions propagated out of task bodies.

@end{Notes}

@LabeledSubClause{Protected Procedure Handlers}

@begin{Syntax}
@begin{SyntaxText}
@Leading@keepnext@;The form of a @nt{pragma} Interrupt_Handler is as follows:
@end{SyntaxText}

@PragmaSyn`@key{pragma} @prag(Interrupt_Handler)(@SynI{handler_}@Syn2{name});'

@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Attach_Handler is as follows:
@end{SyntaxText}

@PragmaSyn`@key{pragma} @prag(Attach_Handler)(@SynI{handler_}@Syn2{name}, @Syn2{expression});'
@end{Syntax}

@begin{Resolution}
For the Interrupt_Handler and Attach_Handler pragmas, the
@SynI{handler_}@nt{name} shall resolve to denote a protected procedure
with a parameterless profile.

For the Attach_Handler pragma, the expected type for the
@nt{expression} is Interrupts.Interrupt_ID
(see @RefSecNum{The Package Interrupts}).
@end{Resolution}

@begin{Legality}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The Attach_Handler pragma is only allowed immediately within the
@nt{protected_definition}
where the corresponding subprogram is declared.
The corresponding @nt{protected_@!type_@!declaration}
or @nt{single_@!protected_@!declaration}
shall be a library@Chg{Version=[2],New=[-],Old=[]}level declaration.
@begin{Discussion}
In the case of a @nt{protected_type_declaration},
an @nt{object_declaration} of an object of that type
need not be at library level.
@end{Discussion}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00253-01],ARef=[AI95-00303-01]}
The Interrupt_Handler pragma is only allowed immediately within
@Chg{Version=[2],New=[the],Old=[a]}
@nt{protected_definition}@Chg{Version=[2],New=[ where the
corresponding subprogram is declared],Old=[]}.
The cor@!responding @nt{protected_@!type_declaration} @Chg{Version=[2],New=[or
@nt{single_@!protected_@!declaration} ],Old=[]}shall
be a library@Chg{Version=[2],New=[-],Old=[]}level
declaration.@Chg{Version=[2],New=[],Old=[ In addition, any
@nt{object_@!declaration} of such a type shall be a library level declaration.]}
@end{Legality}

@begin{RunTime}

If the pragma Interrupt_Handler appears in a @nt{protected_definition},
then the corresponding procedure can be attached dynamically, as a handler, to
interrupts (see @RefSecNum{The Package Interrupts}).
@Redundant[Such procedures are allowed to be attached to multiple interrupts.]

@Defn2{Term=[creation], Sec=(of a protected object)}
@Defn2{Term=[initialization], Sec=(of a protected object)}
The @nt{expression} in the Attach_Handler pragma @Redundant[as evaluated at
object creation time] specifies an interrupt. As part
of the initialization of that object, if the Attach_Handler pragma is
specified, the @SynI{handler} procedure is attached to the specified interrupt.
@IndexCheck{Reserved_Check}
A check is made that the corresponding interrupt is not reserved.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if the check fails, and the existing treatment
for the interrupt is not affected.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
@Defn2{Term=[initialization], Sec=(of a protected object)}
@IndexCheck{Ceiling_Check}
If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect@Chg{Version=[2],New=[,],Old=[]} then upon the initialization of a
protected object @Chg{Version=[2],New=[for which],Old=[that]} either an
Attach_Handler or Interrupt_Handler pragma applies to one of its procedures,
a check is made that the ceiling priority defined in the
@nt{protected_definition} is in the range of System.@!Interrupt_Priority.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If the check fails, Program_Error is raised.

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0068],ARef=[AI95-00121-01]}
@Defn2{Term=[finalization], Sec=(of a protected object)}
When a protected object is finalized, for any of its procedures that are
attached to interrupts, the handler is detached. If the handler was
attached by a procedure in the Interrupts package or if no user
handler was previously attached to the interrupt, the default treatment is
restored. @Chg{New=[If an Attach_@!Handler pragma was used and the most recently
attached handler for the same interrupt is the same as the one that was
attached at the time the protected object was initialized],
Old=[Otherwise, @Redundant[that is, if an Attach_@!Handler pragma was
used]]}, the previous handler is restored.
@begin{Discussion}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00303-01]}
@Chg{New=[If all protected objects for interrupt handlers are declared at the
library@Chg{Version=[2],New=[ ],Old=[-]}level],Old=[Since only library-level
protected procedures can be attached as
handlers using the Interrupts package]}, the finalization discussed above
occurs only as part of the finalization of all library-level packages in
a partition.
@Chg{New=[However, objects of a protected type containing an Attach_@!Handler
pragma need not be at the library level. Thus, an implementation needs to be
able to restore handlers during the execution of the program.@Chg{Version=[2],
New=[ (An object with an Interrupt_@!Handler pragma also need not be at the
library level, but such
a handler cannot be attached to an interrupt using the Interrupts package.)],
Old=[]}],Old=[]}
@end{Discussion}

When a handler is attached to an interrupt, the interrupt is blocked
@Redundant[(subject to the @ImplPermName in @RefSecNum{Interrupt Support})]
during the execution of every protected action on the protected object
containing the handler.

@end{RunTime}

@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect and an interrupt is delivered to a handler, and the interrupt
hardware priority is higher than the ceiling priority of the corresponding
protected object, the execution of the program is erroneous.

@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgAdded{Version=[1],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
If the handlers for a given interrupt attached via pragma
Attach_Handler are not attached and detached in a stack-like (LIFO) order,
program execution is erroneous. In particular, when a protected object is
finalized, the execution is erroneous if any of the procedures of the
protected object are attached to interrupts via pragma Attach_@!Handler and
the most recently attached handler for the same interrupt is not the same as
the one that was attached at the time the protected object was initialized.]}
@begin{Discussion}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0068],ARef=[AI95-00121-01]}
@ChgAdded{Version=[1],Text=[This simplifies implementation of the Attach_@!Handler
pragma by not requiring a check that the current handler is the same as the
one attached by the initialization of a protected object.]}
@end{Discussion}
@end{Erron}

@begin{Metrics}
@Leading@Keepnext@;The following metric shall be documented by the implementation:
@ChgNote{This was @begin{enumerate}, which is wrong}
@begin{Itemize}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The worst@Chg{Version=[2],New=[-],Old=[ ]}case overhead for an interrupt
handler that is a parameterless
protected procedure, in clock cycles. This is the execution time not
directly attributable to the handler procedure or the interrupted execution.
It is estimated as C @en@; (A+B), where A is how long it takes to complete a given
sequence of instructions without any interrupt, B is how long it takes to
complete a normal call to a given protected procedure, and C is how long it
takes to complete the same sequence of instructions when it is interrupted by
one execution of the same procedure called via an interrupt.
@begin{ImplNote}
The instruction sequence and interrupt handler used to measure interrupt
handling overhead should be chosen so as to maximize the execution time cost
due to cache misses. For example, if the processor has cache memory and the
activity of an interrupt handler could invalidate the contents of cache memory, the handler should be written such that it invalidates all of the cache memory.
@end{ImplNote}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for interrupt handlers.]}]}
@ChgNote{This was @end{enumerate}, which is wrong}
@end{Itemize}
@end{Metrics}

@begin{ImplPerm}
When the pragmas Attach_Handler or Interrupt_Handler apply to a protected
procedure, the implemen@!tation is allowed to impose
implementation-defined restrictions on the
corresponding @nt{protected_@!type_@!declaration} and @nt{protected_@!body}.
@begin{Ramification}
The restrictions may be on the constructs that are allowed within them,
and on ordinary calls (i.e. not via interrupts) on protected operations in
these protected objects.
@end{Ramification}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@Chg{Version=[2],
New=[Any restrictions on a protected procedure or its containing type when
a @nt{pragma} Attach_handler or Interrupt_Handler applies.],Old=[]}]}

An implementation may use a different mechanism for invoking a protected
procedure in response to a hardware interrupt than is used for a call
to that protected procedure from a task.
@begin{Discussion}
This is despite the fact that the priority of an interrupt handler
(see @RefSecNum{Task Priorities}) is modeled after a hardware task calling the
handler.
@end{Discussion}

@Defn{notwithstanding}
Notwithstanding what this subclause says elsewhere,
the Attach_Handler and Interrupt_Handler pragmas are allowed to be used
for other, implementation defined, forms of interrupt handlers.
@begin{Ramification}
For example, if an implementation wishes to allow interrupt
handlers to have parameters, it is allowed to do so via these pragmas;
it need not invent implementation-defined pragmas for the purpose.
@end{Ramification}
@ChgImplDef{Version=[2],Kind=[AddedNormal],Text=[@Chg{Version=[2],
New=[Any other forms of interrupt handler supported by the
Attach_Handler and Interrupt_Handler pragmas.],Old=[]}]}

@end{ImplPerm}

@begin{ImplAdvice}

Whenever possible, the implementation should allow interrupt handlers to be
called directly by the hardware.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Interrupt handlers should be called directly by the hardware.]}]}

Whenever practical, the implementation should
detect violations of any implementation-defined restrictions
before run time.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Violations of any implementation-defined restrictions on interrupt
handlers should be detected before run time.]}]}

@end{ImplAdvice}

@begin{Notes}

The Attach_Handler pragma can provide static attachment of handlers to
interrupts if the implementation supports preelaboration of protected
objects. (See @RefSecNum{Preelaboration Requirements}.)

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
@Chg{Version=[2],New=[A],Old=[The ceiling priority of a]}
protected object that
@Chg{Version=[2],New=[has a (protected) procedure],
Old=[one of its procedures is]}
attached to an interrupt should
@Chg{Version=[2],New=[have a ceiling priority],
Old=[be]} at least as high as the highest
processor priority at which that interrupt will ever be delivered.

Protected procedures can also be attached dynamically to interrupts
via operations declared in the predefined package Interrupts.

An example of a possible implementation-defined restriction is
disallowing the use of the standard storage pools within the body of
a protected procedure that is an interrupt handler.

@end{Notes}

@begin{Incompatible95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00253-01]}
  @ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
  @b[Amendment Correction:] Corrected the wording so that the rules for the
  use of Attach_Handler and Interrupt_Handler are identical. This means
  that uses of pragma Interrupt_Handler outside of the target protected type
  or single protected object are now illegal.]}
@end{Incompatible95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0068],ARef=[AI95-00121-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified the meaning of
  @lquotes@;the previous handler@rquotes when finalizing protected objects
  containing interrupt handlers.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00303-01]}
  @ChgAdded{Version=[2],Text=[Dropped the requirement that an object of a
  type containing an Interrupt_Handler pragma must be declared at the library
  level. This was a generic contract model violation. This change is not
  an extension, as an attempt to attach such a handler with a routine in
  package Interrupts will fail an accessibility check anyway. Moreover,
  implementations can retain the rule as an implementation-defined
  restriction on the use of the type, as permitted by the @ImplPermTitle
  above.]}
@end{Diffword95}


@LabeledSubClause{The Package Interrupts}

@begin{StaticSem}

@Leading@Keepnext@;The following language-defined packages exist:
@begin{example}
@key{with} System;@ChildUnit{Parent=[Ada],Child=[Interrupts]}
@key[package] Ada.Interrupts @key[is]
   @key[type] @AdaTypeDefn{Interrupt_ID} @key[is] @RI{implementation-defined};
   @key[type] @AdaTypeDefn{Parameterless_Handler} @key[is]
      @key[access] @key[protected] @key[procedure];

@ChgRef{Version=[1], Kind=[Deleted]}
@Chg[New=<>,Old=<@ @;@comment{Empty paragraph to hang junk paragraph number from original RM}>]

   @key[function] @AdaSubDefn{Is_Reserved} (Interrupt : Interrupt_ID)
      @key[return] Boolean;

   @key[function] @AdaSubDefn{Is_Attached} (Interrupt : Interrupt_ID)
      @key[return] Boolean;

   @key[function] @AdaSubDefn{Current_Handler} (Interrupt : Interrupt_ID)
      @key[return] Parameterless_Handler;

   @key[procedure] @AdaSubDefn{Attach_Handler}
      (New_Handler : @key[in] Parameterless_Handler;
       Interrupt   : @key[in] Interrupt_ID);

   @key[procedure] @AdaSubDefn{Exchange_Handler}
      (Old_Handler : @key[out] Parameterless_Handler;
       New_Handler : @key[in] Parameterless_Handler;
       Interrupt   : @key[in] Interrupt_ID);

   @key[procedure] @AdaSubDefn{Detach_Handler}
      (Interrupt : @key[in] Interrupt_ID);

   @key[function] @AdaSubDefn{Reference}(Interrupt : Interrupt_ID)
      @key{return} System.Address;

@key[private]
   ... -- @RI{not specified by the language}
@key[end] Ada.Interrupts;


@key[package] Ada.Interrupts.Names @key[is]@ChildUnit{Parent=[Ada.Interrupts],Child=[Names]}
   @RI{implementation-defined} : @key[constant] Interrupt_ID :=
     @RI{implementation-defined};
      . . .
   @RI{implementation-defined} : @key[constant] Interrupt_ID :=
     @RI{implementation-defined};
@key[end] Ada.Interrupts.Names;
@end{example}

@end{StaticSem}

@begin{RunTime}

The Interrupt_ID type is an implementation-defined discrete type used to
identify interrupts.

The Is_Reserved function returns True if and only if the specified
interrupt is reserved.

The Is_Attached function returns True if and only if a user-specified
interrupt handler is attached to the interrupt.

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0069],ARef=[AI95-00166-01]}
The Current_Handler function returns a value that represents the
attached handler of the interrupt. If no user-defined handler is attached to
the interrupt, Current_Handler returns @Chg{New=[@key{null}],
Old=[a value that designates the default treatment; calling Attach_Handler
or Exchange_Handler with this value restores the default treatment]}.

The Attach_Handler procedure attaches the specified handler to the
interrupt, overriding any existing treatment (including a user handler)
in effect for that interrupt.
If New_Handler is @key[null], the default treatment is restored.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
If New_Handler designates a protected procedure to which the pragma
Interrupt_@!Handler does not apply, Program_Error is raised. In
this case, the operation does not modify the existing interrupt treatment.

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0069],ARef=[AI95-00166-01]}
The Exchange_Handler procedure operates in the same manner as Attach_Handler
with the addition that the value returned in Old_Handler designates the
previous treatment for the specified interrupt.@Chg{New=[ If the previous
treatment is not a user-defined handler, @key[null] is returned.],Old=[]}
@begin{Ramification}
Calling Attach_Handler or Exchange_Handler with this value for New_Handler
restores the previous handler.

@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0069],ARef=[AI95-00166-01]}
@ChgAdded{Version=[1],Text=[If the application uses only parameterless procedures as
handlers (other types of handlers may be provided by the implementation, but are not
required by the standard), then if Old_Handler is not @key(null), it may be
called to execute the previous handler. This provides a way to cascade
application interrupt handlers. However, the default handler cannot be
cascaded this way (Old_Handler must be @key(null) for the default handler).]}
@end{Ramification}

The Detach_Handler procedure restores the default treatment for the
specified interrupt.

For all operations defined in this package that take a parameter of type
Interrupt_ID, with the exception of Is_Reserved and Reference, a check is
made that the specified interrupt is not reserved.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if this check fails.

If, by using the Attach_Handler, Detach_Handler, or Exchange_Handler
procedures, an attempt is made to
detach a handler that was attached statically (using the pragma
Attach_Handler), the handler is not detached and Program_Error is
raised.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The Reference function returns a value of type System.Address that can
be used to attach a task entry@Chg{Version=[2],New=[],Old=[,]} via an
address clause (see @RefSecNum{Interrupt Entries}) to the interrupt
specified by Interrupt. This function raises Program_Error if attaching
task entries to interrupts (or to this particular interrupt) is not supported.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}

@end{RunTime}

@begin{ImplReq}

At no time during attachment or exchange of handlers shall the current handler
of the corresponding interrupt be undefined.

@end{ImplReq}

@begin{DocReq}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
If the Ceiling_Locking policy (see @RefSecNum{Priority Ceiling Locking}) is
in effect@Chg{Version=[2],New=[,],Old=[]} the implementation shall document
the default ceiling priority
assigned to a protected object that contains either the Attach_Handler or
Interrupt_Handler pragmas, but not the Interrupt_Priority pragma.
@Redundant[This default need not be the same for all interrupts.]
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If the Ceiling_Locking policy is in effect, the default ceiling priority
for a protected object that contains an interrupt handler pragma.]}]}

@end{DocReq}

@begin{ImplAdvice}

If implementation-defined forms of interrupt handler procedures are supported,
such as protected procedures with parameters, then for each such form of a
handler, a type analogous to Parameterless_@!Handler should be specified in a
child package of Interrupts, with the same operations as in the
predefined package Interrupts.

@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If implementation-defined forms of interrupt handler procedures are
supported, then for each such form of a
handler, a type analogous to Parameterless_@!Handler should be specified in a
child package of Interrupts, with the same operations as in the
predefined package Interrupts.]}]}

@end{ImplAdvice}

@begin{Notes}

The package Interrupts.Names contains implementation-defined
names (and constant values) for the interrupts that are supported by
the implementation.

@end{Notes}

@begin{Examples}
@Leading@Keepnext@i{Example of interrupt handlers:}
@begin{example}
Device_Priority : @key[constant]
  @key[array] (1..5) of System.Interrupt_Priority := ( ... );@Softpage
@key[protected] @key[type] Device_Interface
  (Int_ID : Ada.Interrupts.Interrupt_ID) @key[is]
  @key[procedure] Handler;
  @key[pragma] Attach_Handler(Handler, Int_ID);
  ...
  @key[pragma] Interrupt_Priority(Device_Priority(Int_ID));
@key[end] Device_Interface;@Softpage
  ...
Device_1_Driver : Device_Interface(1);
  ...
Device_5_Driver : Device_Interface(5);
  ...
@end{example}
@end{Examples}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0069],ARef=[AI95-00166-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that the value
  returned by Current_Handler and Exchange_Handler for the default treatment
  is null.]}
@end{Diffword95}


@LabeledClause{Preelaboration Requirements}

@begin{Intro}
@Redundant[This clause specifies additional implementation and documentation
requirements for the Preelaborate pragma (see @RefSecNum{Elaboration Control}).]
@end{Intro}

@begin{ImplReq}

The implementation shall not incur any run-time overhead for the elaboration
checks of subprograms and @ntf{protected_bodies} declared in preelaborated
library units.

The implementation shall not execute any memory write operations after
load time for the elaboration of constant objects
declared immediately within the
declarative region of a preelaborated library package, so long as the
subtype and initial expression (or default initial expressions if
initialized by default) of the @nt<object_declaration> satisfy the
following restrictions.
@Defn{load time}
The meaning of @i{load time} is implementation defined.
@begin{Discussion}
On systems where the image of the partition is initially copied from
disk to RAM, or from ROM to RAM, prior to starting execution of the
partition,
the intention is that @lquotes@;load time@rquotes@; consist of this initial copying
step.
On other systems, load time and run time might actually be interspersed.
@end{Discussion}
@begin{itemize}
Any @nt<subtype_mark> denotes a statically constrained subtype, with
statically constrained subcomponents, if any;

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00161-01]}
@ChgAdded{Version=[2],Text=[no @nt{subtype_mark} denotes a controlled type, a
private type, a private extension, a generic formal private type, a generic
formal derived type, or a descendant of such a type;]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[Added]}
  @ChgAdded{Version=[2],Text=[For an
  implementation that uses the registration method of finalization, a
  controlled object will require some code executed to register the object
  at the appropriate point. The other types are those that @i{might} have a
  controlled component. None of these types were allowed in preelaborated
  units in Ada 95. These types are covered by the @ImplAdviceTitle, of course,
  so they should still execute as little code as possible.]}
@end{Reason}

any @nt<constraint> is a static constraint;

any @nt<allocator> is for an access-to-constant type;

any uses of predefined operators appear only within static expressions;

any @ntf<primaries> that are @nt<name>s, other than @nt<attribute_reference>s
for the Access or Address attributes, appear only within static expressions;
@begin{ramification}
This cuts out @nt<attribute_reference>s that are not static, except for
Access and Address.
@end{Ramification}

any @nt<name> that is not part of a static expression is an expanded
name or @nt<direct_name> that statically denotes some entity;
@begin{Ramification}
This cuts out @nt<function_call>s and @nt<type_conversion>s that are not
static, including calls on attribute functions like 'Image and 'Value.
@end{Ramification}

any @nt<discrete_choice> of an @nt<array_aggregate> is static;

no language-defined check associated with the elaboration of the
@nt<object_declaration> can fail.
@begin{Reason}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
The intent is that aggregates all of whose scalar subcomponents are static@Chg{Version=[2],New=[],Old=[,]}
and all of whose access subcomponents are @key(null), allocators for
access-to-constant types, or X'Access, will be supported with no run-time
code generated.
@end{Reason}
@end{itemize}

@end{ImplReq}

@begin{DocReq}

The implementation shall document any circumstances under which the
elaboration of a preelaborated package causes code to be executed at run time.
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Any circumstances when the elaboration of a preelaborated package
causes code to be executed.]}]}

The implementation shall document whether the method used for initialization
of preelaborated variables allows a partition to be restarted without
reloading.
@ChgDocReq{Version=[2],Kind=[Added],Text=[@ChgAdded{Version=[2],
Text=[Whether a partition can be restarted without reloading.]}]}
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[Implementation-defined aspects of preelaboration.]}]}
@begin{discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
This covers the issue of the @Chg{Version=[2],New=[run-time system],Old=[RTS]}
itself being restartable,
so that need not be a separate @DocReqName.
@end{discussion}

@end{DocReq}

@begin{ImplAdvice}

It is recommended that preelaborated packages be implemented in such a
way that there should be little or no code executed at run time for the
elaboration of entities not already covered by the @ImplReqName@;s.

@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Preelaborated packages should be implemented such that little or no
code is executed at run time for the elaboration of entities.]}]}
@end{ImplAdvice}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00161-01]}
  @ChgAdded{Version=[2],Text=[Added wording to exclude the additional kinds
  of types allowed in preelaborated units from the @ImplReqTitle.]}
@end{DiffWord95}


@LabeledClause{Pragma Discard_Names}

@begin{Intro}
@Redundant[A @nt{pragma} Discard_Names may be used to request a
reduction in storage used for the names of certain entities.]
@end{Intro}

@begin{Syntax}
@begin{SyntaxText}
@Leading@Keepnext@;The form of a @nt{pragma} Discard_Names is as follows:
@end{SyntaxText}

@PragmaSyn`@key{pragma} @prag(Discard_Names)[([On => ] @Syn2[local_name])];'

@begin{SyntaxText}
A @nt{pragma} Discard_Names is allowed only immediately within a
@nt{declarative_part}, immediately within a @nt{package_specification},
or as a configuration pragma.
@PDefn2{Term=[configuration pragma], Sec=(Discard_Names)}
@PDefn2{Term=[pragma, configuration], Sec=(Discard_Names)}
@end{SyntaxText}
@end{Syntax}

@begin{Legality}
The @nt{local_name} (if present) shall denote a non-derived
enumeration @Redundant[first] subtype,
a tagged @Redundant[first] subtype, or an exception.
The pragma applies to the type or exception.
Without a @nt{local_name}, the pragma applies to all such entities
declared after the pragma, within the same declarative region.
Alternatively, the pragma can be used as a configuration pragma.
If the pragma applies to a type,
then it applies also to all descendants of the type.
@end{Legality}

@begin{StaticSem}
@PDefn2{Term=[representation pragma], Sec=(Discard_Names)}
@PDefn2{Term=[pragma, representation], Sec=(Discard_Names)}
If a @nt{local_name} is given, then
a @nt{pragma} Discard_Names is a representation pragma.


@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01],ARef=[AI95-00400-01]}
If the pragma applies to an enumeration type,
then the semantics of the @Chg{Version=[2],New=[Wide_Wide_Image],Old=[Wide_Image]}
and @Chg{Version=[2],New=[Wide_Wide_Value],Old=[Wide_Value]} attributes
are implementation defined for that type@Redundant[; the
semantics of Image@Chg{Version=[2],New=[, Wide_Image,],Old=[ and]}
Value@Chg{Version=[2],New=[, and Wide_Value],Old=[]} are still defined in
terms of @Chg{Version=[2],New=[Wide_Wide_Image],Old=[Wide_Image]}
and @Chg{Version=[2],New=[Wide_Wide_Value],Old=[Wide_Value]}].
In addition, the semantics of Text_IO.Enumeration_IO are implementation
defined.
If the pragma applies to a tagged type,
then the semantics of the Tags.@!@Chg{Version=[2],New=[Wide_Wide_@!Expanded_@!Name],
Old=[Expanded_@!Name]} function
are implementation defined for that type@Chg{Version=[2],New=[@Redundant[; the
semantics of Tags.@!Expanded_@!Name and Tags.@!Wide_@!Expanded_@!Name are still
defined in terms of Tags.@!Wide_Wide_@!Expanded_@!Name]], Old=[]}.
If the pragma applies to an exception,
then the semantics of the Exceptions.@!@Chg{Version=[2],New=[Wide_Wide_@!Exception_@!Name],
Old=[Exception_@!Name]} function
are implementation defined for that exception@Chg{Version=[2],New=[@Redundant[; the
semantics of Exceptions.@!Exception_@!Name and Exceptions.@!Wide_@!Exception_@!Name
are still defined in terms of Exceptions.@!Wide_Wide_@!Exception_@!Name]], Old=[]}.

@ImplDef{The semantics of pragma Discard_Names.}
@begin{Ramification}
  The Width attribute is still defined in terms of Image.

  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00285-01]}
  The semantics of S'@Chg{Version=[2],New=[Wide_Wide_Image],Old=[Wide_Image]}
  and S'@Chg{Version=[2],New=[Wide_Wide_Value],Old=[Wide_Value]} are
  implementation defined for any subtype of an enumeration type to which
  the pragma applies. (The pragma actually names the first subtype,
  of course.)
@end{Ramification}
@end{StaticSem}

@begin{ImplAdvice}
If the pragma applies to an entity, then the implementation should
reduce the amount of storage used for storing names associated with that
entity.
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If @nt{pragma} Discard_Names applies to an entity, then the amount of
storage used for storing names associated with that entity should be reduced.]}]}
@begin{Reason}
A typical implementation of the Image attribute for enumeration types is
to store a table containing the names of all the enumeration literals.
Pragma Discard_Names allows the implementation to avoid storing such a
table without having to prove that the Image attribute is never used
(which can be difficult in the presence of separate compilation).

We did not specify the semantics of the Image attribute in the presence
of this pragma because different semantics might be desirable in
different situations.
In some cases, it might make sense to use the Image attribute to print
out a useful value that can be used to identify the entity given
information in compiler-generated listings.
In other cases, it might make sense to get an error at compile time or
at run time.
In cases where memory is plentiful, the simplest implementation makes
sense: ignore the pragma.
Implementations that are capable of avoiding the extra storage in cases
where the Image attribute is never used might also wish to ignore the
pragma.

The same applies to the Tags.Expanded_Name and Exceptions.Exception_Name
functions.
@end{Reason}
@end{ImplAdvice}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00285-01],ARef=[AI95-00400-01]}
  @ChgAdded{Version=[2],Text=[Updated the wording to reflect that the double
  wide image and value functions are now the master versions that the others
  are defined from.]}
@end{DiffWord95}


@LabeledClause{Shared Variable Control}

@begin{Intro}
@Redundant[This clause specifies representation pragmas that control the use of
shared variables.]
@end{Intro}

@begin{Syntax}
@begin{SyntaxText}
@Leading@;The form for pragmas Atomic, Volatile, Atomic_Components, and
Volatile_Components is as follows:
@end{SyntaxText}

@PragmaSyn`@key{pragma} @prag(Atomic)(@Syn2{local_name});'

@PragmaSyn`@key{pragma} @prag(Volatile)(@Syn2{local_name});'

@PragmaSyn`@key{pragma} @prag(Atomic_Components)(@SynI{array_}@Syn2{local_name});'

@PragmaSyn`@key{pragma} @prag(Volatile_Components)(@SynI{array_}@Syn2{local_name});'

@end{Syntax}

@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00272-01]}
@Defn{atomic}
An @i{atomic} type is one to which a pragma Atomic applies.
An @i{atomic} object (including a component)
is one to which a
pragma Atomic applies, or a component of an array to which
a pragma Atomic_Components applies, or any object of an atomic type@Chg{Version=[2],
New=[, other than objects obtained by evaluating a slice],Old=[]}.

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00272-01]}
  @ChgAdded{Version=[2],Text=[A slice of an atomic array object is not itself
  atomic. That's necessary as executing a read or write of a dynamic number
  of components in a single instruction is not possible on many targets.]}
@end{Ramification}

@Defn{volatile}
A @i{volatile} type is one to which a pragma Volatile applies.
A @i{volatile} object (including a component)
is one to which a pragma Volatile applies,
or a component of an array to which a pragma Volatile_@!Components applies,
or any object of a volatile type.
In addition, every atomic type or object is also defined to be volatile.
Finally, if an object is volatile, then so
are all of its subcomponents @Redundant[(the same does not apply to atomic)].
@end{Intro}

@begin{Resolution}

The @nt{local_name} in an Atomic or Volatile pragma shall resolve to denote
either an @nt{object_declaration}, a non-inherited @nt{component_@!declaration},
or a @nt{full_type_@!declaration}. The
@SynI{array_}@nt{local_name} in an Atomic_@!Components or
Volatile_@!Components pragma shall resolve to denote the declaration
of an array type or an array object of an anonymous type.

@end{Resolution}

@begin{Legality}
@Defn{indivisible}
It is illegal to apply either an Atomic or Atomic_Components pragma to an
object or type if the implementation cannot support the indivisible reads
and updates required by the pragma (see below).

It is illegal to specify the Size attribute of an atomic object,
the Component_Size attribute for an array type with atomic
components, or the layout attributes of an atomic component,
in a way that prevents the implementation from performing the
required indivisible reads and updates.

If an atomic object is passed as a parameter, then the type of the formal
parameter shall either be atomic or allow pass by copy @Redundant[(that
is, not be a nonatomic by-reference type)]. If an atomic object is used
as an actual for a generic formal object of mode @key{in out}, then the
type of the generic formal object shall be atomic. If the @nt<prefix> of
an @nt<attribute_reference> for an Access attribute denotes an atomic
object @Redundant[(including a component)], then the designated type of
the resulting access type shall be atomic. If an atomic type is used as
an actual for a generic formal derived type, then the ancestor of the
formal type shall be atomic or allow pass by copy. Corresponding rules
apply to volatile objects and types.

If a pragma Volatile, Volatile_Components, Atomic, or Atomic_Components
applies to a stand-alone constant object, then a pragma Import shall
also apply to it.
@begin{Ramification}
Hence, no initialization expression is allowed for such a constant. Note
that a constant that is atomic or volatile because of its type is allowed.
@end{Ramification}
@begin{Reason}
Stand-alone constants that are explicitly specified as Atomic or Volatile
only make sense if they are being manipulated outside the Ada program.
From the Ada perspective the object is read-only. Nevertheless, if
imported and atomic or volatile, the implementation should presume it
might be altered externally.
For an imported stand-alone constant that is not atomic or
volatile, the implementation can assume that it will not be
altered.
@end{Reason}

@end{Legality}

@begin{StaticSem}

@PDefn2{Term=[representation pragma], Sec=(Atomic)}
@PDefn2{Term=[pragma, representation], Sec=(Atomic)}
@PDefn2{Term=[representation pragma], Sec=(Volatile)}
@PDefn2{Term=[pragma, representation], Sec=(Volatile)}
@PDefn2{Term=[representation pragma], Sec=(Atomic_Components)}
@PDefn2{Term=[pragma, representation], Sec=(Atomic_Components)}
@PDefn2{Term=[representation pragma], Sec=(Volatile_Components)}
@PDefn2{Term=[pragma, representation], Sec=(Volatile_Components)}
These @nt{pragma}s are representation pragmas
(see @RefSecNum{Operational and Representation Items}).

@end{StaticSem}

@begin{RunTime}

For an atomic object (including an atomic component) all reads and
updates of the object as a whole are indivisible.

For a volatile object all reads and updates of the
object as a whole are performed directly to memory.
@begin{ImplNote}
This precludes any use of register temporaries, caches, and other
similar optimizations for that object.
@end{ImplNote}

@Defn2{Term=[sequential], Sec=(actions)}
Two actions are sequential (see @RefSecNum{Shared Variables}) if each
is the read or update of the same atomic object.

@PDefn2{Term=[by-reference type], Sec=(atomic or volatile)}
If a type is atomic or volatile and it is not a by-copy type, then the type
is defined to be a by-reference type. If any subcomponent of a type is
atomic or volatile, then the type is defined to be a by-reference type.

If an actual parameter is atomic or volatile, and the corresponding
formal parameter is not, then the parameter is passed by copy.
@begin{ImplNote}
Note that in the case where such a parameter is normally passed by
reference, a copy of the actual will have to be produced at the call-site,
and a pointer to the copy passed to the formal parameter. If the actual
is atomic, any copying has to use indivisible read on the way in, and
indivisible write on the way out.
@end{ImplNote}
@begin{Reason}
It has to be known at compile time whether an atomic or a volatile parameter
is to be passed by copy or by reference. For some types, it is unspecified
whether parameters are passed by copy or by reference. The above rules
further specify the parameter passing rules involving atomic and volatile
types and objects.
@end{Reason}

@end{RunTime}

@begin{ImplReq}

@PDefn2{Term=[external effect], Sec=(volatile/atomic objects)}
The external effect of a program
(see @RefSecNum(Conformity of an Implementation with the Standard))
is defined to include each read and update
of a volatile or atomic object. The implementation shall not
generate any memory reads or updates of atomic or volatile
objects other than those specified by the program.
@begin{Discussion}
The presumption is that volatile or atomic objects might reside in an
@lquotes@;active@rquotes@; part of the address space where each read has a potential
side-effect, and at the very least might deliver a different value.

@Leading@;The rule above and the definition of external effect are intended to
prevent (at least) the following incorrect optimizations, where V is
a volatile variable:
@begin{itemize}
X:= V; Y:=V; cannot be allowed to be translated as Y:=V; X:=V;

Deleting redundant loads: X:= V; X:= V; shall read the value of V from
memory twice.

Deleting redundant stores: V:= X; V:= X; shall write into V twice.

Extra stores: V:= X+Y; should not translate to something like V:= X; V:= V+Y;

Extra loads: X:= V; Y:= X+Z; X:=X+B; should not translate to something like
Y:= V+Z; X:= V+B;

Reordering of loads from volatile variables: X:= V1; Y:= V2; (whether or not
V1 = V2) should not translate to Y:= V2; X:= V1;

Reordering of stores to volatile variables: V1:= X; V2:= X; should not
translate to V2:=X; V1:= X;
@end{itemize}
@end{Discussion}

If a pragma Pack applies to a type any of whose subcomponents are atomic,
the implementation shall not pack the atomic subcomponents more tightly
than that for which it can support indivisible reads and updates.
@begin{ImplNote}
A warning might be appropriate if no packing whatsoever can be achieved.
@end{ImplNote}

@end{ImplReq}

@begin{ImplAdvice}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00259-01]}
@ChgAdded{Version=[2],Text=[A load or store of a volatile object whose size is
a multiple of System.Storage_Unit and whose alignment is nonzero, should be
implemented by accessing exactly the bits of the object and no others.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[A load or store of a volatile object whose size is
a multiple of System.Storage_Unit and whose alignment is nonzero, should be
implemented by accessing exactly the bits of the object and no others.]}]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[Since any object can be a volatile object,
  including packed array components and bit-mapped record components, we
  require the above only when it is reasonable to assume that the machine
  can avoid accessing bits outside of the object.]}
@end{Reason}

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This implies that the load or store of a
  volatile object that meets the above requirement should not be combined
  with that of any other object, nor should it access any bits not
  belonging to any other object. This means that the suitability of the
  implementation for memory-mapped I/O can be determined from its
  documentation, as any cases where the implementation does not follow
  @ImplAdviceTitle must be documented.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00259-01]}
@ChgAdded{Version=[2],Text=[A load or store of an atomic object should, where
possible, be implemented by a single load or store instruction.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[A load or store of an atomic object should be implemented by a single
load or store instruction.]}]}

@end{ImplAdvice}

@begin{Notes}

An imported volatile or atomic constant behaves as a constant (i.e.
read-only) with respect to other parts of the Ada program, but can
still be modified by an @lquotes@;external source.@rquotes@;

@end{Notes}

@begin{Incompatible83}
@Defn{incompatibilities with Ada 83}
Pragma Atomic replaces Ada 83's pragma Shared.
The name @lquotes@;Shared@rquotes@; was confusing,
because the pragma was not used to mark variables as shared.
@end{Incompatible83}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00259-01]}
  @ChgAdded{Version=[2],Text=[Added @ImplAdviceTitle to clarify the meaning
  of Atomic and Volatile in machine terms. The documentation that this
  advice applies will make the use of Ada implementations more predictable
  for low-level (such as device register) programming.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00272-01]}
  @ChgAdded{Version=[2],Text=[Added wording to clarify that a slice of an
  object of an atomic type is not atomic, just like a component of an atomic
  type is not (necessarily) atomic.]}
@end{Diffword95}


@LabeledRevisedClause{Version=[2],New=[Task Information],
Old=[Task Identification and Attributes]}

@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00266-02]}
@Redundant[This clause describes operations and attributes that can be
used to obtain the identity of a task. In addition,
a package that associates user-defined information with a task is
defined.@Chg{Version=[2],New=[ Finally, a package that associates
termination procedures with a task or set of tasks is defined.],Old=[]}]
@end{Intro}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
  @ChgAdded{Version=[2],Text=[The title and text here were updated to reflect
  the addition of task termination procedures to this clause.]}
@end{DiffWord95}

@LabeledSubClause{The Package Task_Identification}

@begin{StaticSem}
@Leading@Keepnext@;The following language-defined library package exists:
@begin{example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00362-01]}
@key[package] Ada.Task_Identification @key[is]@ChildUnit{Parent=[Ada],Child=[Task_Identification]}@Chg{Version=[2],New=[
   @key[pragma] Preelaborate(Task_Identification);],Old=[]}
   @key[type] @AdaTypeDefn{Task_Id} @key[is] @key{private};@Chg{Version=[2],New=[
   @key[pragma] Preelaborable_Initialization (Task_Id);],Old=[]}
   @AdaSubDefn{Null_Task_Id} : @key{constant} Task_Id;
   @key{function}  "=" (Left, Right : Task_Id) @key{return} Boolean;

@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0070],ARef=[AI95-00101-01]}
   @key{function}  @AdaSubDefn{Image}        (T : Task_Id) @key{return} String;
   @key[function]  @AdaSubDefn{Current_Task} @key[return] Task_Id;
   @Key[procedure] @AdaSubDefn{Abort_Task}   (T : @key[in] @Chg{New=[],Old=[@key[out] ]}Task_Id);

   @key[function]  @AdaSubDefn{Is_Terminated}(T : Task_Id) @key{return} Boolean;
   @key[function]  @AdaSubDefn{Is_Callable}  (T : Task_Id) @key{return} Boolean;
@key[private]
   ... -- @RI{not specified by the language}
@key[end] Ada.Task_Identification;
@end{example}
@end{StaticSem}

@begin{RunTime}

A value of the type Task_Id identifies an existent task. The constant
Null_Task_Id does not identify any task. Each object of the type Task_Id
is default initialized to the value of Null_Task_Id.

The function "=" returns True if and only if Left and Right identify the same
task or both have the value Null_Task_Id.

The function Image returns an implementation-defined string that identifies
T. If T equals Null_Task_Id, Image returns an empty string.
@ImplDef{The result of the Task_Identification.Image attribute.}

The function Current_Task returns a value that identifies the calling task.

The effect of Abort_Task is the same as the @nt{abort_statement} for the
task identified by T. @Redundant[In addition, if T identifies the
environment task, the entire partition is aborted, See @RefSecNum{Partitions}.]

The functions Is_Terminated and Is_Callable return the value of the
corresponding attribute of the task identified by T.
@begin{Ramification}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0115],ARef=[AI95-00206-01]}
@ChgAdded{Version=[1],Text=[These routines can be called with an argument
identifying the environment task. Is_Terminated will always be False for such a
call, but Is_Callable (usually True) could be False if the environment task is
waiting for the termination of dependent tasks. Thus, a dependent task can use
Is_Callable to determine if the main subprogram has completed.]}
@end{Ramification}

@Leading@;For @PrefixType{a @nt<prefix> T that is of a task type
@Redundant[(after any implicit dereference)]},
the following attribute is defined:
@begin{Description}

@Attribute{Prefix=<T>, AttrName=<Identity>,
  Text=[Yields a value of the type Task_Id that identifies
    the task denoted by T.]}

@end{Description}
@EndPrefixType{}

@Leading@;For @PrefixType{a @nt<prefix> E that denotes an
@nt<entry_declaration>},
the following attribute is defined:
@begin{Description}
@Attribute{Prefix=<E>, AttrName=<Caller>,
    Text=[Yields a value of the type Task_Id that identifies the task
       whose call is now being serviced. Use of this attribute is
       allowed only inside an @nt{entry_body} or @nt{accept_statement}
       corresponding to the @nt{entry_declaration} denoted by E.]}
@end{Description}
@EndPrefixType{}

@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if a value of Null_Task_Id is passed
as a parameter to Abort_Task, Is_Terminated, and Is_Callable.

@PDefn2{Term=[potentially blocking operation],Sec=(Abort_Task)}
@PDefn2{Term=[blocking, potentially],Sec=(Abort_Task)}
Abort_Task is a potentially blocking operation
(see @RefSecNum{Protected Subprograms and Protected Actions}).
@end{RunTime}

@begin{Bounded}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00237-01]}
@PDefn2{Term=(bounded error),Sec=(cause)}
It is a bounded error to call the Current_Task function from
an entry body@Chg{Version=[2],New=[,],Old=[ or an]} interrupt handler@Chg{Version=[2],
New=[, or finalization of a task attribute],Old=[]}.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised, or an implementation-defined value of the type
Task_Id is returned.
@ChgImplDef{Version=[2],Kind=[Revised],Text=[The value of Current_Task when in
a protected entry@Chg{Version=[2],New=[,],Old=[ or]} interrupt handler@Chg{Version=[2],
New=[, or finalization of a task attribute],Old=[]}.]}
@begin{ImplNote}
This value could be Null_Task_Id, or the ID of some user task, or that of
an internal task created by the implementation.
@end{ImplNote}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00237-01]}@Comment{This really should reference AI05-0004, but we don't have that yet. And that hasn't been approved, either}
@ChgAdded{Version=[2],Text=[An entry barrier is syntactically part of an
@nt{entry_body}, so a call to Current_Task from an entry barrier is also
covered by this rule.]}
@end{Ramification}

@end{Bounded}

@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
If a value of Task_Id is passed as a parameter to any of the operations
declared in this package (or any language-defined child of this
package), and the corresponding task object no longer exists,
the execution of the program is erroneous.
@end{Erron}

@begin{DocReq}

The implementation shall document the effect of calling Current_Task
from an entry body or interrupt handler.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[The effect of calling Current_Task from an
entry body or interrupt handler.]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The effect of calling Current_Task from an
entry body or interrupt handler.]}]}
@end{DocReq}

@begin{Notes}

This package is intended for use in writing user-defined task scheduling
packages and constructing server tasks. Current_Task can be used in
conjunction with other operations requiring a task as an argument such
as Set_Priority (see @RefSecNum{Dynamic Priorities}).

The function Current_Task and the attribute Caller can return a
Task_Id value that identifies the environment task.

@end{Notes}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00362-01]}
  @ChgAdded{Version=[2],Text=[Task_Identification is now preelaborated,
  so it can be used in preelaborated units.]}
@end{Extend95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0070],ARef=[AI95-00101-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Corrected the mode of the
  parameter to Abort_Task to @key{in}.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00237-01]}
  @ChgAdded{Version=[2],Text=[Corrected the wording to include finalization
  of a task attribute in the bounded error case; we don't want to specify
  which task does these operations.]}
@end{Diffword95}



@LabeledSubClause{The Package Task_Attributes}

@begin{StaticSem}
@Leading@Keepnext@;The following language-defined generic library package exists:
@begin{example}
@key{with} Ada.Task_Identification; @key{use} Ada.Task_Identification;
@key{generic}
   @key{type} Attribute @key{is} @key{private};
   Initial_Value : @key[in] Attribute;
@key{package} Ada.Task_Attributes @key{is}@ChildUnit{Parent=[Ada],Child=[Task_Attributes]}

   @key{type} @AdaTypeDefn{Attribute_Handle} @key{is} @key{access} @key{all} Attribute;

   @key{function} @AdaSubDefn{Value}(T : Task_Id := Current_Task)
     @key{return} Attribute;

   @key{function} @AdaSubDefn{Reference}(T : Task_Id := Current_Task)
     @key{return} Attribute_Handle;

   @key{procedure} @AdaSubDefn{Set_Value}(Val : @key[in] Attribute;
                       T : @key[in] Task_Id := Current_Task);
   @key{procedure} @AdaSubDefn{Reinitialize}(T : @key[in] Task_Id := Current_Task);

@key{end} Ada.Task_Attributes;
@end{example}

@end{StaticSem}

@begin{RunTime}

When an instance of Task_Attributes is elaborated in
a given active partition, an object of the
actual type corresponding to the formal type Attribute
is implicitly created for each task (of that partition)
that exists and is not yet terminated.
This object acts as a user-defined attribute of the task.
A task created previously
in the partition and not yet terminated has this attribute
from that point on. Each task subsequently created in the partition
will have this attribute when created. In all these cases, the initial value
of the given attribute is Initial_Value.

The Value operation returns the value of the corresponding attribute of T.

The Reference operation returns an access value that designates the
corresponding attribute of T.

The Set_Value operation performs any finalization on the old value of the
attribute of T and assigns Val to that attribute
(see @RefSecNum{Assignment Statements} and
@RefSecNum{User-Defined Assignment and Finalization}).

The effect of the Reinitialize operation is the same as Set_Value where
the Val parameter is replaced with Initial_Value.
@begin{ImplNote}
In most cases, the attribute memory can be reclaimed at this point.
@end{ImplNote}

@Defn2{Term=[Tasking_Error],Sec=(raised by failure of run-time check)}
For all the operations declared in this package, Tasking_Error is raised
if the task identified by T is terminated.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
Program_Error is raised if the value of T is Null_Task_Id.

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[After a task has terminated, all of its attributes
are finalized, unless they have been finalized earlier. When the master of an
instantiation of Ada.Task_Attributes is finalized, the corresponding attribute
of each task is finalized, unless it has been finalized earlier.]}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This is necessary so that a task attribute does
  not outlive its type. For instance, that's possible if the instantiation is
  nested, and the attribute is on a library-level task.]}
@end{Reason}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The task owning an attribute cannot, in general,
  finalize that attribute. That's because the attributes are finalized @i<after>
  the task is terminated; moreover, a task may have attributes as soon as it is
  created; the task may never even have been activated.]}
@end{Ramification}
@end{RunTime}

@begin{Bounded}
@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0071],ARef=[AI95-00165-01]}
@ChgAdded{Version=[1],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
If the package Ada.Task_Attributes is instantiated with a controlled type and
the controlled type has user-defined Adjust or Finalize operations that in
turn access task attributes by any of the above operations, then a call of
Set_Value of the instantiated package constitutes a bounded error. The call
may perform as expected or may result in forever blocking the calling task and
subsequently some or all tasks of the partition.]}
@end{Bounded}

@begin{Erron}
@PDefn2{Term=(erroneous execution),Sec=(cause)}
It is erroneous to dereference the access value returned by a given
call on Reference after a subsequent call on Reinitialize for
the same task attribute, or after the associated task terminates.
@begin{Reason}
  This allows the storage to be reclaimed for the object
  associated with an attribute upon Reinitialize or task termination.
@end{Reason}

@PDefn2{Term=(erroneous execution),Sec=(cause)}
If a value of Task_Id is passed as a parameter to any of the operations
declared in this package and the corresponding task object no longer exists,
the execution of the program is erroneous.

@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0071],ARef=[AI95-00165-01]}
@ChgRef{Version=[2],Kind=[RevisedAdded],ARef=[AI95-00237-01]}
@ChgAdded{Version=[1],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}
@Chg{Version=[2],New=[An access],Old=[Accesses]} to @Chg{Version=[2],New=[a ],Old=[]}task
@Chg{Version=[2],New=[attribute],Old=[attributes]} via a value of type
Attribute_Handle @Chg{Version=[2],New=[is],Old=[are]}
erroneous if executed concurrently with @Chg{Version=[2],New=[another such access],
Old=[each other]} or @Chg{Version=[2],New=[a call],Old=[with calls]} of any of the
operations declared in package Task_Attributes.@Chg{Version=[2],New=[ An access
to a task attribute is erroneous if executed
concurrently with or after the finalization of the task attribute.],Old=[]}]}
@begin{Reason}
  @ChgRef{Version=[1],Kind=[Added]}
  @ChgAdded{Version=[1],Text=[There is no requirement of atomicity on accesses
  via a value of type Attribute_Handle.]}
@end{Reason}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[Added]}
  @ChgAdded{Version=[2],Text=[A task attribute can only be accessed after
  finalization through a value of type Attribute_Handle. Operations in
  package Task_Attributes cannot be used to access a task attribute after
  finalization, because either the master of the instance has been or is in the
  process of being left (in which case the instance is out of scope and thus
  cannot be called), or the associated task is already terminated (in which
  case Tasking_Error is raised for any attempt to call a task attribute
  operation).]}
@end{Ramification}
@end{Erron}

@begin{ImplReq}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0071],ARef=[AI95-00165-01]}
@Chg{New=[For a given attribute of a given task, the],Old=[The]} implementation
shall perform @Chg{New=[the operations declared in this package],
Old=[each of the above operations for a given attribute of a given task]}
atomically with respect to any @Chg{New=[of these operations of],
Old=[other of the above operations for]} the same attribute of the same task.
@Chg{New=[The granularity of any locking mechanism necessary to achieve such
atomicity is implementation defined.],Old=[]}
@ChgImplDef{Version=[1],Kind=[Added],Text=[@Chg{New=[Granularity of
locking for Task_Attributes.],Old=[]}]}

@begin{Ramification}
Hence, other than by dereferencing an access value returned by
Reference, an attribute of a given task can be safely read and updated
concurrently by multiple tasks.
@end{Ramification}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00237-01]}
@Chg{Version=[2],New=[After],Old=[When a]} task
@Chg{Version=[2],New=[attributes are finalized],Old=[terminates]},
the implementation shall @Chg{Version=[2],New=[],Old=[finalize
all attributes of the task, and ]}reclaim any
@Chg{Version=[2],New=[],Old=[other ]}storage associated with the attributes.
@end{ImplReq}

@begin{DocReq}

The implementation shall document the limit on the number of attributes
per task, if any, and the limit on the total storage for attribute values
per task, if such a limit exists.

In addition, if these limits can be configured, the implementation shall
document how to configure them.
@ChgImplDef{Version=[2],Kind=[Deleted],Text=[@ChgDeleted{Version=[2],
Text=[@Chg{New=[Limits on the number and size of task attributes, and how to configure them.],
Old=[Implementation-defined aspects of Task_Attributes.]}]}]}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[For package Task_Attributes, limits on the number and size of task
attributes, and how to configure any limits.]}]}
@end{DocReq}

@begin{Metrics}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
The implementation shall document the following metrics: A task calling the
following subprograms shall execute @Chg{Version=[2],New=[at],Old=[in]} a
sufficiently high priority as to not
be preempted during the measurement period. This period shall start just
before issuing the call and end just after the call completes. If the
attributes of task T are accessed by the measurement tests, no other task
shall access attributes of that task during the measurement period.
For all measurements described here, the Attribute type shall be a scalar
@Chg{Version=[2],New=[type ],Old=[]}whose size is equal to the size of the
predefined @Chg{Version=[2],New=[type Integer],Old=[integer size]}.
For each measurement, two cases shall be documented: one
where the accessed attributes are of the calling task @Redundant[(that is,
the default value for the T parameter is used)], and the other, where T
identifies another, non-terminated, task.

@Leading@;The following calls (to subprograms in the Task_Attributes package)
shall be measured:
@begin{Itemize}
a call to Value, where the return value is Initial_Value;

a call to Value, where the return value is not equal to Initial_Value;

a call to Reference, where the return value designates a value equal to
Initial_Value;

a call to Reference, where the return value designates a value not equal
to Initial_Value;

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
a call to Set_Value where the Val parameter is not equal to Initial_Value
and the old attribute value is equal to Initial_Value@Chg{Version=[2],New=[;],Old=[.]}

a call to Set_Value where the Val parameter is not equal to Initial_Value
and the old attribute value is not equal to Initial_Value.

@end{Itemize}
@ChgDocReq{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[The metrics for the Task_Attributes package.]}]}
@end{Metrics}

@begin{ImplPerm}

An implementation need not actually create the object corresponding
to a task attribute
until its value is set to something other than that of Initial_Value,
or until Reference is called for the task attribute.
Similarly, when the value of the attribute is
to be reinitialized to that of Initial_Value,
the object may instead be finalized and its storage reclaimed, to
be recreated when needed later.
While the object does not exist, the function Value may
simply return Initial_Value, rather than implicitly creating the object.
@begin{Discussion}
  The effect of this permission can only be observed if the assignment
  operation for the corresponding type has side-effects.
@end{Discussion}
@begin{ImplNote}
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
  This permission means that even though every task has every
  attribute, storage need only be allocated for those attributes
  @Chg{Version=[2],New=[for which function Reference has been invoked],Old=[that
  have been Reference'd]} or set to a value other than that
  of Initial_Value.
@end{ImplNote}

An implementation is allowed to place restrictions on the maximum number of
attributes a task may have, the maximum size of each attribute, and the
total storage size allocated for all the attributes of a task.

@end{ImplPerm}

@begin{ImplAdvice}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00434-01]}
Some implementations are targeted to domains in which memory use at run
time must be completely deterministic. For such implementations, it is
recommended that the storage for task attributes will be pre-allocated
statically and not from the heap. This can be accomplished by either
placing restrictions on the number and the size of the @Chg{Version=[2],
New=[],Old=[task's ]}attributes@Chg{Version=[2],New=[ of a task],Old=[]},
or by using the pre-allocated storage for the first N attribute objects,
and the heap for the others. In the latter case, N should be documented.

@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[If the target domain requires deterministic memory use at run
time, storage for task attributes should be pre-allocated
statically and the number of attributes pre-allocated should be documented.]}]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[We don't mention @lquotes@;restrictions on the
  size and number@rquotes (that is, limits) in the text for the
  Annex, because it is covered by the @DocReqName above, and we try not to
  repeat requirements in the Annex (they're enough work to meet without
  having to do things twice).]}
@end{Discussion}
@end{ImplAdvice}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00237-01]}
@ChgAdded{Version=[2],Text=[Finalization of task attributes and reclamation of
associated storage should be performed as soon as possible after task
termination.]}
@ChgImplAdvice{Version=[2],Kind=[AddedNormal],Text=[@ChgAdded{Version=[2],
Text=[Finalization of task attributes and reclamation of
associated storage should be performed as soon as possible after task
termination.]}]}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00237-01]}
  @ChgAdded{Version=[2],Text=[This is necessary because the normative wording
  only says that attributes are finalized @lquotes@;after@rquotes@;
  task termination. Without this advice, waiting until the instance is
  finalized would meet the requirements (it is after termination, but may be
  a very long time after termination). We can't say anything more specific
  than this, as we do not want to require the overhead of an interaction with
  the tasking system to be done at a specific point.]}
@end{Reason}
@begin{Notes}

An attribute always exists (after instantiation), and has the initial value.
It need not occupy memory until the first operation that potentially
changes the attribute value. The same holds true after Reinitialize.

The result of the Reference function should be used with care; it is always
safe to use that result in the task body whose attribute is being
accessed. However, when the result is being used by another task, the
programmer must make sure that the task whose attribute is being accessed
is not yet terminated. Failing to do so could make the program execution
erroneous.

@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00434-01]}
@ChgDeleted{Version=[2],Text=[As specified in
@RefSecNum{The Package Task_Identification}, if the parameter T (in a call
on a subprogram of an instance of this package) identifies a nonexistent
task, the execution of the program is erroneous.]}
@end{Notes}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0071],ARef=[AI95-00165-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that use of task
  attribute operations from within a task attribute operation (by an Adjust
  or Finalize call) is a bounded error, and that concurrent use of attribute
  handles is erroneous.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00237-01]}
  @ChgAdded{Version=[2],Text=[Clarified the wording so that the finalization
  takes place after the termination of the task or when the instance is
  finalized (whichever is sooner).]}
@end{Diffword95}

@LabeledAddedSubClause{Version=[2],Name=[The Package Task_Termination]}

@begin{StaticSem}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],KeepNext=[T],Type=[Leading],Text=[The following
language-defined library package exists:]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<with> Ada.Task_Identification;
@key<with> Ada.Exceptions;
@key<package> Ada.Task_Termination @key<is>@ChildUnit{Parent=[Ada],Child=[Task_Termination]}
   @key<pragma> Preelaborate(Task_Termination);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<type> @AdaTypeDefn{Cause_Of_Termination} @key<is> (Normal, Abnormal, Unhandled_Exception);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<type> @AdaTypeDefn{Termination_Handler} @key<is access protected procedure>
     (Cause : @key<in> Cause_Of_Termination;
      T     : @key<in> Ada.Task_Identification.Task_Id;
      X     : @key<in> Ada.Exceptions.Exception_Occurrence);]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Set_Dependents_Fallback_Handler}
     (Handler: @key<in> Termination_Handler);
   @key<function> @AdaSubDefn{Current_Task_Fallback_Handler} @key<return> Termination_Handler;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[   @key<procedure> @AdaSubDefn{Set_Specific_Handler}
     (T       : @key<in> Ada.Task_Identification.Task_Id;
      Handler : @key<in> Termination_Handler);
   @key<function> @AdaSubDefn{Specific_Handler} (T : Ada.Task_Identification.Task_Id)
      @key<return> Termination_Handler;]}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key<end> Ada.Task_Termination;]}
@end{Example}

@end{StaticSem}

@begin{RunTime}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[@Defn{termination handler}@Defn2{Term=[handler],Sec=[termination]}
The type Termination_Handler identifies a protected
procedure to be executed by the implementation when a task terminates. Such a
protected procedure is called a @i<handler>. In all cases T identifies the task
that is terminating. If the task terminates due to completing the last
statement of its body, or as a result of waiting on a terminate alternative,
then Cause is set to Normal and X is set to Null_Occurrence. If the task
terminates because it is being aborted, then Cause is set to Abnormal and X is
set to Null_Occurrence. If the task terminates because of an exception raised
by the execution of its @nt{task_body}, then Cause is set to
Unhandled_Exception and X is set to the associated exception occurrence.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[@Defn{fall-back handler}@Defn2{Term=[termination handler],Sec=[fall-back]}
@Defn{specific handler}@Defn2{Term=[termination handler],Sec=[specific]}
@Defn2{Term=[set],Sec=[termination handler]}
@Defn2{Term=[cleared],Sec=[termination handler]}
Each task has two termination handlers, a @i<fall-back handler> and a
@i<specific handler>. The specific handler applies only to the task itself,
while the fall-back handler applies only to the dependent tasks of the task.
A handler is said to be @i<set> if it is associated
with a non-null value of type Termination_Handler, and @i<cleared> otherwise.
When a task is created, its specific handler and fall-back handler are cleared.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The procedure Set_Dependents_Fallback_Handler
changes the fall-back handler for the calling task; if Handler is @key{null},
that fall-back handler is cleared, otherwise it is set to be Handler.@key{all}.
If a fall-back handler had previously been set it is replaced.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The function Current_Task_Fallback_Handler returns
the fall-back handler that is currently set for the calling task, if one is
set; otherwise it returns @key{null}.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The procedure Set_Specific_Handler changes the
specific handler for the task identified by T; if Handler is @key{null}, that
specific handler is cleared, otherwise it is set to be Handler.@key{all}. If a
specific handler had previously been set it is replaced.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[The function Specific_Handler returns the specific
handler that is currently set for the task identified by T, if one is set;
otherwise it returns @key{null}.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[As part of the finalization of a @nt{task_body},
after performing the actions specified in
@RefSecNum{User-Defined Assignment and Finalization} for finalization of a
master, the specific handler for the task, if one is set, is executed.
If the specific handler is cleared, a search
for a fall-back handler proceeds by recursively following the master
relationship for the task. If a task is found whose fall-back handler is set,
that handler is executed; otherwise, no handler is executed.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[For Set_Specific_Handler or
Specific_Handler, Tasking_Error is raised if the task identified by T has
already terminated. Program_Error is raised if the value of T is
Ada.Task_Identification.Null_Task_Id.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[An exception propagated from a handler that is
invoked as part of the termination of a task has no effect.]}

@end{RunTime}

@begin{Erron}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
@ChgAdded{Version=[2],Text=[For a call of Set_Specific_Handler or
Specific_Handler, if the task identified by T no longer exists, the execution
of the program is erroneous.]}
@end{Erron}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00266-02]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  Package Task_Termination is new.]}
@end{Extend95}