File: 06.mss

package info (click to toggle)
ada-reference-manual 1%3A2012.3-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 12,872 kB
  • sloc: ada: 29,393; makefile: 193; python: 92
file content (5368 lines) | stat: -rwxr-xr-x 255,286 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
@Part(06, Root="ada.mss")

@Comment{$Date: 2016/02/09 04:55:40 $}
@LabeledSection{Subprograms}

@Comment{$Source: e:\\cvsroot/ARM/Source/06.mss,v $}
@Comment{$Revision: 1.137 $}

@begin{Intro}
@Defn{subprogram}
@Defn{procedure}
@Defn{function}
A subprogram is a program unit or intrinsic operation whose execution
is invoked by a subprogram call.
There are two forms of subprogram: procedures and functions.
A procedure call is a @nt{statement}; a function call is an expression and
returns a value.
The definition of a subprogram can be given in two parts:
a subprogram declaration defining its interface,
and a @nt{subprogram_body} defining its execution.
@Redundant[Operators and enumeration literals are functions.]
@begin{Honest}
  A function call is an expression, but more specifically it is a @nt<name>.
@end{Honest}
@ChgToGlossary{Version=[2],Kind=[AddedNormal],Term=<Subprogram>,
Text=<@ChgAdded{Version=[2],Text=[A subprogram is a section of a program that
can be executed in various contexts. It is invoked by a subprogram call that
may qualify the effect of the subprogram through the passing of parameters.
There are two forms of subprograms: functions, which return values, and
procedures, which do not.]}>}
@ChgToGlossary{Version=[2],Kind=[AddedNormal],Term=<Function>,
Text=<@ChgAdded{Version=[2],Text=[A function is a form of subprogram that
returns a result and can be called as part of an expression.]}>}
@ChgToGlossary{Version=[2],Kind=[AddedNormal],Term=<Procedure>,
Text=<@ChgAdded{Version=[2],Text=[A procedure is a form of subprogram that
does not return a result and can only be called by a @nt{statement}.]}>}

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
@Defn{callable entity}
A @i(callable entity) is a subprogram or entry (see
@Chg{Version=[3],New=[Section 9],Old=[@RefSecNum{Entries and Accept Statements}]}).
@Defn{call}
A callable entity is invoked by a @i{call};
that is, a subprogram call or entry call.
@Defn{callable construct}
A @i(callable construct) is a construct
that defines the action of a call upon a callable entity:
a @nt{subprogram_body},
@nt{entry_body}, or @nt{accept_statement}.
@begin{Ramification}
Note that @lquotes@;callable entity@rquotes@;
includes predefined operators, enumeration literals,
and abstract subprograms.
@lquotes@;Call@rquotes@; includes calls of these things.
They do not have callable constructs,
since they don't have completions.
@end{Ramification}
@end{Intro}

@LabeledClause{Subprogram Declarations}

@begin{Intro}
@Redundant[A @nt{subprogram_declaration} declares a procedure or
function.]
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00218-03]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0183-1]}
@Syn{lhs=<subprogram_declaration>,rhs="@Chg{Version=[2],New=<
    [@Syn2{overriding_indicator}]
    >,Old=<>}@Syn2{subprogram_specification}@Chg{Version=[3],New=<
        [@Syn2{aspect_specification}]>,Old=[]};"}

@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00348-01]}
@DeletedSyn{Version=[2],lhs=<@Chg{Version=[2],New=<>,Old=<abstract_subprogram_declaration>}>,
rhs="@Chg{Version=[2],New=<>,Old=<@Syn2{subprogram_specification} @key{is} @key{abstract};>}"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00348-01]}
@Syn{lhs=<subprogram_specification>,rhs="@Chg{Version=[2],New=[
    @Syn2{procedure_specification}
  | @Syn2{function_specification}],Old=[
    @key{procedure} @Syn2{defining_program_unit_name} @Syn2{parameter_profile}
  | @key{function} @Syn2{defining_designator} @Syn2{parameter_and_result_profile}]}"}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00348-01]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=<procedure_specification>,Old=<>}>,
rhs="@Chg{Version=[2],New=<@key{procedure} @Syn2{defining_program_unit_name} @Syn2{parameter_profile}>,Old=<>}"}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00348-01]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=<function_specification>,Old=<>}>,
rhs="@Chg{Version=[2],New=<@key{function} @Syn2{defining_designator} @Syn2{parameter_and_result_profile}>,Old=<>}"}

@Syn{lhs=<designator>,rhs="[@Syn2{parent_unit_name} . ]@Syn2{identifier} | @Syn2{operator_symbol}"}

@Syn{lhs=<defining_designator>,
   rhs="@Syn2{defining_program_unit_name} | @Syn2{defining_operator_symbol}"}

@Syn{lhs=<defining_program_unit_name>,rhs="[@Syn2{parent_unit_name} . ]@Syn2{defining_identifier}"}

@begin{SyntaxText}
@Redundant[The optional @nt{parent_unit_name} is only allowed for
library units (see @RefSecNum{Compilation Units - Library Units}).]
@end{SyntaxText}

@Syn{lhs=<operator_symbol>,rhs="@Syn2{string_literal}"}

@begin{SyntaxText}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00395-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
The sequence of characters in an @nt{operator_symbol} shall @Chg{Version=[2],
New=[form a reserved
word, a delimiter, or compound delimiter that corresponds],Old=[correspond]} to
an operator belonging to one of the six @Chg{Version=[2],New=[categories],
Old=[classes]} of operators
defined in @Chg{Version=[3],New=[subclause],Old=[clause]} @RefSecNum{Operators and Expression Evaluation}@Chg{Version=[2],
New=[],Old=[(spaces are not allowed and the case of letters
is not significant)]}.

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00395-01]}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0090-1]}
  @ChgAdded{Version=[2],Text=[The @ldquote@;sequence of characters@rdquote
  of the string literal of the operator is a technical term (see
  @RefSecNum{String Literals}), and does not include the surrounding quote
  characters. As defined in @RefSecNum{Lexical Elements, Separators, and Delimiters},
  lexical elements are @lquotes@;formed@rquotes from a sequence of characters.
  Spaces are not allowed, and upper and lower case is
  not significant.@Chg{Version=[3],New=[],Old=[ See
  @RefSecNum{Lexical Elements, Separators, and Delimiters} and
  @RefSecNum{Reserved Words} for rules related to the use of @ntf{other_format}
  characters in delimiters and reserved words.]}]}
@end{Reason}

@end{SyntaxText}

@Syn{lhs=<defining_operator_symbol>,rhs="@Syn2{operator_symbol}"}

@Syn{lhs=<parameter_profile>,rhs="[@Syn2{formal_part}]"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01],ARef=[AI95-00318-02]}
@Syn{lhs=<parameter_and_result_profile>,rhs="@Chg{Version=[2],New=[
    ],Old=[]}[@Syn2{formal_part}] @key{return}@Chg{Version=[2],New=< [@Syn2{null_exclusion}]>,Old=<>} @Syn2{subtype_mark}@Chg{Version=[2],New=<
  | [@Syn2{formal_part}] @key{return} @Syn2{access_definition}>,Old=<>}"}

@Syn{lhs=<formal_part>,rhs="
   (@Syn2{parameter_specification} {; @Syn2{parameter_specification}})"}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0142-4]}
@Syn{lhs=<parameter_specification>,rhs="
    @Syn2{defining_identifier_list} : @Chg{Version=[3],New=<[@key[aliased]] >,Old=<>}@Syn2{mode} @Chg{Version=[2],New=<[@Syn2{null_exclusion}]>,Old=<>} @Syn2{subtype_mark} [:= @Syn2{default_expression}]
  | @Syn2{defining_identifier_list} : @Syn2{access_definition} [:= @Syn2{default_expression}]"}

@Syn{lhs=<mode>,rhs="[@key{in}] | @key{in} @key{out} | @key{out}"}
@end{Syntax}

@begin{Resolution}
@Defn2{Term=[formal parameter], Sec=(of a subprogram)}
A @i(formal parameter) is an object
@Redundant[directly visible within a @nt{subprogram_body}]
that represents the actual parameter passed to the subprogram in a
call;
it is declared by a @nt{parameter_specification}.
@PDefn2{Term=[expected type],
  Sec=(parameter @nt{default_expression})}
For a formal parameter,
the expected type for its @nt<default_expression>,
if any, is that of the formal parameter.
@IndexSee{Term=[parameter],See=[formal parameter]}
@end{Resolution}

@begin{Legality}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0143-1]}
@Defn{parameter mode}
The @i(parameter mode) of a formal parameter conveys the direction of
information transfer with the actual parameter:
@key(in), @key(in out), or @key(out).
Mode @key(in) is the default,
and is the mode of a parameter defined by an
@nt{access_definition}.@Chg{Version=[3],New=[],Old=[ The formal parameters
of a function, if any, shall have the mode @key(in).]}
@begin{Ramification}
@ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0143-1]}
@ChgDeleted{Version=[3],Text=[Access parameters are permitted.
This restriction to @b(in) parameters is primarily a methodological
restriction, though it also simplifies implementation for some compiler
technologies.]}
@end{Ramification}

A @nt{default_expression} is only allowed in a @nt{parameter_specification}
for a formal parameter of mode @key(in).

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00348-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0177-1],ARef=[AI05-0229-1]}
@PDefn2{Term=[requires a completion], Sec=(@nt{subprogram_declaration})}
@PDefn2{Term=[requires a completion], Sec=(@nt{generic_subprogram_declaration})}
A @nt{subprogram_declaration}
or a @nt{generic_subprogram_declaration}
requires a completion@Chg{Version=[3],New=[],Old=[:]}
@Redundant[@Chg{Version=[3],New=[unless the Import aspect (see
@RefSecNum{Interfacing Aspects}) is True for the declaration; the
completion shall be ],Old=[]}a body@Chg{Version=[3],New=[ or],Old=[,]}
a @nt<renaming_declaration>
(see @RefSecNum(Renaming Declarations))@Chg{Version=[3],New=[],Old=[, or
a @Chg{Version=[2],New=[@nt{pragma}],
Old=[@key(pragma)]} Import (see @RefSecNum{Interfacing Aspects})]}].
@Redundant[A completion is not allowed
for an @nt<abstract_subprogram_declaration>@Chg{Version=[2],New=[ (see
@RefSecNum{Abstract Types and Subprograms})@Chg{Version=[3],New=[,],Old=[ or]} a
@nt{null_procedure_declaration} (see @RefSecNum{Null Procedures})@Chg{Version=[3],New=[,
or an @nt{expression_function_declaration} (see @RefSecNum{Expression Functions})],Old=[]}],Old=[]}.]
@begin(Ramification)
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00348-01]}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0177-1]}
  Abstract subprograms @Chg{Version=[2],New=[@Chg{Version=[3],New=[,],Old=[and]}
  null procedures@Chg{Version=[3],New=[, and expression functions],Old=[]} ],Old=[]}are
  not declared by @nt{subprogram_declaration}s, and so do not require
  completion@Chg{Version=[3],New=[ (although the latter two can @i<be> completions)],Old=[]}.
  Protected subprograms are declared by @nt{subprogram_declaration}s,
  and so require completion.
  Note that an abstract subprogram is a subprogram,
  @Chg{Version=[3],New=[a null procedure is a subprogram, an expression function
  is a subprogram, ],Old=[]}and a protected subprogram is a subprogram,
  but a generic subprogram is not a subprogram.@Comment{Who's the idiot that
  came up with that??}
@end(Ramification)
@begin(TheProof)
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0229-1]}
  @ChgAdded{Version=[3],Text=[When the Import aspect is True for any entity,
  no completion is allowed (see @RefSecNum{Interfacing Aspects}).]}
@end{TheProof}


A @nt{name} that denotes a formal parameter
is not allowed within the @nt{formal_part} in which it is declared,
nor within the @nt{formal_part} of a corresponding body or
@nt{accept_statement}.
@begin{Ramification}
By contrast,
@nt<generic_formal_parameter_declaration>s are visible to subsequent
declarations in the same @nt<generic_formal_part>.
@end{Ramification}
@end{Legality}

@begin{StaticSem}
@Defn{profile}
The @i(profile) of (a view of) a callable entity
is either a @nt{parameter_profile} or
@nt{parameter_and_result_profile}@Redundant[;
it embodies information about
the interface to that entity @em for example, the profile includes
information about parameters passed to the callable entity.
All callable entities have a profile @em enumeration literals,
other subprograms, and entries.
An access-to-subprogram type has a designated profile.]
Associated with a profile is a calling convention.
A @nt<subprogram_declaration> declares a procedure or a function, as
indicated by the initial reserved word, with name and profile as given by
its specification.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01],ARef=[AI95-00318-02]}
@PDefn2{Term=[nominal subtype], Sec=(of a formal parameter)}
The nominal subtype of a formal parameter is
the subtype @Chg{Version=[2],New=[determined],Old=[denoted]} by
@Chg{Version=[2],New=[the optional @nt{null_exclusion} and ], Old=[]}the
@nt{subtype_mark}, or defined by the @nt{access_definition}, in the
@nt{parameter_specification}.@Chg{Version=[2],New=[ The nominal
subtype of a function result is the subtype
determined by the optional @nt{null_exclusion} and the @nt{subtype_mark}, or
defined by the @nt{access_definition}, in the
@nt{parameter_and_result_profile}.
@PDefn2{Term=[nominal subtype], Sec=(of a function result)}], Old=[]}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0142-4]}
@ChgAdded{Version=[3],Text=[@Defn{explicitly aliased parameter}@Defn2{Term=[parameter],Sec=(explicitly aliased)}An
@i(explicitly aliased parameter) is a formal parameter whose
@nt{parameter_specification} includes the reserved word @key[aliased].]}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01],ARef=[AI95-00254-01],ARef=[AI95-00318-02]}
@Defn{access parameter}
An @i(access parameter) is a formal @key[in] parameter
specified by an @nt{access_definition}.
@Defn{access result type}
@Chg{Version=[2],New=[An @i(access result type) is a function result type specified by
an @nt{access_definition}.],Old=[]}
An access parameter @Chg{Version=[2],New=[or result type ],Old=[]}is of an
anonymous
@Chg{Version=[2],New=[access],Old=[general access-to-variable]} type (see
@RefSecNum{Access Types}). @Redundant[Access parameters
@Chg{Version=[2],New=[of an access-to-object type],Old=[]} allow dispatching
calls to be controlled by access values.@Chg{Version=[2],New=[ Access
parameters of an access-to-subprogram type permit calls to subprograms passed
as parameters irrespective of their accessibility level.],Old=[]}]

@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[Access result types have normal accessibility and
thus don't have any special properties worth noting here.]}
@end{Discussion}

@leading@keepnext@Defn2{Term=[subtypes], Sec=(of a profile)}
The @i(subtypes of a profile) are:
@begin{Itemize}
  For any non-access parameters, the nominal subtype of the parameter.

  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00254-01]}
  For any access parameters@Chg{Version=[2],New=[ of an access-to-object type],Old=[]},
  the designated subtype of the parameter type.

  @ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00254-01]}
  @ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0164-1]}
  @ChgAdded{Version=[2],Text=[For any access parameters of an access-to-subprogram
  type, the subtypes of the @Chg{Version=[3],New=[designated ],Old=[]}profile
  of the parameter type.]}

  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01],ARef=[AI95-00318-02]}
  @Chg{Version=[2],New=[For any non-access result, the nominal subtype of the
  function result.],Old=[For any result, the result subtype.]}

  @ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
  @Chg{Version=[2],New=[For any access result type of an access-to-object type,
  the designated subtype of the result type.],Old=[]}

  @ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
  @ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0164-1]}
  @Chg{Version=[2],New=[For any access result type of an access-to-subprogram
  type, the subtypes of the @Chg{Version=[3],New=[designated ],Old=[]}profile
  of the result type.],Old=[]}

@end{Itemize}

@Redundant[@Defn2{Term=[types], Sec=(of a profile)}
The @i{types of a profile} are the types of those subtypes.]

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00348-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0177-1]}
@Redundant[A subprogram declared by an
@nt<abstract_subprogram_declaration>
is abstract; a subprogram declared by a @nt<subprogram_declaration>
is not. See @RefSec{Abstract Types and Subprograms}.@Chg{Version=[2],New=[
Similarly, a procedure @Chg{Version=[3],New=[declared],Old=[defined]} by a
@nt{null_procedure_declaration} is a null procedure; a procedure declared by
a @nt{subprogram_declaration} is not. See @RefSec{Null Procedures}.@Chg{Version=[3],New=[
Finally, a function declared by an @nt{expression_function_declaration} is
an expression function; a function declared by
a @nt{subprogram_declaration} is not. See @RefSec{Expression Functions}.],Old=[]}],Old=[]}]

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00218-03]}
@ChgAdded{Version=[2],Text=[@Redundant[An @nt{overriding_indicator} is used to
indicate whether overriding is intended. See @RefSec{Overriding Indicators}.]]}
@end{StaticSem}

@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00348-01]}
@PDefn2{Term=[elaboration], Sec=(subprogram_declaration)}@Chg{Version=[2],New=[],Old=[
@PDefn2{Term=[elaboration], Sec=(abstract_subprogram_declaration)}]}
The elaboration of a @nt{subprogram_declaration}@Chg{Version=[2],New=[],Old=[
or an @nt{abstract_subprogram_declaration}]} has no effect.
@end{RunTime}

@begin{Notes}
A @nt{parameter_specification} with several identifiers is equivalent
to a sequence of single @nt{parameter_specification}s, as explained
in @RefSecNum{Objects and Named Numbers}.

Abstract subprograms do not have bodies, and cannot be used
in a nondispatching call (see @RefSec{Abstract Types and Subprograms}).

The evaluation of @nt<default_expression>s is caused by certain
calls, as described in @RefSecNum{Parameter Associations}.
They are not evaluated during the elaboration of
the subprogram declaration.

Subprograms can be called recursively and can be called
concurrently from multiple tasks.
@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of subprogram declarations:}
@begin{Example}
@key[procedure] Traverse_Tree;
@key[procedure] Increment(X : @key[in] @key[out] Integer);
@key[procedure] Right_Indent(Margin : @key[out] Line_Size);          --@RI{  see @RefSecNum{Integer Types}}
@key[procedure] Switch(From, To : @key[in] @key[out] Link);                --@RI{  see @RefSecNum{Incomplete Type Declarations}}

@key[function] Random @key[return] Probability;                      --@RI{  see @RefSecNum{Floating Point Types}}

@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0056-1]}
@key[function] Min_Cell(X : Link) @key[return] Cell;                 --@RI{  see @RefSecNum{Incomplete Type Declarations}}
@key[function] Next_Frame(K : Positive) @key[return] Frame;          --@RI{  see @RefSecNum{Access Types}}
@key[function] Dot_Product(Left, Right : Vector) @key[return] Real;  --@RI{  see @RefSecNum{Array Types}}@Chg{Version=[4],New=[
@key[function] Find(B : @key[aliased in out] Barrel; Key : String) @key[return] Real;
                                                         --@RI{  see @RefSecNum{User-Defined References}}],Old=[]}

@key[function] "*"(Left, Right : Matrix) @key[return] Matrix;        --@RI{  see @RefSecNum{Array Types}}
@end{Example}

@begin{WideAbove}
@leading@keepnext@i{Examples of @key[in] parameters with default expressions:}
@end{WideAbove}
@begin{Example}
@key[procedure] Print_Header(Pages  : @key[in] Natural;
            Header : @key[in] Line    :=  (1 .. Line'Last => ' ');  --@RI{  see @RefSecNum{Array Types}}
            Center : @key[in] Boolean := True);
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
The syntax for @nt{abstract_subprogram_declaration} is added.
The syntax for @nt{parameter_specification} is revised to allow
for access parameters (see @RefSecNum{Access Types})

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
Program units that are library units may have
a @nt{parent_unit_name} to indicate the parent of a child
(see @Chg{Version=[3],New=[@RefSecNum{Compilation Units - Library Units}],Old=[Section 10]}).
@end{Extend83}

@begin{DiffWord83}
We have incorporated the rules from
RM83-6.5, @lquotes@;Function Subprograms@rquotes@; here and in
@RefSec{Subprogram Bodies}

We have incorporated the definitions of RM83-6.6, @lquotes@;Parameter and Result
Type Profile - Overloading of Subprograms@rquotes@; here.

The syntax rule for @nt{defining_operator_symbol} is new.
It is used for the defining occurrence of an @nt{operator_symbol},
analogously to @nt{defining_identifier}.
Usage occurrences use the @nt{direct_name} or @nt{selector_name}
syntactic categories.
The syntax rules for @nt{defining_designator} and
@nt{defining_program_unit_name} are new.
@end{DiffWord83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00218-03]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  Subprograms now allow @nt{overriding_indicator}s for better error checking
  of overriding.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00231-01]}
  @ChgAdded{Version=[2],Text=[An optional @nt{null_exclusion} can be used in a
  formal parameter declaration. Similarly, an optional @nt{null_exclusion} can
  be used in a function result.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[The return type of a function can be an
  anonymous access type.]}
@end{Extend95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00254-01]}
  @ChgAdded{Version=[2],Text=[A description of the purpose of anonymous
  access-to-subprogram parameters and the definition of the profile of
  subprograms containing them was added.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
  @ChgAdded{Version=[2],Text=[Split the production for
  @nt{subprogram_specification} in order to make the declaration
  of null procedures (see @RefSecNum{Null Procedures}) easier.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
  @ChgAdded{Version=[2],Text=[Moved the @SyntaxTitle and
  @RuntimeTitle for @nt{abstract_subprogram_declaration} to
  @RefSecNum{Abstract Types and Subprograms}, so that the syntax
  and semantics are together. This also keeps abstract and null
  subprograms similar.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00395-01]}
  @ChgAdded{Version=[2],Text=[Revised to allow @ntf{other_format} characters
  in @nt{operator_symbol}s in the same way as the underlying constructs.]}
@end{DiffWord95}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0142-4]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}Parameters can
  now be explicitly aliased, allowing parts of function results to
  designate parameters and forcing by-reference parameter passing.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0143-1]}
  @ChgAdded{Version=[3],Text=[The parameters
  of a function can now have any mode.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0183-1]}
  @ChgAdded{Version=[3],Text=[An optional @nt{aspect_specification} can be
  used in a @nt{subprogram_declaration}.
  This is described in @RefSecNum{Aspect Specifications}.]}
@end{Extend2005}

@begin{DiffWord2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
  @ChgAdded{Version=[3],Text=[Added expression functions (see
  @RefSecNum{Expression Functions}) to the wording.]}
@end{DiffWord2005}


@RMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledAddedSubClause{Version=[3],Name=[Preconditions and Postconditions]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0045-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[For a
@Chg{Version=[4],New=[noninstance ],Old=[]}subprogram@Chg{Version=[4],New=[,
a generic subprogram,],Old=[]} or @Chg{Version=[4],New=[an ],Old=[]}entry,
the following language-defined aspects may be specified with an
@nt{aspect_specification} (see @RefSecNum{Aspect Specifications}):]}

@begin{Ramification}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0045-1]}
@ChgAdded{Version=[4],Text=[@ldquote@;Noninstance subprogram@rdquote excludes
a subprogram that is an instance of a generic subprogram. In that case, the
aspects should be specified on the generic subprogram. If preconditions or
postconditions need to be added to an instance of a generic subprogram, it
can be accomplished by creating a separate subprogram specification and then
completing that specification with a renames-as-body of the instance.]}
@end{Ramification}

@begin{Description}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[Pre@\This aspect
  specifies a specific precondition for a callable entity; it shall
  be specified by an @nt{expression}, called a
  @i<specific precondition
  expression>.@Defn{specific precondition expression}@Defn2{Term=[precondition expression],Sec=[specific]}
  If not specified for an entity, the specific precondition
  expression for the entity is the enumeration literal
  True.@AspectDefn{Pre}]}

@begin{Honest}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[In this and the following rules, we are talking
  about the enumeration literal True declared in package Standard (see
  @RefSecNum{The Package Standard}), and not some
  other value or identifier True. That matters as some rules depend on full
  conformance of these expressions, which depends on the specific declarations
  involved.]}
@end{Honest}

@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Pre],
  Text=[@ChgAdded{Version=[3],Text=[Precondition; a condition that must hold
    true before a call.]}]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0254-1],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Text=[Pre'Class@\This aspect
  specifies a class-wide precondition for an operation of a tagged type and its
  descendants; it shall be specified by an @nt{expression}, called a
  @i<class-wide precondition expression>.@Defn{class-wide precondition expression}@Defn2{Term=[precondition expression],Sec=[class-wide]}
  If not specified for an entity, then if no other
  class-wide precondition applies to the entity, the class-wide precondition
  expression for the entity is the enumeration literal
  True.@AspectDefn{Pre'Class}]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0254-1]}
  @ChgAdded{Version=[3],Text=[If other class-wide preconditions apply to the
  entity and no class-wide precondition is specified, no class-wide precondition
  is defined for the entity; of course, the class-wide preconditions (of
  ancestors) that apply are still going to be checked. We need subprograms that
  don't have ancestors and don't specify a class-wide precondition to have a
  class-wide precondition of True, so that adding such a precondition to a
  descendant has no effect (necessary as a dispatching call through the root
  routine would not check any precondition).]}
@end{Ramification}

@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Pre'Class],
  Text=[@ChgAdded{Version=[3],Text=[Precondition inherited on type
    derivation.]}]}

@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[Post@\This aspect
  specifies a specific postcondition for a callable entity; it shall be
  specified by an @nt{expression}, called a @i<specific postcondition
  expression>.@Defn{specific postcondition expression}@Defn2{Term=[postcondition expression],Sec=[specific]}
  If not specified for an entity, the specific postcondition
  expression for the entity is the enumeration literal True.@AspectDefn{Post}]}

@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Post],
  Text=[@ChgAdded{Version=[3],Text=[Postcondition; a condition that must hold
    true after a call.]}]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Text=[Post'Class@\This aspect
  specifies a class-wide postcondition for an operation of a tagged type and its
  descendants; it shall be specified by an @nt{expression}, called a
  @i<class-wide postcondition expression>.@Defn{class-wide postcondition expression}@Defn2{Term=[postcondition expression],Sec=[class-wide]}
  If not specified for an entity, the class-wide postcondition
  expression for the entity is the enumeration literal True.@AspectDefn{Post'Class}]}
@end{Description}

@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Post'Class],
  Text=[@ChgAdded{Version=[3],Text=[Postcondition inherited on type
    derivation.]}]}

@begin{Resolution}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2]}
@ChgAdded{Version=[3],Text=[The expected type for a precondition or
postcondition expression is any boolean type.@PDefn2{Term=[expected type],
Sec=(precondition expression)}@PDefn2{Term=[expected type],
Sec=(postcondition expression)}]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0262-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0113-1],ARef=[AI12-0159-1]}
@ChgAdded{Version=[3],Text=[Within the expression for a Pre'Class or Post'Class aspect for a primitive
subprogram @Chg{Version=[4],New=[@i<S> ],Old=[]}of a tagged type @i<T>, a
@Chg{Version=[4],New=[@nt<name>],Old=[name]} that denotes a formal parameter
@Chg{Version=[4],New=[(or @i<S>'Result) ],Old=[]}of type
@i<T> is interpreted as @Chg{Version=[4],New=[though it had a (notional) type
@i<NT> that is a formal derived type whose ancestor type is @i<T>, with directly
visible primitive operations],Old=[having type @i<T>'Class]}. Similarly, a
@Chg{Version=[4],New=[@nt<name>],Old=[name]} that denotes a
formal access parameter @Chg{Version=[4],New=[(or @i<S>'Result) ],Old=[]}of
type access-to-@i<T> is interpreted as having type
@Chg{Version=[4],New=[access-to-@i<NT>],Old=[access-to-@i<T>'Class]}.
@Redundant[@Chg{Version=[4],New=[The result of this interpretation
is that the only operations that can be applied to such @nt{name}s are those
defined for such a formal derived type.],Old=[This ensures that the
expression is well-defined for a primitive subprogram of a type descended
from @i<T>.]}]]}

@begin{Reason}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0159-1]}
  @ChgAdded{Version=[4],Text=[This ensures that the
  expression is well-defined for any primitive
  subprogram of a type descended from @i<T>.]}
@end{Reason}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0264-1]}
@ChgAdded{Version=[3],Text=[For an attribute_reference with attribute_designator
Old, if the attribute reference has an expected type or shall resolve to a given
type, the same applies to the @nt{prefix}; otherwise, the @nt{prefix} shall be
resolved independently of context.]}

@end{Resolution}

@begin{Legality}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0230-1]}
@ChgAdded{Version=[3],Text=[The Pre or Post aspect shall not be specified for an
abstract subprogram or a null procedure. @Redundant[Only the Pre'Class and
Post'Class aspects may be specified for such a subprogram.]]}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0183-1]}
  @ChgAdded{Version=[3],Text=[Pre'Class and Post'Class can only be specified
  on primitive routines of tagged types, by a blanket rule found in
  @RefSecNum{Aspect Specifications}.]}
@end{Discussion}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0247-1],ARef=[AI05-0254-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[If a type @i<T> has an implicitly
declared subprogram @i<P> inherited from a parent type @i<T1> and
a homograph (see @RefSecNum{Visibility}) of @i<P> from a progenitor type
@i<T2>, and]}

@begin{Itemize}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[the corresponding primitive subprogram @i<P1> of
  type @i<T1> is neither null nor abstract; and]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[the class-wide precondition expression True does
  not apply to @i<P1> (implicitly or explicitly); and]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[there is a class-wide precondition expression that
  applies to the corresponding primitive subprogram @i<P2> of @i<T2> that does
  not fully conform to any class-wide precondition expression that applies to
  @i<P1>,]}
@end{Itemize}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0247-1],ARef=[AI05-0254-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[then:]}

@begin{Itemize}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[If the type @i<T> is abstract, the implicitly
  declared subprogram @i<P> is @i<abstract>.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Otherwise, the subprogram @i<P>
  @i{requires overriding} and shall be overridden with a
  nonabstract subprogram.@PDefn{requires overriding}]}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We use the term "requires overriding" here so that
    this rule is taken into account when calculating visibility in
    @RefSecNum{Visibility}; otherwise we would have a mess when this routine is
    overridden.]}
@end{Discussion}
@end{Itemize}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Such an inherited subprogram would necessarily
    violate the Liskov Substitutability Principle (LSP) if called via a
    dispatching call from an ancestor other than the one that provides the
    called body. In such a case, the class-wide precondition of the actual body
    is stronger than the class-wide precondition of the ancestor. If we did not
    enforce that precondition for the body, the body could be called when the
    precondition it knows about is False @em such "counterfeiting" of
    preconditions has to be avoided. But enforcing the precondition violates
    LSP. We do not want the language to be implicitly creating bodies that
    violate LSP; the programmer can still write an explicit body that calls the
    appropriate parent subprogram. In that case, the violation of LSP is
    explicitly in the code and obvious to code reviewers (both human and
    automated).]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We have to say that the subprogram is abstract for
    an abstract type in this case, so that the next concrete type has to
    override it for the reasons above. Otherwise, inserting an extra level of
    abstract types would eliminate the requirement to override (as there is only
    one declared operation for the concrete type), and that would be bad for the
    reasons given above.]}
@end{Reason}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This requires the set of class-wide preconditions
    that apply to the interface routine to be strictly stronger than those that
    apply to the concrete routine. Since full conformance
    requires each name to denote the same declaration, it is unlikely that
    independently declared preconditions would conform. This rule does allow
    "diamond inheritance" of preconditions, and of course no preconditions at
    all match.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We considered adopting a rule that would allow
    examples where the expressions would conform after all inheritance has been
    applied, but this is complex and is not likely to be common in practice.
    Since the penalty here is just that an explicit overriding is required, the
    complexity is too much.]}
@end{Ramification}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0247-1]}
@ChgAdded{Version=[3],Text=[If a renaming of a subprogram or entry @i<S1>
overrides an inherited subprogram @i<S2>, then the overriding is illegal unless
each class-wide precondition expression that applies to @i<S1> fully conforms to
some class-wide precondition expression that applies to @i<S2> and each
class-wide precondition expression that applies to @i<S2> fully conforms to some
class-wide precondition expression that applies to @i<S1>.]}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Such an overriding subprogram would violate LSP,
    as the precondition of @i<S1> would usually be different (and thus stronger)
    than the one known to a dispatching call through an ancestor routine of @i<S2>.
    This is always OK if the preconditions match, so we always allow that.]}
@end{Reason}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This only applies to primitives of tagged types;
    other routines cannot have class-wide preconditions.]}
@end{Ramification}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0131-1]}
@ChgAdded{Version=[4],Text=[Pre'Class shall not be specified for an overriding
primitive subprogram of a tagged type @i<T> unless the Pre'Class aspect is
specified for the corresponding primitive subprogram of some ancestor of @i<T>.]}

@begin{Reason}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[Any such Pre'Class will have no effect, as it
  will be @key[or]ed with True. As such, it is highly misleading for readers,
  especially for those who are determining the assumptions that can
  be made in the body of the primitive subprogram. Note that in this
  case there is nothing explicit that might indicate that the
  class-wide precondition is ineffective. This rule does not prevent
  explicitly writing an ineffective class-wide precondition (for
  instance, if the parent subprogram has explicitly specified a
  precondition of True).]}
@end{Reason}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0131-1]}
@ChgAdded{Version=[4],Text=[@PDefn{generic contract issue}
In addition to the places where
@LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0113-1],ARef=[AI12-0131-1]}
@ChgAdded{Version=[4],Type=[Leading],Text=[]}@Comment{Conditional Leading}
@ChgAdded{Version=[3],Text=[If a Pre'Class or Post'Class aspect is specified for
a primitive subprogram @Chg{Version=[4],New=[@i<S> ],Old=[]}of a tagged type
@i<T>, @Chg{Version=[4],New=[or such an aspect defaults to True, ],Old=[]}then
@Chg{Version=[4],New=[a corresponding],Old=[the associated]} expression
also applies to the corresponding primitive subprogram
@Chg{Version=[4],New=[@i<S> ],Old=[]}of each descendant of
@i<T>.@Chg{Version=[4],New=[ The @i<corresponding expression> is constructed
from the associated expression as follows:@Defn2{Term=[corresponding expresssion],Sec=[class-wide precondition]}
@Defn2{Term=[corresponding expresssion],Sec=[class-wide postcondition]}],Old=[]}]}

@begin{Ramification}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[A Pre'Class defaults to True only if no class-wide
  preconditions are inherited for the subprogram. The same is true for
  Post'Class.]}
@end{Ramification}

@begin{Reason}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[We have to inherit precondition expressions that
  default to True, so that later overridings don't strengthen the
  precondition (a violation of LSP). We do the same for postconditions
  for consistency.]}
@end{Reason}

@begin{Itemize}
  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0113-1]}
  @ChgAdded{Version=[4],Text=[References to formal parameters of @i<S> (or to
  @i<S> itself) are replaced with references to the corresponding formal
  parameters of the corresponding inherited or overriding subprogram
  @i<S> (or to the corresponding subprogram @i<S> itself).]}

@begin{Reason}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[We have to define the corresponding expression
  this way as overriding routines are only required to be subtype conformant; in
  particular, the parameter names can be different. So we have to talk about
  corresponding parameters without mentioning any names.]}
@end{Reason}
@end{Itemize}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0113-1]}
@ChgAdded{Version=[4],Text=[The primitive subprogram @i<S> is illegal if it is
not abstract and the corresponding expression for a Pre'Class or Post'Class
aspect would be illegal.]}

@begin{Ramification}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[This can happen, for instance, if one of the
  subprograms called in the corresponding expression is abstract. We made the
  rule general so that we don't have to worry about exactly which cases
  can cause this to happen, both now and in the future.]}
@end{Ramification}

@begin{Reason}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[We allow illegal corresponding expressions
  on abstract subprograms as they could never be evaluated, and we need to
  allow such expressions to contain calls to abstract subprograms.]}
@end{Reason}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0262-1],ARef=[AI05-0290-1]}
@ChgAdded{Version=[3],Text=[If performing checks is required by the Pre,
Pre'Class, Post, or Post'Class assertion policies (see
@RefSecNum{Pragmas Assert and Assertion_Policy}) in effect at the point of a
corresponding aspect specification applicable to a given subprogram or entry,
then the respective precondition or postcondition expressions are considered
@i<enabled>.@Defn2{Term=[enabled],Sec=[precondition expression]}@Defn2{Term=[enabled],Sec=[postcondition expression]}]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0290-1]}
  @ChgAdded{Version=[3],Text=[If a class-wide precondition or postcondition
  expression is enabled, it remains enabled when inherited by an overriding
  subprogram, even if the policy
  in effect is Ignore for the inheriting subprogram.]}
@end{Ramification}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0273-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[An @nt{expression} is
@i{potentially unevaluated} if it occurs within:@Defn{potentially unevaluated expression}]}

@begin{Itemize}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[any part of an @nt{if_expression} other than the
  first @nt{condition};]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[a @SynI{dependent_}@nt{expression} of a
  @nt{case_expression};]}

  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],Text=[a @nt{predicate} of a
  @nt{quantified_expression};]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[the right operand of a short-circuit control
  form; or]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[a @nt{membership_choice} other than the first
  of a membership operation.]}
@end{Itemize}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[For @PrefixType{a @nt{prefix} X that
denotes an object of a nonlimited type}, the following attribute is defined:]}
@begin(description)
@ChgNote{For Version=[3], Kind=[AddedNormal].}
@ChgAttribute{Version=[4],Kind=[Revised],ChginAnnex=[T],
  Leading=<F>, Prefix=<X>, AttrName=<Old>, ARef=[AI05-0145-2], ARef=[AI05-0262-1], ARef=[AI05-0273-1], ARef=[AI12-0032-1],
  InitialVersion=[3],Text=[@Chg{Version=[3],New=[@Chg{Version=[4],New=[Each],Old=[For each]}
   X'Old in a postcondition expression that
   is enabled@Chg{Version=[4],New=[ denotes],Old=[,]} a constant
   @Chg{Version=[4],New=[that ],Old=[]}is implicitly
   declared at the beginning of the subprogram
   @Chg{Version=[4],New=[body,],Old=[or]}
   entry@Chg{Version=[4],New=[ body, or accept statement],Old=[]}.@Chg{Version=[4],New=[],Old=[
   The constant is of the type of X and is initialized to the result
   of evaluating X (as an expression) at the point of the constant declaration.
   The value of X'Old in the postcondition expression is the value of this
   constant; the type of X'Old is the type of X. These implicit constant
   declarations occur in an
   arbitrary order.@PDefn2{Term=[arbitrary order],Sec=[allowed]}]}],Old=[]}]}@Comment{End of Annex text here.}

  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0032-1],ARef=[AI12-0159-1]}
  @ChgAdded{Version=[4],Type=[Leading],NoPrefix=[T],Text=[The implicitly declared
  entity denoted by each occurrence of X'Old is declared as follows:]}

  @begin{Itemize}
    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],Type=[Leading],Text=[If X is of an anonymous access
    type defined by an @nt{access_definition} @i<A> then]}
@begin{ChildExample}
@ChgRef{Version=[4],Kind=[Added]}
@ChgAdded{Version=[4],Text=[@i<X'Old> : @key[constant] @i<A> := X;]}
@end{ChildExample}

    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],Type=[Leading],Text=[If X is of a specific tagged type @i<T> then]}
@begin{ChildExample}
@ChgRef{Version=[4],Kind=[Added]}
@ChgAdded{Version=[4],Text=[@examcom<anonymous> : @key[constant] @i<T>'Class := @i<T>'Class(X);
@i<X'Old> : @i<T> @key[renames] @i<T>(@examcom<anonymous>);]}
@end{ChildExample}
    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],NoPrefix=[T],Text=[where the name X'Old denotes
      the object renaming.]}
    @begin{Ramification}
        @ChgRef{Version=[4],Kind=[AddedNormal]}
        @ChgAdded{Version=[4],Text=[This means that the underlying tag associated
          with X'Old is that of X and not that of the nominal type of X.]}
    @end{Ramification}

    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],Type=[Leading],Text=[Otherwise]}
@begin{ChildExample}
@ChgRef{Version=[4],Kind=[Added]}
@ChgAdded{Version=[4],Text=[@i<X'Old> : @key[constant] @i<S> := X;]}
@end{ChildExample}
    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],NoPrefix=[T],Text=[where @i<S> is the nominal subtype
      of X. This includes the case where the type of @i<S> is an anonymous array
      type or a universal type.]}
  @end{Itemize}

  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],NoPrefix=[T],Text=[The nominal subtype of X'Old is as
  implied by the above definitions. The expected type of the prefix of an Old
  attribute is that of the attribute. Similarly, if an Old attribute shall
  resolve to be of some type, then the prefix of the attribute shall resolve to
  be of that type.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2], ARef=[AI05-0262-1], ARef=[AI05-0273-1]}
  @ChgAdded{Version=[3],NoPrefix=[T],Text=[Reference to this attribute is only
  allowed within a postcondition expression. The @nt{prefix} of an Old
  @nt{attribute_reference} shall not contain a Result @nt{attribute_reference},
  nor an Old @nt{attribute_reference}, nor a use of an entity declared within
  the postcondition expression but not within @nt{prefix} itself (for example,
  the loop parameter of an enclosing @nt{quantified_expression}).
  The @nt{prefix} of an Old @nt{attribute_reference} that is
  potentially unevaluated shall statically denote an entity.]}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=<The @nt{prefix} X can be any
  nonlimited object that obeys the syntax for prefix other than the few
  exceptions given above (discussed below). Useful cases are: the @nt{name}
  of a formal parameter of mode [@key[in]] @key[out], the @nt{name} of a global
  variable updated by the subprogram, a function call passing those as
  parameters, a subcomponent of those things, etc.>}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[A qualified expression can be used to make an
  arbitrary expression into a valid prefix, so T'(X + Y)'Old is legal, even
  though (X + Y)'Old is not. The value being saved here is the sum of X and Y (a
  function result is an object). Of course, in this case "+"(X, Y)'Old is also
  legal, but the qualified expression is arguably more readable.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Note that F(X)'Old and F(X'Old) are not
  necessarily equal. The former calls F(X) and saves that value for later use
  during the postcondition. The latter saves the value of X, and during the
  postcondition, passes that saved value to F. In most cases, the former is what
  one wants (but it is not always legal, see below).]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[3],Text=[If X has controlled parts, adjustment and
  finalization are implied by the implicit constant
  declaration.@Chg{Version=[4],New=[ Similarly, the implicit constant
  declaration defines the accessibility level of X'Old.],Old=[]}]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[If postconditions are disabled, we want the
  compiler to avoid any overhead associated with saving 'Old values.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=['Old makes no sense for limited types, because its
  implementation involves copying. It might make semantic sense to allow
  build-in-place, but it's not worth the trouble.]}
@end{Discussion}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0273-1]}
  @ChgAdded{Version=[3],Text=[Since the @nt{prefix} is evaluated unconditionally
  when the subprogram is called, we cannot allow it to include values that do
  not exist at that time (like 'Result and loop parameters of @nt{quantified_expression}s).
  We also do not allow it to include 'Old references, as those would be
  redundant (the entire @nt{prefix} is evaluated when the subprogram is called),
  and allowing them would require some sort of order to the implicit constant
  declarations (because in A(I'Old)'Old, we surely would want the value of
  I'Old evaluated before the A(I'Old) is evaluated).]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0273-1]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[In addition, we only allow simple names as the
  @nt{prefix} of the Old attribute if the @nt{attribute_reference} might not
  be evaluated when the postcondition expression is evaluated. This is necessary because
  the Old @nt{prefix}es have to be unconditionally evaluated when the subprogram
  is called; the compiler cannot in general know whether they will be needed
  in the postcondition expression. To see the problem, consider:]}

@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[Table : @key[array] (1..10) @key[of] Integer := ...
@key[procedure] Bar (I : @key[in out] Natural)
   @key[with] Post => I > 0 @key[and then] Table(I)'Old = 1; -- @Examcom{Illegal}]}
@end{Example}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Trailing],Text=[In this example, the compiler
  cannot know the value of I when the subprogram returns (since the subprogram
  execution can change it), and thus it does not know whether Table(I)'Old will
  be needed then. Thus it has to always create an implicit constant
  and evaluate Table(I) when Bar is called (because not having the value when
  it is needed is not acceptable). But if I = 0 when the subprogram is called,
  that evaluation will raise Constraint_Error, and that will happen even if I
  is unchanged by the subprogram and the value of Table(I)'Old is not ultimately
  needed. It's easy to see how a similar problem could occur for a dereference
  of an access type. This would be mystifying (since the point of the short
  circuit is to eliminate this possibility, but it cannot do so). Therefore, we
  require the @nt{prefix} of any Old attribute in such a context to statically
  denote an object, which eliminates anything that could change at during
  execution.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[It is easy to work around most errors that occur
  because of this rule. Just move the 'Old to the outer object, before any
  indexing, dereferences, or components. (That does not work for function calls,
  however, nor does it work for array indexing if the index can change during
  the execution of the subprogram.)]}
@end{Reason}

@begin{Ramification}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],Type=[Leading],Text=[An accept statement for a task
  entry with enabled postconditions such as]}
@begin{Example}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@ChgAdded{Version=[4],Text=[@key[accept] E @key[do]
   @examcom<statements>
@key[exception]
   @examcom<handlers>
@key[end];]}
@end{Example}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Type=[Leading],Text=[behaves (at runtime) as follows:]}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@begin{Example}
@ChgAdded{Version=[4],Text=[@key[accept] E @key[do]
   @key[declare]
      @examcom<declarations, if any, of 'Old constants>
   @key[begin]
      @key[begin]
         @examcom<statements>
      @key[exception]
         @examcom<handlers>
      @key[end];
      @examcom<postcondition checks>
   @key[end];
@key[end];]}
@end{Example}

  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],Text=[Preconditions are checked by the caller before the
  rendezvous begins. Postcondition expressions might, of course, reference 'Old
  constants.]}

  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],Text=[In the case of a protected operation with
  enabled postconditions, 'Old constant declarations (if any) are
  elaborated after the start of the protected action. Postcondition checks
  (which might reference these constants) are performed before the end of
  the protected action as described below.]}
@end{Ramification}
@end(description)
@EndPrefixType{}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[For @PrefixType{a @nt{prefix} F that
denotes a function declaration}, the following attribute is defined:]}
@begin(description)
@ChgAttribute{Version=[3],Kind=[AddedNormal],ChginAnnex=[T],
  Leading=<F>, Prefix=<F>, AttrName=<Result>, ARef=[AI05-0145-2], ARef=[AI05-0262-1],
  InitialVersion=[3],
  Text=[@Chg{Version=[3],New=[Within a postcondition expression for function F,
  denotes the result object of the function. The type of this attribute is that
  of the function result except within a Post'Class postcondition expression for
  a function with a controlling result or with a controlling access result. For
  a controlling result, the type of the attribute is @i<T>'Class, where @i<T> is
  the function result type. For a controlling access result, the type of the
  attribute is an anonymous access type whose designated type is @i<T>'Class,
  where @i<T> is the designated type of the function result type.],Old=[]}]}@Comment{End of Annex text here.}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0262-1]}
  @ChgAdded{Version=[3],NoPrefix=[T],Text=[Use of this
  attribute is allowed only within a postcondition expression
  for F.]}
@end(description)
@EndPrefixType{}
@end{StaticSem}

@begin{Runtime}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1],ARef=[AI05-0290-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[Upon a call of the subprogram or
entry, after evaluating any actual parameters, precondition checks are performed
as follows:]}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[The specific precondition check begins with the
  evaluation of the specific precondition expression that applies to the
  subprogram or entry, if it is enabled; if the expression evaluates to False,
  Assertions.Assertion_Error is raised; if the expression is not enabled,
  the check succeeds.@Defn2{Term=(Assertion_Error),
  Sec=(raised by failure of run-time check)}@Defn2{Term=[check, language-defined],
  Sec=[controlled by assertion policy]}@Defn2{Term=[precondition check],Sec=[specific]}]}

@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[The class-wide precondition check begins with the
  evaluation of any enabled class-wide precondition expressions that apply
  to the subprogram or entry. If and only if all the class-wide precondition
  expressions evaluate to False, Assertions.Assertion_Error is raised.@Defn2{Term=(Assertion_Error),
  Sec=(raised by failure of run-time check)}@Defn2{Term=[check, language-defined],
  Sec=[controlled by assertion policy]}@Defn2{Term=[precondition check],Sec=[class-wide]}]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[The class-wide precondition expressions of the
    entity itself as well as those of any parent or progenitor operations are
    evaluated, as these expressions apply to the corresponding operations
    of all descendants.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Class-wide precondition checks are performed for
    all appropriate calls, but only enabled precondition expressions are
    evaluated. Thus, the check would be trivial if no precondition expressions
    are enabled.]}
@end{Ramification}
@end{Itemize}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1],ARef=[AI05-0254-1],ARef=[AI05-0269-1]}
@ChgAdded{Version=[3],Text=[The precondition checks are performed in an
arbitrary order,
and if any of the class-wide precondition expressions evaluate to True, it is
not specified whether the other class-wide precondition expressions are
evaluated. The precondition checks and any check for elaboration of the
subprogram body are performed in an arbitrary order. It is not
specified whether in a call on a protected operation, the checks are performed
before or after starting the protected action. For an entry
call, the checks are performed prior to checking whether the entry is open.@PDefn2{Term=(arbitrary order),
  Sec=(allowed)}@PDefn{unspecified}]}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We need to explicitly allow short-circuiting
  of the evaluation of the class-wide precondition check if any expression
  fails, as it consists of multiple expressions; we don't need a similar
  permission for the specific precondition check as it consists only of a
  single expression. Nothing is evaluated for the call after a check fails,
  as the failed check propagates an exception.]}
@end{Reason}


@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1],ARef=[AI05-0254-1],ARef=[AI05-0262-1],ARef=[AI05-0290-1]}
@ChgAdded{Version=[3],Text=[Upon successful return from a call of the subprogram
or entry, prior to copying back any by-copy @key[in out]
or @key[out] parameters, the postcondition check is performed. This consists of
the evaluation of any enabled specific and class-wide postcondition expressions that
apply to the subprogram or entry. If any of the postcondition expressions
evaluate to False, then Assertions.Assertion_Error is raised. The
postcondition expressions are evaluated in an arbitrary order, and if any
postcondition expression evaluates to False, it is not specified whether any
other postcondition expressions are evaluated. The postcondition check, and any
constraint or predicate checks associated with
@key[in out] or @key[out] parameters are performed in
an arbitrary order.@Defn{postcondition check}@Defn2{Term=[check, language-defined],
  Sec=[controlled by assertion policy]}@Defn2{Term=(Assertion_Error),
  Sec=(raised by failure of run-time check)}@PDefn2{Term=(arbitrary order),
  Sec=(allowed)}@PDefn{unspecified}]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[The class-wide postcondition expressions of the
  entity itself as well as those of any parent or progenitor operations are
  evaluated, as these apply to all descendants; in contrast, only the specific
  postcondition of the entity applies. Postconditions can always be evaluated
  inside the invoked body.]}
@end{Ramification}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0032-1]}
@ChgAdded{Version=[4],Text=[For a call to a task entry, the postcondition check
is performed before the end of the rendezvous; for a call to a protected
operation, the postcondition check is performed before the end of the protected
action of the call. The postcondition check for any call is performed before the
finalization of any implicitly-declared constants associated (as described
above) with Old @nt{attribute_reference}s but after the finalization of any
other entities whose accessibility level is that of the execution of the
callable construct.]}
@begin{Reason}
  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],Text=[If a postcondition references the implicitly-declared constant associated
   with an Old attribute, the postcondition must be evaluated before the
   constant is finalized. One way to think of this is to imagine
   declaring a controlled object between any implicit "'Old"
   constant declarations and any explicit declarations, then
   performing postcondition checks during the finalization of
   this object.]}
@end{Reason}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Text=[If a precondition or postcondition check fails, the
exception is raised at the point of the call@Redundant[; the exception cannot
be handled inside the called subprogram or entry]. Similarly, any exception
raised by the evaluation of a precondition or postcondition expression is
raised at the point of call.]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1],ARef=[AI05-0254-1],ARef=[AI05-0262-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0113-1],ARef=[AI12-0159-1]}
@ChgAdded{Version=[3],Text=[For any@Chg{Version=[4],New=[ call to a],Old=[]}
subprogram or entry @Chg{Version=[4],New=[@i<S>],Old=[call]} (including
dispatching calls), the checks
that are performed to verify specific precondition expressions and specific
and class-wide postcondition expressions are determined by those for the subprogram
or entry actually invoked. Note that the class-wide postcondition expressions
verified by the postcondition check that is part of a call on a primitive
subprogram of type @i<T> includes all class-wide postcondition expressions
originating in any progenitor of @i<T>@Redundant[, even if the primitive
subprogram called is inherited from a type @i<T1> and some of the postcondition
expressions do not apply to the corresponding primitive subprogram of
@i<T1>].@Chg{Version=[4],New=[ Any operations within a class-wide
postcondition expression that were resolved as primitive operations of the
(notional) formal derived type @i<NT>, are in the evaluation of the
postcondition bound to the corresponding operations of the type identified
by the controlling tag of the call on @i<S>.@Redundant[ This applies to both
dispatching and non-dispatching calls on @i<S>.]],Old=[]}]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This applies to access-to-subprogram calls,
    dispatching calls, and to statically bound calls. We need this rule to cover
    statically bound calls as well, as specific pre- and postconditions are not
    inherited, but the subprogram might be.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[For concrete subprograms, we require the original
    specific postcondition to be evaluated as well as the inherited class-wide
    postconditions in order that the semantics of an explicitly defined wrapper
    that does nothing but call the original subprogram is the same as that of
    an inherited subprogram.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Note that this rule does not apply to class-wide
    preconditions; they have their own rules mentioned below.]}
@end{Ramification}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1],ARef=[AI05-0254-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0113-1],ARef=[AI12-0159-1]}
@ChgAdded{Version=[3],Text=[The class-wide precondition check for a call to a
subprogram or entry @Chg{Version=[4],New=[@i<S> ],Old=[]}consists solely of
checking the class-wide precondition expressions that apply to the denoted
callable entity (not necessarily @Chg{Version=[4],New=[to ],Old=[]}the one
that is invoked).@Chg{Version=[4],New=[ Any operations within
such an expression that were resolved as primitive operations of the
(notional) formal derived type @i<NT> are in the evaluation of the
precondition bound to the corresponding operations of the type
identified by the controlling tag of the call on @i<S>.@Redundant[ This
applies to both dispatching and non-dispatching calls on @i<S>.]],Old=[]}]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[For a dispatching call, we are talking about the
    Pre'Class(es) that apply to the subprogram that the dispatching call is
    resolving to, not the Pre'Class(es) for the subprogram that is ultimately
    dispatched to. The class-wide precondition of the resolved call is
    necessarily the same or stronger than that of the invoked call. For a
    statically bound call, these are the same; for an access-to-subprogram,
    (which has no class-wide preconditions of its own), we check the
    class-wide preconditions of the invoked routine.]}
@end{Ramification}

@begin{ImplNote}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[These rules imply that logically, class-wide
    preconditions of routines must be checked at the point of call (other
    than for access-to-subprogram calls, which must be checked in the body,
    probably using a wrapper). Specific preconditions that might be called with
    a dispatching call or via an access-to-subprogram value must be checked
    inside of the subprogram body. In contrast, the postcondition checks always
    need to be checked inside the body of the routine. Of course, an
    implementation can evaluate all of these at the point of call for statically
    bound calls if the implementation uses wrappers for dispatching bodies and
    for 'Access values.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[There is no requirement for an implementation
    to generate special code for routines that are imported from outside of
    the Ada program. That's because there is a requirement on the programmer
    that the use of interfacing aspects do not violate Ada semantics (see
    @RefSecNum{Interfacing Aspects}). That includes making pre- and
    postcondition checks. For instance, if the implementation expects routines
    to make their own postcondition checks in the body before returning,
    C code can be assumed to do this
    (even though that is highly unlikely). That's even though the formal
    definition of those checks is that they are evaluated at the call site.
    Note that pre- and postconditions can be very useful for verification
    tools (even if they aren't checked), because they tell the tool about the
    expectations on the foreign code that it most likely cannot analyze.]}
@end{ImplNote}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0247-1],ARef=[AI05-0254-1]}
@ChgAdded{Version=[3],Text=[For a call via an access-to-subprogram value, all
precondition and postcondition checks performed are determined by the subprogram
or entry denoted by the prefix of the Access attribute reference that produced
the value.]}
@end{Runtime}

@begin{Notes}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0262-1]}
  @ChgAdded{Version=[3],Text=[A precondition is checked just before the call. If
  another task can change any value that the precondition expression depends on,
  the precondition need not hold within the subprogram or entry body.]}
@end{Notes}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0145-2],ARef=[AI05-0230-1],ARef=[AI05-0247-1],ARef=[AI05-0254-1],ARef=[AI05-0262-1],ARef=[AI05-0273-1],ARef=[AI05-0274-1]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
  Pre and Post aspects are new.]}
@end{Extend2005}

@begin{Inconsistent2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0032-1]}
  @ChgAdded{Version=[4],Text=[@Defn{inconsistencies with Ada 2012}@b<Corrigendum:>
  The Old attribute is defined more carefully. This changes the nominal subtype
  and place of declaration of the attribute compared to the published Ada 2012
  Standard. In extreme cases, this could change the runtime behavior of the
  attribute (for instance, the tag might be different). The changes are most
  likely going to prevent bugs by being more intuitive, but it is possible that
  a program that previously worked might fail.]}

  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0113-1],ARef=[AI12-0159-1]}
  @ChgAdded{Version=[4],Text=[@b<Corrigendum:> Eliminated unintentional
  redispatching from class-wide preconditions and postconditions. This means
  that a different body might be evaluated for a statically bound call to a
  routine that has a class-wide precondition or postcondition. The change means
  that the behavior of Pre and Pre'Class will be the same for a particular
  subprogram, and that the known behavior of the operations can be assumed
  within the body of that subprogram for Pre'Class. We expect that this change
  will primarily fix bugs, as it will make Pre'Class and Post'Class work more
  like expected. In the case where redispatching is desired, an explicit
  conversion to a class-wide type can be used.]}

@end{Inconsistent2012}

@begin{Incompatible2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0045-1]}
  @ChgAdded{Version=[4],Text=[@Defn{incompatibilities with Ada 2012}@b<Corrigendum:>
  Precondition and postcondition aspects cannot be specified on instances of
  generic subprograms (they should be specified on the generic subprogram
  instead). This was (unintentionally) allowed by the Ada 2012 standard.
  These are not be allowed on instances as there is no corresponding way to add
  preconditions and postconditions to subprograms declared within the instance
  of a generic package. Therefore, allowing specification on a subprogram
  instance could present a maintenance problem in the future if the entity
  needs to be converted to a generic package (a common conversion).]}

  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0131-1]}
  @ChgAdded{Version=[4],Text=[@b<Corrigendum:> Pre'Class is no longer allowed
  to be specified for an overriding primitive subprogram unless there are
  also inherited class-wide precondittions. This incompatibility prevents
  cases where the explicit Pre'Class is counterfeited by an implicit
  class-wide precondition of True. This rule should catch more bugs than it
  creates; the programmer should have written Pre rather than Pre'Class in
  this case (or written Pre'Class on the original subprogram, not
  an overriding). Note that this incompatibility eliminates what otherwise
  would be an inconsistency with original Ada 2012, where precondition checks
  that would have previously been made for a statically bound call would no
  longer be made. That dynamic change was necessary to eliminate cases where
  the evaluated class-wide precondition on a dispatching call would have been
  weaker than the class-wide precondition of a statically bound call. (The
  original Ada 2012 violated the LSP semantics that class-wide preconditions
  were intended to model.]}
@end{Incompatible2012}


@NotISORMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledClause{Formal Parameter Modes}

@begin{Intro}
@Redundant[A @nt{parameter_specification} declares a formal parameter of
mode @key[in], @key[in out], or @key[out].]
@end{Intro}

@begin{StaticSem}
@Defn{pass by copy}
@Defn{by copy parameter passing}
@Defn{copy parameter passing}
@Defn{pass by reference}
@Defn{by reference parameter passing}
@Defn{reference parameter passing}
A parameter is passed either @i{by copy} or @i{by reference}.
@Redundant[When a parameter is passed by copy,
the formal parameter denotes a separate object from the
actual parameter, and any information transfer between the two occurs
only before and after executing the subprogram.
When a parameter is passed by reference,
the formal parameter denotes (a view of) the object denoted by the
actual parameter; reads and updates of the formal parameter directly
reference the actual parameter object.]

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0142-4],ARef=[AI05-0262-1]}
@Defn{by-copy type}
A type is a @i(by-copy type) if it is an elementary type,
or if it is a descendant of a private type whose full type is a
by-copy type. A parameter of a by-copy type is passed by
copy@Chg{Version=[3],New=[, unless the
formal parameter is explicitly aliased],Old=[]}.

@leading@keepnext@Defn{by-reference type}
A type is a @i(by-reference type) if it
is a descendant of one of the following:
@begin(itemize)
  a tagged type;

  a task or protected type;

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0096-1]}
  @Chg{Version=[3],New=[an explicitly limited record type],Old=[a
  nonprivate type with the reserved word @key[limited] in its declaration]};
@begin{Ramification}
@ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0096-1]}
  @ChgDeleted{Version=[3],Text=[A limited private type is by-reference
  only if it falls under one of the other categories.]}
@end{Ramification}

  a composite type with a subcomponent of a by-reference type;

  a private type
  whose full type is a by-reference type.
@end(itemize)

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0142-4],ARef=[AI05-0188-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0027-1]}
A parameter of a by-reference type is passed by reference@Chg{Version=[3],New=[, as is an explicitly aliased parameter
of any type],Old=[]}.
@Defn2{Term=[associated object], Sec=(of a value of a by-reference type)}
Each value of a by-reference type has an associated object.
For a parenthesized expression, @nt{qualified_expression},
or @Chg{Version=[4],New=[view conversion],Old=[@nt{type_conversion}]}, this
object is the one associated with the operand.@Chg{Version=[4],New=[ For a value
conversion, the associated object is the anonymous result object if such an
object is created (see @RefSecNum{Type Conversions}); otherwise it is the
associated object of the operand.],Old=[]}@Chg{Version=[3],New=[ For a
@nt{conditional_expression}, this object is the one associated with the
evaluated @Syni{dependent_}@nt{expression}.],Old=[]}

@begin{Ramification}
By-reference parameter passing makes sense only if there is an
object to reference; hence, we define such an object for each
case.

Since tagged types are by-reference types, this implies that every value
of a tagged type has an associated object. This simplifies things,
because we can define the tag to be a property of the object, and not of
the value of the object, which makes it clearer that object tags never
change.

We considered simplifying things even more by making every value (and
therefore every expression) have an associated object. After all,
there is little semantic difference between a constant object and a
value.
However, this would cause problems for untagged types.
In particular, we would have to do a constraint check on every read of a
type conversion (or a renaming thereof) in certain cases.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
We do not want this definition to depend on the view of the type;
privateness is essentially ignored for this definition.
Otherwise, things would be confusing (does the rule apply at the call
site, at the site of the declaration of the subprogram,
at the site of the
@Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]}?),
and requiring different calls to use different mechanisms would be an
implementation burden.

@RefSec{Shared Variable Control} says that a composite type with an
atomic or volatile subcomponent is a by-reference type,
among other things.

@Defn2{Term=[associated object], Sec=(of a value of a limited type)}
Every value of a limited by-reference type is the value of
one and only one limited object.
The @i{associated object} of a value of a limited by-reference type is
the object whose value it represents.
@Defn2{Term=[same value], Sec=(for a limited type)}
Two values of a limited by-reference type are the @i{same}
if and only if they represent the value of the same object.

We say @lquotes@;by-reference@rquotes@; above because
these statements are not always true for limited private types
whose underlying type is nonlimited (unfortunately).
@end{Ramification}

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0240-1]}
@PDefn{unspecified}
For @Chg{Version=[3],New=[other ],Old=[]}parameters@Chg{Version=[3],New=[],Old=[ of other types]},
it is unspecified whether the parameter
is passed by copy or by reference.
@begin{Discussion}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0005-1]}
  There is no need to incorporate the discussion of AI83-00178,
  which requires pass-by-copy for certain kinds of actual parameters,
  while allowing pass-by-reference for others.
  This is because we explicitly indicate that a function
  creates an anonymous constant object for its result@Chg{Version=[3],New=[],Old=[,
  unless the type is a return-by-reference type]}
  (see @RefSecNum{Return Statements}).
  We also provide a special dispensation for
  instances of Unchecked_Conversion to return by reference@Chg{Version=[3],New=[],Old=[, even
  if the result type is not a return-by-reference type]}
  (see @RefSecNum{Unchecked Type Conversions}).
@end{Discussion}
@end{StaticSem}

@begin{Bounded}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0240-1]}
@Defn{distinct access paths}
@Defn2{Term=[access paths],Sec=(distinct)}
@IndexSee{Term=[aliasing],See=(distinct access paths)}
@PDefn2{Term=(bounded error),Sec=(cause)}
If one @nt<name> denotes a part of a formal parameter,
and a second @nt<name> denotes a part of
a distinct formal parameter or an object that is not
part of a formal parameter, then the two @nt<name>s are
considered @i(distinct access paths).
If an object is of a type for which the parameter passing
mechanism is not specified@Chg{Version=[3],New=[ and is not an
explicitly aliased parameter],Old=[]}, then it is a bounded error to
assign to the object via one access path,
and then read the value of the object via a distinct access path,
unless the first access path denotes a part of a formal parameter that
no longer exists at the point of the second access
@Redundant[(due to leaving the corresponding callable construct).]
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
The possible consequences are that Program_Error is raised,
or the newly assigned value is read, or some old value of the object is read.
@begin{Discussion}
For example, if we call @lquotes@;P(X => Global_Variable, Y => Global_Variable)@rquotes@;,
then within P, the names @lquotes@;X@rquotes@;, @lquotes@;Y@rquotes@;, and @lquotes@;Global_Variable@rquotes@;
are all distinct access paths.
If Global_Variable's type is neither pass-by-copy nor pass-by-reference,
then it is a bounded error to assign to Global_Variable and
then read X or Y, since the language does not specify whether the
old or the new value would be read. On the other hand, if
Global_Variable's type is pass-by-copy, then the old value would
always be read, and there is no error. Similarly, if Global_Variable's
type is defined by the language to be pass-by-reference, then the
new value would always be read, and again there is no error.
@end{Discussion}
@begin{Reason}
We are saying @i(assign) here, not @i(update),
because updating any subcomponent is considered
to update the enclosing object.

The @lquotes@;still exists@rquotes@; part is so that a read after the subprogram returns
is OK.

If the parameter is of a by-copy type,
then there is no issue here
@em the formal is not a view of the actual.
If the parameter is of a by-reference type,
then the programmer may depend on updates through one access path
being visible through some other access path,
just as if the parameter were of an access type.
@end{Reason}
@begin{ImplNote}
The implementation can keep a copy in a register of a parameter
whose parameter-passing mechanism is not specified.
If a different access path is used to update the object (creating
a bounded error situation),
then the implementation can still use the value of the register,
even though the in-memory version of the object has been changed.
However, to keep the error properly bounded,
if the implementation chooses to read the in-memory version,
it has to be consistent -- it cannot then assume that something it has
proven about the register is true of the memory location.
For example, suppose the formal parameter is L,
the value of L(6) is now in a register, and L(6) is used
in an @nt{indexed_component} as in @lquotes@;A(L(6)) := 99;@rquotes@;,
where A has bounds 1..3.
If the implementation can prove that the value for L(6) in the register is in
the range 1..3, then it need not perform the constraint check if it
uses the register value.
However, if the memory value of L(6) has been changed to 4,
and the implementation uses that memory value,
then it had better not alter memory outside of A.

Note that the rule allows the implementation to pass a parameter by
reference and then keep just part of it in a register, or,
equivalently, to pass part of the parameter by reference and another
part by copy.
@end{ImplNote}
@begin{Reason}
@leading@;We do not want to go so far as to say that the mere presence
of aliasing is wrong.
We wish to be able to write the following sorts of things
in standard Ada:
@begin{Example}
@key[procedure] Move ( Source  : @key[in]  String;
                 Target  : @key[out] String;
                 Drop    : @key[in]  Truncation := Error;
                 Justify : @key[in]  Alignment  := Left;
                 Pad     : @key[in]  Character  := Space);
--@RI{ Copies elements from Source to Target (safely if they overlap)}
@end{Example}

This is from the standard string handling package.
It would be embarrassing if this couldn't be written in Ada!

The @lquotes@;then@rquotes@; before @lquotes@;read@rquotes@; in the rule implies that the implementation
can move a read to an earlier place in the code, but not to a later
place after a potentially aliased assignment.
Thus, if the subprogram reads one of its parameters into a local
variable, and then updates another potentially aliased one,
the local copy is safe @em it is known to have the old value.
For example, the above-mentioned Move subprogram can be implemented
by copying Source into a local variable before assigning into Target.

@leading@;For an @nt{assignment_statement} assigning one array parameter to another,
the implementation has to check which direction to copy
at run time, in general, in case the actual parameters are
overlapping slices.
For example:
@begin{Example}
@key[procedure] Copy(X : @key[in out] String; Y: String) @key[is]
@key[begin]
    X := Y;
@key[end] Copy;
@end{Example}

It would be wrong for the compiler to assume that X and Y
do not overlap (unless, of course, it can prove otherwise).
@end{Reason}
@end{Bounded}

@begin{Notes}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0056-1]}
@ChgAdded{Version=[4],Text=[The mode of a formal parameter describes the
direction of information transfer to or from the @nt{subprogram_body} (see
@RefSecNum{Subprogram Declarations}).]}

A formal parameter of mode @key(in) is a constant
view (see @RefSecNum{Objects and Named Numbers});
it cannot be updated within the @nt{subprogram_body}.

@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0056-1]}
@ChgAdded{Version=[4],Text=[A formal parameter of mode @key(out)
might be uninitialized at the start of the @nt{subprogram_body} (see
@RefSecNum{Parameter Associations}).]}
@end{Notes}

@begin{Extend83}
@Defn{extensions to Ada 83}
The value of an @key(out) parameter may be read.
An @key(out) parameter is treated like a declared
variable without an explicit initial expression.
@end{Extend83}

@begin{DiffWord83}
Discussion of copy-in for parts of out parameters is now
covered in @RefSec{Parameter Associations}.

The concept of a by-reference type is new to Ada 95.

We now cover in a general way in @RefSecNum{Operations of Discriminated Types}
the rule regarding erroneous execution when a discriminant
is changed and one of the parameters depends on the discriminant.
@end{DiffWord83}

@begin{DiffWord2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0096-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Corrected so that
  limited derived types are by-reference only if their parent is.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0142-4]}
  @ChgAdded{Version=[3],Text=[Defined that explicitly aliased parameters
  (see @RefSecNum{Subprogram Declarations}) are always passed by reference.]}
@end{DiffWord2005}

@begin{DiffWord2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI05-0027-1]}
  @ChgAdded{Version=[4],Text=[@b<Corrigendum:> Corrected so that
  value conversions that are copies are the @ldquote@;associated object@rdquote
  for parameter passing of by-reference types. This can only happen if the
  conversion is between unrelated non-limited types, and it is necessary just
  so the correct object is defined.]}
@end{DiffWord2012}


@NotISORMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledClause{Subprogram Bodies}

@begin{Intro}
@Redundant[A @nt{subprogram_body} specifies the execution of a
subprogram.]
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00218-03]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0183-1]}
@Syn{lhs=<subprogram_body>,rhs="@Chg{Version=[2],New=<
    [@Syn2{overriding_indicator}]>,Old=<>}
    @Syn2{subprogram_specification}@Chg{Version=[3],New=<
       [@Syn2{aspect_specification}]>,Old=[]} @key{is}
       @Syn2{declarative_part}
    @key{begin}
        @Syn2{handled_sequence_of_statements}
    @key{end} [@Syn2{designator}];"}

@begin{SyntaxText}
If a @nt{designator} appears at the end of a @nt{subprogram_body},
it shall repeat the @nt{defining_designator} of the @nt{subprogram_specification}.
@end{SyntaxText}
@end{Syntax}

@begin{Legality}
@Redundant[In contrast to other bodies,]
a @nt{subprogram_body} need not be the completion of a previous
declaration@Redundant[,
in which case the body declares the subprogram].
If the body is a completion, it shall be the completion of a
@nt{subprogram_declaration} or @nt{generic_subprogram_declaration}.
The profile of a @nt{subprogram_body} that completes a declaration
shall conform fully to that of the declaration.
@Defn2{Term=[full conformance],Sec=(required)}
@end{Legality}

@begin{StaticSem}
A @nt{subprogram_body} is considered a declaration.
It can either complete a previous declaration,
or itself be the initial declaration of the subprogram.
@end{StaticSem}

@begin{RunTime}
@PDefn2{Term=[elaboration], Sec=(nongeneric subprogram_body)}
The elaboration of a nongeneric
@nt{subprogram_body} has no other effect than to establish
that the subprogram can from then on be called without
failing the Elaboration_Check.
@begin{Ramification}
See @RefSecNum{Generic Bodies} for elaboration of a generic body.
Note that protected @ntf{subprogram_bodies} never get elaborated;
the elaboration of the containing @nt{protected_body}
allows them to be called without failing the Elaboration_Check.
@end{Ramification}

@PDefn2{Term=[execution], Sec=(subprogram_body)}
@Redundant[The execution of a @nt{subprogram_body} is invoked by a
subprogram call.]
For this execution the @nt{declarative_part} is elaborated, and the
@nt{handled_sequence_of_statements} is then executed.
@end{RunTime}

@begin{Examples}
@leading@keepnext@i{Example of procedure body:}
@begin{Example}
@key[procedure] Push(E : @key[in] Element_Type; S : @key[in] @key[out] Stack) @key[is]
@key[begin]
   @key[if] S.Index = S.Size @key[then]
      @key[raise] Stack_Overflow;
   @key[else]
      S.Index := S.Index + 1;
      S.Space(S.Index) := E;
   @key[end] @key[if];
@key[end] Push;
@end{Example}

@begin{WideAbove}
@leading@keepnext@i{Example of a function body:}
@end{WideAbove}
@begin{Example}
@key[function] Dot_Product(Left, Right : Vector) @key[return] Real @key[is]
   Sum : Real := 0.0;
@key[begin]
   Check(Left'First = Right'First @key[and] Left'Last = Right'Last);
   @key[for] J @key[in] Left'Range @key[loop]
      Sum := Sum + Left(J)*Right(J);
   @key[end] @key[loop];
   @key[return] Sum;
@key[end] Dot_Product;
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
A @nt{renaming_declaration} may be used instead of a @nt{subprogram_body}.
@end{Extend83}

@begin{DiffWord83}
The syntax rule for @nt{subprogram_body} now uses the syntactic category
@nt{handled_sequence_of_statements}.

The @nt{declarative_part} of a @nt{subprogram_body} is now required;
that doesn't make any real difference,
because a @nt{declarative_part} can be empty.

We have incorporated some rules from RM83-6.5 here.

RM83 forgot to restrict the definition of elaboration of a
@nt{subprogram_body} to nongenerics.
@end{DiffWord83}

@begin{DiffWord95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00218-03]}
@ChgAdded{Version=[2],Text=[@nt{Overriding_indicator} is added to
@nt{subprogram_body}.]}
@end{DiffWord95}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0183-1]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}An optional
  @nt{aspect_specification} can be used in a @nt{subprogram_body}.
  This is described in @RefSecNum{Aspect Specifications}.]}
@end{Extend2005}



@LabeledSubClause{Conformance Rules}

@begin{Intro}
@Defn{conformance}
@SeeAlso{Primary=[conformance],Other=(type conformance)}
@SeeAlso{Primary=[conformance],Other=(mode conformance)}
@SeeAlso{Primary=[conformance],Other=(subtype conformance)}
@SeeAlso{Primary=[conformance],Other=(full conformance)}
@Redundant[When subprogram profiles are given in more than one place,
they are required to conform in one of four ways: type conformance, mode
conformance, subtype conformance, or full conformance.]
@end{Intro}

@begin{StaticSem}
@ChgRef{Version=[1],Kind=[Revised],Ref=[8652/0011],ARef=[AI95-00117-01]}
@leading@Defn{convention}
@Defn{calling convention}
@Redundant[As explained in @RefSec{Interfacing Aspects},
a @i{convention} can be specified for an entity.]
@Chg{New=[Unless this International Standard states otherwise, the default
convention of an entity is Ada.],Old=[]}
@Redundant[For a callable entity or access-to-subprogram type,
the convention is called the @i{calling convention}.]
The following conventions are defined by the language:
@begin{Itemize}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
@Defn{Ada calling convention}
@Defn2{Term=[calling convention], Sec=(Ada)}
The default calling convention for any subprogram not listed below is
@i{Ada}.
@Redundant[@Chg{Version=[3],New=[The],Old=[A @nt{pragma}]}
Convention@Chg{Version=[3],New=[ aspect],Old=[, Import, or Export]}
may be @Chg{Version=[3],New=[specified],Old=[used]} to override
the default calling convention (see @RefSecNum{Interfacing Aspects})].
@begin{Ramification}
See also the rule about renamings-as-body
in @RefSecNum{Subprogram Renaming Declarations}.
@end{Ramification}

@leading@Defn{Intrinsic calling convention}
@Defn2{Term=[calling convention], Sec=(Intrinsic)}
The @i{Intrinsic} calling convention represents
subprograms that are @lquotes@;built in@rquotes@; to the compiler.
The default calling convention is Intrinsic for the following:
@begin{InnerItemize}
  an enumeration literal;

  a "/=" operator declared implicitly due to
  the declaration of "=" (see @RefSecNum{Overloading of Operators});

  any other implicitly declared subprogram unless it is
  a dispatching operation of a tagged type;

  an inherited subprogram of a generic formal tagged type
  with unknown discriminants;
@begin{Reason}
@Comment{8652/0011 suggests that the reason for this rule be documented in
         the AARM.}
@ChgRef{Version=[1],Kind=[Added]}
@Chg{New=[Consider:],Old=[]}
@begin{Example}
@ChgRef{Version=[1],Kind=[Added]}
@Chg{New=[@key[package] P @key[is]
    @key[type] Root @key[is tagged null record];
    @key[procedure] Proc(X: Root);
@key[end] P;],Old=[]}

@ChgRef{Version=[1],Kind=[Added]}
@Chg{New=[@key[generic]
    @key[type] Formal(<>) @key[is new] Root @key[with private];
@key[package] G @key[is]
    ...
@key[end] G;],Old=[]}

@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Text=[@key[package body] G @key[is]
    ...
    X: Formal := ...;
    ...
    Proc(X); -- @RI[This is a dispatching call in Instance, because]
             -- @RI[the actual type for Formal is class-wide.]
    ...
    -- @RI[Proc'Access would be illegal here, because it is of]
    -- @RI[convention Intrinsic, by the above rule.]
@key[end] G;]}

@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Text=[@key[type] Actual @key[is new] Root @key[with] ...;
@key[procedure] Proc(X: Actual);
@key[package] Instance @key[is new] G(Formal => Actual'Class);
    -- @RI[It is legal to pass in a class-wide actual, because Formal]
    -- @RI[has unknown discriminants.]]}
@end{Example}

@ChgRef{Version=[1],Kind=[Added]}
@Chg{New=[Within Instance, all calls to Proc will be dispatching calls, so Proc doesn't
really exist in machine code, so we wish to avoid taking 'Access of it.
This rule applies to those cases where the actual type might be class-wide,
and makes these Intrinsic, thus forbidding 'Access.],Old=[]}
@end{Reason}


  an attribute that is a subprogram;

  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00252-01]}
  a subprogram declared immediately
  within a @nt{protected_body}@Chg{Version=[2],New=[;],Old=[.]}

  @ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00252-01],ARef=[AI95-00407-01]}
  @ChgRef{Version=[4],Kind=[RevisedAdded],ARef=[AI12-0107-1]}
  @ChgAdded{Version=[2],Text=[any prefixed view of a subprogram (see
  @RefSecNum{Selected Components})@Chg{Version=[4],New=[ without
    synchronization kind (see @RefSecNum{Intertask Communication}) By_Entry or
    By_Protected_Procedure],Old=[]}.]}
  @begin{Reason}
    @ChgRef{Version=[2],Kind=[AddedNormal]}
    @ChgAdded{Version=[2],Text=[The profile of a prefixed view is
    different than the @lquotes@;real@rquotes profile of the subprogram
    (it doesn't have the first parameter), so we don't want to be able
    to take 'Access of it, as that would require generating a wrapper of
    some sort.]}

    @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0107-1]}
    @ChgAdded{Version=[4],Text=[We except prefixed views that have
    synchronization kind By_Protected_Procedure so that they can be used
    with an access-to-protected-procedure type. These don't require special
    wrappers (this is the normal form for a protected subprogram call). The
    By_Entry part is just for consistency (there is no access-to-entry type
    in Ada).]}
  @end{Reason}

@end{InnerItemize}

@NoPrefix@Redundant[The Access attribute is not allowed
for Intrinsic subprograms.]
@begin{Ramification}
  The Intrinsic calling convention really represents any number of
  calling conventions at the machine code level;
  the compiler might have a different instruction sequence for
  each intrinsic.
  That's why the Access attribute is disallowed.
  We do not wish to require the implementation to generate
  an out of line body for an intrinsic.

  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
  Whenever we wish to disallow the Access attribute in order to ease
  implementation, we make the subprogram Intrinsic.
  Several language-defined subprograms have
  @lquotes@;@Chg{Version=[3],New=[@key[with]],Old=[@key[pragma]]}
  Convention@Chg{Version=[3],New=[ => ],Old=[(]}Intrinsic@Chg{Version=[3],New=[],Old=[, ...)]};@rquotes@;.
  An implementation might actually implement this
  as @lquotes@;@Chg{Version=[3],New=[@key[with]],Old=[@key[pragma]]}
  Import@Chg{Version=[3],New=[ => True, Convention
  => ],Old=[(]}Intrinsic@Chg{Version=[3],New=[],Old=[, ...)]};@rquotes@;,
  if there is really no body, and the implementation of the subprogram
  is built into the code generator.

  Subprograms declared in @ntf{protected_bodies} will generally have a
  special calling
  convention so as to pass along the identification of the
  current instance of the protected type.
  The convention is not @i(protected) since such local subprograms
  need not contain any @lquotes@;locking@rquotes@; logic since they are
  not callable via @lquotes@;external@rquotes@; calls;
  this rule prevents an access value designating such a subprogram
  from being passed outside the protected unit.

  The @lquotes@;implicitly declared subprogram@rquotes@; above refers to
  predefined operators (other than the "=" of a tagged type) and
  the inherited subprograms of
  untagged types.
@end{Ramification}

@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0107-1],ARef=[AI12-0159-1]}
@Defn{protected calling convention}
@Defn2{Term=[calling convention], Sec=(protected)}
The default calling convention is @i{protected}
for a protected subprogram,@Chg{Version=[4],New=[ for a
prefixed view of a subprogram with a synchronization kind of
By_Protected_Procedure,],Old=[]}
and for an access-to-subprogram type with
the reserved word @key(protected) in its definition.

@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0107-1],ARef=[AI12-0159-1]}
@Defn{entry calling convention}
@Defn2{Term=[calling convention], Sec=(entry)}
The default calling convention is @i{entry} for an
entry@Chg{Version=[4],New=[ and for a prefixed view
of a subprogram with a synchronization kind of By_Entry],Old=[]}.

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00254-01],ARef=[AI95-00409-01]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0264-1]}
@ChgAdded{Version=[2],Text=[The calling convention for an
anonymous access-to-subprogram parameter
or anonymous access-to-subprogram result is @i<protected> if the reserved
word @key{protected} appears in its definition@Chg{Version=[3],New=[;],Old=[ and]}
otherwise@Chg{Version=[3],New=[, it],Old=[]} is the convention
of the subprogram that contains the parameter.]}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The calling convention for other
  anonymous access-to-subprogram types is Ada.]}
@end{Ramification}

@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0011],ARef=[AI95-00117-01]}
@Chg{Version=[1],New=[@Redundant[If not specified above as Intrinsic, the calling convention for any
inherited or overriding dispatching operation of a tagged type is that of the
corresponding subprogram of the parent type.] The default calling convention
for a new dispatching operation of a tagged type is the convention of the type.],
Old=[]}
@begin{Reason}
@ChgRef{Version=[1],Kind=[Added]}
@ChgAdded{Version=[1],Text=[The first rule is officially stated in
@RefSecNum(Dispatching Operations of Tagged Types). The second is intended
to make interfacing to foreign OOP languages easier, by making the default
be that the type and operations all have the same convention.]}
@end{Reason}
@end{Itemize}

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
Of these four conventions, only Ada and Intrinsic are
allowed as a @SynI{convention_}@nt{identifier}
in @Chg{Version=[3],New=[the specification of a],Old=[a @nt{pragma}]}
Convention@Chg{Version=[3],New=[ aspect],Old=[, Import, or Export]}.
@begin{Discussion}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
  The names of the @i{protected} and @i{entry} calling conventions
  cannot be used in the @Chg{Version=[3],New=[specification of Convention],
  Old=[interfacing pragmas]}.
  Note that @key[protected] and @key[entry] are reserved words.
@end{Discussion}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00409-01]}
@Defn{type conformance}
@Defn2{Term=[profile],Sec=(type conformant)}
Two profiles
are @i{type conformant} if they have the same number of parameters,
and both have a result if either does, and corresponding
parameter and result types are the same,
or, for access parameters@Chg{Version=[2],New=[ or access results],Old=[]},
corresponding designated types are the same@Chg{Version=[2],New=[, or
corresponding designated profiles are type conformant],Old=[]}.
@IndexSee{Term=[type profile],See=(profile, type conformant)}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00409-01]}
For @Chg{Version=[2],New=[anonymous access-to-object],Old=[access]}
parameters, the designated types have to be the same for type
conformance, not the access types,
since in general each access parameter has its own anonymous access
type, created when the subprogram is called.
Of course, corresponding parameters have to be either both access
parameters or both not access parameters.

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00409-01]}
@ChgAdded{Version=[2],Text=[Similarly, for anonymous access-to-subprogram
parameters, the designated profiles of the types, not the types themselves,
have to be conformant.]}
@end{Discussion}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02],ARef=[AI95-00409-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0142-4]}
@ChgAdded{Version=[3],Type=[Leading],Text=[]}@Comment{Dummy for conditional leading.}
@Defn{mode conformance}
@Defn2{Term=[profile],Sec=(mode conformant)}
Two profiles are @i{mode conformant} if@Chg{Version=[3],New=[:],Old=[ they are
type-conformant, and
corresponding parameters have identical
modes, and, for access
parameters@Chg{Version=[2],New=[ or access result types],Old=[]}, the
designated subtypes statically match@Chg{Version=[2],New=[, or the
designated profiles are subtype conformant.],Old=[]}
@PDefn2{Term=[statically matching],Sec=(required)}]}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0142-4],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Text=[they are type conformant; and]}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0142-4]}
@ChgAdded{Version=[3],Text=[corresponding parameters have identical modes and
both or neither are explicitly aliased parameters; and]}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0207-1]}
@ChgAdded{Version=[3],Text=[for corresponding access parameters and any access
result type, the designated subtypes statically match and either both or neither
are access-to-constant, or the designated profiles are subtype conformant.
@PDefn2{Term=[statically matching],Sec=(required)}]}
@end{Itemize}

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0239-1]}
@Defn{subtype conformance}
@Defn2{Term=[profile],Sec=(subtype conformant)}
Two profiles are @i{subtype conformant} if they are
@Chg{Version=[3],New=[mode conformant],Old=[mode-conformant]},
corresponding subtypes of the profile statically match,
and the associated calling conventions are the same.
The profile of a generic formal subprogram is not
@Chg{Version=[3],New=[subtype conformant],Old=[subtype-conformant]}
with any other profile.
@PDefn2{Term=[statically matching],Sec=(required)}

@begin{Ramification}
@PDefn{generic contract issue}
@end{Ramification}

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0134-1],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[]}@Comment{Dummy for conditional leading.}
@Defn2{Term=[full conformance], Sec=(for profiles)}
@Defn2{Term=[profile],Sec=(fully conformant)}
Two profiles are @i{fully conformant} if they
are @Chg{Version=[3],New=[subtype conformant],Old=[subtype-conformant]},
@Chg{Version=[3],New=[if they have
access-to-subprogram results whose designated profiles are fully
conformant, ],Old=[]}and @Chg{Version=[3],New=[for ],Old=[]}
corresponding parameters@Chg{Version=[3],New=[:],
Old=[ have the same names and have @nt<default_expression>s
that are fully conformant with one another.]}
@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Text=[they have the same names; and]}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0046-1]}
@ChgAdded{Version=[3],Text=[both or neither have @nt{null_exclusion}s; and]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[neither have @nt{default_expression}s, or they both
have @nt{default_expression}s that are fully conformant with one another; and]}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0134-1]}
@ChgAdded{Version=[3],Text=[for access-to-subprogram parameters, the designated
profiles are fully conformant.]}
@end{Itemize}
@begin{Ramification}
Full conformance requires subtype conformance,
which requires the same calling conventions.
However, the calling convention of the declaration and body of a
subprogram or entry are always the same by definition.
@end{Ramification}
@begin{Reason}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0046-1]}
@ChgAdded{Version=[3],Text=[The part about @nt{null_exclusion}s is
  necessary to prevent controlling parameters from having different
  exclusions, as such a parameter is defined to exclude
  null whether or not an exclusion is given.]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0134-1]}
@ChgAdded{Version=[3],Text=[The parts about access-to-subprogram parameters
  and results is necessary to prevent such types from having different
  @nt{default_expression}s in the specification and body of a subprogram.
  If that was allowed, it would be undefined which @nt{default_expression}
  was used in a call of an access-to-subprogram parameter.]}
@end{Reason}

@leading@Defn2{Term=[full conformance], Sec=(for expressions)}
Two expressions are @i(fully conformant) if,
@Redundant[after replacing each use of an operator with the equivalent
@nt{function_call}:]
@begin{Itemize}
each constituent construct of one corresponds to an instance of the
same syntactic category in the other,
except that an expanded name may correspond
to a @nt{direct_name}
(or @nt{character_literal})
or to a different expanded name in the other; and

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0050-1]}
@ChgAdded{Version=[4],Text=[corresponding @nt{defining_identifier}s occurring
within the two expressions are the same; and]}

@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0050-1]}
each @nt{direct_name}, @nt{character_literal}, and @nt{selector_name}
that is not part of the @nt{prefix} of an expanded name in one
denotes the same declaration as the corresponding
@nt{direct_name}, @nt{character_literal},
or @nt{selector_name} in the other@Chg{Version=[4],New=[, or they denote
corresponding declarations occurring within the two expressions],Old=[]}; and
@begin{Ramification}
Note that it doesn't say @lquotes@;respectively@rquotes@;
because a @nt{direct_name} can correspond to a @nt{selector_name},
and vice-versa, by the previous bullet.
This rule allows the @nt{prefix} of an expanded name to be removed,
or replaced with a different @nt{prefix} that denotes a renaming of the
same entity.
However, it does not allow a @nt{direct_name} or @nt{selector_name} to
be replaced with one denoting a distinct renaming
(except for @nt{direct_name}s and @nt{selector_name}s in @nt{prefix}es
of expanded names).
Note that calls using operator notation
are equivalent to calls using prefix notation.

@leading@keepnext@;Given the following declarations:
@begin{Example}
@key[package] A @key[is]
    @key[function] F(X : Integer := 1) @key[return] Boolean;
@key[end] A;

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0005-1]}
@key[with] A;
@key[package] B @key[is]
    @key[package] A_View @key[renames] A;
    @key[function] F_View(X : Integer := 9999) @key[return] Boolean @key[renames] @Chg{Version=[3],New=[A.F],Old=[F]};
@key[end] B;

@key[with] A, B; @key[use] A, B;
@key[procedure] Main @key[is] ...
@end{Example}

Within Main, the expressions @lquotes@;F@rquotes@;, @lquotes@;A.F@rquotes@;, @lquotes@;B.A_View.F@rquotes@;,
and @lquotes@;A_View.F@rquotes@; are all fully conformant with one another.
However, @lquotes@;F@rquotes@; and @lquotes@;F_View@rquotes@; are not fully conformant.
If they were, it would be bad news, since the two denoted views have
different @nt{default_expression}s.
@end{Ramification}
@begin{Discussion}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0050-1]}
  @ChgAdded{Version=[4],Text=[We talk about @nt{defining_identifier}s and
  "corresponding declarations" because of the possibility of
  @nt{iterator_specification}s occurring within the expressions; each
  @nt{iterator_specification} is a separate declaration, which we need to
  allow, but we do want to require that the @nt{defining_identifier}s are
  the same.]}
@end{Discussion}

@ChgRef{Version=[1],Kind=[Added],Ref=[8652/0018],ARef=[AI95-00175-01]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0092-1]}
@ChgAdded{Version=[1],Text=[each @nt{attribute_designator} in one
@Chg{Version=[3],New=[is],Old=[must be]} the same as the
corresponding @nt{attribute_designator} in the other; and]}

each @nt{primary} that is a literal in one
has the same value as the corresponding literal in the other.
@begin{Ramification}
The literals may be written differently.
@end{Ramification}
@end{Itemize}
@begin{Ramification}
Note that the above definition makes full conformance a transitive
relation.
@end{Ramification}

@Defn2{Term=[full conformance], Sec=(for @nt{known_discriminant_part}s)}
Two @nt{known_discriminant_part}s are @i(fully conformant) if they have
the same number of discriminants, and
discriminants in the same positions
have the same names, statically matching subtypes,
and @nt{default_expression}s that are fully conformant with
one another.
@PDefn2{Term=[statically matching],Sec=(required)}

@Defn2{Term=[full conformance], Sec=(for @nt{discrete_subtype_definition}s)}
Two @nt<discrete_subtype_definition>s are @i(fully conformant) if they
are both @nt<subtype_indication>s or are both @nt<range>s,
the @nt<subtype_mark>s (if any) denote the same subtype, and
the corresponding @nt<simple_expression>s of the @nt<range>s (if any)
fully conform.
@begin{Ramification}
  In the @nt{subtype_indication} case, any ranges have to @i{be}
  corresponding; that is, two @nt{subtype_indication}s cannot conform
  unless both or neither has a @nt{range}.
@end{Ramification}
@begin{Discussion}
  This definition is used in @RefSec(Entries and Accept Statements)
  for the conformance required between the @nt<discrete_subtype_definition>s
  of an @nt<entry_declaration> for a family of entries and the
  corresponding @nt<entry_index_specification> of the @nt<entry_body>.
@end{Discussion}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01],ARef=[AI95-00397-01]}
@ChgAdded{Version=[2],Text=[@Defn{prefixed view profile}
The @i<prefixed view profile> of a subprogram is the profile obtained by
omitting the first parameter of that subprogram. There is no prefixed view
profile for a parameterless subprogram. For the purposes of defining subtype
and mode conformance, the convention of a prefixed view profile is considered
to match that of either an entry or a protected operation.]}

@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This definition is used to define how
  primitive subprograms of interfaces match operations in task and
  protected type definitions (see @RefSecNum{Task Units and Task Objects} and
  @RefSecNum{Protected Units and Protected Objects}).]}
@end{Discussion}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The weird rule about conventions is pretty much
  required for synchronized interfaces to make any sense. There will be
  wrappers all over the place for interfaces anyway. Of course, this doesn't
  imply that entries have the same convention as protected operations.]}
@end{Reason}
@end{StaticSem}

@begin{ImplPerm}

An implementation may declare an operator declared in a language-defined
library unit to be intrinsic.

@end{ImplPerm}

@begin{Extend83}
@Defn{extensions to Ada 83}
The rules for full conformance are relaxed @em they are now based on
the structure of constructs, rather than the sequence of lexical
elements. This implies, for example, that "(X, Y: T)"
conforms fully with "(X: T; Y: T)",
and "(X: T)" conforms fully with "(X: @key[in] T)".
@end{Extend83}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0011],ARef=[AI95-00117-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Clarified that the default
  convention is Ada. Also clarified that the convention of a primitive
  operation of a tagged type is the same as that of the type.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],Ref=[8652/0018],ARef=[AI95-00175-01]}
  @ChgAdded{Version=[2],Text=[@b<Corrigendum:> Added wording to ensure that two
  attributes conform only if they have the same @nt{attribute_designator}.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00252-01],ARef=[AI95-00254-01],ARef=[AI95-00407-01]}
  @ChgAdded{Version=[2],Text=[Defined the calling convention for anonymous
  access-to-subprogram types and for prefixed views of subprograms (see
  @RefSecNum{Selected Components}).]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[Defined the conformance of access result types
  (see @RefSecNum{Subprogram Declarations}).]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01],ARef=[AI95-00397-01]}
  @ChgAdded{Version=[2],Text=[Defined the prefixed view profile of subprograms
  for later use.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00409-01]}
  @ChgAdded{Version=[2],Text=[Defined the conformance of anonymous
  access-to-subprogram parameters.]}
@end{DiffWord95}

@begin{Incompatible2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0046-1]}
  @ChgAdded{Version=[3],Text=[@Defn{incompatibilities with Ada 2005}@b<Correction:> Now require
  @nt{null_exclusion}s to match for full conformance. While this is
  technically incompatible with Ada 2005 as defined by Amendment 1,
  it is a new Ada 2005 feature and it is unlikely that users have
  been intentionally taking advantage of the ability to write mismatching
  exclusions. In any case, it is easy to fix: add a @nt{null_exclusion}
  where needed for conformance.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0134-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Now require
  full conformance of anonymous access-to-subprogram parameters and results
  for full conformance. This is necessary so that there is no confusion about
  the default expression that is used for a call. While this is technically
  incompatible with Ada 2005 as defined by Amendment 1, it is a new Ada 2005
  feature and it is unlikely that users have been intentionally taking advantage
  and writing different default expressions. In any case, it is
  easy to fix: change any default expressions that don't conform so that they
  do conform.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0207-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Now include
  the presence or absence of @key[constant] in access parameters to be
  considered when checking mode conformance. This is necessary to prevent
  modification of constants. While this is technically incompatible with
  Ada 2005 as defined by Amendment 1, it is a new Ada 2005 feature and it
  is unlikely that users have been intentionally taking advantage and writing
  mismatching access types.]}
@end{Incompatible2005}

@begin{Diffword2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0142-4]}
  @ChgAdded{Version=[3],Text=[Explicitly aliased parameters are included
  as part of mode conformance (since it affects the parameter passing
  mechanism).]}
@end{Diffword2005}

@begin{Extend2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI05-0107-1],ARef=[AI05-0159-1]}
  @ChgAdded{Version=[4],Text=[@Defn{extensions to Ada 2012}@b<Corrigendum:>
  We now define that a prefixed view of a subprogram with synchronization
  kind By_Protected_Procedure can be used as the prefix of 'Access for an
  access-to-protected type. We consider this a correction as it certainly
  appears that it ought to work, but in original Ada 2012 it would have had
  a convention mismatch.]}
@end{Extend2012}

@begin{Diffword2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[4],Text=[@b<Corrigendum:> We now define how two
  expressions containing quantified expressions can fully conform. This
  isn't incompatible, as the original Ada 2012 never allowed such expressions
  to conform (the declarations in each formally being different). Neither is
  it an extension as one would expect these to conform.]}
@end{Diffword2012}


@NotISORMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledSubClause{Inline Expansion of Subprograms}

@begin{Intro}
@Redundant[Subprograms may be expanded in line at the call site.]
@end{Intro}

@begin{NotIso}
@ChgAdded{Version=[3],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 2
through 4 were moved to @RefSec{Obsolescent Features}.>}]}@Comment{This message
should be deleted if the paragraphs are ever renumbered.}
@end{NotIso}

@begin{Syntax}
@begin{SyntaxText}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0229-1]}
@ChgDeleted{Version=[3],Type=[Leading],KeepNext=[T],Text=[@PDefn2{Term=[program unit pragma], Sec=(Inline)}
@PDefn2{Term=[pragma, program unit], Sec=(Inline)}
The form of a @nt{pragma} Inline,
which is a program unit pragma (see @RefSecNum{Pragmas and Program Units}),
is as follows:]}
@end{SyntaxText}

@ChgRef{Version=[3],Kind=[DeletedNoDelMsg]}
@DeletedPragmaSyn{Version=[3],InitialVersion=[0],@ChgDeleted{Version=[3],
Text=[@key{pragma} @prag(Inline)(@Syn2{name} {, @Syn2{name}});]}}
@end{Syntax}

@begin{Legality}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0229-1]}
@ChgDeleted{Version=[3],Text=[The @nt{pragma} shall apply to one or more
callable entities or generic subprograms.]}
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[]}@ChgNote{Conditional leading}
@Chg{Version=[3],New=[For],Old=[If a @nt{pragma} Inline applies to]}
a callable entity@Chg{Version=[3],New=[ or],Old=[,
this indicates that inline expansion is desired for all calls
to that entity.
If a @nt{pragma} Inline applies to]} a generic subprogram,
@Chg{Version=[3],New=[the following language-defined
representation aspect may be specified:],Old=[this indicates that
inline expansion is desired for all calls to all instances of that
generic subprogram.]}

@begin{Description}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[Inline@\The type of aspect Inline is Boolean. When
aspect Inline is True for a callable entity, inline expansion is desired for all
calls to that entity. When aspect Inline is True for a generic subprogram,
inline expansion is desired for all calls to all instances of that generic
subprogram.@AspectDefn{Inline}]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],NoPrefix=[T],Text=[If directly specified, the
@nt{aspect_definition} shall be a static expression.
@Redundant[This aspect is never inherited;] if not directly specified,
the aspect is False.]}

@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Inline],
  Text=[@ChgAdded{Version=[3],Text=[For efficiency, Inline calls are requested
    for a subprogram.]}]}

@end{Description}


@begin{Ramification}
@ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0229-1]}
@ChgDeleted{Version=[3],Type=[Leading],Text=[Note that inline expansion is
desired no matter what name is used in the call. This allows one to request
inlining for only one of several overloaded subprograms as follows:]}
@begin{Example}
@ChgRef{Version=[3],Kind=[Deleted]}
@ChgDeleted{Version=[3],Text=[@key[package] IO @key[is]
   @key[procedure] Put(X : @key[in] Integer);
   @key[procedure] Put(X : @key[in] String);
   @key[procedure] Put(X : @key[in] Character);
@key[private]
   @key[procedure] Character_Put(X : @key[in] Character) @key[renames] Put;
   @key[pragma] Inline(Character_Put);
@key[end] IO;]}

@ChgRef{Version=[3],Kind=[Deleted]}
@ChgDeleted{Version=[3],Text=[@key[with] IO; @key[use] IO;
@key[procedure] Main @key[is]
   I : Integer;
   C : Character;
@key[begin]
   ...
   Put(C); --@Examcom{ Inline expansion is desired.}
   Put(I); --@Examcom{ Inline expansion is NOT desired.}
@key[end] Main;]}
@end{Example}
@end{Ramification}
@begin{Ramification}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
The meaning of a subprogram can be changed by @Chg{Version=[3],New=[inline
expansion as requested by aspect],Old=[a @nt{pragma}]} Inline only
in the presence of failing checks
(see @RefSecNum{Exceptions and Optimization}).
@end{Ramification}
@end{StaticSem}

@begin{ImplPerm}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
For each call,
an implementation is free to follow or to ignore the recommendation
@Chg{Version=[3],New=[determined],Old=[expressed]} by the
@Chg{Version=[3],New=[Inline aspect],Old=[@nt{pragma}]}.
@begin{Ramification}
Note, in particular, that the recommendation
cannot always be followed for a recursive call,
and is often infeasible for entries.
Note also that the implementation can inline calls even
when no such desire was expressed @Chg{Version=[3],New=[via the
Inline aspect],Old=[by a pragma]},
so long as the semantics of the program remains unchanged.
@end{Ramification}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00309-01]}
@ChgRef{Version=[3],Kind=[DeletedAddedNoDelMsg],ARef=[AI05-0229-1]}
@ChgDeleted{Version=[3],Text=[@Chg{Version=[2],New=[An implementation may allow
a @nt{pragma} Inline that has an argument which is a @nt{direct_name} denoting a
@nt{subprogram_body} of the same @nt{declarative_part}.],Old=[]}]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg]}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[],Old=[This is allowed for
Ada 83 compatibility. This is only a permission as this usage is considered
obsolescent.]}]}
@end{Reason}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg]}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[],Old=[We only need to allow
this in @nt{declarative_part}s, because a body is only allowed in another body,
and these all have @nt{declarative_part}s.]}]}
@end{Discussion}
@end{ImplPerm}

@begin{Notes}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0229-1]}
@ChgDeleted{Version=[3],Text=[The @nt{name} in a @nt{pragma} Inline can denote
more than one entity in the case of overloading.
Such a @nt{pragma} applies to all of the denoted entities.]}
@end{Notes}

@begin{Incompatible83}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00309-01]}
  @ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0229-1]}
  @ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[],Old=[@Defn{incompatibilities with Ada 83}
  A pragma Inline cannot refer to a @nt{subprogram_body} outside of that
  body. The pragma can be given inside of the subprogram body. Ada 2005
  adds an @ImplPermName to allow this usage for compatibility (and
  Ada 95 implementations also can use this permission), but
  implementations do not have to allow such @nt{pragma}s.]}]}
@end{Incompatible83}

@begin{Extend83}
  @ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0229-1]}
  @ChgDeleted{Version=[3],Text=[@Defn{extensions to Ada 83}
  A @nt{pragma} Inline is allowed inside a @nt{subprogram_body} if there
  is no corresponding @nt{subprogram_declaration}.
  This is for uniformity with other program unit pragmas.]}
@end{Extend83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00309-01]}
  @ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0229-1]}
  @ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[],Old=[@Defn{extensions to Ada 95}
  @b[Amendment Correction:] Implementations are allowed to let @nt{Pragma}
  Inline apply to a @nt{subprogram_body}.]}]}
@end{Extend95}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0229-1]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
  Aspect Inline is new; @nt{pragma} Inline is now obsolescent.]}
@end{Extend2005}


@RMNewPageVer{Version=[2]}@Comment{For printed version of Ada 2005 RM}
@LabeledClause{Subprogram Calls}

@begin{Intro}
@Defn{subprogram call}
A @i{subprogram call} is either a @nt{procedure_call_statement}
or a @nt{function_call};
@Redundant[it invokes the execution of the @nt{subprogram_body}.
The call specifies the association of the actual parameters, if any,
with formal parameters of the subprogram.]
@end{Intro}

@begin{Syntax}
@Syn{lhs=<procedure_call_statement>,rhs="
    @SynI{procedure_}@Syn2{name};
  | @SynI{procedure_}@Syn2{prefix} @Syn2{actual_parameter_part};"}


@Syn{lhs=<function_call>,rhs="
    @SynI{function_}@Syn2{name}
  | @SynI{function_}@Syn2{prefix} @Syn2{actual_parameter_part}"}

@begin{Honest}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0005-1]}
@ChgAdded{Version=[3],Text=[For the purpose of non-syntax rules,
infix operator calls are considered @nt{function_call}s.
See @RefSecNum{Overloading of Operators}.]}
@end{Honest}

@Syn{lhs=<actual_parameter_part>,rhs="
    (@Syn2{parameter_association} {, @Syn2{parameter_association}})"}

@Syn{lhs=<parameter_association>,rhs="
   [@SynI{formal_parameter_}@Syn2{selector_name} =>] @Syn2{explicit_actual_parameter}"}

@Syn{lhs=<explicit_actual_parameter>,rhs="@Syn2{expression} | @SynI{variable_}@Syn2{name}"}

@begin{SyntaxText}
@Defn{named association}
@Defn{positional association}
A @nt{parameter_association} is @i{named} or @i{positional}
according to whether or not the
@SynI{formal_@!parameter_}@!@nt{selector_@!name} is specified.
Any positional associations shall precede any named associations.
Named associations are not allowed if the @nt{prefix} in
a subprogram call is an @nt{attribute_@!reference}.
@begin{Ramification}
This means that the formal parameter names used in
describing predefined attributes are
to aid presentation of their semantics, but are not intended
for use in actual calls.
@end{Ramification}
@end{SyntaxText}
@end{Syntax}

@begin{Resolution}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00310-01]}
The @nt{name} or @nt{prefix} given in a @nt{procedure_call_statement}
shall resolve to denote
a callable entity that is a procedure, or an entry renamed
as (viewed as) a procedure.
The @nt{name} or @nt{prefix} given in a @nt{function_call}
shall resolve to denote
a callable entity that is a
function.@Chg{Version=[2],New=[ The @nt{name} or @nt{prefix} shall not
resolve to denote an abstract subprogram unless it is also a
dispatching subprogram.],Old=[]}
@Redundant[When there is an @nt<actual_@!parameter_@!part>, the @nt<prefix>
can be an @nt<implicit_@!dereference> of an access-to-subprogram
value.]
@begin{Discussion}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00310-01]}
@ChgAdded{Version=[2],Text=[This rule is talking about dispatching operations
(which is a static concept) and not about dispatching calls (which is a
dynamic concept).]}
@end{Discussion}
@begin{Ramification}
The function can be an operator,
enumeration literal, attribute that is a function, etc.
@end{Ramification}

A subprogram call shall contain at most one association for each
formal parameter.
Each formal parameter without an association shall have a
@nt{default_expression} (in the profile of the view denoted
by the @nt<name> or @nt<prefix>).
@Redundant[This rule is an overloading rule
(see @RefSecNum{The Context of Overload Resolution}).]
@begin{TheProof}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0240-1]}
  @ChgAdded{Version=[3],Text=[All @ResolutionTitle are overloading rules,
  see @RefSecNum{The Context of Overload Resolution}.]}
@end{TheProof}
@end{Resolution}
@begin{RunTime}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00345-01]}
@PDefn2{Term=[execution], Sec=(subprogram call)}
For the execution of a subprogram call,
the @nt{name} or @nt{prefix} of the call is evaluated,
and each @nt{parameter_@!association} is evaluated
(see @RefSecNum{Parameter Associations}).
If a @nt{default_@!expression} is used,
an implicit @nt{parameter_@!association} is assumed for this rule.
These evaluations are done in an arbitrary order.
The @nt{subprogram_@!body} is then executed@Chg{Version=[2],New=[, or a call
on an entry or protected subprogram is performed (see
@RefSecNum{Dispatching Operations of Tagged Types})],Old=[]}.
Finally, if the subprogram completes normally, then after it is left,
any necessary assigning back of formal to actual parameters occurs
(see @RefSecNum{Parameter Associations}).@PDefn2{Term=[arbitrary order],Sec=[allowed]}

@begin{Discussion}
  The implicit association for a default is only for this run-time rule.
  At compile time, the visibility rules are applied to the default at
  the place where it occurs, not at the place of a call.
@end{Discussion}
@begin{Honest}
  If the subprogram is inherited, see @RefSec{Derived Types and Classes}.

  If the subprogram is protected, see @RefSec{Protected Subprograms and Protected Actions}.

  If the subprogram is really a renaming of an entry, see @RefSec{Entry Calls}.

  @ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00345-01]}
  @ChgAdded{Version=[2],Text=[If the subprogram is implemented by an entry or
  protected subprogram, it will be treated as a dispatching call to the
  corresponding entry (see @RefSec{Entry Calls}) or protected subprogram (see
  @RefSec{Protected Subprograms and Protected Actions}).]}

  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00348-01]}
  Normally, the @nt{subprogram_body} that is executed by the above rule
  is the one for the subprogram being called.
  For an enumeration literal,
  implicitly declared (but noninherited) subprogram,
  @Chg{Version=[2],New=[null procedure, ],Old=[]}or an attribute that is
  a subprogram, an implicit body is assumed.
  For a dispatching call,
  @RefSec{Dispatching Operations of Tagged Types}
  defines which @nt{subprogram_body} is executed.
@end{Honest}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00407-01]}
@ChgAdded{Version=[2],Text=[If the @nt{name} or @nt{prefix} of a subprogram
call denotes a prefixed view (see @RefSecNum{Selected Components}), the
subprogram call is equivalent to a call on the underlying subprogram, with the
first actual parameter being provided by the @nt{prefix} of the prefixed view
(or the Access attribute of this @nt{prefix} if the first formal parameter is
an access parameter), and the remaining actual parameters given by the
@nt{actual_parameter_part}, if any.]}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
The exception Program_Error is raised at the point of a
@nt{function_call} if the function
completes normally without executing a
@Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]}.
@begin{Discussion}
We are committing to raising the exception at the point
of call, for uniformity @em see AI83-00152.
This happens after the function is left, of course.

Note that there is no name for suppressing this check,
since the check imposes no time overhead and minimal
space overhead (since it can usually be statically eliminated
as dead code).
@end{Discussion}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00231-01]}
A @nt{function_call} denotes a constant, as defined in
@RefSecNum{Return Statements}; the nominal subtype of the constant is
given by the @Chg{Version=[2],New=[nominal],Old=[result]} subtype of the
function@Chg{Version=[2],New=[ result],Old=[]}.
@PDefn2{Term=[nominal subtype], Sec=(of the result of a @nt<function_call>)}
@PDefn2{Term=[constant], Sec=(result of a @nt<function_call>)}
@end{RunTime}

@begin{Examples}
@leading@keepnext@i{Examples of procedure calls:}
@begin{Example}
Traverse_Tree;                                               --@RI{  see @RefSecNum{Subprogram Declarations}}
Print_Header(128, Title, True);                              --@RI{  see @RefSecNum{Subprogram Declarations}}

Switch(From => X, To => Next);                               --@RI{  see @RefSecNum{Subprogram Declarations}}
Print_Header(128, Header => Title, Center => True);          --@RI{  see @RefSecNum{Subprogram Declarations}}
Print_Header(Header => Title, Center => True, Pages => 128); --@RI{  see @RefSecNum{Subprogram Declarations}}
@end{Example}

@begin{WideAbove}
@leading@keepnext@i{Examples of function calls:}
@end{WideAbove}
@begin{Example}
Dot_Product(U, V)   --@RI{  see @RefSecNum{Subprogram Declarations} and @RefSecNum{Subprogram Bodies}}
Clock               --@RI{  see @RefSecNum{Delay Statements, Duration, and Time}}
F.@key[all]               --@RI{  presuming F is of an access-to-subprogram type @em see @RefSecNum{Access Types}}
@end{Example}

@begin{WideAbove}
@leading@keepnext@i{Examples of procedures with default expressions:}
@end{WideAbove}
@begin{Example}
@key[procedure] Activate(Process : @key[in] Process_Name;
                   After   : @key[in] Process_Name := No_Process;
                   Wait    : @key[in] Duration := 0.0;
                   Prior   : @key[in] Boolean := False);

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
@key[procedure] Pair(Left, Right : @key[in] Person_Name := @key[new] Person@Chg{Version=[3],New=[(M)],Old=[]});   --@RI{  see @RefSecNum{Incomplete Type Declarations}}
@end{Example}

@begin{WideAbove}
@leading@keepnext@i{Examples of their calls:}
@end{WideAbove}
@begin{Example}
Activate(X);
Activate(X, After => Y);
Activate(X, Wait => 60.0, Prior => True);
Activate(X, Y, 10.0, False);

@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
Pair;
Pair(Left => @key[new] Person@Chg{Version=[3],New=[(F)],Old=[]}, Right => @key[new] Person@Chg{Version=[3],New=[(M)],Old=[]});
@end{Example}
@end{Examples}

@begin{Notes}
If a @nt{default_expression} is used for two or more parameters in a
multiple @nt{parameter_@!specification}, the @nt{default_@!expression} is
evaluated once for each omitted parameter. Hence in the above
examples, the two calls of Pair are equivalent.
@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of overloaded subprograms:}
@begin{Example}
@key[procedure] Put(X : @key[in] Integer);
@key[procedure] Put(X : @key[in] String);

@key[procedure] Set(Tint   : @key[in] Color);
@key[procedure] Set(Signal : @key[in] Light);
@end{Example}

@begin{WideAbove}
@leading@keepnext@i{Examples of their calls:}
@end{WideAbove}
@begin{Example}
Put(28);
Put("no possible ambiguity here");

Set(Tint   => Red);
Set(Signal => Red);
Set(Color'(Red));

--@RI{  Set(Red) would be ambiguous since Red may}
--@RI{  denote a value either of type Color or of type Light}
@end{Example}
@end{Examples}

@begin{DiffWord83}
We have gotten rid of parameters @lquotes@;of the form of a type conversion@rquotes@;
(see RM83-6.4.1(3)).
The new view semantics of @nt{type_conversion}s allows us to use
normal @nt{type_conversion}s instead.

We have moved wording about run-time semantics of parameter associations
to @RefSecNum{Parameter Associations}.

We have moved wording about raising Program_Error for a function
that falls off the end to here from RM83-6.5.
@end{DiffWord83}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00310-01]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  Nondispatching abstract operations are no longer considered when
  resolving a subprogram call. That makes it possible to use @key{abstract}
  to @lquotes@;undefine@rquotes@; a predefined operation for an untagged type.
  That's especially helpful when defining custom arithmetic packages.]}
@end{Extend95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00231-01]}
  @ChgAdded{Version=[2],Text=[Changed the definition of the nominal subtype
  of a @nt{function_call} to use the nominal subtype wording of
  @RefSecNum{Subprogram Declarations}, to take into account
  @nt{null_exclusion}s and access result types.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00345-01]}
  @ChgAdded{Version=[2],Text=[Added wording to clarify that the meaning of
  a call on a subprogram @lquotes@;implemented by@rquotes an entry or
  protected operation is defined by
  @RefSecNum{Dispatching Operations of Tagged Types}.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00407-01]}
  @ChgAdded{Version=[2],Text=[Defined the meaning of a call on a prefixed
  view of a subprogram (see @RefSecNum{Selected Components}).]}
@end{DiffWord95}


@LabeledSubClause{Parameter Associations}

@begin{Intro}
@Redundant[@Defn{parameter passing}
A parameter association defines the association between an
actual parameter and a formal parameter.]
@end{Intro}

@begin{MetaRules}
The parameter passing rules for @b(out) parameters
are designed to ensure that the parts of a type that have
implicit initial values (see @RefSecNum{Object Declarations})
don't become @lquotes@;de-initialized@rquotes@; by
being passed as an @b(out) parameter.

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0142-4]}
@ChgAdded{Version=[3],Text=[For explicitly aliased parameters of functions, we
will ensure at the call site that a part of the parameter can be returned as
part of the function result without creating a dangling pointer. We do this with
accessibility checks at the call site that all actual objects of explicitly
aliased parameters live at least as long as the function result; then we can
allow them to be returned as access discriminants or anonymous access results,
as those have the master of the function result.]}
@end{MetaRules}

@begin{Resolution}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0118-1]}
The @SynI{formal_parameter_}@nt{selector_name} of
a@Chg{Version=[3],New=[ named],Old=[]}
@nt{parameter_@!association} shall resolve to denote a
@nt{parameter_@!specification} of the view being called@Chg{Version=[3],New=[;
@Defn{named association}@Defn{positional association}@Defn{named parameter association}@Defn{positional parameter association}this
is the formal parameter of the association. The formal parameter for a
positional @nt{parameter_@!association} is the parameter with the corresponding
position in the formal part of the view being called],Old=[]}.

@begin{Honest}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0118-1]}
  @ChgAdded{Version=[3],Text=[For positional parameters, the
  @ldquote@;corresponding position@rdquote is calculated after any
  transformation of prefixed views.]}
@end{Honest}

@Defn2{Term=[actual parameter], Sec=(for a formal parameter)}
The @i(actual parameter) is either the @nt<explicit_actual_parameter>
given in a @nt<parameter_association> for a given
formal parameter, or the corresponding @nt<default_expression>
if no @nt<parameter_association> is given for the formal parameter.
@Defn2{Term=[expected type], Sec=(actual parameter)}
The expected type for an actual parameter is the
type of the corresponding formal parameter.
@begin{Honest}
  The corresponding @nt<default_expression> is the one of the
  corresponding formal parameter
  in the profile of the view denoted by the @nt<name> or
  @nt<prefix> of the call.
@end{Honest}

If the mode is @key(in),
the actual is interpreted as an @nt{expression};
otherwise, the actual is interpreted only as a @nt{name}, if possible.
@begin{Ramification}
  @ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0005-1]}
  This formally resolves the ambiguity present in the syntax rule
  for @nt<explicit_actual_parameter>.
  @Chg{Version=[4],New=[This matters as an @nt{expression} that is a
  @nt{name} is evaluated and represents a value while a @nt{name} by itself
  can be an object; if the mode is not @key[in], we want the parameter to
  interpreted as an object.],Old=[]} Note that we don't actually require
  that the actual be a @nt<name> if the mode is not @key(in);
  we do that below.

  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0005-1]}
  @ChgAdded{Version=[4],Text=[This wording uses "interpreted as" rather than
  "shall be" so that this rule is not used to resolve overloading; it is
  solely about evaluation as described above. We definitely do not want
  to allow oddities like the presence of parentheses requiring the selection of
  an @key[in] formal parameter as opposed to an otherwise matching @key[in out]
  parameter.]}
@end{Ramification}
@end{Resolution}

@begin{Legality}
If the mode is @key(in out) or @key(out),
the actual shall be a @nt<name> that denotes a variable.
@begin{Discussion}
  We no longer need @lquotes@;or a
  @nt{type_conversion} whose argument is the @nt{name} of a variable,@rquotes@;
  because a @nt{type_conversion} is now a @nt{name}, and a
  @nt{type_conversion} of a variable is a variable.
@end{Discussion}
@begin{Reason}
  @leading@;The requirement that the actual be a (variable) @nt<name> is not
  an overload resolution rule, since
  we don't want the difference between @nt<expression> and
  @nt{name} to be used to resolve overloading.
  For example:
  @begin{Example}
procedure Print(X : @key[in] Integer; Y : @key[in] Boolean := True);
procedure Print(Z : @key[in out] Integer);
. . .
Print(3); --@RI{ Ambiguous!}
  @end{Example}

  The above call to Print is ambiguous even though the call is
  not compatible with the second Print which requires an actual
  that is a (variable) @nt<name> (@lquotes@;3@rquotes@; is an @nt<expression>, not
  a @nt<name>). This requirement is a legality rule, so overload
  resolution fails before it is considered, meaning that the call
  is ambiguous.
@end{Reason}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0074-1],ARef=[AI12-0159-1]}
@ChgAdded{Version=[4],Text=[If the mode is @key[out], the actual parameter is a
view conversion, and the type of the formal parameter is an access type or
a scalar type that has the Default_Value aspect specified, then]}
  @begin{Itemize}
    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],Text=[there shall exist a type (other than a root
      numeric type) that is an ancestor of both the target type and the operand
      type; and]}

    @ChgRef{Version=[4],Kind=[Added]}
    @ChgAdded{Version=[4],Text=[in the case of a scalar type, the type of the
      operand of the conversion shall have the Default_Value aspect specified.]}
  @end{Itemize}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0074-1],ARef=[AI12-0159-1]}
@ChgAdded{Version=[4],Text=[@PDefn{generic contract issue}
In addition to the places where
@LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}

@begin{Reason}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[These rules are needed in order to ensure that a
    well-defined parameter value is passed.]}
@end{Reason}



@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0102-1],ARef=[AI05-0142-4]}
@leading@;@Chg{Version=[3],New=[If the formal parameter is an explicitly aliased
parameter, the type of the actual parameter shall be tagged or the actual
parameter shall be an aliased view of an object. Further, if the formal
parameter subtype @i{F} is untagged:],
Old=[The type of the actual parameter associated with an access parameter
shall be convertible (see @RefSecNum{Type Conversions})
to its anonymous access type.
@PDefn2{Term=[convertible],Sec=(required)}]}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[the subtype @i{F} shall statically match the nominal
subtype of the actual object; or]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[the subtype @i{F} shall be unconstrained, discriminated
in its full view, and unconstrained in any partial view.]}
@end{Itemize}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Tagged objects (and tagged @nt{aggregate}s for @key[in]
  parameters) do not need to be aliased. This matches the behavior of unaliased
  formal parameters of tagged types, which allow 'Access to be taken of the
  formal parameter regardless of the form of the actual parameter.]}
@end{Ramification}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We need the subtype check on untagged actual
  parameters so that the requirements of 'Access are not lost. 'Access makes its
  checks against the nominal subtype of its prefix, and parameter passing can
  change that subtype. But we don't want this parameter passing to change the
  objects that would be allowed as the prefix of 'Access. This is particularly
  important for arrays, where we don't want to require any additional
  implementation burden.]}
@end{Reason}

@begin{Discussion}
  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0095-1]}
  @ChgAdded{Version=[4],Text=[We assume the worst in a generic body whether
  or not a formal subtype has a constrained partial view; specifically, in a
  generic body a discriminated subtype is considered to have a constrained
  partial view if it is a descendant of an untagged generic formal private
  or derived type (see @RefSecNum{Formal Private and Derived Types} for the
  formal definition of this rule).]}
@end{Discussion}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0095-1]}
@ChgAdded{Version=[4],Text=[@PDefn{generic contract issue}
In addition to the places where
@LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
these rules also apply in the private part of an instance of a generic unit.]}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0142-4],ARef=[AI05-0234-1]}
@ChgAdded{Version=[3],Text=[In a function call, the accessibility level of the
actual object for each explicitly aliased parameter shall not be statically
deeper than the accessibility level of the master of the call
(see @RefSecNum{Operations of Access Types}).]}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Since explicitly aliased parameters are either
  tagged or required to be objects, there is always an object (possibly
  anonymous) to talk about. This is discussing the static accessibility level of
  the actual object; it does not depend on any runtime information (for instance
  when the actual object is a formal parameter of another subprogram, it does
  not depend on the actual parameter of that other subprogram).]}
@end{Discussion}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0095-1]}
  @ChgAdded{Version=[3],Text=[This accessibility check (and its dynamic cousin
  as well) can only fail if the @Chg{Version=[4],New=[master of the function
  call (which is defined in the Heart of Darkness, or
  @RefSecNum{Operations of Access Types} if you prefer) is different than
  the master directly enclosing the call],Old=[function call is used to directly initialize a
  built-in-place object with a master different than that enclosing the call]}.
  The @Chg{Version=[4],New=[most likely],Old=[only]} place
  @Chg{Version=[4],New=[where this will occur],Old=[all of those conditions
  exist]} is in the initializer of an @nt{allocator}; in
  @Chg{Version=[4],New=[almost ],Old=[]}all other cases this check will always
  pass.]}
@end{Ramification}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0144-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[Two @nt{name}s are
@i{known to denote the same object} if:@Defn{known to denote the same object}]}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[both @nt{name}s statically denote the same
stand-alone object or parameter; or]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[both @nt{name}s are @nt{selected_component}s,
their @nt{prefix}es are known to denote the same object, and their
@nt{selector_name}s denote the same component; or]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[both @nt{name}s are dereferences (implicit or
explicit) and the dereferenced @nt{name}s are known to denote the same object;
or]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[both @nt{name}s are @nt{indexed_component}s, their
@nt{prefix}es are known to denote the same object, and each of the pairs of
corresponding index values are either both static expressions with the same
static value or both @nt{name}s that are known to denote the same object; or]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[both @nt{name}s are @nt{slice}s, their
@nt{prefix}es are known to denote the same object, and the two @nt{slice}s have
statically matching index constraints; or]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[one of the two @nt{name}s statically denotes a
renaming declaration whose renamed @SynI{object_}@nt{name} is known to denote
the same object as the other, the @nt{prefix} of any dereference within
the renamed @SynI{object_}@nt{name} is not a variable, and any @nt{expression}
within the renamed @SynI{object_}@nt{name} contains no references to variables
nor calls on nonstatic functions.]}
@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[This exposes known renamings of
  slices, indexing, and so on to this definition. In particular, if we have]}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Type=[Leading],Text=[C : Character @key[renames] S(1);]}
@end{Example}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Trailing],Text=[then C and S(1) are known to
  denote the same object.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[We need the requirement that no
  variables occur in the @nt{prefix}es of dereferences and in (index)
  @nt{expression}s of the renamed object in order to avoid problems from later
  changes to those parts of renamed names. Consider:]}

@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Type=[Leading],Text=[   @key[type] Ref @key[is access] Some_Type;
   Ptr : Ref := @key[new] Some_Type'(...);
   X : Some_Type @key[renames] Ptr.@key[all];
@key[begin]
   Ptr := @key[new] Some_Type'(...);
   P (Func_With_Out_Params (Ptr.@key[all]), X);]}
@end{Example}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Trailing],Text=[X and Ptr.@key[all] should not be
  known to denote the same object, since they denote different allocated objects
  (and this is not an unreasonable thing to do).]}
@end{Reason}

@begin{Honest}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[The exclusion of variables from
  renamed object_names is not enough to prevent altering the value of the name
  or expression by another access path. For instance, both @key[in] parameters
  passed by reference and access-to-constant values can designate variables. For
  the intended use of "known to be the same object", this is OK; the
  modification via another access path is very tricky and it is OK to reject
  code that would be buggy except for the tricky code. Assuming Element is an
  elementary type, consider the following example:]}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[Global : Tagged_Type;]}

@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key{procedure} Foo (Param : @key{in} Tagged_Type := Global) @key{is}
   X : Element @key{renames} Some_Global_Array (Param.C);
@key{begin}
   Global.C := Global.C + 1;
   Swap (X, Some_Global_Array (Param.C));]}
@end{Example}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[The rules will flag the call of procedure Swap
  as illegal, since X and Some_Global_Array (Parameter.C) are known to denote
  the same object (even though they will actually represent different objects if
  Param = Global). But this is only incorrect if the parameter actually is
  Global and not some other value; the error could exist for some calls. So this
  flagging seems harmless.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Similar examples can be constructed using
  stand-alone composite constants with controlled or immutably limited
  components, and (as previously noted) with dereferences of access-to-constant
  values. Even when these examples flag a call incorrectly, that call depends
  on very tricky code (modifying the value of a constant); the code is likely
  to confuse future maintainers as well and thus we do not mind rejecting it.]}
@end{Honest}

@end{Itemize}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[Whether or not @nt{name}s or @nt{prefix}es are
  known to denote the same object is determined statically. If the name
  contains some dynamic portion other than a dereference, @nt{indexed_component}, or
  @nt{slice}, it is not "known to denote the same object".]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[These rules make no attempt to handle slices of
  objects that are known to be the same when the slices have dynamic bounds
  (other than the trivial case of bounds being defined by the same subtype),
  even when the bounds could be proven to be the same, as it is just too complex
  to get right and these rules are intended to be conservative.]}
@end{Discussion}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=["Known to denote the same object"
  is intended to be an equivalence relationship, that is, it is reflexive,
  symmetric, and transitive. We believe this follows from the rules.
  For instance, given the following declarations:]}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Type=[Leading],Text=[S   : String(1..10);
ONE : @key[constant] Natural := 1;
R   : Character @key[renames] S(1);]}
@end{Example}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Trailing],Text=[the names R and S(1) are known to
  denote the same object by the sixth bullet, and S(1) and S(ONE) are known to
  denote the same object by the fourth bullet, so using the sixth bullet on
   R and S(ONE), we simply have to test S(1) vs. S(ONE), which we already know
  denote the same object.]}
@end{Ramification}


@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0144-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[Two @nt{name}s are @i{known to
refer to the same object} if @Defn{known to refer to the same object}]}
@begin{Itemize}
  @ChgRef{Version=[3],Kind=[Added]}
  @ChgAdded{Version=[3],Text=[The two @nt{name}s are known to denote the same object; or]}

  @ChgRef{Version=[3],Kind=[Added]}
  @ChgAdded{Version=[3],Text=[One of the @nt{name}s is a @nt{selected_component},
  @nt{indexed_component}, or @nt{slice} and its @nt{prefix} is known to refer
  to the same object as the other @nt{name}; or]}

  @ChgRef{Version=[3],Kind=[Added]}
  @ChgAdded{Version=[3],Text=[One of the two @nt{name}s statically denotes a
  renaming declaration whose renamed @SynI{object_}@nt{name} is known to refer
  to the same object as the other @nt{name}.]}
@end{Itemize}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This ensures that names Prefix.Comp and Prefix are
  known to refer to the same object for the purposes of the rules below. This
  intentionally does not include dereferences; we only want to worry about
  accesses to the same object, and a dereference changes the object in question.
  (There is nothing shared between an access value and the object it
  designates.)]}
@end{Reason}


@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0144-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[
If a call @i<C> has two or more parameters of mode @key[in out] or @key[out] that
are of an elementary type, then the call is legal only if:]}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[For each @nt{name} @i<N> that is passed as a parameter of mode @key[in out] or
@key[out] to the call @i<C>, there is no other @nt{name} among the other
parameters of mode @key[in out] or @key[out] to @i<C> that is known to denote the
same object.]}

@begin{Honest}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This means @i{visibly} an elementary type; it does
  not include partial views of elementary types (partial views are always
  composite). That's necessary to avoid having @LegalityTitle depend on the
  contents of the private part.]}
@end{Honest}
@end{Itemize}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0144-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[If a construct @i<C> has two or more
direct constituents that are @nt{name}s or @nt{expression}s whose evaluation may
occur in an arbitrary order, at least one of which contains a function call with
an @key[in out] or @key[out] parameter, then the construct is legal only if:]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[All of the places where the language allows an
  arbitrary order can be found by looking in the index under "arbitrary order,
  allowed". Note that this listing includes places that don't involve
  @nt{name}s or @nt{expression}s (such as checks or finalization).]}
@end{Ramification}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[For each name @i<N> that is passed as a parameter of mode @key[in out] or
@key[out] to some inner function call @i<C2> (not including the construct @i<C>
itself), there is no other @nt{name} anywhere within a direct constituent of the
construct @i<C> other than the one containing @i<C2>, that is known to refer to
the same object.]}
@end{Itemize}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This requirement cannot fail for a procedure
  or entry call alone; there must be at least one function with an @key[in out]
  or @key[out] parameter called as part of a parameter expression of the call in
  order for it to fail.]}
@end{Ramification}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[These rules prevent obvious cases of dependence on
  the order of evaluation of @nt{name}s or @nt{expression}s. Such dependence is
  usually a bug, and in any case, is not portable to another implementation (or
  even another optimization setting).]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[In the case that the top-level construct C is a
  call, these rules do not require checks for most @key[in out] parameters, as
  the rules about evaluation of calls prevent problems. Similarly, we do not
  need checks for short circuit operations or other operations with a defined
  order of evaluation. The rules about arbitrary order (see
  @RefSecNum{Method of Description and Syntax Notation}) allow evaluating
  parameters and writing parameters back in an arbitrary order, but not
  interleaving of evaluating
  parameters of one call with writing parameters back from another @em that
  would not correspond to any allowed sequential order.]}
@end{Reason}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0144-2]}
@ChgAdded{Version=[3],Type=[Leading],Text=[For the purposes of checking this rule:]}

@begin{Itemize}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[For an array @nt{aggregate}, an @nt{expression}
associated with a @nt{discrete_choice_list} that has two or more discrete
choices, or that has a nonstatic range, is considered as two or more separate
occurrences of the @nt{expression};]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Type=[Leading],Text=[For a record @nt{aggregate}:]}

@begin{InnerItemize}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[The @nt{expression} of a
@nt{record_component_association} is considered to occur once for each
associated component; and]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[The @nt{default_expression} for each
@nt{record_component_association}
with <> for which the associated component has a @nt{default_expression}
is considered part of the @nt{aggregate};]}
@end{InnerItemize}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[For a call, any @nt{default_expression} evaluated as
part of the call is considered part of the call.]}
@end{Itemize}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We do not check expressions that are evaluated only because
  of a component initialized by default in an aggregate (via <>).]}
@end{Ramification}
@end{Legality}

@begin{RunTime}
@leading@keepnext@PDefn2{Term=[evaluation], Sec=(parameter_association)}
For the evaluation of a @nt{parameter_association}:
@begin{Itemize}
The actual parameter is first evaluated.

For an access parameter,
the @nt{access_definition} is elaborated,
which creates the anonymous access type.

For a parameter @Redundant[(of any mode)] that is passed by reference
(see @RefSecNum{Formal Parameter Modes}),
a view conversion of the actual parameter to the nominal subtype
of the formal parameter is evaluated,
and the formal parameter denotes that conversion.
@PDefn2{Term=[implicit subtype conversion],Sec=(parameter passing)}
@begin{Discussion}
We are always allowing sliding, even for [@key(in)] @key(out) by-reference
parameters.
@end{Discussion}

@Defn2{Term=[assignment operation], Sec=(during evaluation of a
@nt{parameter_association})}
For an @key(in) or @key(in out) parameter that is passed
by copy (see @RefSecNum{Formal Parameter Modes}),
the formal parameter object is created,
and the value of the actual parameter is converted to the
nominal subtype of the formal parameter
and assigned to the formal.
@PDefn2{Term=[implicit subtype conversion],Sec=(parameter passing)}
@begin{Ramification}
The conversion mentioned here is a value conversion.
@end{Ramification}

@leading@keepnext@;For an @key(out) parameter that is passed by copy,
the formal parameter object is created, and:
@begin(itemize)
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0153-3],ARef=[AI05-0196-1]}
  For an access type, the formal parameter is initialized
  from the value of the actual, without @Chg{Version=[3],New=[checking that the
  value satisfies any constraint, any predicate, or any exclusion of the null
  value],Old=[a constraint check]};
@begin{Reason}
  This preserves the @MetaRulesName that an object of an access type
  is always initialized with a @lquotes@;reasonable@rquotes@; value.
@end{Reason}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0153-3],ARef=[AI05-0228-1]}
@ChgRef{Version=[4],Kind=[RevisedAdded],ARef=[AI12-0074-1],ARef=[AI12-0159-1]}
@ChgAdded{Version=[4],Type=[Leading],Text=[]}@Comment{To add conditional leading}
@ChgAdded{Version=[3],Text=[For a scalar type that has the Default_Value aspect
specified, the formal parameter is initialized from the value of the actual,
without checking that the value satisfies any constraint or any
predicate@Chg{Version=[4],New=[. Furthermore, if the actual
parameter is a view conversion and either],Old=[;]}]}

  @begin{Itemize}
    @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0074-1]}
    @ChgAdded{Version=[4],Text=[there exists no type (other than a root
    numeric type) that is an ancestor of both the target type and the type
    of the operand of the conversion; or]}

    @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0074-1]}
    @ChgAdded{Version=[4],Text=[the Default_Value aspect is unspecified for
    the type of the operand of the conversion]}
  @end{Itemize}

@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0074-1]}
@ChgAdded{Version=[4],NoPrefix=[T],Text=[then Program_Error
is raised;@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}

@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This preserves the @MetaRulesName that all objects
  of a type with an implicit initial value are initialized. This is important so
  that a programmer can guarantee that all objects of a scalar type have a valid
  value with a carefully chosen Default_Value.]}
@end{Reason}

@begin{ImplNote}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This rule means that @b<out> parameters of a
  subtype @i<T> with a specified Default_Value need to be large enough to
  support any possible value of the base type of @i<T>. In contrast, a type that
  does not have a Default_Value only need support the size of the subtype (since
  no values are passed in).]}
@end{ImplNote}

@begin{Discussion}
  @ChgRef{Version=[4],Kind=[AddedNormal]}
  @ChgAdded{Version=[4],Text=[The Program_Error case can only occur in the
  body of an instance of a generic unit. @LegalityTitle will catch all other
  cases. Implementations that macro-expand generics
  can always detect this case when the enclosing instance body is expanded.]}
@end{Discussion}

  For a composite type with discriminants or
  that has implicit initial values for any subcomponents
  (see @RefSecNum{Object Declarations}),
  the behavior is as for an @key[in out] parameter
  passed by copy.
@begin{Reason}
  This ensures that no part of an object of such a type
  can become @lquotes@;de-initialized@rquotes@; by being part of an @b(out)
  parameter.
@end{Reason}
@begin{Ramification}
  This includes an array type whose component type is an access type,
  and a record type with a component that has a @nt{default_expression},
  among other things.
@end{Ramification}

  For any other type, the formal parameter is uninitialized.
  If composite, a view conversion of the actual
  parameter to the nominal subtype of the formal is evaluated
  @Redundant[(which might raise Constraint_Error)],
  and the actual subtype of the formal is that of the
  view conversion. If elementary, the actual subtype of the formal
  is given by its nominal subtype.
@begin{Ramification}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0228-1]}
  This case covers scalar types@Chg{Version=[3],New=[ that do not have
  Default_Value specified],Old=[]}, and composite types whose
  subcomponent's subtypes do not have any implicit initial values.
  The view conversion for composite types ensures that if the lengths
  don't match between an actual and a formal array parameter,
  the Constraint_Error is raised before the call, rather than after.
@end{Ramification}
@end(itemize)

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0142-4],ARef=[AI05-0234-1]}
@ChgAdded{Version=[3],Text=[In a function call, for each explicitly aliased
parameter, a check is made that the accessibility level of the master of the
actual object is not deeper than that of the  master of the call
(see @RefSecNum{Operations of Access Types}).]}
@begin{Ramification}
  @ChgRef{Version=[3],Kind=[Added]}
  @ChgAdded{Version=[3],Text=[If the actual object to a call @i<C> is a formal
  parameter of some function call @i<F>, no dynamic check against the master of
  the actual parameter of @i<F> is necessary. Any case which could fail the
  dynamic check is already statically illegal (either at the call site of @i<F>,
  or at the call site @i<C>). This is important, as it would require nasty
  distributed overhead to accurately know the dynamic accessibility of a formal
  parameter (all tagged and explicitly aliased parameters would have to carry
  accessibility levels).]}
@end{Ramification}
@end{Itemize}

@PDefn2{Term=[constrained],Sec=(object)}
@PDefn2{Term=[unconstrained],Sec=(object)}
A formal parameter of mode @key[in out] or @key[out] with
discriminants is constrained if either its nominal subtype
or the actual parameter is constrained.

@Defn{parameter copy back}
@Defn{copy back of parameters}
@Defn{parameter assigning back}
@Defn{assigning back of parameters}
@Defn2{Term=[assignment operation], Sec=(during parameter copy back)}
After normal completion and leaving of a subprogram, for each @key(in out)
or @key(out) parameter that is passed by copy,
the value of the formal parameter is converted to
the subtype of the variable given as the actual parameter
and assigned to it.
@PDefn2{Term=[implicit subtype conversion],Sec=(parameter passing)}
These conversions and assignments occur in an arbitrary
order.@PDefn2{Term=[arbitrary order],Sec=[allowed]}
@begin{Ramification}
The conversions mentioned above during parameter passing might raise
Constraint_Error @em (see @RefSecNum{Type Conversions}).
@end{Ramification}
@begin{Ramification}
If any conversion or assignment as part of parameter passing
propagates an exception, the exception is raised at the place
of the subprogram call;
that is, it cannot be handled inside the @nt{subprogram_body}.
@end{Ramification}
@begin{TheProof}
Since these checks happen before or after executing the
@nt{subprogram_body}, the execution of the @nt{subprogram_body} does
not dynamically enclose them, so it can't handle the exceptions.
@end{TheProof}
@begin{Discussion}
The variable we're talking about is the one denoted by the
@i{variable_}@nt{name} given as the @nt{explicit_actual_parameter}.
If this @i{variable_}@nt{name} is a @nt{type_conversion},
then the rules in @RefSecNum{Type Conversions} for assigning to a view
conversion apply.
That is, if X is of subtype S1, and the actual is S2(X),
the above-mentioned conversion will convert to S2,
and the one mentioned in @RefSecNum{Type Conversions} will convert to
S1.
@end{Discussion}
@end{RunTime}

@begin{Erron}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0008-1]}
@ChgAdded{Version=[3],Text=[@PDefn2{Term=(erroneous execution),Sec=(cause)}If
the nominal subtype of a formal parameter with discriminants is constrained or
indefinite, and the parameter is passed by reference, then the execution of the
call is erroneous if the value of any discriminant of the actual is changed
while the formal parameter exists (that is, before leaving the corresponding
callable construct).]}
@end{Erron}

@begin{Extend83}
@Defn{extensions to Ada 83}
In Ada 95, a program can rely on the fact that passing an object as
an @key[out] parameter does not @lquotes@;de-initialize@rquotes@; any parts of the
object whose subtypes have implicit initial values.
(This generalizes the RM83 rule that required copy-in for parts that
were discriminants or of an access type.)
@end{Extend83}

@begin{DiffWord83}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
We have eliminated the subclause on Default Parameters,
as it is subsumed by earlier @Chg{Version=[3],New=[],Old=[clauses and ]}subclauses.
@end{DiffWord83}

@begin{Inconsistent2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0196-1]}
  @ChgAdded{Version=[3],Text=[@Defn{inconsistencies with Ada 2005}
  @b<Correction:> Clarified that
  @key[out] parameters of an access type are not checked for null exclusions
  when they are passed in (which is similar to the behavior for constraints).
  This was unspecified in Ada 2005, so a program which depends on the
  behavior of an implementation which does check the exclusion may
  malfunction. But a program depending on an exception being raised is unlikely.]}
@end{Inconsistent2005}

@begin{Incompatible2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0144-2]}
  @ChgAdded{Version=[3],Text=[@Defn{incompatibilities with Ada 2005}
  Additional rules have been added to make illegal passing the same elementary
  object to more than one @key[in out] or @key[out] parameters of the same
  call. In this case, the result in the object could depend on the compiler
  version, optimization settings, and potentially the phase of the moon, so
  this check will mostly reject programs that are nonportable and could
  fail with any change. Even when the result is expected to be the same in both
  parameters, the code is unnecessarily tricky. Programs which fail this
  new check should be rare and are easily fixed by adding a temporary object.]}
@end{Incompatible2005}

@begin{DiffWord2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0008-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> A missing rule was
  added to cover cases that were missed in Ada 95 and Ada 2005; specifically,
  that an @key[in] parameter passed by reference might have its discriminants
  changed via another path. Such cases are erroneous as requiring compilers
  to detect such errors would be expensive, and requiring such cases to
  work would be a major change of the user model (@key[in] parameters
  with discriminants could no longer be assumed constant). This is not
  an inconsistency, as compilers are not required to change any current
  behavior.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0102-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Moved implicit conversion
  @LegalityName to @RefSecNum{The Context of Overload Resolution}.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0118-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Added a definition for
  positional parameters, as this is missing from Ada 95 and later.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0142-4]}
  @ChgAdded{Version=[3],Text=[Rules have been added defining the legality
  and dynamic checks needed for explicitly aliased parameters (see
  @RefSecNum{Subprogram Declarations}).]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0144-2]}
  @ChgAdded{Version=[3],Text=[Additional rules have been added such
  that passing an object to an @key[in out]
  or @key[out] parameter of a function is illegal if it is used elsewhere in a
  construct which allows evaluation in an arbitrary order. Such calls are
  not portable (since the results may depend on the evaluation order), and
  the results could even vary because of optimization settings and the like.
  Thus they've been banned.]}
@end{DiffWord2005}

@begin{Incompatible2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0074-1],ARef=[AI12-0159-1]}
  @ChgAdded{Version=[4],Text=[@Defn{incompatibilities with Ada 2005}@b<Corrigendum:>
  Added rules to ensure that the value passed into a @key[out] parameter
  for elementary types is well-defined in the case of a view conversion.
  The new rules can be incompatible. For a view conversion to an unrelated type
  with the Default_Value aspect specified, the aspect is new in Ada 2012 so it
  should be unlikely to occur in existing code. For a view conversion to an
  unrelated access type, the incompatibility is possible as this could be
  written in Ada 95, but such a view conversion is thought to be rare. In both
  cases, declaring and passing a temporary rather than a view conversion
  will eliminate the problem.]}

  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0095-1]}
  @ChgAdded{Version=[4],Text=[@b<Corrigendum:> Because of a rule added in
  @RefSecNum{Formal Private and Derived Types}, the checks for the
  passing of an object to an explicitly aliased parameter in a generic body
  were strengthened to use an assume the worst rule. This case is rather
  unlikely as a formal private or derived type with discriminants is required
  along with an explicitly aliased parameter whose type doesn't statically
  match the formal type. Such a program is very unlikely, especially as
  explicitly aliased parameters are a new Ada 2012 feature.]}
@end{Incompatible2012}



@RMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledClause{Return Statements}

@begin{Intro}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
A @Chg{Version=[2],New=[@nt{simple_@!return_@!statement} or
@nt{extended_@!return_@!statement} (collectively called a @i<return statement>)
@Defn{return statement}],Old=[@nt{return_statement}]} is used to
complete the execution of the
innermost enclosing @nt{subprogram_@!body},
@nt{entry_@!body}, or @nt{accept_@!statement}.
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Syn{lhs=<@Chg{Version=[2],New=[simple_return_statement],Old=[return_statement]}>,rhs="@key{return} [@Syn2{expression}];"}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0277-1]}
@AddedSyn{Version=[3],lhs=<@Chg{Version=[3],New=[extended_return_object_declaration],Old=[]}>,
rhs="@Chg{Version=[3],New=<
    @Syn2{defining_identifier} : [@key{aliased}][@key{constant}] @Syn2{return_subtype_indication} [:= @Syn2{expression}]>,Old=[]}"}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0015-1],ARef=[AI05-0053-1],ARef=[AI05-0277-1],ARef=[AI05-0299-1]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=[extended_return_statement],Old=[]}>,
rhs="@Chg{Version=[2],New=<
    @key{return} @Chg{Version=[3],New=<@Syn2{extended_return_object_declaration}>,Old=<@Syn2{defining_identifier} : [@Chg{Version=[3],New=<@Key{constant}>,Old=[@Key{aliased}]}] @Syn2{return_subtype_indication} [:= @Syn2{expression}]>} [@Key{do}
        @Syn2{handled_sequence_of_statements}
    @key{end} @key{return}];>,Old=[]}"}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=[return_subtype_indication],Old=[]}>,
rhs="@Chg{Version=[2],New=<@Syn2{subtype_indication} | @Syn2{access_definition}>,Old=[]}"}

@end{Syntax}

@begin{Resolution}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Chg{Version=[2],New=[@Defn2{Term=[result subtype], Sec=(of a function)}
The @i<result subtype> of a function is the subtype denoted by the
@nt<subtype_mark>, or defined by the @nt<access_definition>, after the reserved
word @key<return> in the profile of the function.@PDefn2{Term=[expected type],
Sec=(@nt{expression} of @nt<simple_@!return_@!statement>)}],Old=[@Defn{return expression}
The @nt{expression}, if any, of a @nt{return_statement} is called the
@i{return expression}.
@Defn2{Term=[result subtype], Sec=(of a function)}
The @i(result subtype) of a function is the subtype denoted by the
@nt{subtype_mark} after the reserved word @key(return) in the profile
of the function.@PDefn2{Term=[expected type], Sec=(return expression)}]}
The expected type for @Chg{Version=[2],New=[the @nt{expression}, if any, of a
@nt{simple_@!return_@!statement}],Old=[a return expression]} is the result type of
the corresponding function.@Chg{Version=[2],New=[
@PDefn2{Term=[expected type], Sec=(@nt{expression} of @nt{extended_return_statement})}
The expected type for the
@nt{expression} of an @nt{extended_return_statement} is that of the
@nt{return_@!subtype_@!indication}.],Old=[]}
@begin{Honest}
The same applies to generic functions.
@end{Honest}
@end{Resolution}

@begin{Legality}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Chg{Version=[2],New=[@Defn2{Term=[apply],
Sec=(to a callable construct by a return statement)}],
Old=[@Defn2{Term=[apply], Sec=(to a callable construct by a @nt{return_statement})}]}
A @Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]}
shall be within a callable construct,
and it @i{applies to} the innermost @Chg{Version=[2],New=[callable construct
or @nt{extended_return_statement} that contains it],Old=[one]}.
A @Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]} shall
not be within a body that is within the construct to which the
@Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]} applies.

@begin{Honest}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0089-1]}
  @ChgAdded{Version=[4],Text=[The above also applies to generic subprograms,
  even though they are not callable constructs. (An instance of a generic
  subprogram is a callable construct, but not a generic subprogram itself.)]}
@end{Honest}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0015-1]}
A function body shall contain at least one
@Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]} that
applies to the function body,
unless the function contains @nt{code_statement}s.
A @Chg{Version=[2],New=[@nt{simple_@!return_@!statement}],Old=[@nt{return_@!statement}]} shall
include @Chg{Version=[2],New=[an @nt{expression}],Old=[a return expression]}
if and only if it applies to a function
body.@Chg{Version=[2],New=[ An @nt<extended_return_statement> shall apply to
a function body.],Old=[]}@Chg{Version=[3],New=[ An @nt{extended_return_statement}
with the reserved word @key[constant] shall include an @nt{expression}.],Old=[]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
  @ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0022-1]}
  The requirement that a function body has to have at least one
  @Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]}
  is a @lquotes@;helpful@rquotes@; restriction.
  There @Chg{Version=[2],New=[has],Old=[was]} been some interest in lifting
  this restriction, or allowing a raise statement to substitute for the
  @Chg{Version=[2],New=[return statement],Old=[@nt{return_@!statement}]}.
  However, there was enough interest in leaving it as is
  that we decided not to change it.@Chg{Version=[4],New=[ Note that for
  Ada 2012, Corrigendum 1, a return statement whose expression is a
  @nt{raise_expression} can be given in @i<any> function body (the
  @nt{raise_expression} will match any type), so there is
  much less need to eliminate this rule.],Old=[]}
@end{Reason}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[A return statement can apply to an
  @nt{extended_return_statement}, so a @nt{simple_@!return_@!statement} without
  an @nt{expression} can be given in one. However, neither
  @nt{simple_@!return_@!statement} with an @nt{expression} nor an
  @nt{extended_return_statement} can be given inside an
  @nt{extended_return_statement}, as they must apply (directly) to a
  function body.]}

  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0089-1]}
  @ChgAdded{Version=[4],Text=[Since a "function body" includes a generic
  function body, this rule and all of the following @LegalityTitle apply
  to generic function bodies as well as non-generic function bodies. This is
  true even though a generic function is not a function.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Type=[Leading],Text=[For an
@nt{extended_@!return_@!statement} that applies to a function body:]}

@begin{Itemize}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0032-1],ARef=[AI05-0103-1]}
@ChgAdded{Version=[2],Text=[If the result subtype of the function is defined by a
@nt{subtype_mark}, the @nt{return_@!subtype_@!indication} shall be a
@nt{subtype_indication}. The type of the @nt{subtype_indication}
shall be@Chg{Version=[3],New=[ covered by],Old=[]} the
result type of the function. @Chg{Version=[3],New=[The],Old=[If the result
subtype of the function is constrained, then the]} subtype defined by the
@nt{subtype_indication} shall @Chg{Version=[3],New=[be statically compatible
with the result subtype of the function; if the result type of the
function is elementary, the two subtypes],Old=[also
be constrained and]} shall statically match@Chg{Version=[3],New=[],Old=[ this
result subtype]}.@PDefn2{Term=[statically matching],Sec=(required)}
If the result subtype of the function is @Chg{Version=[3],New=[indefinite],
Old=[unconstrained]}, then the subtype
defined by the @nt{subtype_indication} shall be a definite subtype, or there
shall be an @nt{expression}.]}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[If the result subtype of the function is defined
by an @nt{access_definition}, the @nt{return_@!subtype_@!indication} shall be an
@nt{access_definition}. The subtype defined by the @nt{access_definition} shall
statically match the result subtype of the function. @Redundant[The accessibility
level of this anonymous access subtype is that of the result subtype.]]}
@begin{TheProof}
  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0070-1]}
  @ChgAdded{Version=[4],Text=[The accessibility of such anonymous access
  types is defined in the Heart of Darkness (aka
  @RefSecnum{Operations of Access Types}).]}
@end{TheProof}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0032-1]}
@ChgAdded{Version=[3],Text=[If the result subtype of the function is class-wide,
the accessibility level of the type of the subtype defined by the
@nt{return_subtype_indication}
shall not be statically deeper than that of the master that elaborated
the function body.]}
@begin{Reason}
  @ChgRef{Version=[3],Kind=[Added]}
  @ChgAdded{Version=[3],Text=[In this case, the @nt{return_subtype_indication}
  could be a specific type initialized by default; in that case there is no
  @nt{expression} to check.]}
@end{Reason}
@end{Itemize}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0032-1]}@Comment{Paragraph number only change}
@ChgAdded{Version=[2],Type=[Leading],Text=[For any return statement
that applies to a function body:]}

@begin{Itemize}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0188-1]}@Comment{Paragraph number only change}
@ChgAdded{Version=[2],Text=[@Redundant[If the result subtype of the function is limited,
then the @nt{expression} of the return statement (if any) shall @Chg{Version=[3],
New=[meet the restrictions described in @RefSecNum{Limited Types}],Old=[be an
@nt{aggregate}, a function call (or equivalent use of an operator), or a
@nt{qualified_expression} or parenthesized expression whose operand is one of
these]}.]]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgRef{Version=[3],Kind=[Deleted],ARef=[AI05-0188-1]}
  @ChgDeleted{Version=[3],Text=[@Chg{Version=[2],New=[In other words, if limited, the @nt{expression}
  must produce a @lquotes@;new@rquotes@; object, rather than being the name
  of a preexisting object (which would imply copying).],Old=[]}]}
@end{Discussion}

@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00416-01]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0032-1],ARef=[AI05-0051-1]}
@ChgAdded{Version=[2],Text=[If the result subtype of the function is class-wide,
the accessibility level of the type of the @nt{expression}
@Chg{Version=[3],New=[(if any) ],Old=[]}of the return
statement shall not be statically deeper than that of the master that
elaborated the function body.@Chg{Version=[3],New=[],Old=[ If the result subtype
has one or more
unconstrained access discriminants, the accessibility level of the anonymous
access type of each access discriminant, as determined by the
@nt{expression} of the @nt{simple_@!return_@!statement} or the
@nt{return_@!subtype_@!indication}, shall not be
statically deeper than that of the master that elaborated the function body.]}]}

@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0032-1],ARef=[AI05-0051-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0005-1]}
  @ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[If],Old=[We know that if]}
  the result type is @Chg{Version=[4],New=[class-wide],Old=[class wide]},
  then there must be an @nt{expression} of the
  return statement@Chg{Version=[3],New=[ unless this is
  an @nt{extended_return_statement} whose @nt{return_subtype_indication} is
  a specific type. We have a separate rule to cover that case. Note that
  if an @nt{extended_return_statement} has an @nt{expression}, then both this
  rule and the next one must be satisfied],Old=[. Similarly, if
  the result subtype is unconstrained, then either the
  @nt{return_@!subtype_@!indication} (if any) is constrained, or
  there must be an @nt{expression}]}.]}
@end{Discussion}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0051-1]}
@ChgAdded{Version=[3],Text=[If the subtype determined by the @nt{expression} of the
@nt{simple_return_statement} or by the @nt{return_subtype_indication} has
one or more access discriminants, the accessibility level of the anonymous
access type of each access discriminant shall not be statically deeper than that
of the master that elaborated the function body.]}

@begin{Discussion}
@ChgRef{Version=[3],Kind=[Added]}
  @ChgAdded{Version=[3],Text=[We use the type used by the return statement
  rather than from the function return type since we want to check whenever
  the return object has access discriminants, even if the function return type
  doesn't have any (mostly for a class-wide type).]}
@end{Discussion}
@end{Itemize}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0277-1]}
@ChgAdded{Version=[3],Text=[If the keyword @key[aliased] is present in an
@nt{extended_return_object_declaration},
the type of the extended return object shall be immutably limited.]}
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0015-1],ARef=[AI05-0144-2]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[return object], Sec=(extended_return_statement)}
Within an @nt{extended_return_statement}, the @i{return object} is declared
with the given @nt{defining_identifier}, with the nominal subtype defined by
the @nt{return_@!subtype_@!indication}.@Chg{Version=[3],New=[ An
@nt{extended_return_statement} with the reserved word @key[constant]
is a full constant declaration that declares the return object to be a
constant object.],Old=[]}]}
@end{StaticSem}

@begin{RunTime}
@ChgRef{Version=[2],Kind=[Added],ARef=[AI95-00318-02],ARef=[AI95-00416-01]}
@ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0032-1]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[execution], Sec=(extended_return_statement)}
For the execution of an @nt{extended_return_statement}, the
@nt{subtype_indication} or @nt{access_definition} is elaborated. This creates
the nominal subtype of the return object. If there is an @nt{expression}, it
is evaluated and converted to the nominal subtype (which might raise
Constraint_Error @em see @RefSecNum{Type Conversions}@PDefn2{Term=[implicit subtype conversion],Sec=(function return)});
the return object is created and the converted value is assigned to
the return object. Otherwise, the return object is created and initialized
by default as for a stand-alone object of its nominal subtype (see
@RefSecNum{Object Declarations}). If the nominal subtype is indefinite, the
return object is constrained by its initial
value.@PDefn2{Term=[creation],Sec=[of a return object]}@PDefn{constrained by its initial value}@Chg{Version=[3],New=[
A check is made that the value of the return object belongs to the function
result subtype. Constraint_Error is raised if this
check fails.@Defn2{Term=[Constraint_Error],
Sec=(raised by failure of run-time check)}
@IndexCheck{Discriminant_Check}],Old=[]}]}

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[If the result type is controlled or has a
  controlled part, appropriate calls on Initialize or Adjust are performed
  prior to executing the @nt{handled_sequence_of_statements}, except when the
  initial expression is an @nt{aggregate} (which requires build-in-place
  with no call on Adjust).]}

  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0005-1]}
  @ChgAdded{Version=[2],Text=[If the return statement is left without resulting
  in a return (for example, due to an exception propagated from the
  @nt{expression} or the @nt{handled_sequence_of_statements}, or a goto out of
  the @nt{handled_sequence_of_statements}), @Chg{Version=[3],New=[if ],Old=[]}the
  return object @Chg{Version=[3],New=[has been created, it ],Old=[]}is
  finalized prior to leaving the return statement.@Chg{Version=[3],New=[ If
  it has not been created when the return statement is left, it is not
  created or finalized.],Old=[]}]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0032-1]}
  @ChgAdded{Version=[3],Text=[Other rules ensure that the check required by
  this rule cannot fail unless the function has a class-wide result subtype
  where the associated specific subtype is constrained. In other cases,
  either the subtypes have to match or the function's subtype is
  unconstrained and needs no checking.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Chg{Version=[2],New=[@PDefn2{Term=[execution], Sec=(simple_@!return_@!statement)}],
Old=[@PDefn2{Term=[execution], Sec=(return_statement)}]}
For the execution of a @Chg{Version=[2],New=[@nt{simple_@!return_@!statement}],
Old=[@nt{return_statement}]}, the @nt{expression}
(if any) is first evaluated@Chg{Version=[2],New=[,],Old=[ and]} converted to
the result subtype@Chg{Version=[2],
New=[, and then is assigned to the anonymous @i{return object}.
@PDefn2{Term=[return object], Sec=(simple_@!return_@!statement)}],Old=[.]}
@PDefn2{Term=[implicit subtype conversion],Sec=(function return)}
@begin{Ramification}
The conversion might raise
Constraint_Error @em (see @RefSecNum{Type Conversions}).
@end{Ramification}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02],ARef=[AI95-00416-01]}
@Chg{Version=[2],New=[@Redundant[If the return object has any parts that are tasks, the
activation of those tasks does not occur until after the function returns (see
@RefSecNum{Task Execution - Task Activation}).]],
Old=[If the result type is class-wide, then
the tag of the result is the tag of the value
of the @nt<expression>.]}
@begin{TheProof}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This is specified by the rules in
  @RefSecNum{Task Execution - Task Activation}.]}
@end{TheProof}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[Only the caller can know when task activations
  should take place, as it depends on the context of the call. If the function
  is being used to initialize the component of some larger object, then that
  entire object must be initialized before any task activations. Even after the
  outer object is fully initialized, task activations are still postponed until
  the @key{begin} at the end of the declarative part if the function is being
  used to initialize part of a declared object.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02],ARef=[AI95-00344-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0024-1],ARef=[AI05-0032-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0097-1]}
@ChgDeleted{Version=[2],Type=[Leading],Keepnext=[T],Text=[]}@ChgNote{A dummy
ChgDeleted to get conditional "Leading".}If
the result type @Chg{Version=[2],New=[of a function ],Old=[]}is a specific
tagged type@Chg{Version=[2],New=[, the tag of the return object is that
of the result type. If the result type is class-wide, the tag of the
return object is that of @Chg{Version=[4],New=[the value of the @nt{expression},
unless the return object is defined by
an @nt{extended_return_object_declaration} with a @nt{subtype_indication} that
is specific, in which case it is that of ],Old=[]}@Chg{Version=[3],New=[the
type of the @nt{subtype_indication}],Old=[]}@Chg{Version=[4],New=[],
Old=[@Chg{Version=[3],New=[ if it is
specific, or otherwise that of ],Old=[]}the
value of the @Chg{Version=[3],New=[@nt{expression}],Old=[expression]}]}.
A check is made that
the @Chg{Version=[3],New=[master],Old=[accessibility level]} of the type
identified by the tag of the result @Chg{Version=[3],New=[includes the
elaboration],Old=[is not deeper than that]} of the master that elaborated
the function body. If
this check fails, Program_Error is raised.@Defn2{Term=[Program_Error],
Sec=(raised by failure of run-time check)}
@IndexCheck{Accessibility_Check}],Old=[:]}

@begin{Ramification}
  @ChgNote{Moved from after paragraph 10}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[The first sentence is true even if the
  tag of the @nt{expression} is different, which
  could happen if the @nt{expression} were a view conversion or a
  dereference of an access value. Note that for a limited type, because
  of the restriction to @nt{aggregate}s and function calls (and no conversions),
  the tag will already match]}.
@end{Ramification}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[The first rule ensures
  that a function whose result type is
  a specific tagged type always returns an object whose tag is that of the
  result type. This is important for dispatching on controlling result, and
  allows the caller to allocate the appropriate amount of space to hold
  the value being returned (assuming there are no discriminants).]}

  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgRef{Version=[3],Kind=[Revised]}
  @ChgAdded{Version=[2],Text=[The @Chg{Version=[3],New=[master ],Old=[]}check
  prevents the returned object
  from outliving its type. Note that this check cannot fail for a specific
  tagged type, as the tag represents the function's type, which necessarily
  must be declared outside of the function.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[We can't use the normal accessibility level
    @lquotes@;deeper than@rquotes@; check
    here because we may have @lquotes@;incomparable@rquotes@; levels if
    the masters belong to two different tasks. This can happen when an
    accept statement calls a function declared in the enclosing task body, and
    the function returns an object passed to it from the accept statement, and
    this object was itself a parameter to the accept statement.]}
@end{Reason}
@begin{Honest}
  @ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0097-1]}
  @ChgAdded{Version=[4],Text=[The @nt{expression} here is the return expression
    if the return statement is a @nt{simple_return_statement}, and the
    initializing expression of the @nt{extended_return_object_declaration} if the
    return statement is an @nt{extended_return_statement} (ignoring any inner
    @nt{simple_return_statement}s, which necessarily cannot have an
    @nt{expression}, and any other @nt{expression}s inside of the
    @nt{extended_return_statement}).]}
@end{Honest}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0073-1]}
@ChgAdded{Version=[3],Text=[@IndexCheck{Tag_Check}If the result subtype
of the function is defined by
an @nt{access_definition} designating a specific tagged type @i<T>, a check
is made that the result value is null or the tag of the object designated
by the result value identifies @i<T>.
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
Constraint_Error is raised if this check fails.]}
@begin{Reason}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This check is needed so that dispatching
  on controlling access results works for tag-indeterminate functions.
  If it was not made, it would be possible for such functions to return
  an access to a descendant type, meaning the function could return
  an object with a tag different than the one assumed by the
  dispatching rules.]}
@end{Reason}

@begin{NotIso}
@ChgAdded{Version=[2],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 9
through 20 were deleted.>}]}@Comment{This message should be deleted if the
paragraphs are ever renumbered.}
@end{NotIso}

@begin(itemize)
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[@IndexCheck{Tag_Check}
  If it is limited, then
  a check is made that the tag of the value of the return expression
  identifies the result type.
  @Defn2{Term=[Constraint_Error],Sec=(raised by failure of run-time check)}
  Constraint_Error is raised if this check fails.]}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[If it is nonlimited, then
  the tag of the result is that of the result type.]}
@begin{Ramification}
  @ChgNote{These two notes were revised and moved up}
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[This is true even if the
  tag of the return expression is different.]}
@end{Ramification}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[These rules ensure
  that a function whose result type is
  a specific tagged type always returns an object whose tag is that of the
  result type. This is important for dispatching on controlling result,
  and, if nonlimited,
  allows the caller to allocate the appropriate amount of space to hold
  the value being returned (assuming there are no discriminants).]}
@end{Reason}
@end(itemize)

@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
@ChgDeleted{Version=[2],Type=[Leading],Keepnext=[T],
Text=[@Defn{return-by-reference type}
A type is a @i(return-by-reference) type if it
is a descendant of one of the following:]}
@begin(itemize)
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a tagged limited type;]}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a task or protected type;]}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a nonprivate type with the reserved word
  @b(limited) in its declaration;]}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a composite type with a subcomponent
  of a return-by-reference type;]}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a private type
  whose full type is a return-by-reference type.]}
@end(itemize)
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
  @ChgDeleted{Version=[2],Text=[
  The above rules are such that there are no "Ada 83" types other than
  those containing tasks that are return-by-reference. This helps
  to minimize upward incompatibilities relating to return-by-reference.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
@ChgDeleted{Version=[2],Type=[Leading],Text=[@IndexCheck{Accessibility_Check}
If the result type is a return-by-reference type,
then a check is made that the return expression is one of the
following:]}
@begin(itemize)

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a @nt{name} that denotes an object view
  whose accessibility level is not deeper than that of the master that
  elaborated the function body; or]}
  @begin{Discussion}
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00316-01]}
  @ChgNote{This really wasn't in the previous version, but we don't want it
  in a version without deletions shown...}
  @ChgDeleted{Version=[2],Text=[This rule was unnecessarily confusing, and the
  parenthetical remark "(or a value with an associated object, see 6.2)"
  was added @em and then the entire concept was deleted.]}
  @end{Discussion}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
  @ChgDeleted{Version=[2],Text=[a parenthesized expression or
  @nt{qualified_expression} whose operand is one of these kinds of expressions.]}

@end(itemize)

@ChgRef{Version=[2],Kind=[DeletedNoDelMsg],ARef=[AI95-00318-02]}
@ChgDeleted{Version=[2],Text=[@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
The exception Program_Error is raised if this check fails.]}
@begin{Discussion}
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
  @ChgDeleted{Version=[2],Text=[Compare the definition of return-by-reference
  with that of by-reference.]}

  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
  @ChgDeleted{Version=[2],Text=[The return-by-reference types are all limited types
  except those that are limited only because of a limited
  private type with a nonlimited untagged full type.]}
@end{Discussion}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[DeletedNoDelMsg]}
  @ChgDeleted{Version=[2],Text=[@PDefn{generic contract issue}
  This check can often be performed at compile time. It is
  defined to be a run-time check to avoid generic contract model
  problems. In a future version of the standard, we anticipate
  that function return of a local variable will be illegal for all
  limited types, eliminating the need for the run-time check
  except for dereferences of an access parameter.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02],ARef=[AI95-00402-01],ARef=[AI95-00416-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0051-1]}
@Chg{Version=[2],
New=[If @Chg{Version=[3],New=[any part of the specific type of the return object],
Old=[the result subtype]} of a function
@Chg{Version=[3],New=[(or coextension thereof) ],Old=[]}has one or more
@Chg{Version=[3],New=[],Old=[unconstrained ]}access
discriminants@Chg{Version=[3],New=[ whose value is not constrained by the
result subtype of the function],Old=[]},
a check is made that the accessibility level of the anonymous access type
of each access discriminant, as determined by the @nt{expression} or the
@nt{return_@!subtype_@!indication} of the @Chg{Version=[3],New=[return
statement],Old=[function]},
is not deeper than @Chg{Version=[3],New=[the level of the master of the call
(see @RefSecNum{Operations of Access Types})],
Old=[that of the master that elaborated the
function body]}. If this check fails, Program_Error is raised.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}
@IndexCheck{Accessibility_Check}],
Old=[For a function with a return-by-reference result type
the result is returned by reference;
that is, the function call denotes a constant view of the
object associated
with the value of the return expression.
@Defn2{Term=[assignment operation], Sec=(during execution of a
@nt{return_statement})}
For any other function, the result is returned by copy;
that is,
the converted value is assigned into an anonymous constant created at
the point of the @nt{return_statement}, and the function call denotes
that object.]}
@begin{Ramification}
  @ChgRef{Version=[2],Kind=[Deleted]}
  @ChgDeleted{Version=[2],Text=[The assignment operation does the necessary
  value adjustment, as described in
  @RefSec{Assignment and Finalization}.
  @RefSecNum{Completion and Finalization}
  describes when the anonymous constant is finalized.]}
@end{Ramification}
@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[The check prevents the returned
  object (for a nonlimited type) from outliving the object designated by one
  of its discriminants. The check is made on the values of the discriminants,
  which may come from the @nt{return_@!subtype_@!indication} (if constrained),
  or the @nt{expression}, but it is never necessary to check both.]}
@end{Reason}
@begin{ImplNote}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0234-1]}
  @ChgAdded{Version=[3],Text=[The reason for saying @ldquote@;any part of
  the specific type@rdquote is to simplify implementation. In the case of
  class-wide result objects, this allows the testing of a simple flag in the
  tagged type descriptor that indicates whether the specific type has any parts with
  access discriminants. By basing the test on the type of the object rather than
  the object itself, we avoid concerns about whether subcomponents in variant
  parts and of arrays (which might be empty) are present.]}
@end{ImplNote}
@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0234-1]}
  @ChgAdded{Version=[3],Text=[For a function with a class-wide result type, the
   access values that need to be checked are determined by the tag of the return
   object. In order to implement this accessibility check in the case where the
   tag of the result is not known statically at the point of the return
   statement, an implementation may need to somehow associate with the tag of a
   specific tagged type an indication of whether the type has unconstrained
   access discriminants (explicit or inherited) or has any subcomponents with
   such discriminants. If an implementation is already maintaining a statically
   initialized descriptor of some kind for each specific tagged type, then an
   additional Boolean could be added to this descriptor.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0005-1],ARef=[AI05-0234-1]}
  @ChgAdded{Version=[3],Text=[Note that the flag should only be queried in the
   case where the result object might have access discriminants that might
   have subtypes with "bad" accessibility levels (as determined by the rules of
   @RefSecNum{Operations of Access Types} for determining the accessibility
   level of the type of an access discriminant in the @nt{expression} or
   @nt{return_subtype_indication} of a return statement).]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[Thus, in a case like]}

@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key[type] Global @key[is access] T'Class;
@key[function] F (Ptr : Global) @key[return] T'Class @key[is]
@key[begin]
   @key[return] Ptr.@key[all];
@key[end] F;]}
@end{Example}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Trailing],Text=[there is no need for a run-time
    accessibility check. While an object of T'Class "might have" access
    discriminants, the accessibility of those potential discriminants
    cannot be bad. The setting of the bit doesn't matter and there is no
    need to query it.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[On the other hand, given]}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key[function] F @key[return] T'Class @key[is]
   Local : T'Class := ... ;
@key[begin]
   @key[return] Local;
@key[end] F;]}
@end{Example}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Trailing],Text=[In this case, a check would
    typically be required.]}

  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Type=[Leading],Text=[The need for including
    subcomponents in this check is illustrated by the following example:]}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[X : @key[aliased] Integer;]}

@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key[type] Component_Type (Discrim : @key[access] Integer := X'Access)
   @key[is limited null record];]}

@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key[type] Undiscriminated @key[is record]
   Fld : Component_Type;
@key[end record];]}

@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key[function] F @key[return] Undiscriminated @key[is]
   Local : @key[aliased] Integer;
@key[begin]
   @key[return] X : Undiscriminated := (Fld => (Discrim => Local'Access)) @key[do]
      Foo;
   @key[end return];
   --@Examcom{ raises Program_Error after calling Foo.}
@key[end] F;]}
@end{Example}
@end{Discussion}
@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0234-1]}
  @ChgAdded{Version=[3],Text=[In the case where the tag of the result is not
  known statically at the point of the return statement and the run-time
  accessibility check is needed, discriminant values and array bounds play no
  role in performing this check. That is, array components are assumed to have
  nonzero length and components declared within variant parts are assumed to be
  present. Thus, the check may be implemented simply by testing the
  aforementioned descriptor bit and conditionally raising Program_Error.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0058-1]}
@Chg{Version=[2],New=[For the execution of an
@nt{extended_@!return_@!statement}, the
@nt{handled_@!sequence_@!of_@!statements} is executed. Within this
@nt{handled_@!sequence_@!of_@!statements}, the execution of a
@nt{simple_@!return_@!statement} that applies to the
@nt{extended_@!return_@!statement} causes a transfer of control that completes
the @nt{extended_@!return_@!statement}. Upon completion
of a return statement that applies to a callable construct@Chg{Version=[3],
New=[ by the normal completion of a @nt{simple_@!return_@!statement} or
by reaching the @key[end return] of an @nt{extended_@!return_@!statement}],
Old=[]}],Old=[Finally]}, a
transfer of control is performed which completes the execution of the callable
construct@Chg{Version=[2],New=[], Old=[ to which the @nt{return_@!statement}
applies]}, and returns to the caller.

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0058-1]}
  @ChgAdded{Version=[3],Text=[A transfer of control that completes an
  @nt{extended_return_statement} (such as an exit or goto) does not cause
  a return to the caller unless it is caused by @nt{simple_return_statement}
  (that is, triggers the second sentence of this paragraph). The return to
  the caller occurs for the @nt{simple_return_statement} that applies to an
  @nt{extended_return_statement} because the last sentence says
  @ldquote@;the normal completion of a @nt{simple_return_statement}@rdquote@;,
  which includes the one nested in the @nt{extended_return_statement}.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[In the case of a function, the @nt{function_call}
denotes a constant view of the return object.]}
@end{RunTime}

@begin{ImplPerm}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0050-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[]}@Comment{This is a fake used to provide a conditional leading.}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[For a function call used to
initialize a composite],Old=[If the result subtype of a function is
unconstrained, and a call on the function is used to provide the initial value
of an]} object with a constrained nominal subtype@Chg{Version=[3],New=[ or
used to initialize a return object that is built in place
into such an object:],Old=[, Constraint_Error may be raised
at the point of the call (after abandoning the execution of the function body)
if, while elaborating the @nt{return_@!subtype_@!indication} or
evaluating the @nt{expression} of a return statement that applies to the
function body, it
is determined that the value of the result will violate the constraint of the
subtype of this object.]}]}

@begin{Itemize}
  @ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[3],Text=[If the result subtype of the function is
  constrained, and conversion of an object of this subtype to the subtype of the
  object being initialized would raise Constraint_Error, then Constraint_Error
  may be raised before calling the function.]}

  @ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[3],Text=[If the result subtype of the function is
  unconstrained, and a return statement is executed such that the return object
  is known to be constrained, and conversion of the return object to the subtype
  of the object being initialized would raise Constraint_Error, then
  Constraint_Error may be raised at the point of the call (after abandoning the
  execution of the function body).]}
@end{Itemize}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[2],Text=[Without such a permission, it would be very
  difficult to implement
  @lquotes@;@Chg{Version=[3],New=[built-in-place],Old=[build-in-place]}@rquotes semantics.
  @Chg{Version=[3],New=[The intention is that the exception is raised at the
  same point that it would have been raised without the permission; it
  should not change handlers if the implementation switches between
  return-by-copy and built-in-place. This means that the],Old=[Such an]}
  exception is not handleable within the function, because in the
  return-by-copy case, the constraint check to verify that the result satisfies
  the constraints of the object being initialized happens after the function
  returns@Chg{Version=[3],New=[],Old=[, and we want the semantics to change as
  little as possible when switching between return-by-copy and build-in-place]}.
  This implies further that upon detecting such a situation, the implementation
  may need to simulate a goto to a point outside any local exception handlers
  prior to raising the exception.]}
@end{Reason}

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00416-01]}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0050-1]}
  @Chg{Version=[3],New=[These permissions do not apply in the case of an extended
  return object with mutable discriminants. That's necessary because in that
  case a return object can be created with the @ldquote@;wrong@rdquote
  discriminants and then changed to the @ldquote@;right@rdquote discriminants
  later (but before returning). We don't want this case raising an exception
  when the canonical semantics will not do so.],Old=[@Chg{Version=[2],New=[This
  permission is allowed during the evaluation of the @nt{expression} of an
  @nt{extended_return_statement}, because the @nt{return_@!subtype_@!indication}
  may be unconstrained and the @nt{expression} then would provide the
  constraints.],Old=[]}]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[3],Text=[It's still possible to write a program that will
  raise an exception using this permission that would not in the canonical
  semantics. That could happen if a return statement with the
  @ldquote@;wrong@rdquote discriminants or bounds is abandoned (via an
  exception, or for an extended_return_statement, via an exit or goto
  statement), and then a return statement with the @ldquote@;right@rdquote
  discriminants or bounds is executed. The only solution for this problem is to
  not have the permission at all, but this is too unusual of a case to worry about
  the effects of the permission, especially given the implementation
  difficulties for built-in-place objects that this permission is intended to
  ease.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[3],Text=[Note that the mutable-discriminant case only
  happens when built-in-place initialization is optional. This means that any
  difficulties associated with implementing built-in-place initialization
  without these permissions can be sidestepped by not building in place.]}

@end{Ramification}

@end{ImplPerm}

@begin{Examples}
@leading@keepnext@i{Examples of return statements:}
@begin{Example}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@key[return];                         --@ExamCom{ in a procedure body, }@nt{entry_body}@ExamCom{,}@Chg{Version=[2],New=[
                                -- @nt{accept_statement}@ExamCom{, or }@nt{extended_return_statement}],Old=[@ExamCom{ or }@nt{accept_statement}]}

@key[return] Key_Value(Last_Index);   --@ExamCom{ in a function body}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
@Chg{Version=[2],New=<@key[return] Node : Cell @key{do}           --@ExamCom{ in a function body, see @RefSecNum{Incomplete Type Declarations} for Cell}
   Node.Value := Result;
   Node.Succ := Next_Node;
@key{end} @key{return};>,Old=<>}
@end{Example}
@end{Examples}

@begin{Incompatible83}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Defn{incompatibilities with Ada 83}
In Ada 95, if the result type of a function has a part that is a task,
then an attempt to return a local variable will raise Program_Error.
@Chg{Version=[2],New=[This is illegal in Ada 2005, see below. ],
Old=[]}In Ada 83, if a function returns a local variable containing a task,
execution is erroneous according to AI83-00867. However,
there are other situations where functions that return tasks
(or that return a variant record only one of whose variants
includes a task)
are correct in Ada 83 but will raise Program_Error according
to the new rules.

The rule change was made because there will be more types (protected types,
limited controlled types) in Ada 95 for which
it will be meaningless to return a local variable, and making
all of these erroneous is unacceptable.
The current rule was felt to be the simplest that kept
upward incompatibilities to situations involving returning tasks,
which are quite rare.
@end{Incompatible83}

@begin{DiffWord83}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
This @Chg{Version=[3],New=[subclause],Old=[clause]} has been moved here from
chapter 5, since it has mainly to do with subprograms.

A function now creates an anonymous object.
This is necessary so that controlled types
will work.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
We have clarified that a
@Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]}
applies to a callable construct, not to a callable entity.

@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
There is no need to mention generics in the rules about where a
@Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]}
can appear and what it applies to;
the phrase @lquotes@;body of a subprogram or generic subprogram@rquotes@; is
syntactic, and refers exactly to @lquotes@;@nt{subprogram_body}@rquotes@;.
@end{DiffWord83}

@begin{Inconsistent95}
  @ChgRef{Version=[2],Kind=[Added],ARef=[AI95-0416-1]}
  @ChgRef{Version=[3],Kind=[RevisedAdded],ARef=[AI05-0005-1],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[2],Text=[@Defn{inconsistencies with Ada 95}
  Added an @ImplPermName allowing early raising of Constraint_Error if the
  result cannot fit in the ultimate object. This gives implementations more
  flexibility to do built-in-place returns, and is essential for limited types
  (which cannot be built in a temporary). However, it allows
  raising @Chg{Version=[3],New=[],Old=[an ]}
  Constraint_Error in some cases where it would not be raised if the
  permission was not used. @Chg{Version=[3],New=[See @Inconsistent2005Title for
  additional changes. ],Old=[]}This case is potentially inconsistent with Ada 95, but a compiler
  does not have to take advantage of these permissions for any Ada 95 code, so
  there should be little practical impact.]}
@end{Inconsistent95}

@begin{Incompatible95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95} The entire
  business about return-by-reference types has been dropped. Instead, the
  @nt{expression} of a return statement of a limited type can only be an
  @nt{aggregate} or @nt{function_call} (see @RefSecNum{Limited Types}). This
  means that returning a global object or @nt{type_conversion}, legal in Ada
  95, is now illegal. Such functions can be converted to use anonymous access
  return types by adding @key{access} in the function definition and return
  statement, adding .@key{all} in uses, and adding @key{aliased} in the object
  declarations. This has the advantage of making the reference return semantics
  much clearer to the casual reader.]}

  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[We changed these rules so that functions,
  combined with the new rules for limited types (@RefSecnum{Limited Types}),
  can be used as build-in-place constructors for limited types. This reduces
  the differences between limited and nonlimited types, which will
  make limited types useful in more circumstances.]}
@end{Incompatible95}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  The @nt{extended_return_statement} is new. This provides a name for
  the object being returned, which reduces the copying needed to return
  complex objects (including no copying at all for limited objects). It also
  allows component-by-component construction of the return object.]}
@end{Extend95}

@begin{DiffWord95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[The wording was updated to support anonymous
  access return subtypes.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
  @ChgAdded{Version=[2],Text=[The term @lquotes@;return expression@rquotes@;
  was dropped because reviewers found it confusing when applied to the default
  @nt{expression} of an @nt{extended_return_statement}.]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00344-01],ARef=[AI95-00416-01]}
  @ChgAdded{Version=[2],Text=[Added accessibility checks to class-wide
  return statements. These checks could not fail in Ada 95 (as all of the
  types had to be declared at the same level, so the tagged type would
  necessarily have been at the same level as the type of the
  object).]}

  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00402-01],ARef=[AI95-00416-01]}
  @ChgAdded{Version=[2],Text=[Added accessibility checks to
  return statements for types with access discriminants. Since such
  types have to be limited in Ada 95, the @nt{expression} of a return statement
  would have been illegal in order for this check to fail.]}
@end{DiffWord95}

@begin{Inconsistent2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0050-1]}
  @ChgAdded{Version=[3],Text=[@Defn{inconsistencies with Ada 2005}
  @b<Correction:> The @ImplPermName allowing early raising of Constraint_Error was modified
  to remove the most common of these cases from the permission (returning an
  object with mutable discriminants, where the return object is created with
  one set of discriminants and then changed to another). (The permission was
  also widened to allow the early check for constrained functions when that
  constraint is wrong.) However, there still is an unlikely case where the
  permission would allow an exception to be raised when none would be raised by the canonical
  semantics (when a return statement is abandoned). These changes can only
  remove the raising of an exception (or change the place where it is raised)
  compared to Ada 2005, so programs that depend on the previous behavior should
  be very rare.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0051-1],ARef=[AI05-0234-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Accessibility checks for
  access discriminants now depend on the master of the call rather than
  the point of declaration of the function. This will result in cases
  that used to raise Program_Error now running without raising any exception.
  This is technically inconsistent with Ada 2005 (as defined by Amendment 1),
  but it is unlikely that any real code depends on the raising of this
  exception.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0073-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:>
  Added a tag check for functions returning anonymous access-to-tagged types,
  so that dispatching of tag-indeterminate function works as expected.
  This is technically inconsistent with Ada 2005 (as defined by Amendment 1),
  but as the feature in question was newly added to Ada 2005, there should
  be little code that depends on the behavior that now raises an exception.]}
@end{Inconsistent2005}

@begin{Incompatible2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0053-1],ARef=[AI05-0277-1]}
  @ChgAdded{Version=[3],Text=[@Defn{incompatibilities with Ada 2005}@b<Correction:>
  The @key{aliased} keyword can now only appear on extended return objects
  with an immutably limited type. Other types would provide a way to get
  an aliased view of an object that is not necessarily aliased, which would be
  very bad. This is incompatible, but since the feature was added in
  Ada 2005, the keyword had no defined meaning in Ada 2005
  (a significant oversight), and most sensible uses involve immutably limited
  types, it is unlikely that it appears meaningfully in existing programs.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0103-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Added wording to require
  static matching for unconstrained access types in extended return statements.
  This disallows adding or omitting null exclusions, and adding access
  constraints, in the declaration of the return object. While this is
  incompatible, the incompatible cases in question are either useless (access
  constraints @en the constraint can be given on an @nt{allocator} if necessary,
  and still must be given there even if given on the return object)
  or wrong (null exclusions @en null could be returned from a
  function declared to be null excluding), so we expect them to be extremely
  rare in practice.]}
@end{Incompatible2005}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0015-1],ARef=[AI05-0144-2]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
  The return object of an @nt{extended_return_statement} can be declared
  constant; this works similarly to a constant object declaration.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0032-1]}
  @ChgAdded{Version=[3],Text=[Added wording to allow
  the @nt{return_subtype_indication} to have a specific type if the return
  subtype of the function is class-wide. Specifying the (specific) type of
  the return object is awkward without this change, and this is consistent
  with the way @nt{allocator}s work.]}
@end{Extend2005}

@begin{DiffWord2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0024-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Corrected the master check
  for tags since the masters may be for different tasks and thus incomparable.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0058-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Corrected the wording
  defining returns for @nt{extended_return_statement}s, since leaving by
  an exit or goto is considered @ldquote@;normal@rdquote completion of the
  statement.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0205-1],ARef=[AI05-0277-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Added the
  @nt{extended_return_object_declaration} to make other rules easier to write
  and eliminate the problem described in AI05-0205-1.]}
@end{DiffWord2005}

@begin{DiffWord2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI05-0097-1]}
  @ChgAdded{Version=[4],Text=[@b<Corrigendum:> Clarified the wording so that
  it is clear where the tag of the return object comes from. While a literal
  reading of the original Ada 2012 rule could have caused some weird results
  (by using some nearby @nt{subtype_indication} to provide the tag in the
  case of a @nt{simple_return_statement}, such a reading would be so unlike
  the rest of the language that we do not believe anyone would ever have
  thought it was intended. As such, we do not believe any implementation
  ever did this wrong (at least because of the old wording), and thus do not
  document this as a possible inconsistency.]}
@end{DiffWord2012}


@NotISORMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledRevisedSubClause{Version=[3],InitialVersion=[2],New=[Nonreturning Procedures],Old=[Pragma No_Return]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[Specifying aspect],Old=[A @nt{pragma}]}
No_Return @Chg{Version=[3],New=[to have the value True ],Old=[]}indicates
that a procedure cannot return normally@Redundant[; it may propagate
an exception or loop forever].]}
@begin{Discussion}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgRef{Version=[3],Kind=[Revised]}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[Aspect],Old=[@nt{Pragma}]}
No_Deposit@Defn{No_Deposit aspect} will have to wait for
Ada @Chg{Version=[3],New=[2020],Old=[2017]}. :-)]}
@end{Discussion}

@begin{NotIso}
@ChgAdded{Version=[3],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 2
and 3 were moved to @RefSec{Obsolescent Features}.>}]}@Comment{This message
should be deleted if the paragraphs are ever renumbered.}
@end{NotIso}

@begin{Syntax}
@begin{SyntaxText}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0229-1]}
@ChgAdded{Version=[2],Type=[Leading],Text=[@Chg{Version=[3],New=[],Old=[The form
of a @nt{pragma} No_Return, which is a
representation pragma (see @RefSecNum{Operational and Representation Aspects}),
is as follows:]}]}
@end{SyntaxText}

@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg]}
@DeletedPragmaSyn{Version=[3],InitialVersion=[2],@ChgAdded{Version=[2],
Text=`@Chg{Version=[3],New=[],Old=[@key{pragma} @prag<No_Return>(@SynI{procedure_}@Syn2{local_name}{, @SynI{procedure_}@Syn2{local_name}});]}'}}
@end{Syntax}

@begin{StaticSem}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0229-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[For a procedure or generic procedure, the following
language-defined representation aspect may be specified:]}
@begin{Description}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[No_Return@\The type of aspect No_Return is Boolean.
When aspect No_Return is True for an entity, the entity is said to be
@i<nonreturning>.@Defn{nonreturning}@AspectDefn{No_Return}]}

@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],NoPrefix=[T],Text=[If directly specified, the
@nt{aspect_definition} shall be a static expression. @Redundant[This aspect is
never inherited;] if not directly specified, the aspect is False.]}

@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[No_Return],
  Text=[@ChgAdded{Version=[3],Text=[A procedure will not return normally.]}]}
@end{Description}

@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0229-1]}@ChgNote{Moved from below}
@ChgAdded{Version=[3],Text=[If a generic procedure is nonreturning, then so are
its instances. If a procedure declared within a generic unit is nonreturning,
then so are the corresponding copies of that procedure in instances.]}

@end{StaticSem}


@begin{Legality}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[Aspect No_Return],
Old=[@Defn{nonreturning}Each @SynI{procedure_}@nt{local_name} shall denote one
or more procedures or generic procedures; the denoted entities are
@i<nonreturning>. The @SynI{procedure_}@nt{local_name}]} shall not
@Chg{Version=[3],New=[be specified for],Old=[denote]} a
null procedure nor an instance of a generic unit.]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[A null procedure cannot have the appropriate
  nonreturning semantics, as it does not raise an exception or loop forever.]}
@end{Reason}

@begin{Ramification}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
  @ChgAdded{Version=[2],Text=[The procedure can be abstract.@Chg{Version=[3],New=[],
  Old=[ The denoted declaration can be a @nt{renaming_declaration} if it obeys the usual rules
  for representation pragmas: the renaming has to occur immediately within the
  same declarative region as the renamed subprogram.]} If a nonreturning
  procedure is renamed (anywhere) calls through the new name still have the
  nonreturning semantics.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
@ChgAdded{Version=[2],Text=[A return statement shall not apply to a
nonreturning procedure or generic procedure.]}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00414-01]}
@ChgAdded{Version=[2],Text=[A procedure shall be nonreturning if it overrides
a dispatching nonreturning procedure.
@PDefn{generic contract issue}
In addition to the places where
@LegalityTitle normally apply (see @RefSecNum{Generic Instantiation}),
this rule applies also in the private part of an instance of a generic unit.]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This ensures that dispatching calls to
  nonreturning procedures will, in fact, not return.]}
@end{Reason}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00414-01]}
@ChgAdded{Version=[2],Text=[If a renaming-as-body completes a nonreturning
procedure declaration, then the renamed procedure shall be nonreturning.]}

@begin{Reason}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[This ensures that no extra code is needed to
  implement the renames (that is, no wrapper is needed) as the body has
  the same property.]}
@end{Reason}

@end{Legality}

@begin{NotIso}
@ChgAdded{Version=[3],Noprefix=[T],Noparanum=[T],Text=[@Shrink{@i<Paragraph 8
was deleted.>}]}@Comment{This message should be deleted if the paragraphs
are ever renumbered.}@ChgNote{This special message is needed to get rid of
the old, now unused, subheader}
@end{NotIso}

@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0229-1]}
@ChgAdded{Version=[2],Text=[@Chg{Version=[3],New=[],Old=[If a generic procedure
is nonreturning, then so are its instances. If a procedure declared within
a generic unit is nonreturning, then so are the corresponding copies of
that procedure in instances.]}]}
@end{StaticSem}

@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
@ChgAdded{Version=[2],Text=[If the body of a nonreturning procedure completes
normally, Program_Error is raised at the point of the call.
@Defn2{Term=[Program_Error],Sec=(raised by failure of run-time check)}]}
@end{RunTime}
@begin{Discussion}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[Note that there is no name for suppressing
  this check, since the check represents a bug, imposes no time overhead,
  and minimal space overhead (since it can usually be statically eliminated
  as dead code).]}
@end{Discussion}
@begin{ImplNote}
  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[If a nonreturning procedure tries to return, we
  raise Program_Error. This is stated as happening at the call site, because we
  do not wish to allow the procedure to handle the exception (and then,
  perhaps, try to return again!). However, the expected run-time model is that
  the compiler will generate @key{raise} Program_Error at the end of the
  procedure body (but not handleable by the procedure itself), as opposed to
  doing it at the call site. (This is just like the typical run-time model for
  functions that fall off the end without returning a value). The reason is
  indirect calls: in P.@key{all}(...);, the compiler cannot know whether P
  designates a nonreturning procedure or a normal one. Putting the @key{raise}
  Program_Error in the procedure's generated code solves this problem neatly.]}

  @ChgRef{Version=[2],Kind=[AddedNormal]}
  @ChgAdded{Version=[2],Text=[Similarly, if one passes a nonreturning
  procedure to a generic formal parameter, the compiler cannot know this at
  call sites (in shared code implementations); the raise-in-body solution
  deals with this neatly.]}
@end{ImplNote}

@begin{Examples}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0229-1]}
@ChgAdded{Version=[2],Text=[@key(procedure) Fail(Msg : String)@Chg{Version=[3],New=[],Old=[;]}  --@ExamCom[ raises Fatal_Error exception]
@Chg{Version=[3],New=[   @key(with)],Old=[@key(pragma)]} No_Return@Chg{Version=[3],New=[],Old=[(Fail)]};
   --@ExamCom[ Inform compiler and reader that procedure never returns normally]]}
@end{Example}
@end{Examples}

@begin{Extend95}
  @ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00329-01],ARef=[AI95-00414-01]}
  @ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
  @nt{Pragma} No_Return is new.]}
@end{Extend95}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0229-1]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
  Aspect No_Return is new; @nt{pragma} No_Return is now obsolescent.]}
@end{Extend2005}


@NotISORMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledClause{Overloading of Operators}

@begin{Intro}
@Defn{operator}
@Defn{user-defined operator}
@Defn2{Term=[operator], Sec=(user-defined)}
An @i{operator} is a function whose @nt{designator} is an
@nt<operator_symbol>.
@Redundant[Operators, like other functions, may be overloaded.]
@end{Intro}

@begin{Resolution}
Each use of a unary or binary operator is equivalent to a
@nt{function_call} with @SynI{function_}@nt{prefix} being the
corresponding @nt{operator_symbol}, and with (respectively) one or
two positional actual parameters being the operand(s) of the operator
(in order).
@begin{Honest}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
We also use the term operator
(in @Chg{Version=[3],New=[Clause],Old=[Section]} 4 and in
@RefSecNum{Subprogram Declarations})
to refer to one of the syntactic categories
defined in @RefSec{Operators and Expression Evaluation}
whose names end with @lquotes@;_operator:@rquotes@;
@nt<logical_@!operator>,
@nt<relational_@!operator>,
@nt<binary_@!adding_@!operator>,
@nt<unary_@!adding_@!operator>,
@nt<multiplying_@!operator>, and
@nt<highest_@!precedence_@!operator>.
@end{Honest}
@begin{Discussion}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0005-1]}
@ChgAdded{Version=[3],Text=[This equivalence extends to uses of
@nt{function_call} in most other language rules. However, as
often happens, the equivalence is not perfect, as operator
calls are not a @nt{name}, while a @nt{function_call} is a
@nt{name}. Thus, operator calls cannot be used in contexts
that require a @nt{name} (such as a rename of an object).
A direct fix for this problem would be very disruptive, and thus
we have not done that. However, qualifying an operator call
can be used as a workaround in contexts that require a @nt{name}.]}
@end{Discussion}
@end{Resolution}

@begin{Legality}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0143-1]}
The @nt{subprogram_specification} of a unary or binary operator shall have
one or two parameters, respectively.@Chg{Version=[3],New=[ The parameters
shall be of mode @key[in].],Old=[]}
A generic function instantiation whose @nt{designator} is an
@nt{operator_symbol} is only allowed if the specification of the
generic function has the corresponding number of
parameters@Chg{Version=[3],New=[, and they are all of mode @key[in]],Old=[]}.

@nt{Default_expression}s are not allowed for the parameters of an operator
(whether the operator is declared with an explicit
@nt{subprogram_specification} or by a @nt{generic_instantiation}).

An explicit declaration of "/=" shall not have a result
type of the predefined type Boolean.
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0128-1]}
@Chg{Version=[3],New=[An explicit],Old=[A]} declaration of "="
whose result type is Boolean implicitly declares
@Chg{Version=[3],New=[an operator],Old=[a declaration of]} "/=" that
gives the complementary result.@Defn{/= operator}
@begin{Discussion}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0128-1]}
@ChgAdded{Version=[3],Text=[A "/=" defined by this rule is considered
user-defined, which means that it will be inherited by a derived type.
@ldquote@;User-defined@rdquote means @ldquote@;not language-defined@rdquote for
the purposes of inheritance, that is anything other than predefined operators.
@Defn{Number of the Beast}@Comment{This is 6.6(6) :-)}]}
@end{Discussion}
@end{StaticSem}

@begin{Notes}
The operators "+" and "@en@;" are both unary and binary operators,
and hence may be overloaded with both one- and two-parameter functions.
@end{Notes}

@begin{Examples}
@leading@keepnext@i{Examples of user-defined operators:}
@begin{Example}
@key[function] "+" (Left, Right : Matrix) @key[return] Matrix;
@key[function] "+" (Left, Right : Vector) @key[return] Vector;
@Comment{Blank line}
--@ExamCom{  assuming that A, B, and C are of the type Vector}
--@ExamCom{  the following two statements are equivalent:}
@Comment{Blank line}
A := B + C;
A := "+"(B, C);
@end{Example}
@end{Examples}

@begin{Extend83}
@Defn{extensions to Ada 83}
Explicit declarations of "=" are now permitted for any
combination of parameter and result types.

Explicit declarations of "/=" are now permitted, so long
as the result type is not Boolean.
@end{Extend83}

@begin{DiffWord2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0128-1]}
  @ChgAdded{Version=[3],Text=[@b<Correction:> Corrected the wording
  so that only explicit declarations of "=" cause an implicit declaration
  of "/="; otherwise, we could get multiple implicit definitions of "/="
  without an obvious way to chose between them.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0143-1]}
  @ChgAdded{Version=[3],Text=[Added wording so that operators only allow
  parameters of mode @key[in]. This was made necessary by the elimination
  elsewhere of the restriction that function parameters be only of
  mode @key[in].]}
@end{DiffWord2005}


@RMNewPageVer{Version=[2]}@Comment{For printed version of Ada 2005 RM}
@RMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledAddedClause{Version=[2],Name=[Null Procedures]}

@begin{Intro}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
@ChgAdded{Version=[2],Text=[A @nt<null_procedure_declaration> provides a shorthand
to declare a procedure with an empty body.]}
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0183-1]}
@AddedSyn{Version=[2],lhs=<@Chg{Version=[2],New=<null_procedure_declaration>,Old=<>}>,
rhs="@Chg{Version=[2],New=<
   [@Syn2{overriding_indicator}]
   @Syn2{procedure_specification} @key{is} @key{null}@Chg{Version=[3],New=<
       [@Syn2{aspect_specification}]>,Old=[]};>,Old=<>}"}
@end{Syntax}

@begin{Legality}
@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0177-1]}
@ChgAdded{Version=[3],Text=[If a @nt{null_procedure_declaration} is a completion,
it shall be the completion of a @nt{subprogram_declaration} or
@nt{generic_subprogram_declaration}. The profile of a
@nt{null_procedure_declaration} that completes a declaration shall
conform fully to that of the declaration.@Defn2{Term=[full conformance],Sec=(required)}]}
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0177-1],ARef=[AI05-0264-1]}
@ChgAdded{Version=[2],Text=[A @nt<null_procedure_declaration> declares a @i<null
procedure>.@Defn{null procedure}@Defn2{Term=[procedure],Sec=[null]}
A completion is not allowed for a @nt<null_procedure_declaration>@Chg{Version=[3],New=[;
however, a @nt{null_procedure_declaration} can complete a previous declaration],Old=[]}.]}
@begin{Reason}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[There are no null functions because the return
value has to be constructed somehow; a function that always raises
Program_Error doesn't seem very useful or worth the complication.]}
@end{Reason}
@end{StaticSem}

@begin{RunTime}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
@ChgAdded{Version=[2],Text=[The execution of a null procedure is invoked by a subprogram call.
For the execution of a subprogram call on a null procedure, the execution of
the @nt<subprogram_body> has no effect.]}
@begin{Ramification}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[Thus, a null procedure is equivalent to the body]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{begin}
   @key{null};
@key{end};]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[with the exception that a null procedure can be used in
place of a procedure specification.]}
@end{Ramification}

@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0177-1]}
@ChgAdded{Version=[2],Text=[@PDefn2{Term=[elaboration], Sec=(null_procedure_declaration)}
The elaboration of a @nt{null_procedure_declaration} has no
@Chg{Version=[3],New=[other ],Old=[]}effect@Chg{Version=[3],New=[ than to
establish that the null procedure can be called without failing the
Elaboration_Check],Old=[]}.]}
@end{RunTime}

@begin{Examples}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00433-01]}
@ChgAdded{Version=[2],Text=[@key(procedure) Simplify(Expr : @key(in out) Expression) @key(is null); --@ExamCom[ see @RefSecNum{Tagged Types and Type Extensions}]
--@ExamCom[ By default, Simplify does nothing, but it may be overridden in extensions of Expression]]}
@end{Example}
@end{Examples}

@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00348-01]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
Null procedures are new.]}
@end{Extend95}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
  A @nt{null_procedure_declaration} can now be a completion.]}

  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0183-1]}
  @ChgAdded{Version=[3],Text=[An optional @nt{aspect_specification}
  can be used in a @nt{null_procedure_declaration}.
  This is described in @RefSecNum{Aspect Specifications}.]}
@end{Extend2005}


@RMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@LabeledAddedClause{Version=[3],Name=[Expression Functions]}

@begin{Intro}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
@ChgAdded{Version=[3],Text=[An @nt{expression_function_declaration} provides a
shorthand to declare a function whose body consists of a single return
statement.]}
@end{Intro}

@begin{Syntax}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI95-0177-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI95-0147-1]}
@AddedSyn{Version=[3],lhs=<@Chg{Version=[3],New=<expression_function_declaration>,Old=<>}>,
rhs="@Chg{Version=[3],New=<
   [@Syn2{overriding_indicator}]
   @Syn2{function_specification} @key{is}
       (@Syn2{expression})
       [@Syn2{aspect_specification}];@Chg{Version=[4],New=<
 | [@Syn2{overriding_indicator}]
   @Syn2{function_specification} @key{is}
       @Syn2{aggregate}
       [@Syn2{aspect_specification}];>,Old=<>}>,Old=<>}"}
@end{Syntax}

@begin{Resolution}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI95-0147-1]}
@ChgAdded{Version=[3],Text=[The expected type for the @nt{expression}
@Chg{Version=[4],New=[or @nt{aggregate} ],Old=[]}of an
@nt{expression_@!function_@!declaration} is the result type (see
@RefSecNum{Return Statements}) of the function.@PDefn2{Term=[expected type],
Sec=(expression of expression function)}]}
@end{Resolution}

@begin{Legality}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
@ChgAdded{Version=[3],Text=[If an @nt{expression_@!function_@!declaration} is a
completion, it shall be the completion of a @nt{subprogram_declaration} or
@nt{generic_subprogram_declaration}. The profile of an
@nt{expression_@!function_@!declaration} that completes a declaration
shall conform fully to that of the declaration.@Defn2{Term=[full conformance],Sec=(required)}]}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI95-0147-1]}
@ChgAdded{Version=[3],Text=[If the result subtype has one or more unconstrained
access discriminants, the accessibility level of the anonymous access type of
each access discriminant, as determined by the @nt{expression}
@Chg{Version=[4],New=[or @nt{aggregate} ],Old=[]}of the
@Chg{Version=[4],New=[@nt{expression_@!function_@!declaration}],Old=[expression
function]}, shall not be statically deeper than that of the master that
elaborated the @nt{expression_@!function_@!declaration}.]}

@begin{Ramification}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[This can only fail if the discriminant is an
  access to a part of a non-aliased parameter, as there can be no local
  declarations here.]}
@end{Ramification}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0005-1]}
  @ChgAdded{Version=[3],Text=[We don't need to repeat any of the other
  @LegalityTitle for return statements since none of them can fail here: the
  implicit return statement has to apply to this function (and isn't nested in
  something), there clearly is a return statement in this function, and the
  static @Chg{Version=[4],New=[class-wide],Old=[classwide]} accessibility check
  cannot fail as a tagged type cannot be
  declared locally in an expression function.]}
@end{Discussion}
@end{Legality}

@begin{StaticSem}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1],ARef=[AI05-0264-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI95-0147-1]}
@ChgAdded{Version=[3],Text=[An @nt{expression_@!function_@!declaration} declares
an @i{expression function}.@Defn{expression function}@Defn2{Term=[function],Sec=[expression]}
@Chg{Version=[4],New=[The @i<return expression>@Defn2{Term=[return expression],Sec=[of expression function]}
of an expression function is the @nt{expression} or @nt{aggregate} of the
@nt{expression_function_declaration}. ],Old=[]}A completion
is not allowed for an @nt{expression_@!function_@!declaration}; however, an
@nt{expression_@!function_@!declaration} can complete a previous declaration.]}
@end{StaticSem}

@begin{RunTime}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1],ARef=[AI05-0262-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI95-0147-1]}
@ChgAdded{Version=[3],Text=[ The execution of an expression function is invoked
by a subprogram call. For the execution of a subprogram call on an expression
function, the execution of the @nt{subprogram_body} executes an implicit
function body containing only a @nt{simple_return_statement} whose
@nt{expression} is @Chg{Version=[4],New=[the return expression],Old=[that]}
of the expression function.]}

@begin{Discussion}
  @ChgRef{Version=[3],Kind=[AddedNormal]}
  @ChgAdded{Version=[3],Text=[The last sentence effectively means that all of
  the dynamic wording in @RefSecNum{Return Statements} applies as needed, and we
  don't have to repeat it here.]}
@end{Discussion}

@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
@ChgAdded{Version=[3],Text=[@PDefn2{Term=[elaboration],
Sec=(expression_function_declaration)}The elaboration of an
@nt{expression_@!function_@!declaration} has no other effect than to establish
that the expression function can be called without failing the
Elaboration_Check.]}
@end{RunTime}

@begin{Examples}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
@ChgAdded{Version=[3],Text=[@key(function) Is_Origin (P : @key[in] Point) @key[return] Boolean @key[is] -- @Examcom[see @RefSecNum{Tagged Types and Type Extensions}]
   (P.X = 0.0 @key[and] P.Y = 0.0);]}
@end{Example}
@end{Examples}

@begin{Extend2005}
  @ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0177-1]}
  @ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
  Expression functions are new in Ada 2012.]}
@end{Extend2005}

@begin{Extend2012}
  @ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0157-1]}
  @ChgAdded{Version=[4],Text=[@Defn{extensions to Ada 2012}
  A @nt{aggregate} can directly be the return expression of an expression
  function. This eliminates the double parentheses that otherwise would be
  necessary.]}
@end{Extend2012}