1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
|
@Part(05, Root="ada.mss")
@Comment{$Date: 2020/06/03 00:09:00 $}
@LabeledSection{Statements}
@Comment{$Source: e:\\cvsroot/ARM/Source/05.mss,v $}
@Comment{$Revision: 1.84 $}
@begin{Intro}
@Redundant[A @nt{statement} defines an action to be performed upon
its execution.]
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
@Redundant[This @Chg{Version=[3],New=[clause],Old=[section]} describes the
general rules applicable to all @nt{statement}s.
Some @nt{statement}s are discussed in later @Chg{Version=[3],New=[clauses],Old=[sections]}:
@nt{Procedure_@!call_@!statement}s and
@Chg{Version=[2],New=[return statements],Old=[@nt{return_@!statement}s]} are
described in @RefSec{Subprograms}.
@nt{Entry_@!call_@!statement}s, @nt{requeue_@!statement}s,
@nt{delay_@!statement}s, @nt{accept_@!statement}s,
@nt{select_@!statement}s, and @nt{abort_@!statement}s are described in
@RefSec{Tasks and Synchronization}.
@nt{Raise_@!statement}s are described in @RefSec{Exceptions},
and @nt{code_@!statement}s in
@RefSecNum{Representation Issues}.
The remaining forms of @nt{statement}s are presented in this
@Chg{Version=[3],New=[clause],Old=[section]}.]
@end{Intro}
@begin{DiffWord83}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
The description of
@Chg{Version=[2],New=[return statements],Old=[@nt{return_@!statement}s]}
has been moved to
@RefSec{Return Statements}, so that it is closer to the
description of subprograms.
@end{DiffWord83}
@LabeledClause{Simple and Compound Statements - Sequences of Statements}
@begin{Intro}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0119-1]}
@Redundant[A @nt<statement> is either simple or compound.
A @nt<simple_statement> encloses
no other @nt<statement>. A @nt<compound_statement> can enclose
@nt<simple_statement>s and other @nt<compound_statement>s.]@Chg{Version=[5],New=[
A @i<parallel construct>@Defn{parallel construct}@Defn2{Term=[construct],Sec=[parallel]}
is a construct that introduces additional
logical threads of control (see clause @RefSecNum{Tasks and Synchronization})
without creating a new task.
Parallel loops (see @RefSecNum{Loop Statements}) and
@nt{parallel_block_statement}s (see
@RefSecNum{Parallel Block Statements}) are parallel
constructs.@IndexSee{Term=[parallel processing],See=(parallel construct)}
@IndexSee{Term=[concurrent processing],See=(parallel construct)}],Old=[]}
@ChgToGlossary{Version=[5],Kind=[Added],Term=<Parallel Construct>,
Text=<@ChgAdded{Version=[5],Text=[An executable construct that defines multiple
activities of a single task that can proceed in parallel, via the execution of
multiple logical threads of control.]}>}
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0179-1]}
@Syn{lhs=<sequence_of_statements>,rhs="@Syn2{statement} {@Syn2{statement}}@Chg{Version=[3],New=[ {@Syn2{label}}],Old=[]}"}
@Syn{lhs=<statement>,rhs="
{@Syn2{label}} @Syn2{simple_statement} | {@Syn2{label}} @Syn2{compound_statement}"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Syn{tabs=[P31], lhs=<simple_statement>,rhs="@Syn2{null_statement}
| @Syn2{assignment_statement}@\| @Syn2{exit_statement}
| @Syn2{goto_statement}@\| @Syn2{procedure_call_statement}
| @Chg{Version=[2],New=[@Syn2{simple_return_statement}],Old=[@Syn2{return_statement}]}@\| @Syn2{entry_call_statement}
| @Syn2{requeue_statement}@\| @Syn2{delay_statement}
| @Syn2{abort_statement}@\| @Syn2{raise_statement}
| @Syn2{code_statement}"}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0119-1]}
@Syn{tabs=[P31], lhs=<compound_statement>,rhs="
@Syn2{if_statement}@\| @Syn2{case_statement}
| @Syn2{loop_statement}@\| @Syn2{block_statement}@Chg{Version=[2],New=[
| @Syn2{extended_return_statement}],Old=[]}@Chg{Version=[5],New=[
| @Syn2{parallel_block_statement}],Old=[]}
| @Syn2{accept_statement}@\| @Syn2{select_statement}"}
@Syn{lhs=<null_statement>,rhs="@key{null};"}
@Syn{lhs=<label>,rhs="<<@SynI{label_}@Syn2{statement_identifier}>>"}
@Syn{lhs=<statement_identifier>,rhs="@Syn2{direct_name}"}
@begin(SyntaxText)
The @nt<direct_name> of a @nt<statement_identifier> shall
be an @nt<identifier> (not an @nt<operator_symbol>).
@end(SyntaxText)
@end{Syntax}
@begin{Resolution}
The @nt<direct_name> of a @nt<statement_identifier> shall resolve to
denote its corresponding implicit declaration (see below).
@end{Resolution}
@begin{Legality}
Distinct @nt{identifier}s shall be used for all
@nt<statement_identifier>s that
appear in the same body, including
inner @nt{block_statement}s
but excluding inner program units.
@end{Legality}
@begin{StaticSem}
For each @nt<statement_identifier>,
there is an implicit declaration (with the specified @nt<identifier>)
at the end of the @nt{declarative_part} of the
innermost @nt{block_statement} or body that
encloses the @nt{statement_identifier}.
The implicit declarations occur in the same order as the
@nt<statement_identifier>s occur in the source text.
If a usage name denotes such an implicit declaration, the entity it
denotes is the @nt<label>, @nt<loop_statement>,
or @nt<block_statement> with the given @nt<statement_identifier>.
@begin{Reason}
We talk in terms of individual @nt<statement_identifier>s here
rather than in terms of the corresponding statements, since
a given @nt{statement} may have multiple @nt<statement_identifier>s.
A @nt{block_statement} that has no
explicit @nt{declarative_part} has an implicit empty
@nt{declarative_part},
so this rule can safely
refer to the @nt{declarative_part} of a @nt<block_statement>.
The scope of a declaration starts at the place of the declaration
itself (see @RefSecNum{Scope of Declarations}).
In the case of a label, loop, or block name, it
follows from this rule that the scope of the implicit declaration
starts before the first explicit occurrence of the corresponding
name, since this occurrence is either in a statement label, a
@nt{loop_statement}, a @nt{block_statement}, or a
@nt{goto_statement}. An implicit
declaration in a @nt{block_statement} may hide a declaration given in an
outer program unit or @nt{block_statement} (according to the usual rules
of hiding explained in @RefSecNum{Visibility}).
The syntax rule for @nt{label} uses @nt{statement_identifier} which
is a @nt<direct_name> (not a @nt{defining_identifier}),
because labels are implicitly declared. The same applies to loop and
block names.
In other words, the @nt{label} itself is not the defining occurrence;
the implicit declaration is.
@Leading@;We cannot consider the @nt{label} to be a defining occurrence.
An example that can tell the difference is this:
@begin{example}
@key[declare]
--@RI{ Label Foo is implicitly declared here.}
@key[begin]
@key[for] Foo @key[in] ... @key[loop]
...
<<Foo>> --@RI{ Illegal.}
...
@key[end] @key[loop];
@key[end];
@end{example}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
The label in this example is hidden from itself by the loop parameter
with the same name;
the example is illegal.
We considered creating a new syntactic category name, separate from
@nt{direct_name} and @nt{selector_name}, for use in the case of statement
labels.
However, that would confuse the rules in @Chg{Version=[3],New=[Clause],Old=[Section]}
8, so we didn't do it.
@end{Reason}
@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0179-1]}
@ChgAdded{Version=[3],Text=[If one or more @nt{label}s end a
@nt{sequence_of_statements}, an implicit @nt{null_statement}
follows the @nt{label}s before any following constructs.]}
@begin{Reason}
@ChgRef{Version=[3],Kind=[Added]}
@ChgAdded{Version=[3],Text=[The semantics of a @nt{goto_statement} is
defined in terms of the statement having (following) that label. Thus
we ensure that every label has a following statement, which might be
implicit.]}
@end{Reason}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(null_statement)}
The execution of a @nt{null_statement} has no effect.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00318-02]}
@Defn{transfer of control}
A @i{transfer of control} is
the run-time action of an @nt{exit_statement},
@Chg{Version=[2],New=[return statement],Old=[@nt{return_statement}]},
@nt{goto_statement},
or @nt{requeue_statement},
selection of a @nt{terminate_alternative},
raising of an exception,
or an abort,
which causes
the next action performed to be one other than what would normally be
expected from the other rules of the language.
@Redundant[As explained in
@RefSecNum{Completion and Finalization},
a transfer of control can cause the execution of constructs to be
completed and then left,
which may trigger finalization.]
@PDefn2{Term=[execution], Sec=(sequence_of_statements)}
The execution of a @nt{sequence_of_statements} consists of the execution
of the individual @nt{statement}s in succession
until the @ntf{sequence_} is completed.
@begin{Ramification}
It could be completed by reaching the end of it,
or by a transfer of control.
@end{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[Within a parallel construct, if a transfer of
control out of the construct is initiated by one of the logical threads of
control, an attempt is made to @i<cancel>@Defn2{Term=[cancel],Sec=[a logical
thread]}@Defn2{Term=[cancel],Sec=[a parallel construct]} all other logical
threads of control initiated by the parallel construct. Once all other logical
threads of control of the construct either complete or are canceled, the
transfer of control occurs. If two or more logical threads of control of the
same construct initiate such a transfer of control concurrently, one of them is
chosen arbitrarily and the others are canceled.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[When a logical thread of control is canceled, the
cancellation causes it to complete as though it had performed a transfer of
control to the point where it would have finished its execution. Such a
cancellation is deferred while the logical thread of control is executing within
an abort-deferred operation (see
@RefSecNum{Abort of a Task - Abort of a Sequence of Statements}), and may be
deferred further, but not past
a point where the logical thread initiates a new nested parallel construct or
reaches an exception handler that is outside such an abort-deferred operation.]}
@end{RunTime}
@begin{Bounded}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
During the execution of a parallel construct, it is
a bounded error to invoke an operation that is potentially blocking (see
@RefSecNum{Intertask Communication}). Program_Error is raised if the error is
detected by the implementation; otherwise, the execution of the potentially
blocking operation might proceed normally, or it might result in the indefinite
blocking of some or all of the logical threads of control making up the current
task.@Defn2{Term=[Program_Error],Sec=(raised by detection of a bounded error)}]}
@end{Bounded}
@begin{Notes}
A @nt<statement_identifier> that appears immediately within
the declarative region of a
named @nt<loop_statement> or an @nt<accept_statement> is nevertheless
implicitly declared immediately within the declarative region
of the innermost enclosing body or @nt<block_statement>;
in other words, the expanded name for a named statement is
not affected by whether the statement occurs inside or outside
a named loop or an @nt<accept_statement> @em only nesting
within @nt<block_statement>s is relevant to the form of its
expanded name.
@begin{Discussion}
@Leading@keepnext@;Each comment in the following example gives the
expanded name associated with an entity declared in the task body:
@begin{Example}
@key(task body) Compute @key(is)
Sum : Integer := 0; --@RI[ Compute.Sum]
@key(begin)
Outer: --@RI[ Compute.Outer]
@key(for) I @key(in) 1..10 @key(loop) --@RI[ Compute.Outer.I]
Blk: --@RI[ Compute.Blk]
@key(declare)
Sum : Integer := 0; --@RI[ Compute.Blk.Sum]
@key(begin)
@key(accept) Ent(I : out Integer; J : in Integer) @key(do)
--@RI[ Compute.Ent.I, Compute.Ent.J]
Compute.Ent.I := Compute.Outer.I;
Inner: --@RI[ Compute.Blk.Inner]
@key(for) J @key(in) 1..10 @key(loop)
--@RI[ Compute.Blk.Inner.J]
Sum := Sum + Compute.Blk.Inner.J * Compute.Ent.J;
@key(end loop) Inner;
@key(end) Ent;
Compute.Sum := Compute.Sum + Compute.Blk.Sum;
@key(end) Blk;
@key(end loop) Outer;
Record_Result(Sum);
@key(end) Compute;
@end{Example}
@end{Discussion}
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples of labeled statements:}
@begin{Example}
<<Here>> <<Ici>> <<Aqui>> <<Hier>> @key[null];
<<After>> X := 1;
@end{Example}
@end{Examples}
@begin{Extend83}
@Defn{extensions to Ada 83}
The @nt{requeue_statement} is new.
@end{Extend83}
@begin{DiffWord83}
We define the syntactic category @nt<statement_identifier> to simplify
the description. It is used for labels, loop names, and block names.
We define the entity associated with the implicit declarations
of statement names.
Completion includes completion caused by a transfer of control,
although RM83-5.1(6) did not take this view.
@end{DiffWord83}
@begin{Extend95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00318-02]}
@ChgAdded{Version=[2],Text=[@Defn{extensions to Ada 95}
The @nt{extended_return_statement} is new (@nt{simple_return_statement}
is merely renamed).]}
@end{Extend95}
@begin{Extend2005}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0179-1]}
@ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}
A @nt{label} can end a @nt{sequence_of_statements},
eliminating the requirement for having an explicit @key[null]; statement
after an ending label (a common use).]}
@end{Extend2005}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}
The definition of @ldquote@;parallel constructs@rdquote and the
@nt{parallel_block_statement} are new.]}
@end{Extend2012}
@LabeledClause{Assignment Statements}
@begin{Intro}
@Redundant[An @nt{assignment_statement}
replaces the current value of
a variable with the result of evaluating an
@nt<expression>.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<assignment_statement>,rhs="
@SynI{variable_}@Syn2{name} := @Syn2{expression};"}
@end{Syntax}
@begin{Intro}
The execution of an @nt<assignment_statement> includes
the evaluation of the @nt<expression> and the @i(assignment)
of the value of the @nt<expression> into the @i(target).
@RootDefn{assignment operation}
@IndexSee{Term=[assign], See=(assignment operation)}
@Redundant[An assignment operation (as opposed to
an @nt<assignment_@!statement>) is performed in other contexts
as well, including object initialization and by-copy parameter
passing.]
@Defn2{Term=[target], Sec=(of an assignment operation)}
@Defn2{Term=[target], Sec=(of an @nt{assignment_statement})}
The @i{target} of an assignment operation
is the view of the object to which a value is being assigned;
the target of an @nt{assignment_@!statement} is the variable denoted by
the @SynI{variable_}@nt{name}.
@begin{Discussion}
Don't confuse this notion of the @lquotes@;target@rquotes@; of an assignment
with the notion of the @lquotes@;target object@rquotes@; of an entry call or requeue.
Don't confuse the term @lquotes@;assignment operation@rquotes@; with the
@nt{assignment_statement}.
The assignment operation is just one part of the execution of an
@nt{assignment_statement}.
The assignment operation is also a part of the execution of various
other constructs; see @RefSec{Completion and Finalization} for a complete
list.
Note that when we say, @lquotes@;such-and-such is assigned to so-and-so@rquotes@;,
we mean that the assignment operation is being applied, and that
so-and-so is the target of the assignment operation.
@end{Discussion}
@end{Intro}
@begin{Resolution}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
@PDefn2{Term=[expected type],
Sec=(assignment_statement variable_name)}
The @i(variable_)@nt<name> of an @nt<assignment_statement>
is expected to be of any @Chg{Version=[2],New=[],Old=[nonlimited ]}type.
@PDefn2{Term=[expected type],
Sec=(assignment_statement expression)}
The expected type for the @nt<expression> is
the type of the target.
@begin{ImplNote}
@Leading@keepnext@;An @nt<assignment_statement> as a whole is a "complete context,"
so if the @i{variable_}@nt<name> of an @nt<assignment_statement> is
overloaded, the @nt<expression> can be used to help disambiguate it.
For example:
@begin{Example}
@key[type] P1 @key[is access] R1;
@key[type] P2 @key[is access] R2;
@key[function] F return P1;
@key[function] F return P2;
X : R1;
@key[begin]
F.all := X; --@RI[ Right hand side helps resolve left hand side]
@end{Example}
@end{ImplNote}
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00287-01]}
The target @Redundant[denoted by the
@i(variable_)@nt<name>] shall be a variable@Chg{Version=[2],New=[ of a
nonlimited type],Old=[]}.@Defn2{Term=[variable],Sec=(required)}@Defn2{Term=[object],Sec=(required)}
If the target is of a tagged class-wide type @i(T)'Class, then
the @nt<expression> shall either be dynamically tagged,
or of type @i(T) and tag-indeterminate
(see @RefSecNum{Dispatching Operations of Tagged Types}).
@begin{Reason}
This is consistent with the general rule that a single
dispatching operation shall not have both dynamically tagged and
statically tagged operands. Note that for an object
initialization (as opposed to the @nt{assignment_statement}),
a statically tagged initialization expression is permitted,
since there is no chance for confusion (or Tag_Check failure).
Also, in an object initialization, tag-indeterminate expressions
of any type covered by @i(T)'Class would be allowed, but with
an @nt{assignment_statement}, that might not work if the tag of the target
was for a type that didn't have one of the dispatching operations
in the tag-indeterminate expression.
@end{Reason}
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(assignment_statement)}
For the execution of an @nt{assignment_statement},
the @i(variable_)@nt<name> and the @nt<expression>
are first evaluated in an arbitrary order.@PDefn2{Term=[arbitrary order],Sec=[allowed]}
@begin{Ramification}
Other rules of the language may require that the
bounds of the variable be determined prior to evaluating
the @nt<expression>, but that does not necessarily require
evaluation of the @i(variable_)@nt<name>, as pointed out by the ACID.
@end{Ramification}
@Leading@keepnext@;When the type of the target is class-wide:
@begin(itemize)
@PDefn2{Term=[controlling tag value], Sec=(for the @nt{expression} in an @nt{assignment_statement})}
If the @nt<expression> is tag-indeterminate
(see @RefSecNum{Dispatching Operations of Tagged Types}), then the controlling
tag value for the @nt<expression> is the tag of the target;
@begin{Ramification}
See @RefSec(Dispatching Operations of Tagged Types).
@end{Ramification}
@IndexCheck{Tag_Check}
@Defn2{Term=[Constraint_Error],Sec=(raised by failure of runtime check)}
Otherwise @Redundant[(the @nt<expression> is dynamically tagged)],
a check is made that the tag of
the value of the @nt<expression>
is the same as that of the target;
if this check fails, Constraint_Error is raised.
@end(itemize)
The value of the @nt<expression> is converted to the subtype of the
target. @Redundant[The conversion might raise an exception
(see @RefSecNum{Type Conversions}).]
@PDefn2{Term=[implicit subtype conversion],Sec=(assignment_statement)}
@begin{Ramification}
@RefSec(Type Conversions) defines what actions
and checks are associated with subtype conversion.
For non-array subtypes, it is just a constraint
check presuming the types match.
For array subtypes, it checks the lengths and slides if the
target is constrained.
@lquotes@;Sliding@rquotes@; means the array doesn't have to have the same bounds,
so long as it is the same length.
@end{Ramification}
In cases involving controlled types, the target is finalized,
and an anonymous object might be used as an intermediate in the assignment,
as described in @RefSec{Completion and Finalization}.
@Defn{assignment operation}
@Defn2{Term=[assignment operation],
Sec=(during execution of an @nt{assignment_statement})}
In any case,
the converted value of the @nt<expression> is then @i(assigned) to the target,
which consists of the following two steps:
@begin{Honest}
@RefSecNum{Completion and Finalization} actually says that
finalization happens always, but unless controlled types are involved,
this finalization during an @nt{assignment_statement} does
nothing.
@end{Honest}
@begin(itemize)
The value of the target becomes the converted value.
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0299-1]}
If any part of the target is controlled, its value
is adjusted as explained in @Chg{Version=[3],New=[subclause],Old=[clause]}
@RefSecNum{Assignment and Finalization}.
@PDefn2{Term=[adjustment], Sec=(as part of assignment)}
@begin{Ramification}
If any parts of the object are controlled,
abort is deferred during the assignment operation itself,
but not during the rest of the execution of an
@nt<assignment_statement>.
@end{Ramification}
@end(itemize)
@end{RunTime}
@begin{Notes}
The tag of an object never changes;
in particular, an
@nt{assignment_statement}
does not change the tag of the target.
@ChgRef{Version=[2],Kind=[Deleted],ARef=[AI95-00363-01]}
@ChgDeleted{Version=[2],Text=[The values of the discriminants of an object
designated by an access value cannot be changed (not even by assigning a
complete value to the object itself) since such objects are always constrained;
however, subcomponents of such objects may be unconstrained.]}
@begin{Ramification}
The implicit subtype conversion described above for
@nt{assignment_statement}s
is performed only for the value of the right-hand side
expression as a whole; it is not performed for subcomponents of the
value.
The determination of the type of the variable of an
@nt{assignment_statement} may require consideration of the expression
if the variable
name can be interpreted as the name of a variable designated by the
access value returned by a function call, and similarly, as a
component or slice of such a variable
(see @RefSec{The Context of Overload Resolution}).
@end{Ramification}
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples of assignment statements:}
@begin{Example}
Value := Max_Value - 1;
Shade := Blue;
Next_Frame(F)(M, N) := 2.5; --@RI{ see @RefSecNum{Indexed Components}}
U := Dot_Product(V, W); --@RI{ see @RefSecNum{Subprogram Bodies}}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0056-1]}
Writer := (Status => Open, Unit => Printer, Line_Count => 60); --@RI{ see @RefSecNum{Variant Parts and Discrete Choices}}
@Chg{Version=[4],New=[Next],Old=[Next_Car]}.@key[all] := (72074, @key[null]@Chg{Version=[4],New=[, Head],Old=[]});@Chg{Version=[4],New=[],Old=[ ]} --@RI{ see @RefSecNum{Incomplete Type Declarations}}
@end{Example}
@begin{WideAbove}
@Leading@keepnext@i{Examples involving scalar subtype conversions:}
@end{WideAbove}
@begin{Example}
I, J : Integer @key[range] 1 .. 10 := 5;
K : Integer @key[range] 1 .. 20 := 15;
...
I := J; --@RI{ identical ranges}
K := J; --@RI{ compatible ranges}
J := K; --@RI{ will raise Constraint_Error if K > 10}
@end{Example}
@NotISORMNewPageVer{Version=[3]}@Comment{For printed version of Ada 2012 RM}
@begin{WideAbove}
@leading@keepnext@i{Examples involving array subtype conversions:}
@end{WideAbove}
@begin{Example}
A : String(1 .. 31);
B : String(3 .. 33);
...
A := B; --@RI{ same number of components}
A(1 .. 9) := "tar sauce";
A(4 .. 12) := A(1 .. 9); --@RI{ A(1 .. 12) = "tartar sauce"}
@end{Example}
@end{Examples}
@begin{Notes}
@i{Notes on the examples:}
@nt{Assignment_statement}s are allowed even in the case of overlapping
slices of the same array,
because the @SynI{variable_}@nt{name} and @nt{expression}
are both evaluated before copying the value into the variable.
In the above example, an
implementation yielding A(1 .. 12) = "tartartartar" would be
incorrect.
@end{Notes}
@begin{Extend83}
@Defn{extensions to Ada 83}
We now allow user-defined finalization and value adjustment actions
as part of @nt{assignment_statement}s
(see @RefSec{Assignment and Finalization}).
@end{Extend83}
@begin{DiffWord83}
The special case of array assignment is subsumed by the concept
of a subtype conversion, which is applied for all kinds of types,
not just arrays. For arrays it provides @lquotes@;sliding@rquotes@;. For numeric
types it provides conversion of a value of a universal type to
the specific type of the target. For other types,
it generally has no run-time effect, other than a constraint
check.
We now cover in a general way in @RefSecNum{Operations of Discriminated Types}
the erroneous execution possible due to
changing the value of a discriminant when
the variable in an @nt<assignment_statement> is a subcomponent
that depends on discriminants.
@end{DiffWord83}
@begin{Incompatible95}
@ChgRef{Version=[2],Kind=[AddedNormal],ARef=[AI95-00287-01]}
@ChgAdded{Version=[2],Text=[@Defn{incompatibilities with Ada 95}
The change of the limited check from a resolution rule to
a legality rule is not quite upward compatible. For example]}
@begin{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[@key{type} AccNonLim @key{is} @key{access} NonLim;
@key{function} Foo (Arg : in Integer) @key{return} AccNonLim;
@key{type} AccLim @key{is} @key{access} Lim;
@key{function} Foo (Arg : in Integer) @key{return} AccLim;
Foo(2).@key{all} := Foo(1).@key{all};]}
@end{Example}
@ChgRef{Version=[2],Kind=[AddedNormal]}
@ChgAdded{Version=[2],Text=[where NonLim is a nonlimited type and Lim is a
limited type. The assignment is legal in Ada 95 (only the first Foo would be
considered), and is ambiguous in Ada 2005. We made the change because we want
limited types to be as similar to nonlimited types as possible. Limited
expressions are now allowed in all other contexts (with a similar
incompatibility), and it would be odd if assignments had different resolution
rules (which would eliminate ambiguities in some cases). Moreover, examples
like this one are rare, as they depend on assigning into overloaded function
calls.]}
@end{Incompatible95}
@LabeledAddedSubClause{Version=[5],Name=[Target Name Symbols]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3]}
@ChgAdded{Version=[5],Text=[@@, known as the @i<target name> of an assignment
statement, provides an abbreviation to avoid repetition of potentially long
names in assignment statements.@Defn{target name}]}
@begin{Syntax}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<target_name>,Old=<>}>,
rhs="@Chg{Version=[5],New=<@@>,Old=<>}"}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3]}
@ChgAdded{Version=[5],Text=[@Redundant[If a @nt{target_name} occurs in an
@nt{assignment_statement} @i<A>, the @SynI<variable_>@nt{name} @i<V> of @i<A>
is a complete context. The target name is a
constant view of @i<V>, having the nominal subtype of @i<V>.]]}
@begin{TheProof}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3],ARef=[AI12-0322-1]}
@ChgAdded{Version=[5],Text=[The complete context rule is formally given in
@RefSecNum{The Context of Overload Resolution}. The constant view rule is
formally given in @RefSecNum{Objects and Named Numbers}; the nominal subtype
is a property taken from the target object as described below
in @RunTimeTitle.]}
@end{TheProof}
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3],ARef=[AI12-0322-1]}
@ChgAdded{Version=[5],Text=[A @nt{target_name} shall appear only in the
@nt{expression} of an @nt{assignment_statement}.]}
@end{Legality}
@begin{RunTime}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3],ARef=[AI12-0322-1]}
@ChgAdded{Version=[5],Text=[For the execution of an @nt{assignment_statement}
with one or more @nt{target_name}s appearing in its @nt{expression}, the
@SynI{variable_}@nt{name} @i{V} of the @nt{assignment_statement}
is evaluated first to determine the object denoted by @i{V}, and then the
@nt{expression} of the @nt{assignment_statement} is evaluated with the evaluation of
each @nt{target_name} yielding a constant view of the the target whose
properties are otherwise identical to those of the view provided by @i{V}. The
remainder of the execution of the @nt{assignment_statement} is as given in
subclause @RefSecNum{Assignment Statements}.]}
@begin{Honest}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[The properties here include static properties
like whether the @nt{target_name} is aliased and the nominal subtype of
the @nt{target_name}. It was too weird to give separate rules for static
and dynamic properties that said almost the same thing.]}
@end{Honest}
@begin{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0322-1]}
@ChgAdded{Version=[5],Text=[Use of a @nt{target_name} can be erroneous if the
@SynI{variable_}@nt{name} @i{V} is a discriminant-dependent component, and
some other constituent of the @nt{expression} modifies the discriminant
governing the component @i<V>. The assignment probably would be erroneous
anyway, but the use of a @nt{target_name} eliminates the possibility that
a later evaluation of @i<V> raises an exception before any erroneous
execution occurs. See @RefSecNum{Operations of Discriminated Types}.]}
@end{Ramification}
@end{RunTime}
@begin{Examples}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3],ARef=[AI12-0379-1]}
@ChgAdded{Version=[5],Text=[Board(1, 1) := @@ + 1.0; -- @Examcom<An abbreviation for Board(1, 1) := Board(1, 1) + 1.0;>
-- @Examcom<(Board is declared in @RefSecNum{Index Constraints and Discrete Ranges}).>]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3]}
@ChgAdded{Version=[5],Text=[My_Complex_Array : @key[array] (1 .. Max) @key[of] Complex; -- @Examcom<See @RefSecNum{Number Declarations}, @RefSecNum{Record Types}.>
...
-- @Examcom<Square the element in the Count (see @RefSecNum{Object Declarations}) position:>
My_Complex_Array (Count) := (Re => @@.Re**2 - @@.Im**2,
Im => 2.0 * @@.Re * @@.Im);
-- @Examcom<A target_name can be used multiple times and as a prefix if needed.>]}
@end{Example}
@end{Examples}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0125-3],ARef=[AI12-0322-1]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}
The target name symbol @@ is new.]}
@end{Extend2012}
@LabeledClause{If Statements}
@begin{Intro}
@Redundant[An @nt{if_statement} selects for execution at most one of
the enclosed @ntf{sequences_of_statements}, depending on the (truth)
value of one or more corresponding @nt{condition}s.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<if_statement>,rhs="
@key{if} @Syn2{condition} @key{then}
@Syn2{sequence_of_statements}
{@key{elsif} @Syn2{condition} @key{then}
@Syn2{sequence_of_statements}}
[@key{else}
@Syn2{sequence_of_statements}]
@key{end} @key{if};"}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0147-1]}
@DeletedSyn{Version=[3],LHS=<@Chg{Version=[3],New=[],Old=[condition]}>,
RHS="@Chg{Version=[3],New=[],Old=[@SynI{boolean_}@Syn2{expression}]}"}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[3],Kind=[DeletedNoDelMsg],ARef=[AI05-0147-1]}
@ChgDeleted{Version=[3],Text=[@PDefn2{Term=[expected type], Sec=(condition)}
A @nt{condition} is expected to be of any boolean type.]}
@end{Resolution}
@begin{NotIso}
@ChgAdded{Version=[3],Noparanum=[T],Text=[@Shrink{@i<Paragraphs 3 and 4
were deleted.>}]}@Comment{This message should be
deleted if the paragraphs are ever renumbered.}
@end{NotIso}
@begin{RunTime}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0264-1]}
@PDefn2{Term=[execution], Sec=(if_statement)}
For the execution of an @nt{if_statement}, the @nt{condition} specified
after @key{if}, and any @nt{condition}s specified after @key{elsif}, are
evaluated in succession (treating a final @key{else} as @key{elsif} True
@key{then}), until one evaluates to True or
all @nt{condition}s are evaluated and
yield False.
If a @nt{condition} evaluates to True, then the
corresponding @nt{sequence_of_statements} is executed;
otherwise@Chg{Version=[3],New=[,],Old=[]}
none of them is executed.
@begin{Ramification}
The part about all evaluating to False can't happen if
there is an @key{else}, since that is herein considered equivalent to
@key{elsif} True @key{then}.
@end{Ramification}
@end{RunTime}
@begin{Examples}
@Leading@keepnext@i{Examples of if statements:}
@begin{Example}
@key[if] Month = December @key[and] Day = 31 @key[then]
Month := January;
Day := 1;
Year := Year + 1;
@key[end] @key[if];
@key[if] Line_Too_Short @key[then]
@key[raise] Layout_Error;
@key[elsif] Line_Full @key[then]
New_Line;
Put(Item);
@key[else]
Put(Item);
@key[end] @key[if];
@key[if] My_Car.Owner.Vehicle /= My_Car @key[then] --@RI{ see @RefSecNum{Incomplete Type Declarations}}
Report ("Incorrect data");
@key[end] @key[if];
@end{Example}
@end{Examples}
@begin{Diffword2005}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0147-1]}
@ChgAdded{Version=[3],Text=[Moved definition of @nt{condition} to
@RefSecNum{Conditional Expressions} in order to eliminate a forward reference.]}
@end{Diffword2005}
@LabeledClause{Case Statements}
@begin{Intro}
@Redundant[A @nt{case_statement} selects for execution one of a
number of alternative @ntf{sequences_of_statements}; the chosen
alternative is defined by the value of an expression.]
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
@Syn{lhs=<case_statement>,rhs="
@key{case} @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@Syn2{expression} @key{is}
@Syn2{case_statement_alternative}
{@Syn2{case_statement_alternative}}
@key{end case};"}
@Syn{lhs=<case_statement_alternative>,rhs="
@key{when} @Syn2{discrete_choice_list} =>
@Syn2{sequence_of_statements}"}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
@Chg{Version=[3],New=[@PDefn2{Term=[expected type], Sec=(case_statement selecting_expression)}
@PDefn2{Term=[expected type], Sec=(selecting_expression case_statement)}],Old=[@PDefn2{Term=[expected type], Sec=(case expression)}]}
The @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} is
expected to be of any discrete type.
@PDefn2{Term=[expected type],
Sec=(case_statement_alternative discrete_choice)}
The expected type for each @nt{discrete_choice} is the type of the
@Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression}.
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0153-3]}
The @Chg{Version=[3],New=[@nt{choice_expression}s,
@nt{subtype_indication}s,],Old=[@nt{expression}s]} and
@Chg{Version=[3],New=[@nt{range}s],Old=[@nt{discrete_range}s]} given as
@nt{discrete_choice}s of a @nt{case_statement} shall be static.
@Redundant[A @nt{discrete_choice} @key(others), if present,
shall appear alone and in the last @nt{discrete_choice_list}.]
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1],ARef=[AI05-0240-1]}
The possible values of the
@Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} shall be
covered @Chg{Version=[3],New=[(see @RefSecNum{Variant Parts and Discrete Choices}) ],
Old=[]}as follows:
@begin{Discussion}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0240-1]}
@ChgAdded{Version=[3],Text=[The meaning of "covered" here and in the
following rules is that of the term "cover a value" that is defined in
@RefSecNum{Variant Parts and Discrete Choices}.]}
@end{Discussion}
@begin{itemize}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0003-1],ARef=[AI05-0153-3],ARef=[AI05-0188-1],ARef=[AI05-0262-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0071-1]}
If the @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} is a @nt{name}
@Redundant[(including a
@nt<type_conversion>@Chg{Version=[3],New=[, @nt{qualified_expression},],Old=[]}
or @Chg{Version=[3],New=[],Old=[a ]}@nt<function_call>)] having
a static and constrained nominal subtype,@Chg{Version=[3],New=[],Old=[ or
is a @nt{qualified_expression} whose
@nt{subtype_mark} denotes a static and constrained
scalar subtype,]}
then each non-@key{others} @nt{discrete_choice} shall cover only values in
that subtype@Chg{Version=[3],New=[ that satisfy its
@Chg{Version=[4],New=[predicates],Old=[predicate]} (see
@RefSecNum{Subtype Predicates})],Old=[]},
and each value of that subtype@Chg{Version=[3],New=[ that satisfies its
@Chg{Version=[4],New=[predicates],Old=[predicate]}],Old=[]} shall be
covered by some @nt{discrete_choice}
@Redundant[(either explicitly or by @key(others))].
@begin{Ramification}
Although not official @nt<name>s of objects, a value conversion
still has a defined nominal subtype, namely its target subtype.
See @RefSecNum{Type Conversions}.
@end{Ramification}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
If the type of the @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} is
@i(root_integer), @i(universal_integer), or a descendant of a
formal scalar type,
then the @nt{case_statement} shall have an @key{others}
@nt{discrete_choice}.
@begin{Reason}
This is because the base range is
implementation defined for @i(root_integer) and @i(universal_integer),
and not known statically in the case of a formal scalar type.
@end{Reason}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
Otherwise, each value of the base range of the type of the
@Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} shall
be covered
@Redundant[(either explicitly or by @key(others))].
@end{itemize}
Two distinct @nt{discrete_choice}s of a
@nt{case_statement} shall not cover the same value.
@begin{Ramification}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
The goal of these coverage rules is
that any possible value of the @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} of a
@nt{case_statement} should be covered by exactly one
@nt{discrete_choice} of the
@nt{case_statement}, and that this should be checked at compile time.
The goal is achieved in most cases, but there are two minor
loopholes:
@begin{Itemize}
If the expression reads an object with an invalid representation
(e.g. an uninitialized object),
then the value can be outside the covered range.
This can happen for static constrained subtypes, as well as nonstatic or
unconstrained subtypes.
It cannot, however, happen if the @nt{case_statement} has the
@nt{discrete_choice} @key{others}, because @key{others} covers all values,
even those outside the subtype.
@ChgRef{Version=[2],Kind=[Revised],ARef=[AI95-00114-01]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
If the compiler chooses to represent the value of an expression of an
unconstrained subtype in a way that includes values outside the bounds of the
subtype, then those values can be outside the covered range.
For example, if X: Integer := Integer'Last;, and the case @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression} is
X+1, then the implementation might choose to produce the correct value, which
is outside the bounds of Integer.
(It might raise Constraint_Error instead.)
This case can only happen for nongeneric subtypes that are either
unconstrained or
non@Chg{Version=[2],New=[],Old=[-]}@ChgNote{Make spelling consistent}static
(or both).
It can only happen if there is no @key{others} @nt{discrete_choice}.
@end{Itemize}
In the uninitialized variable case, the value might be anything; hence, any
alternative can be chosen, or Constraint_Error can be raised. (We intend to
prevent, however, jumping to random memory locations and the like.)
In the out-of-range case, the behavior is more sensible: if there is an
@key{others}, then the implementation may choose to raise Constraint_Error
on the evaluation of the @nt{expression} (as usual), or it may choose
to correctly evaluate the @nt{expression} and therefore choose the
@key{others} alternative.
Otherwise (no @key{others}), Constraint_Error is raised either way @em on
the @nt{expression} evaluation, or for the @nt{case_statement} itself.
For an enumeration type with a discontiguous set of internal codes
(see @RefSecNum{Enumeration Representation Clauses}),
the only way to get values in between the proper values
is via an object with an invalid representation;
there is no @lquotes@;out-of-range@rquotes@; situation that can produce them.
@end{Ramification}
@end{Legality}
@begin{RunTime}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
@PDefn2{Term=[execution], Sec=(case_statement)}
For the execution of a @nt{case_statement}@Chg{Version=[5],New=[,],Old=[]} the
@Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression}
is first evaluated.
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0188-1]}
If the value of the @Chg{Version=[3],New=[@SynI{selecting_}],Old=[]}@nt{expression}
is covered by the @nt{discrete_@!choice_@!list} of some
@nt{case_@!statement_@!alternative}, then the
@nt{sequence_of_@!statements} of the @ntf{_alternative} is executed.
@Defn2{Term=[Constraint_Error],Sec=(raised by case statement)}
Otherwise (the value is not covered by any
@nt{discrete_choice_list},
perhaps due to being outside the base range),
Constraint_Error is raised.
@begin{Ramification}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0005-1]}
In this case, the value @Chg{Version=[5],New=[fails to satisfy its
(static) predicate (possible when the predicate is disabled),],Old=[]}
is outside the base range of its type,
or is an invalid representation.
@end{Ramification}
@end{RunTime}
@begin{Notes}
The execution of a @nt{case_statement} chooses one and only one
alternative.
Qualification of the expression of a @nt{case_statement} by a static
subtype can often be used to limit the number of choices that need be
given explicitly.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Examples of case statements:}
@begin{Example}
@tabclear()@tabset(P22)
@key[case] Sensor @key[is]
@key[when] Elevation@\=> Record_Elevation(Sensor_Value);
@key[when] Azimuth@\=> Record_Azimuth (Sensor_Value);
@key[when] Distance@\=> Record_Distance (Sensor_Value);
@key[when] @key[others]@\=> @key[null];
@key[end] @key[case];
@tabclear()@tabset(P22)
@key[case] Today @key[is]
@key[when] Mon@\=> Compute_Initial_Balance;
@key[when] Fri@\=> Compute_Closing_Balance;
@key[when] Tue .. Thu@\=> Generate_Report(Today);
@key[when] Sat .. Sun@\=> @key[null];
@key[end] @key[case];
@tabclear()@tabset(P16)
@key[case] Bin_Number(Count) @key[is]
@key[when] 1@\=> Update_Bin(1);
@key[when] 2@\=> Update_Bin(2);
@key[when] 3 | 4@\=>
Empty_Bin(1);
Empty_Bin(2);
@key[when] @key[others]@\=> @key[raise] Error;
@key[end] @key[case];
@end{Example}
@end{Examples}
@begin{Incompatible83}
@ChgRef{Version=[1],Kind=[Added]}@ChgNote{Presentation AI-00020}
@Chg{New=[@Defn{incompatibilities with Ada 83}
In Ada 95, @nt{function_call}s and @nt{type_conversion}s are @nt{name}s, whereas
in Ada 83, they were @nt{expression}s. Therefore, if the @nt{expression} of a
@nt{case_statement} is a @nt{function_call} or @nt{type_conversion}, and the
result subtype is static, it is illegal to specify a choice outside the bounds
of the subtype. For this case in Ada 83 choices only are required to be in the
base range of the type.],Old=[]}
@ChgRef{Version=[1],Kind=[Added]}@ChgNote{Presentation AI-00020}
@Chg{New=[In addition, the rule about which choices must be covered is
unchanged in Ada 95. Therefore, for a @nt{case_statement} whose @nt{expression}
is a @nt{function_call} or @nt{type_conversion}, Ada 83 required covering all
choices in the base range, while Ada 95 only requires covering choices in the
bounds of the subtype. If the @nt{case_statement} does not include an @key{others}
@nt{discrete_choice}, then a legal Ada 83 @nt{case_statement} will be illegal
in Ada 95 if the bounds of the subtype are different than the bounds of the
base type.],Old=[]}
@end{Incompatible83}
@begin{Extend83}
@Defn{extensions to Ada 83}
In Ada 83, the @nt{expression} in a @nt{case_statement} is not allowed to
be of a generic formal type.
This restriction is removed in Ada 95; an @key{others} @nt{discrete_choice}
is required instead.
In Ada 95, a function call is the name of an object;
this was not true in Ada 83 (see @RefSec{Names}).
This change makes the following @nt{case_statement} legal:
@begin{Example}
@key[subtype] S @key[is] Integer @key[range] 1..2;
@key[function] F @key[return] S;
@key[case] F @key[is]
@key[when] 1 => ...;
@key[when] 2 => ...;
--@RI{ No @key{others} needed.}
@key[end] @key[case];
@end{Example}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0005-1]}
Note that the result subtype given in a function
@nt{renaming_declaration} is ignored;
for a @nt{case_statement} whose expression calls a such a function, the
full coverage rules are checked using the result subtype of the original
function.
Note that predefined operators such as "+" have an unconstrained result
subtype (see @RefSecNum{Logical Operators and Short-circuit Control Forms}).
Note that generic formal functions do not have static result subtypes.
Note that the result subtype of an inherited subprogram need not
correspond to any @Chg{Version=[3],New=[nameable],Old=[namable]} subtype;
there is still a perfectly good result subtype, though.
@end{Extend83}
@begin{DiffWord83}
Ada 83 forgot to say what happens for @lquotes@;legally@rquotes@; out-of-bounds values.
We take advantage of rules and terms (e.g. @i(cover a value))
defined for @nt{discrete_choice}s and @nt{discrete_choice_list}s
in @RefSec{Variant Parts and Discrete Choices}.
In the @ResolutionName for the case expression,
we no longer need RM83-5.4(3)'s @lquotes@;which must be determinable
independently of the context in which the expression occurs, but
using the fact that the expression must be of a discrete type,@rquotes@;
because the @nt{expression} is now a complete context.
See @RefSec{The Context of Overload Resolution}.
Since @nt<type_conversion>s are now defined as @nt<name>s,
their coverage rule is now covered under the general rule
for @nt<name>s, rather than being separated out along with
@nt<qualified_expression>s.
@end{DiffWord83}
@begin{DiffWord2005}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0003-1]}
@ChgAdded{Version=[3],Text=[Rewording to reflect that
a @nt{qualified_expression} is now a @nt{name}.]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0153-3]}
@ChgAdded{Version=[3],Text=[Revised for changes to @nt{discrete_choice}s
made to allow static predicates (see @RefSecNum{Subtype Predicates}) as
case choices (see @RefSecNum{Variant Parts and Discrete Choices}).]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0188-1]}
@ChgAdded{Version=[3],Text=[Added the @SynI{selecting_} prefix to
make this wording consistent with @nt{case_expression}, and to clarify
which @nt{expression} is being talked about in the wording.]}
@end{Diffword2005}
@begin{DiffWord2012}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0071-1]}
@ChgAdded{Version=[4],Text=[@b<Corrigendum:> Updated wording of
case coverage to use the new term "satisfies the predicates"
(see @RefSecNum{Subtype Predicates}).]}
@end{Diffword2012}
@LabeledClause{Loop Statements}
@begin{Intro}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0119-1]}
@Redundant[A @nt{loop_statement} includes a
@nt{sequence_of_statements} that is to be executed repeatedly,
zero or more times@Chg{Version=[5],New=[ with the iterations
running sequentially or concurrently with one another],Old=[]}.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<loop_statement>,rhs="
[@SynI{loop_}@Syn2{statement_identifier}:]
[@Syn2{iteration_scheme}] @key{loop}
@Syn2{sequence_of_statements}
@key{end} @key{loop} [@SynI{loop_}@Syn2{identifier}];"}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0139-2]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0119-1],ARef=[AI12-0189-1],ARef=[AI12-0251-1],ARef=[AI12-0266-1],ARef=[AI12-0326-2]}
@Syn{lhs=<iteration_scheme>,rhs="@key{while} @Syn2{condition}
| @key{for} @Syn2{loop_parameter_specification}@Chg{Version=[3],New=[
| @key{for} @Syn2{iterator_specification}],Old=[]}@Chg{Version=[5],New=<
| [@key[parallel]]
@key{for} @Syn2{procedural_iterator}
| @key[parallel] [(@Syn2{chunk_specification})]
@key{for} @Syn2{loop_parameter_specification}
| @key[parallel] [(@Syn2{chunk_specification})]
@key{for} @Syn2{iterator_specification}>,Old=[]}"}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0251-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<chunk_specification>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
@SynI{integer_}@Syn2{simple_expression}
| @Syn2{defining_identifier} @key[in] @Syn2{discrete_subtype_definition}>,Old=<>}"}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0250-1]}
@Syn{lhs=<loop_parameter_specification>,rhs="
@Syn2{defining_identifier} @key{in} [@key{reverse}] @Syn2{discrete_subtype_definition}@Chg{Version=[5],New=<
[@Syn2{iterator_filter}]>,Old=<>}"}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0250-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<iterator_filter>,Old=<>}>,
rhs="@Chg{Version=[5],New=<@key[when] @Syn2{condition}>,Old=<>}"}
@begin(SyntaxText)
If a @nt{loop_statement} has a @SynI{loop_}@nt{statement_identifier},
then the @nt<identifier> shall be repeated after the @key{end loop};
otherwise, there shall not be an @nt<identifier> after the @key{end loop}.
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[An @nt{iteration_scheme} that begins with the reserved word
@key[parallel] shall not have the reserved word @key[reverse] in its
@nt{loop_parameter_specification}.]}
@end(SyntaxText)
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0251-1]}
@ChgAdded{Version=[5],Text=[In a @nt{chunk_specification} that is an
@Syni{integer_}@nt{simple_expression}, the
@Syni{integer_}@nt{simple_expression} is expected to be of any integer type.]}
@end{Resolution}
@begin{StaticSem}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0061-1]}
@Defn{loop parameter}
A @nt{loop_parameter_specification} declares a @i{loop parameter},
which is an object whose subtype@Chg{Version=[5],New=[ (and nominal subtype)],Old=[]}
is that defined by the @nt{discrete_subtype_definition}.
@IndexSeeAlso{Term=[parameter],See=[loop parameter]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0251-1]}
@ChgAdded{Version=[5],Text=[In a @nt{chunk_specification} that has a
@nt{discrete_subtype_definition}, the @nt{chunk_specification} declares a
@i{chunk parameter} object@Defn{chunk parameter} whose subtype (and nominal
subtype) is that defined by the @nt{discrete_subtype_definition}.]}
@end{StaticSem}
@begin{RunTime}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0250-1],ARef=[AI12-0327-1]}
@ChgAdded{Version=[5],Text=[The @i<filter> of an @i{iterator construct}
@Defn{iterator construct}@Defn2{Term=[filter],Sec={iterator construct}} (a
@nt{loop_parameter_specification}, @nt{iterator_specification}, or
@nt{procedural_iterator}) is defined to be
@i{satisfied}@Defn2{Term=[satisfied],Sec=[filter]} when there is no
@nt{iterator_filter} for the iterator construct, or when the @nt{condition}
of the @nt{iterator_filter} evaluates to True for a given iteration of the
iterator construct.@Defn{iterator filter}]}
@ChgToGlossary{Version=[5],Kind=[Added],Term=<Iterator Filter>,
Text=<@ChgAdded{Version=[5],Text=[A construct that is used to restrict the
elements produced by an iteration to those for which a boolean condition
evaluates to True.]}>}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0250-1],ARef=[AI12-0327-1]}
@ChgAdded{Version=[5],Text=[If a @nt{sequence_of_statements} of a
@nt{loop_statement} with an iterator construct is said to be
@i{conditionally executed},@Defn{conditionally executed} then the @nt{statement}s
are executed only when the filter of the iterator construct is satisfied.]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0250-1],ARef=[AI12-0327-1]}
@ChgAdded{Version=[5],Text=[The loop iterators @nt{loop_parameter_specification}
and @nt{iterator_specification} can also be used in contexts other than
@nt{loop_statement}s (for example, see @RefSecNum{Container Aggregates} and
@RefSecNum{Quantified Expressions}). In such a context,
the iterator @i{conditionally produces}@Defn2{Term=[conditionally produces],
Sec=[iteration]} values in the order specified for
the associated construct below or in @RefSecNum{Generalized Loop Iteration}.
The values produced are the values given to the loop parameter when the filter
of the iterator construct is satisfied for that value. @Redundant[No value is
produced when the @nt{condition} of an @nt{iterator_filter} evaluates to False.]]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0119-1]}
@PDefn2{Term=[execution], Sec=(loop_statement)}
For the execution of a @nt{loop_statement},
the @nt{sequence_of_statements} is executed@Chg{Version=[5],New=[],Old=[ repeatedly,]}
zero or more times,
until the @nt{loop_statement} is complete.
The @nt{loop_statement} is complete when a transfer
of control occurs that transfers control out of the loop, or, in the
case of an @nt{iteration_scheme}, as specified below.
@PDefn2{Term=[execution],
Sec=(loop_statement with a while iteration_scheme)}
For the execution of a @nt{loop_statement} with a @key{while}
@nt{iteration_scheme}, the condition is evaluated before each
execution of the @nt{sequence_of_@!statements}; if the value of the
@nt{condition} is True, the @nt{sequence_of_@!statements} is executed;
if False, the execution of the @nt{loop_@!statement} is complete.
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0251-1],ARef=[AI12-0294-1]}
@ChgAdded{Version=[5],Text=[If the reserved word @key[parallel] is present
in the @nt{iteration_scheme} of a @nt{loop_statement} (a
@i{parallel loop}),@Defn{parallel loop}@Defn2{Term=[loop],Sec=[parallel]}
the iterations are partitioned into one or more @Defn{chunk}@i{chunks}, each
with its own separate logical thread of control (see
clause @RefSecNum{Tasks and Synchronization}). If a @nt{chunk_specification}
is present in a parallel loop, it is elaborated first, and the result of the
elaboration determines the maximum number of chunks used for the parallel loop.
@PDefn2{Term=[elaboration], Sec=(chunk_specification)}
If the @nt{chunk_specification}
is an @SynI{integer_}@nt{simple_expression}, the elaboration evaluates the
expression, and the value of the expression determines the maximum number
of chunks. If a @nt{discrete_subtype_definition} is present, the
elaboration elaborates the @nt{discrete_subtype_definition}, which
defines the subtype of the chunk parameter, and the number
of values in this subtype determines the maximum number of chunks. After
elaborating the @nt{chunk_specification}, a check is made that the determined
maximum number of chunks is greater than zero. If
this check fails, Program_Error is raised.@IndexCheck{Program_Error_Check}
@Defn2{Term=[Program_Error],Sec=(raised by failure of runtime check)}]}
@ChgRef{Version=[3],Kind=[Revised],ARef=[AI05-0139-2],ARef=[AI05-0262-1]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0071-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0119-1],ARef=[AI12-0250-1],ARef=[AI12-0251-1],ARef=[AI12-0294-1]}
@Chg{Version=[5],New=[@PDefn2{Term=[execution],
Sec=(loop_statement with a for loop_parameter_specification)}],
Old=[@PDefn2{Term=[execution],
Sec=(loop_statement with a for iteration_scheme)}]}
@PDefn2{Term=[elaboration], Sec=(loop_parameter_specification)}
For the execution of a @nt{loop_statement} @Chg{Version=[5],New=[that has an],
Old=[with @Chg{Version=[3],New=[the],Old=[a @key{for}]}]}
@nt{iteration_scheme}@Chg{Version=[3],New=[ @Chg{Version=[5],New=[including
a],Old=[being @key[for]]} @nt{loop_@!parameter_@!specification}],Old=[]},
@Chg{Version=[5],New=[after
elaborating the @nt{chunk_specification}, if any, ],Old=[]}the
@nt{loop_@!parameter_@!specification} is
@Chg{Version=[5],New=[],Old=[first ]}elaborated. This
@Chg{Version=[5],New=[],Old=[elaboration creates the loop parameter
and ]}elaborates the @nt{discrete_@!subtype_@!definition}@Chg{Version=[5],New=[,
which defines the subtype of the loop parameter],Old=[]}.
If the @nt{discrete_@!subtype_@!definition} defines a subtype
with a null range,
the execution of the
@nt{loop_statement} is complete. Otherwise, the
@nt{sequence_of_@!statements} is@Chg{Version=[5],New=[ conditionally],Old=[]}
executed once for each value of the discrete subtype defined by the
@nt{discrete_@!subtype_@!definition}
@Chg{Version=[3],New=[that satisfies the
@Chg{Version=[4],New=[predicates],Old=[predicate]} of the subtype ],Old=[]}(or
until the loop is left as a consequence of a transfer of control).
@Defn2{Term=[assignment operation], Sec=(during execution of a @key{for} loop)}
Prior to each such iteration,
the corresponding value of the discrete subtype is assigned to the
loop parameter@Chg{Version=[5],New=[ associated with the given iteration.
If the loop is a parallel loop,
each chunk has its own logical thread of control with its own copy of the loop
parameter; otherwise (a @i<sequential loop>)@Defn{sequential loop}@Defn2{Term=[loop],Sec=[sequential]},
a single logical thread of control performs the loop, and there is a single copy
of the loop parameter. Each logical thread of control handles a distinct
subrange of the values of the subtype of the loop parameter such that
all values are covered with no overlaps.
Within each logical thread of control, the],Old=[. These]}
values are assigned @Chg{Version=[5],New=[to the loop parameter ],Old=[]}in
increasing order unless the reserved word @key{reverse} is present, in which
case the values are assigned in decreasing order.
@begin{Honest}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0294-1]}
@ChgAdded{Version=[5],Text=[This wording does not describe when the loop
parameter
object(s) are created. That creation has no side-effects (other than
possibly raising Storage_Error, but anything can do that), so we
simplified the wording by leaving it out. Each object has to be created
before any iteration that depends on it starts, but we do not (for
instance) require that the objects are all created at once at the start
of the loop, nor that the objects are created after the elaboration of the
@nt{discrete_subtype_definition}.]}
@end{Honest}
@begin{Ramification}
@ChgRef{Version=[5],Kind=[Deleted],ARef=[AI12-0294-1]}
@ChgDeleted{Version=[5],Text=[The order of creating the loop parameter and
evaluating the @nt{discrete_subtype_definition} doesn't matter, since the
creation of the loop parameter has no side effects (other than possibly
raising Storage_Error, but anything can do that).]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Text=[The predicate (if any) necessarily has to be a
static predicate as a dynamic predicate is explicitly disallowed @em
see @RefSecNum{Subtype Predicates}.]}
@end{Ramification}
@begin{Reason}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0262-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[If there is a predicate, the loop
still visits the values in the order of the underlying base type; the order of
the values in the predicate is irrelevant. This is the case so that the
following loops have the same sequence of calls and parameters on procedure
Call for any subtype S:]}
@begin{Example}
@ChgAdded{Version=[3],Text=[@key[for] I @key[in] S @key[loop]
Call (I);
@key[end loop];]}
@ChgAdded{Version=[3],Text=[@key[for] I @key[in] S'Base @key[loop]
@key[if] I @key[in] S @key[then]
Call (I);
@key[end if];
@key[end loop];]}
@end{Example}
@end{Reason}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0251-1],ARef=[AI12-0294-1]}
@ChgAdded{Version=[5],Text=[If a @nt{chunk_specification} with a
@nt{discrete_subtype_definition} is present, then the logical thread of control
associated with a given chunk has its own copy of the chunk parameter
initialized with a distinct value from the discrete subtype defined by the
@nt{discrete_subtype_definition}. The values of the chunk parameters are
assigned such that they increase with increasing values of the ranges covered
by the corresponding loop parameters.]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0251-1]}
@ChgAdded{Version=[5],Text=[Whether or not a @nt{chunk_specification}
is present in a parallel loop,
the total number of iterations of the loop represents an upper bound
on the number of logical threads of control devoted to the loop.]}
@ChgRef{Version=[3],Kind=[Added],ARef=[AI05-0262-1]}
@ChgRef{Version=[5],Kind=[RevisedAdded],ARef=[AI12-0250-1],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[@Redundant[For details about the execution of a
@nt{loop_statement} with the @nt{iteration_scheme}
@Chg{Version=[5],New=[including an],Old=[being @key[for]]}
@nt{iterator_specification}, see @RefSecNum{Generalized Loop Iteration}.@Chg{Version=[5],New=[
For details relating to a @nt{procedural_iterator}, see
@RefSecNum{Procedural Iterators}.],Old=[]}]]}
@end{RunTime}
@begin{Notes}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0250-1]}
A loop parameter@Chg{Version=[5],New=[ declared by a
@nt{loop_parameter_specification}],Old=[]} is a constant;
it cannot be updated within the
@nt{sequence_of_statements} of the loop
(see @RefSecNum{Objects and Named Numbers}).
An @nt{object_declaration} should not be given for a loop parameter,
since the loop parameter is automatically declared by
the @nt{loop_parameter_specification}.
The scope of a loop parameter extends from the
@nt{loop_parameter_specification} to the end of the
@nt{loop_statement}, and the visibility
rules are such that a loop parameter is only visible within the
@nt{sequence_of_statements} of the loop.
@begin{ImplNote}
An implementation could give a warning if a variable is hidden by a
@nt{loop_parameter_specification}.
@end{ImplNote}
The @nt<discrete_subtype_definition> of a for loop is elaborated
just once. Use of the
reserved word @key[reverse] does not alter the discrete subtype defined,
so that the following @nt{iteration_scheme}s are not equivalent; the
first has a null range.
@begin{Example}
@key[for] J @key[in] @key[reverse] 1 .. 0
@key[for] J @key[in] 0 .. 1
@end{Example}
@begin{Ramification}
If a @nt{loop_parameter_specification} has a static discrete range,
the subtype of the loop parameter is static.
@end{Ramification}
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Example of a loop statement without an iteration scheme:}
@begin{Example}
@key[loop]
Get(Current_Character);
@key[exit] @key[when] Current_Character = '*';
@key[end] @key[loop];
@end{Example}
@begin{WideAbove}
@leading@keepnext@i{Example of a loop statement with a @key[while] iteration scheme:}
@end{WideAbove}
@begin{Example}
@key[while] Bid(N).Price < Cut_Off.Price @key[loop]
Record_Bid(Bid(N).Price);
N := N + 1;
@key[end] @key[loop];
@end{Example}
@begin{WideAbove}
@leading@keepnext@i{Example of a loop statement with a @key[for] iteration scheme:}
@end{WideAbove}
@begin{Example}
@key[for] J @key[in] Buffer'Range @key[loop] --@RI{ works even with a null range}
@key[if] Buffer(J) /= Space @key[then]
Put(Buffer(J));
@key[end] @key[if];
@key[end] @key[loop];
@end{Example}
@begin{WideAbove}
@leading@keepnext@i{Example of a loop statement with a name:}
@end{WideAbove}
@begin{Example}
Summation:
@key[while] Next /= Head @key[loop] --@RI{ see @RefSecNum{Incomplete Type Declarations}}
Sum := Sum + Next.Value;
Next := Next.Succ;
@key[end] @key[loop] Summation;
@end{Example}
@begin{WideAbove}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1],ARef=[AI12-0312-1]}
@ChgAdded{Version=[5],Type=[Leading],KeepNext=[T],
Text=[@i{Example of a simple parallel loop:}]}
@end{WideAbove}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[-- @ExamCom{see @RefSecNum{Array Types}}
@key[parallel]
@key[for] I @key[in] Grid'Range(1) @key[loop]
Grid(I, 1) := (@key[for all] J @key[in] Grid'Range(2) => Grid(I,J) = True);
@key[end loop];]}
@end{Example}
@begin{WideAbove}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0312-1]}
@ChgAdded{Version=[5],Type=[Leading],KeepNext=[T],
Text=[@i{Example of a parallel loop with a chunk specification:}]}
@end{WideAbove}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[@key[declare]
@key[subtype] Chunk_Number @key[is] Natural @key[range] 1 .. 8;]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[ Partial_Sum,
Partial_Max : @key[array] (Chunk_Number) @key[of] Natural := (@key[others] => 0);
Partial_Min : @key[array] (Chunk_Number) @key[of] Natural := (@key[others] => Natural'Last);]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text={@key[begin]
@key[parallel] (Chunk @key[in] Chunk_Number)
@key[for] I @key[in] Grid'Range(1) @key[loop]
@key[declare]
True_Count : @key[constant] Natural :=
[@key[for] J @key[in] Grid'Range(2) => (@key[if] Grid (I, J) @key[then] 1 @key[else] 0)]'Reduce("+",0);
@key[begin]
Partial_Sum (Chunk) := @@ + True_Count;
Partial_Min (Chunk) := Natural'Min(@@, True_Count);
Partial_Max (Chunk) := Natural'Max(@@, True_Count);
@key[end];
@key[end loop];}}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[ Put_Line("Total=" & Partial_Sum'Reduce("+", 0) &
", Min=" & Partial_Min'Reduce(Natural'Min, Natural'Last) &
", Max=" & Partial_Max'Reduce(Natural'Max, 0));
@key[end];]}
@begin{WideAbove}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0312-1]}
@ChgAdded{Version=[5],Text=[@i{For an example of an} @nt{iterator_filter}@i{,
see @RefSecNum{Quantified Expressions}.}]}
@end{WideAbove}
@end{Example}
@end{Examples}
@begin{DiffWord83}
The constant-ness of loop parameters is specified in
@RefSec{Objects and Named Numbers}.
@end{DiffWord83}
@begin{DiffWord2005}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0262-1],ARef=[AI05-0299-1]}
@ChgAdded{Version=[3],Text=[Generalized @nt{iterator_specification}s are
allowed in @key[for] loops; these are documented as an extension in the
appropriate subclause.]}
@end{DiffWord2005}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1],ARef=[AI12-0251-1],ARef=[AI12-0266-1],ARef=[AI12-0294-1]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}Parallel loops
are new.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0250-1]}
@ChgAdded{Version=[5],Text=[An @nt{iterator_filter} is now allowed on
@nt{loop_parameter_specification}s. This is mainly for consistency with
aggregate and reduction iterators, where it eliminates the need for
temporary objects.]}
@end{Extend2012}
@begin{DiffWord2012}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0071-1]}
@ChgAdded{Version=[4],Text=[@b<Corrigendum:> Updated wording of
loop execution to use the new term "satisfies the predicates"
(see @RefSecNum{Subtype Predicates}).]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0061-1]}
@ChgAdded{Version=[5],Text=[Added text so that the nominal subtype of a
loop parameter is clearly defined.]}
@end{Diffword2012}
@LabeledAddedSubClause{Version=[3],Name=[User-Defined Iterator Types]}
@begin{StaticSem}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgAdded{Version=[3],Type=[Leading],Keepnext=[T],Text=[The following
language-defined generic library package exists:]}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0241-1]}
@ChgAdded{Version=[3],Text=[@ChildUnit{Parent=[Ada],Child=[Iterator_Interfaces]}@key[generic]
@key[type] Cursor;
@key[with function] Has_Element (Position : Cursor) @key[return] Boolean;
@key[package] Ada.Iterator_Interfaces@Chg{Version=[5],New=[],Old=[ @key[is]]}
@Chg{Version=[5],New=[@key[with] Pure, Nonblocking => False @key[is]],Old=[@key[pragma] Pure (Iterator_Interfaces);]}]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[ @key[type] @AdaTypeDefn{Forward_Iterator} @key[is limited interface];
@key[function] @AdaSubDefn{First} (Object : Forward_Iterator) @key[return] Cursor @key[is abstract];
@key[function] @AdaSubDefn{Next} (Object : Forward_Iterator; Position : Cursor)
@key[return] Cursor @key[is abstract];]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[ @key[type] @AdaTypeDefn{Reversible_Iterator} @key[is limited interface and] Forward_Iterator;
@key[function] @AdaSubDefn{Last} (Object : Reversible_Iterator) @key[return] Cursor @key[is abstract];
@key[function] @AdaSubDefn{Previous} (Object : Reversible_Iterator; Position : Cursor)
@key[return] Cursor @key[is abstract];]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[type] @AdaTypeDefn{Parallel_Iterator} @key[is limited interface and] Forward_Iterator;]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[subtype] @AdaSubtypeDefn{Name=[Chunk_Index],Of=[Positive]} @key[is] Positive;]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[function] @AdaSubDefn{Is_Split} (Object : Parallel_Iterator)
@key[return] Boolean @key[is abstract];]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[procedure] @AdaSubDefn{Split_Into_Chunks} (Object : @key[in out] Parallel_Iterator;
Max_Chunks : @key[in] Chunk_Index) @key[is abstract]
@key[with] Pre'Class => @key[not] Object.Is_Split @key[or else raise] Program_Error,
Post'Class => Object.Is_Split @key[and then]
Object.Chunk_Count <= Max_Chunks;]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[function] @AdaSubDefn{Chunk_Count} (Object : Parallel_Iterator)
@key[return] Chunk_Index @key[is abstract]
@key[with] Pre'Class => Object.Is_Split @key[or else raise] Program_Error;]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[function] @AdaSubDefn{First} (Object : Parallel_Iterator;
Chunk : Chunk_Index) @key[return] Cursor @key[is abstract]
@key[with] Pre'Class => (Object.Is_Split @key[and then]
Chunk <= Object.Chunk_Count)
@key[or else raise] Program_Error;]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[function] @AdaSubDefn{Next} (Object : Parallel_Iterator;
Position : Cursor;
Chunk : Chunk_Index) @key[return] Cursor @key[is abstract]
@key[with] Pre'Class => (Object.Is_Split @key[and then]
Chunk <= Object.Chunk_Count)
@key[or else raise] Program_Error;]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[ @key[type] @AdaTypeDefn{Parallel_Reversible_Iterator} @key[is limited interface]
@b[and] Parallel_Iterator @key[and] Reversible_Iterator;]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[@key[end] Ada.Iterator_Interfaces;]}
@end{Example}
@begin{Reason}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0241-1]}
@ChgAdded{Version=[5],Text=[This package must allow blocking
(Nonblocking => False) for compatibility. The purpose of this package
is to provide a template for overriding user-defined routines; and
such routines can only allow blocking if the root type does so.
Users can still declare their overridding routines nonblocking if they
wish.]}
@end{Reason}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[An @i<iterator type> is a type descended from
the Forward_Iterator interface from some instance of
Ada.Iterator_Interfaces.@Defn{iterator type}
A @i<reversible iterator type> is a type descended from the Reversible_Iterator
interface from some instance of Ada.Iterator_Interfaces.@Defn{reversible iterator type}
@Chg{Version=[5],New=[A @i{parallel iterator type}@Defn{parallel iterator type}
is a type descended from the Parallel_Iterator interface from some instance
of Ada.Iterator_Interfaces. A type descended from the
Parallel_Reversible_Iterator interface from some
instance of Ada.Iterator_Interfaces is both a parallel iterator type and a
reversible iterator type. ],Old=[]}An @i<iterator object>
is an object of an iterator type.@Defn{iterator object}
A @i<reversible iterator object> is an object
of a reversible iterator type.@Defn{reversible iterator object}
@Chg{Version=[5],New=[A @i<parallel iterator object> is an object
of a parallel iterator type.@Defn{parallel iterator object} ],Old=[]}The
formal subtype Cursor from the associated
instance of Ada.Iterator_Interfaces is the @i<iteration cursor subtype> for the
iterator type.@Defn{iteration cursor subtype}]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[The following type-related
operational aspects may be specified for an indexable container type @i<T> (see
@RefSecNum{User-Defined Indexing}):]}
@begin{Description}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0111-1]}
@ChgAdded{Version=[3],Text=[Default_Iterator@\This aspect is specified
by a @nt{name} that denotes exactly one function declared immediately within
the same declaration list in which @i<T> is declared, whose first parameter
is of type @i<T> or @i<T>'Class or an access parameter whose designated type
is type @i<T> or @i<T>'Class, whose other parameters, if any, have default
expressions, and whose result type is an iterator type. This function is the
@i<default iterator function> for @i<T>.@Defn{default iterator function}
Its result subtype is the @i<default iterator subtype> for
@i<T>.@Defn{default iterator subtype} The iteration cursor subtype for
the default iterator subtype is the @i<default cursor subtype>
for
@i<T>.@Defn{default cursor subtype}@AspectDefn{Default_Iterator}@Chg{Version=[5],New=[
This aspect is inherited by descendants
of type @i<T> (including @i<T>'Class).],Old=[]}]}
@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Default_Iterator],
Text=[@ChgAdded{Version=[3],Text=[Default iterator to be used in @key[for]
loops.]}]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0111-1]}
@ChgAdded{Version=[3],Text=[Iterator_Element@\This aspect is specified by a
@nt{name} that denotes a subtype. This is the @i<default element subtype>
for @i<T>.@Defn{default element subtype}@AspectDefn{Iterator_Element}@Chg{Version=[5],New=[
This aspect is inherited by descendants
of type @i<T> (including @i<T>'Class).],Old=[]}]}
@ChgAspectDesc{Version=[3],Kind=[AddedNormal],Aspect=[Iterator_Element],
Text=[@ChgAdded{Version=[3],Text=[Element type to be used for user-defined
iterators.]}]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0111-1]}
@ChgAdded{Version=[5],Type=[Leading],Text=[Iterator_View@\This aspect is
specified by a @nt{name} that denotes a type @i<T2> with the
following properties:@AspectDefn{Iterator_View}]}
@begin{Itemize}
@ChgRef{Version=[5],Kind=[Added]}
@ChgAdded{Version=[5],Text=[@i<T2> is declared in the same compilation
unit as @i<T>;]}
@ChgRef{Version=[5],Kind=[Added]}
@ChgAdded{Version=[5],Text=[@i<T2> is an iterable container type;]}
@ChgRef{Version=[5],Kind=[Added]}
@ChgAdded{Version=[5],Text=[@i<T2> has a single discriminant which is an
access discriminant designating @i<T>; and]}
@ChgRef{Version=[5],Kind=[Added]}
@ChgAdded{Version=[5],Text=[The default iterator subtypes for @i<T> and
@i<T2> statically match.]}
@end{Itemize}
@ChgRef{Version=[5],Kind=[Added]}
@ChgAdded{Version=[5],NoPrefix=[T],Text=[This aspect is never
inherited@Redundant[, even by @i<T>'Class].]}
@begin{Reason}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[Iterator_View allows specifying an alternative
type to be automatically used by container element iterators; see
@RefSecNum{Generalized Loop Iteration}. This allows setting state for
an iteration only once rather than for each individual reference.]}
@end{Reason}
@begin{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[Since Iterator_View is not inherited, it does
not apply to @i<T>'Class. Otherwise, the type of the iterator object would
not be known at compile-time (since it necessarily has to be different for
each descendant).]}
@end{Ramification}
@ChgAspectDesc{Version=[5],Kind=[AddedNormal],Aspect=[Iterator_View],
Text=[@ChgAdded{Version=[5],Text=[An alternative type to used for container
element iterators.]}]}
@end{Description}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgRef{Version=[5],Kind=[Deleted],ARef=[AI12-0111-1]}
@ChgAdded{Version=[3],Text=[@Chg{Version=[5],New=[],Old=[These aspects are
inherited by descendants of type @i<T> (including @i<T>'Class).]}]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[An @i<iterable container type> is an indexable container type
with specified Default_Iterator and Iterator_Element aspects.@Defn{iterable container type}
A @i<reversible iterable container type> is an iterable container type with the default iterator type
being a reversible iterator type.@Defn{reversible iterable container type}
@Chg{Version=[5],New=[A @i{parallel iterable container type} is an iterable
container type with the default iterator type being a parallel iterator
type.@Defn{parallel iterable container type} ],Old=[]}An
@i<iterable container object> is an object of an iterable container type.@Defn{iterable container object}
A @i<reversible iterable container object> is an object of a reversible iterable container
type.@Defn{reversible iterable container object}@Chg{Version=[5],New=[
A @i<parallel iterable container object> is an object of a
parallel iterable container type.@Defn{parallel iterable container object}],Old=[]}]}
@ChgToGlossary{Version=[3],Kind=[Added],Term=<Iterable container type>,
Text=<@ChgAdded{Version=[3],Text=[An iterable container type is one that has
user-defined behavior for iteration, via the Default_Iterator and
Iterator_Element aspects.]}>}
@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0138-1]}
@ChgAdded{Version=[4],Text=[The Default_Iterator and Iterator_Element aspects
are nonoverridable (see @RefSecNum{Aspect Specifications}).]}
@begin{Reason}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@ChgAdded{Version=[4],Text=[This ensures that all descendants of an
iterable container type have aspects with the same properties. This prevents
generic contract problems with formal derived types.]}
@end{Reason}
@end{StaticSem}
@begin{Legality}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[The Constant_Indexing aspect (if any)
of an iterable container type @i<T> shall denote exactly one function with the following
properties:]}
@begin{Itemize}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[the result type of the function is covered by the
default element type of @i<T> or is a reference type (see
@RefSecNum{User-Defined References}) with an access discriminant designating
a type covered by the default element type of @i<T>;]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[the type of the second parameter of the function
covers the default cursor type for @i<T>;]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[if there are more than two parameters, the
additional parameters all have default expressions.]}
@end{Itemize}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[This function (if any) is the
@i<default constant indexing function> for @i<T>.@Defn{default constant indexing function}]}
@begin{Ramification}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[This does not mean that Constant_Indexing has to
designate only one subprogram, only that there is only one routine that meets
all of these properties. There can be other routines designated by
Constant_Indexing, but they cannot have the profile described above. For
instance, map containers have a version of Constant_Indexing that takes a
key instead of a cursor; this is allowed.]}
@end{Ramification}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgAdded{Version=[3],Type=[Leading],Text=[The Variable_Indexing aspect (if any)
of an iterable container type @i<T> shall denote exactly one function with the following
properties:]}
@begin{Itemize}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[the result type of the function is a reference
type (see @RefSecNum{User-Defined References}) with an access discriminant
designating a type covered by the default element type of @i<T>;]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[the type of the second parameter of the function
covers the default cursor type for @i<T>;]}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[if there are more than two parameters, the
additional parameters all have default expressions.]}
@end{Itemize}
@ChgRef{Version=[3],Kind=[AddedNormal]}
@ChgAdded{Version=[3],Text=[This function (if any) is the
@i<default variable indexing function> for @i<T>.@Defn{default variable indexing function}]}
@end{Legality}
@begin{Extend2005}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}User-defined
iterator types are new in Ada 2012.]}
@end{Extend2005}
@begin{Incompatible2012}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0138-1]}
@ChgAdded{Version=[4],Text=[@Defn{incompatibilities with Ada 2012}@b<Corrigendum:>
Defined Default_Iterator and Iterator_Element to be nonoveridable, which
makes redefinitions and hiding of these aspects illegal. It's possible that
some program could violate one of these new restrictions, but in most cases
this can easily be worked around by using overriding rather than
redefinition.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[Various new types and subprograms are newly added
to Ada.Iterator_Interfaces. If an instance of Ada.Iterator_Interfaces is
referenced in a @nt{use_clause}, and an entity with one of the new names
is defined in some other package that is also referenced in a @nt{use_clause},
the user-defined entity may no longer be use-visible,
resulting in errors. This should be rare and is easily fixed if it does occur.]}
@end{Incompatible2012}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0111-1]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}Aspect Iterator_View
is new; it allows container element iterators to set the tampering state
once rather than for each use of the element.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[Parallel iterator
interfaces are new; they allow user-defined parallel loops to be defined.]}
@end{Extend2012}
@LabeledAddedSubClause{Version=[3],Name=[Generalized Loop Iteration]}
@begin{Intro}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgAdded{Version=[3],Text=[Generalized forms of loop iteration are provided by
an @nt{iterator_specification}.]}
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0156-1],ARef=[AI12-0250-1]}
@AddedSyn{Version=[3],lhs=<@Chg{Version=[3],New=<iterator_specification>,Old=<>}>,
rhs="@Chg{Version=[3],New=<
@Syn2{defining_identifier} @Chg{Version=[5],New=<[: @Syn2{loop_parameter_subtype_indication}] >,Old=<>}@key[in] [@key{reverse}] @SynI{iterator_}@Syn2{name}@Chg{Version=[5],New=<
[@Syn2{iterator_filter}]>,Old=<>}
| @Syn2{defining_identifier} [: @Chg{Version=[5],New=<@Syn2{loop_parameter_subtype_indication}>,Old=<@Syn2{subtype_indication}>}] @key[of] [@key{reverse}] @SynI{iterable_}@Syn2{name}>,Old=<>}@Chg{Version=[5],New=<
[@Syn2{iterator_filter}]>,Old=<>}"}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0156-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<loop_parameter_subtype_indication>,Old=<>}>,
rhs="@Chg{Version=[5],New=<@Syn2{subtype_indication} | @Syn2{access_definition}>,Old=<>}"}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[If an @nt{iterator_specification} is for a parallel
construct, the reserved word @key[reverse] shall not appear in the
@nt{iterator_specification}.]}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgAdded{Version=[3],Text=[For the first form of @nt{iterator_specification},
called a @i<generalized iterator>,@Defn{generalized iterator}@Defn2{Term=[iterator],Sec=[generalized]}
the expected type for the @SynI<iterator_>@nt{name} is any iterator
type.@PDefn2{Term=[expected type],Sec=[@SynI<iterator_>@nt{name}]}
For the second form of @nt{iterator_specification},
the expected type for the @SynI<iterable_>@nt{name} is any array or iterable
container type.@PDefn2{Term=[expected type],Sec=[@SynI<iterable_>@nt{name}]}
If the @SynI<iterable_>@nt{name} denotes an array object, the
@nt{iterator_specification} is called an @i<array
component iterator>;@Defn{array component iterator}@Defn2{Term=[iterator],Sec=[array component]}
otherwise it is called a
@i<container element iterator>.@Defn{container element iterator}@Defn2{Term=[iterator],Sec=[container element]}]}
@end{Resolution}
@begin{Legality}
@ChgToGlossary{Version=[3],Kind=[Added],Term=<Iterator>,
Text=<@ChgAdded{Version=[3],Text=[An iterator is a construct that is used to
loop over the elements of an array or container. Iterators may be user defined,
and may perform arbitrary computations to access elements from a container.]}>}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[If the reserved word @key[reverse] appears,
the @nt{iterator_specification} is a
@Defn{reverse iterator}@Defn2{Term=[iterator],Sec=[reverse]}@i<reverse iterator>@Chg{Version=[5],New=[.
If the @nt{iterator_specification} is for a parallel construct, the
@nt{iterator_specification} is a
@i<parallel iterator>.@Defn{parallel iterator}@Defn2{Term=[iterator],Sec=[parallel]}
Otherwise,],Old=[; otherwise]} it is a
@i<forward iterator>.@Defn{forward iterator}@Defn2{Term=[iterator],Sec=[forward]}
@Chg{Version=[5],New=[Forward and reverse iterators are collectively called
@i<sequential>
iterators.@Defn{sequential iterator}@Defn2{Term=[iterator],Sec=[sequential]} ],Old=[]}In a
reverse generalized iterator, the
@SynI<iterator_>@nt{name} shall be of a reversible iterator type.
@Chg{Version=[5],New=[In a parallel generalized iterator, the
@SynI<iterator_>@nt{name} shall be of a parallel iterator type. ],Old=[]}In
a reverse container element iterator, the default iterator type for the type
of the @SynI<iterable_>@nt{name} shall be a reversible iterator
type.@Chg{Version=[5],New=[ In a parallel container element iterator, the
default iterator type for the type of the @SynI<iterable_>@nt{name} shall be
of a parallel iterator type.],Old=[]}]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgRef{Version=[4],Kind=[Revised],ARef=[AI12-0151-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0156-1],ARef=[AI12-0183-1]}
@ChgAdded{Version=[3],Text=[@Chg{Version=[5],New=[The subtype defined by the
@nt{loop_parameter_subtype_indication}, if any, of a generalized iterator
shall statically match the iteration cursor
subtype. ],Old=[]}The @Chg{Version=[4],New=[subtype defined by],Old=[type of]}
the @Chg{Version=[5],New=[@nt{loop_parameter_subtype_indication}],
Old=[@nt{subtype_indication}]}, if any, of an array component
iterator shall @Chg{Version=[4],New=[statically match],Old=[cover]} the
component @Chg{Version=[4],New=[subtype],Old=[type]} of the type of the
@SynI<iterable_>@nt{name}. The @Chg{Version=[4],New=[subtype defined
by],Old=[type of]} the @Chg{Version=[5],New=[@nt{loop_parameter_subtype_indication}],
Old=[@nt{subtype_indication}]}, if any, of a container element
iterator shall @Chg{Version=[4],New=[statically match],Old=[cover]} the default
element @Chg{Version=[4],New=[subtype],Old=[type]} for the type of the
@SynI<iterable_>@nt{name}.]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgAdded{Version=[3],Text=[In a container element iterator whose
@SynI<iterable_>@nt{name} has type @i<T>, if the @SynI<iterable_>@nt{name}
denotes a constant or the Variable_Indexing aspect is not specified for @i<T>,
then the Constant_Indexing aspect shall be specified for @i<T>.]}
@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0047-1]}
@ChgAdded{Version=[4],Text=[The @SynI<iterator_>@nt{name} or
@SynI<iterable_>@nt{name} of an @nt{iterator_specification} shall
not denote a subcomponent that depends on discriminants of an object
whose nominal subtype is unconstrained, unless the object is known
to be constrained.]}
@begin{Reason}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@ChgAdded{Version=[4],Text=[This is the same rule that applies to
renames; it serves the same purpose of preventing the object from
disappearing while the iterator is still using it.]}
@end{Reason}
@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0120-1]}
@ChgAdded{Version=[4],Text=[A container element iterator is illegal if the
call of the default iterator function that creates the loop iterator
(see below) is illegal.]}
@begin{Ramification}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@ChgAdded{Version=[4],Text=[This can happen if the parameter to the default
iterator function is @key[in out] and the @SynI<iterable_>@nt{name} is a
constant. The wording applies to any reason that the call would be illegal,
as it's possible that one of the default parameters would be illegal, or
that some accessibility check would fail.]}
@end{Ramification}
@ChgRef{Version=[4],Kind=[Added],ARef=[AI12-0120-1]}
@ChgAdded{Version=[4],Text=[A generalized iterator is illegal if the iteration
cursor subtype of the @SynI<iterator_>@nt{name} is a limited type at the point
of the generalized iterator. A container element iterator is illegal if the
default cursor subtype of the type of the @SynI<iterable_>@nt{name} is a limited
type at the point of the container element iterator.]}
@begin{Reason}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@ChgAdded{Version=[4],Text=[If the cursor type is limited, the assignment to
the loop parameter for a generalized iterator would be illegal. The same is
true for a container element iterator. We have to say "at the point of the
iterator" as the limitedness of a type can change due to visibility.]}
@end{Reason}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0269-1],ARef=[AI05-0292-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0156-1]}
@ChgAdded{Version=[3],Text=[An @nt{iterator_specification} declares a
@i<loop parameter>.@Defn{loop parameter}
In a generalized iterator, @Chg{Version=[5],New=[],Old=[the nominal subtype of
the loop parameter is the iteration cursor subtype. In ]}an array component
iterator@Chg{Version=[5],New=[,],Old=[]} or a container element iterator, if
a @Chg{Version=[5],New=[@nt{loop_parameter_subtype_indication}],
Old=[@nt{subtype_indication}]} is present, it
determines the nominal subtype of the loop parameter.@Chg{Version=[5],New=[ In
a generalized iterator, if a @nt{loop_parameter_subtype_indication} is not
present, the nominal subtype of the loop parameter is the iteration cursor
subtype.],Old=[]} In an array component iterator, if a
@Chg{Version=[5],New=[@nt{loop_parameter_subtype_indication}],
Old=[@nt{subtype_indication}]} is not present, the
nominal subtype of the loop parameter is the component subtype of the
type of the @SynI{iterable_}@nt{name}. In a container element iterator, if a
@Chg{Version=[5],New=[@nt{loop_parameter_subtype_indication}],
Old=[@nt{subtype_indication}]} is not present, the nominal subtype of the loop
parameter is the default element subtype for the type of the
@SynI{iterable_}@nt{name}.]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgAdded{Version=[3],Text=[In a generalized iterator, the loop parameter
is a constant. In an array component iterator, the loop parameter
is a constant if the @SynI<iterable_>@nt{name} denotes a constant; otherwise
it denotes a variable. In a container element iterator, the loop parameter
is a constant if the @SynI{iterable_}@nt{name} denotes a constant, or if
the Variable_Indexing aspect is not specified for the type of the
@SynI{iterable_}@nt{name}; otherwise it is a variable.]}
@begin{Ramification}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0093-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0156-1]}
@ChgAdded{Version=[4],Text=[The loop parameter of a generalized iterator has
the same accessibility as the loop statement. This means that the loop
parameter object is finalized when the loop statement is left. (It also may be
finalized as part of assigning a new value to the loop parameter.) For array
component iterators@Chg{Version=[5],New=[],Old=[and container element
iterators]}, the loop parameter directly denotes an element of the array
@Chg{Version=[5],New=[],Old=[or container ]}and has the accessibility of
the associated array@Chg{Version=[5],New=[],Old=[ or container]}.
@Chg{Version=[5],New=[For container element iterators, the loop parameter
denotes the result of the indexing function call (in the case of a constant
indexing) or a generalized reference thereof (in the case of a variable
indexing). Roughly speaking, the loop parameter has the accessibility level
of a single iteration of the loop. More precisely, the function result (or
the generalized reference thereof) is considered to be renamed in the
declarative part of a notional block statement which immediately encloses
the loop's @nt{sequence_of_statements}; the accessibility of the loop
parameter is that of the block statement.],Old=[]}]}
@end{Ramification}
@end{StaticSem}
@begin{Runtime}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgAdded{Version=[3],Text=[For the execution of a @nt{loop_statement} with
an @nt{iterator_specification}, the @nt{iterator_specification} is
first elaborated. This elaboration elaborates the @nt{subtype_indication},
if any.]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0250-1],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[For a @Chg{Version=[5],New=[sequential
],Old=[]}generalized iterator, the loop parameter is created, the
@SynI{iterator_}@nt{name} is evaluated, and the denoted iterator object becomes
the @i<loop iterator>.@Defn{loop iterator} In a forward generalized iterator,
the operation First of the iterator type is called on the loop iterator, to
produce the initial value for the loop parameter. If the result of calling
Has_Element on the initial value is False, then the execution of the
@nt{loop_statement} is complete. Otherwise, the @nt{sequence_of_statements} is
@Chg{Version=[5],New=[conditionally ],Old=[]}executed and then the
Next operation of the iterator type is called with the
loop iterator and the current value of the loop parameter to produce the next
value to be assigned to the loop parameter. This repeats until the result of
calling Has_Element on the loop parameter is False, or the loop is left as a
consequence of a transfer of control. For a reverse generalized iterator, the
operations Last and Previous are called rather than First and Next.]}
@begin{Ramification}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0093-1]}
@ChgAdded{Version=[4],Text=[The loop parameter of a generalized iterator is a
variable of which the user only has a constant view. It follows the normal
rules for a variable of its nominal subtype. In particular, if the nominal
subtype is indefinite, the variable is constrained by its initial value.
Similarly, if the nominal subtype is class-wide, the variable (like all
variables) has the tag of the initial value. Constraint_Error may be raised by
a subsequent iteration if Next or Previous return an object with a different
tag or constraint.]}
@end{Ramification}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[For a parallel generalized iterator, the
@nt{chunk_specification}, if any, of the associated parallel construct, is first
elaborated, to determine the maximum number of chunks (see
@RefSecNum{Loop Statements}), and then the operation Split_Into_Chunks of the
iterator type is called, with the determined maximum passed as the Max_Chunks
parameter, specifying the upper bound for the number of loop parameter objects
(and the number of logical threads of control) to be associated with the
iterator. In the absence of a @nt{chunk_specification}, the maximum number of
chunks is determined in an implementation-defined manner.]}
@ChgImplDef{Version=[5],Kind=[AddedNormal],InitialVersion=[5],
Text=[@ChgAdded{Version=[5],Text=[The maximum number of chunks for a parallel
generalized iterator without a @nt{chunk_specification}.]}]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0250-1],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[Upon return from Split_Into_Chunks, the actual
number of chunks for the loop is determined by calling the Chunk_Count operation
of the iterator, at which point one logical thread of control is initiated for
each chunk, with an associated chunk index in the range from one to the actual
number of chunks. Within each logical thread of control, a loop parameter is
created. If a @nt{chunk_specification} with a @nt{discrete_subtype_definition}
is present in the associated parallel construct, then a chunk parameter is
created, and initialized with a value from the discrete subtype defined by the
@nt{discrete_subtype_definition}, so that the order of the chosen chunk
parameter values correspond to the order of the chunk indices associated with
the logical threads of control. The operation First of the iterator type having
a Chunk parameter is called on the loop iterator, with Chunk initialized from
the corresponding chunk index, to produce the initial value for the loop
parameter. If the result of calling Has_Element on this initial value is False,
then the execution of the logical thread of control is complete. Otherwise, the
@nt{sequence_of_statements} is conditionally executed and then the Next
operation of the iterator type having a Chunk parameter is called, with the loop
iterator, the current value of the loop parameter, and the corresponding chunk
index, to produce the next value to be assigned to the loop parameter. This
repeats until the result of calling Has_Element on the loop parameter is False,
or the associated parallel construct is left as a consequence of a transfer of
control. In the absence of a transfer of control, the associated parallel
construct of a parallel generalized iterator is complete when all of its logical
threads of control are complete.]}
@begin{Discussion}
@ChgRef{Version=[5],Kind=[Added]}
@ChgAdded{Version=[5],Text=[The Max_Chunks parameter of the Split_Into_Chunks
procedure is an upper bound for the number of chunks to be associated with a
loop. A container implementation may opt for a lower value for the number of
chunks if a more optimal split can be determined. For instance, a tree-based
container might create the split based on the number of branches at the top
levels of the tree.]}
@end{Discussion}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0250-1],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[For an array component iterator,
@Chg{Version=[5],New=[the @nt{chunk_specification} of the associated
parallel construct, if any, is first elaborated to determine
the maximum number of chunks (see @RefSecNum{Loop Statements}), and
then ],Old=[]}the @SynI<iterable_>@nt{name} is evaluated and
the denoted array object becomes the @i<array for the
loop>.@Defn{array for a loop} If the array for the loop is a null array,
then the execution of the @nt{loop_statement} is complete. Otherwise, the
@nt{sequence_of_statements} is
@Chg{Version=[5],New=[conditionally ],Old=[]}executed with the loop parameter
denoting each component of the array for the loop, using a @i<canonical> order
of components,@Defn{canonical order of array components}
which is last dimension varying fastest (unless the
array has convention Fortran, in which case it is first dimension
varying fastest). For a
forward array component iterator, the iteration starts with the
component whose index values are each the first in their index range,
and continues in the canonical order. For a reverse array component
iterator, the iteration starts with the component whose index values
are each the last in their index range, and continues in the reverse
of the canonical order.
@Chg{Version=[5],New=[For a parallel array component iterator, the iteration is
broken up into contiguous chunks of the canonical order, such that all
components are covered with no overlaps; each chunk has its own logical thread
of control with its own loop parameter and iteration within each chunk is in the
canonical order. The number of chunks is implementation defined, but is limited
in the presence of a @nt{chunk_specification} to the determined maximum.
],Old=[]}The loop iteration proceeds until the
@nt{sequence_of_statements} has been
@Chg{Version=[5],New=[conditionally ],Old=[]}executed for each component of the
array for the loop, or until the loop is left as a consequence of a
transfer of control.]}
@ChgImplDef{Version=[5],Kind=[AddedNormal],InitialVersion=[5],
Text=[@ChgAdded{Version=[5],Text=[The number of chunks for an array component
iterator.]}]}
@ChgRef{Version=[5],Kind=[Added],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[If a @nt{chunk_specification} with a
@nt{discrete_subtype_definition} is present
in the associated parallel construct, then the logical thread of
control associated with a given chunk has a chunk parameter
initialized with a distinct value from the discrete subtype defined by
the @nt{discrete_subtype_definition}. The values of the chunk parameters
are assigned such that they increase in the canonical order of the
starting array components for the chunks.]}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0111-1],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[For a container element iterator,
@Chg{Version=[5],New=[the @nt{chunk_specification} of the associated
parallel construct, if any, is first elaborated to determine
the maximum number of chunks (see @RefSecNum{Loop Statements}), and
then ],Old=[]}the @SynI<iterable_>@nt{name} is evaluated@Chg{Version=[5],New=[.
If the container type has Iterator_View specified, an object of the
Iterator_View type is created with the discriminant referencing the
iterable container object denoted by the @SynI<iterable_>@nt{name}. This is
the @i<iterable container object for the loop>. Otherwise,],Old=[and]}
the iterable container object
@Chg{Version=[5],New=[denoted by the @SynI<iterable_>@nt{name} becomes the
iterable container object for the loop],Old=[becomes the @i<iterable
container object for the loop>]}.@Defn{iterable container object for a loop}
The default iterator function for the type of
the iterable container object for the loop is called on the iterable container object
and the result is the @i<loop iterator>.@Defn2{Term=[loop iterator],Sec=[container element iterator]}
@Chg{Version=[5],New=[For a sequential container element
iterator, an],Old=[An]} object of the default cursor subtype is created
(the @i<loop cursor>).@Defn{loop cursor}@Chg{Version=[5],New=[ For a parallel
container element iterator, each chunk of iterations
will have its own loop cursor, again of the default cursor subtype.],Old=[]}]}
@begin{Reason}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0111-1]}
@ChgAdded{Version=[5],Text=[If Iterator_View is specified, we add an extra
object and use that object for this iteration. This allows these iterators
to automatically use the stable view (defined in each of the language-defined
containers) to do the iteration. That eliminates the need to set and clear
the tampering with elements indication each time Reference is called; that
eliminates substantial overhead as finalization is typically used to
implement the tampering reset.]}
@end{Reason}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2],ARef=[AI05-0292-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[@Chg{Version=[5],New=[A],Old=[For a]} container
element iterator@Chg{Version=[5],New=[ then proceeds as described above for a
generalized iterator, except that each reference to a loop parameter
is replaced by a reference to the corresponding loop cursor. For a
container element iterator, the loop parameter for each iteration
instead denotes],Old=[, the
operation First of the iterator type is called on the loop iterator, to produce
the initial value for the loop cursor. If the result of calling Has_Element on
the initial value is False, then the execution of the @nt{loop_statement} is
complete. Otherwise, the @nt{sequence_of_statements} is executed with the loop
parameter denoting]} an indexing (see @RefSecNum{User-Defined Indexing})
into the iterable container
object for the loop, with the only parameter to the indexing being the
@Chg{Version=[5],New=[],Old=[current ]}value of the loop
cursor@Chg{Version=[5],New=[ for the given iteration],Old=[; then the Next
operation of the iterator type is called with the loop iterator and the loop
cursor to produce the next value to be assigned to the loop cursor. This repeats
until the result of calling Has_Element on the loop cursor is False, or until
the loop is left as a consequence of a transfer of control. For a reverse
container element iterator, the operations Last and Previous are called rather
than First and Next]}. If the loop parameter is a constant (see above), then the
indexing uses the default constant indexing function for the type of the
iterable container object for the loop; otherwise it uses the default variable
indexing function.]}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0120-1]}
@ChgAdded{Version=[4],Text=[Any exception propagated by the execution of a
generalized iterator or container element iterator is propagated by the
immediately enclosing loop statement.]}
@begin{Ramification}
@ChgRef{Version=[4],Kind=[AddedNormal]}
@ChgAdded{Version=[4],Text=[This text covers exceptions raised by called
functions that make up the execution of the iterator as well as
exceptions raised by the assignment to the loop parameter or cursor.]}
@end{Ramification}
@end{Runtime}
@begin{Examples}
@begin{Example}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0269-1]}
@ChgRef{Version=[5],Kind=[Revised],ARef=[AI12-0266-1]}
@ChgAdded{Version=[3],Text=[-- @Examcom{Array component iterator example:}
@Chg{Version=[5],New=[@key[parallel]
],Old=[]}@key[for] Element @key[of] Board @key[loop] -- @Examcom{See @RefSecNum{Index Constraints and Discrete Ranges}.}
Element := Element * 2.0; -- @Examcom{Double each element of Board, a two-dimensional array.}
@key[end loop];]}
@end{Example}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0268-1]}
@ChgAdded{Version=[3],Text=[For examples of use of generalized iterators,
see @RefSecNum{Example of Container Use} and the corresponding container
packages in @RefSecNum{The Generic Package Containers.Vectors} and
@RefSecNum{The Generic Package Containers.Doubly_Linked_Lists}.]}
@end{Examples}
@begin{Extend2005}
@ChgRef{Version=[3],Kind=[AddedNormal],ARef=[AI05-0139-2]}
@ChgAdded{Version=[3],Text=[@Defn{extensions to Ada 2005}Generalized forms
of loop iteration are new.]}
@end{Extend2005}
@begin{Incompatible2012}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0047-1]}
@ChgAdded{Version=[4],Text=[@Defn{incompatibilities with Ada
2012}@b<Corrigendum:> Added a rule to ensure that the object being iterated
cannot be a component that could disappear before the loop completes. This
could be incompatible by making a loop that was legal (and worked correctly,
so long as the enclosing object is not modified during the loop) from the
original Ada 2012 illegal in corrected Ada 2012. Such loops should be pretty
rare, especially as these iterator forms are new to Ada 2012.]}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0120-1]}
@ChgAdded{Version=[4],Text=[@b<Corrigendum:> Added rules to reject loops
if the call to the default iterator function for a container element
iterator is illegal, or if the cursor type of an iterator is limited.
These are formally incompatible with original Ada 2012, but as it's unlikely
that any Ada 2012 compiler ever allowed the illegal usages in an expansion
of a loop (it's much more likely that they would have just caused an internal
error in the compiler), this should have no effect in practice.]}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0151-1]}
@ChgAdded{Version=[4],Text=[@b<Corrigendum:> Added a requirement that the
given subtype statically match the subtype of the element or component for
a component element iterator or array component iterator. Original Ada 2012
text allowed any type that covered the subtype of the element or component,
but that led to questions of what the meaning was if they are different.
In this case, the element is essentially a renaming of the container element,
and it doesn't make sense for the constraints to be different. Ignoring
explicitly defined constraints in renames is a mistake that we don't want
to continue, thus we require static matching. This means that some programs
might be illegal, but those programs were misleading at best, and
potentially would raise unexpected exceptions because the element values
might have been invalid or abnormal with respect to the declared constraint.]}
@end{Incompatible2012}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0156-1]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}For consistency, we
now allow a @nt{subtype_indication} on a generalized iterator, and anonymous
access types on all forms of iterator. We introduced a new syntax
non-terminal, @nt{loop_parameter_subtype_indication} to simplfy the wording.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0250-1]}
@ChgAdded{Version=[5],Text=[An @nt{iterator_filter} is now allowed on
@nt{iterator_specification}s. This is mainly for consistency with
aggregate and reduction iterators, where it eliminates the need for
temporary objects.]}
@end{Extend2012}
@begin{DiffWord2012}
@ChgRef{Version=[4],Kind=[AddedNormal],ARef=[AI12-0120-1]}
@ChgAdded{Version=[4],Text=[@b<Corrigendum:> Added wording to specify that
a loop propagates any exceptions propagated by the execution of an iterator.
Since that's what naturally would happen from a macro-style expansion of the
parts of an iterator, and no other interpretation makes sense given the way
the rest of Ada works, we consider it so unlikely that any Ada 2012
implementation ever did anything else that we don't document this as a
possible inconsistency.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0111-1]}
@ChgAdded{Version=[5],Text=[Added wording to include the use of the iterator
view in a container element iterator.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0266-1]}
@ChgAdded{Version=[5],Text=[Added wording to describe the execution of
parallel iterators.]}
@end{DiffWord2012}
@LabeledAddedSubClause{Version=[5],Name=[Procedural Iterators]}
@begin{Intro}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@ChgAdded{Version=[5],Text=[A @nt{procedural_iterator} invokes a
user-defined procedure, passing in the body of the enclosing @nt{loop_statement}
as a parameter of an anonymous access-to-procedure type, to allow the loop body
to be executed repeatedly as part of the invocation of the user-defined
procedure.]}
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0250-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<procedural_iterator>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
@Syn2{iterator_parameter_specification} @key[of] @Syn2{iterator_procedure_call}
[@Syn2{iterator_filter}]>,Old=<>}"}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0308-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<iterator_parameter_specification>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
@Syn2{formal_part}
| (@Syn2{defining_identifier}{, @Syn2{defining_identifier}})>,Old=<>}"}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<iterator_procedure_call>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
@SynI{procedure_}@Syn2{name}
| @SynI{procedure_}@Syn2{prefix} @Syn2{iterator_actual_parameter_part}>,Old=<>}"}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<iterator_actual_parameter_part>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
(@Syn2{iterator_parameter_association} {, @Syn2{iterator_parameter_association}})>,Old=<>}"}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<iterator_parameter_association>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
@Syn2{parameter_association}
| @Syn2{parameter_association_with_box}>,Old=<>}"}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<parameter_association_with_box>,Old=<>}>,
rhs="@Chg{Version=[5],New={
[ @SynI{formal_parameter_}@Syn2{selector_name} => ] <>},Old=<>}"}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@ChgAdded{Version=[5],Text=[At most one @nt{iterator_parameter_association} within an
@nt{iterator_actual_parameter_part} shall be a
@nt{parameter_association_with_box}.]}
@end{Syntax}
@begin{Resolution}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0292-1],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[The @nt{name} or @nt{prefix} given in an
@nt{iterator_procedure_call} shall resolve to denote a callable entity @i<C>
(the @i<iterating procedure>@Defn{iterating procedure})
that is a procedure, or an entry renamed as (viewed as) a procedure.
@Redundant[When there is an @nt{iterator_actual_parameter_part}, the @nt{prefix}
can be an @nt{implicit_dereference} of an access-to-subprogram value.]]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@ChgAdded{Version=[5],Text=[An @nt{iterator_procedure_call} without a
@nt{parameter_association_with_box} is
equivalent to one with an @nt{iterator_actual_parameter_part} with an
additional @nt{parameter_association_with_box} at the end, with the
@SynI{formal_parameter_}@nt{selector_name} identifying the last formal
parameter of the callable entity denoted by the @nt{name} or @nt{prefix}.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0320-1]}
@ChgAdded{Version=[5],Text=[An @nt{iterator_procedure_call} shall contain at
most one @nt{iterator_parameter_association} for each formal parameter of the
callable entity @i<C>. Each formal parameter without an
@nt{iterator_parameter_association} shall have a
@nt{default_expression} (in the profile of the view of @i<C> denoted by the
@nt{name} or @nt{prefix}).]]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@ChgAdded{Version=[5],Text=[The formal parameter of the callable entity @i<C>
associated with the @nt{parameter_association_with_box} shall be of an
anonymous access-to-procedure type @i<A>.]}
@end{Resolution}
@begin{Legality}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0308-1]}
@ChgAdded{Version=[5],Text=[The anonymous access-to-procedure type @i<A> shall
have at least one formal parameter in its parameter profile. If the
@nt{iterator_parameter_specification} is a @nt{formal_part}, then this
@nt{formal_part} shall be mode conformant with that of @i<A>. If the
@nt{iterator_parameter_specification} is a list of @nt{defining_identifier}s,
the number of formal parameters of @i<A> shall be the same as the length of
this list.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0292-1]}
@ChgAdded{Version=[5],Text=[@Redundant[If the @nt{name} or @nt{prefix} given in an
@nt{iterator_procedure_call} denotes an abstract subprogram, the subprogram
shall be a dispatching subprogram.]]}
@begin{TheProof}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0320-1]}
@ChgAdded{Version=[5],Text=[This is stated normatively in
@RefSecNum{Abstract Types and Subprograms}.]}
@end{TheProof}
@end{Legality}
@begin{StaticSem}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0250-1],ARef=[AI12-0308-1],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[A @nt{loop_statement} with an @nt{iteration_scheme}
that has a @nt{procedural_iterator} is equivalent to a local declaration of a
procedure P followed by a @nt{procedure_call_statement} that is formed from the
@nt{iterator_procedure_call} by replacing the <> of the
@nt{parameter_association_with_box} with P'Access. The @nt{formal_part} of the
locally declared procedure P is formed from the @nt{formal_part} of the
anonymous access-to-procedure type @i<A>, by replacing the @nt{identifier} of
each formal parameter of this @nt{formal_part} with the @nt{identifier} of the
corresponding formal parameter or element of the list of
@nt{defining_identifier}s given in the @nt{iterator_parameter_specification}.
The body of @i<P> consists of the conditionally executed
@nt{sequence_of_statements}. The procedure P is called the
@i<loop body procedure>.@Defn{loop body procedure}]}
@begin{ImplNote}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0250-1]}
@ChgAdded{Version=[5],Type=[Leading],Text=[For a @nt{procedural_iterator}
with an @nt{iterator_filter}, the body of the routine would be something like:]}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[@key{procedure} @i<P> ... @key{is}
@key{begin}
@key{if} @nt{iterator_filter} @key{then}
@nt{sequence_of_statements}
@key{end if};
@key{end} @i<P>;]}
@end{Example}
@end{ImplNote}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Type=[Leading],Text=[The following aspects may be specified
for a callable entity @i<S> that has at least one formal parameter of an
anonymous access-to-subprogram type:]}
@begin{Description}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[Allows_Exit@\The Allows_Exit aspect is of type
Boolean. The specified value shall be static. The Allows_Exit aspect of an
inherited primitive subprogram is True if Allows_Exit is True either for the
corresponding subprogram of the progenitor type or for any other inherited
subprogram that it overrides. If not specified or inherited as True, the
Allows_Exit aspect of a callable entity is False. For an
entry, only a confirming specification of False is permitted for the
Allows_Exit aspect.]}
@begin{Reason}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[An entry does not allow exit, because
implementing a transfer of control out of a task or protected entry creates
unnecessarily complex dynamic semantics.]}
@end{Reason}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],NoPrefix=[T],Text=[Specifying the Allows_Exit aspect
to be True for a subprogram indicates that the
subprogram @i<allows exit>,@Defn2{Term=[subprogram],Sec=[allows exit]}@Defn{allows exit}
meaning that it is prepared to be completed by arbitrary transfers of
control from the loop body procedure@Redundant[, including propagation
of exceptions. A subprogram for which
Allows_Exit is True should use finalization as appropriate rather than
exception handling to recover resources and make any necessary final
updates to data structures].]}
@ChgAspectDesc{Version=[5],Kind=[AddedNormal],Aspect=[Allows_Exit],
Text=[@ChgAdded{Version=[5],Text=[An indication of whether a subprogram
will operate correctly for arbitrary transfers of control.]}]}
@begin{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[A subprogram that does not need cleanup
satisfies the requirements, and thus can specify Allows_Exit as True.
If a subprogram @i<S> allows exit, it cannot expect to get control other
than via finalization if the loop body procedure initiates a transfer of
control as part of a @nt{procedural_iterator}. In particular, exception
handlers in @i<S>, even @key[when others] handlers, will not be executed
when a transfer of control occurs. The mechanism that the implementation
uses to implement such transfers of control needs to avoid triggering
exception handlers.]}
@end{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[Parallel_Iterator@\The Parallel_Iterator aspect
is of type Boolean. The specified value shall be static. The
Parallel_Iterator aspect of an inherited primitive subprogram is True if
Parallel_Iterator is True either for the corresponding subprogram of the
progenitor type or for any other inherited subprogram that it overrides. If
not specified or inherited as True, the Parallel_Iterator aspect of a
callable entity is False.]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],NoPrefix=[T],Text=[Specifying the Parallel_Iterator
aspect to be True for a callable entity indicates that the entity might
invoke the loop body procedure from multiple distinct logical threads of
control. The Parallel_Iterator aspect for a subprogram shall be statically
False if the subprogram allows exit.]}
@ChgAspectDesc{Version=[5],Kind=[AddedNormal],Aspect=[Parallel_Iterator],
Text=[@ChgAdded{Version=[5],Text=[An indication of whether
a subprogram may use multiple threads of control to invoke a
loop body procedure.]}]}
@begin{Reason}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[Permitting exit from a parallel procedural
iterator introduces additional semantic and implementation complexity.]}
@end{Reason}
@end{Description}
@end{StaticSem}
@begin{Legality}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[If a callable entity overrides an inherited
dispatching subprogram that allows exit, the overriding callable entity also
shall allow exit. If a callable entity overrides an inherited dispatching
subprogram that has a True Parallel_Iterator aspect, the overriding callable
entity also shall have a True Parallel_Iterator aspect.]}
@begin{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[Since an entry never allows exit, attempting
to implement an allows exit subprogram with a task or protected entry
is always illegal. However, the Parallel_Iterator aspect can be
applied to an entry, so a subprogram with the Parallel_Iterator aspect
True can be implemented by an entry.]}
@end{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[A @nt{loop_statement} with a
@nt{procedural_iterator} as its @nt{iteration_scheme}
shall begin with the reserved word @key[parallel] if and only if the callable
entity identified in the @nt{iterator_procedure_call} has a Parallel_iterator
aspect of True.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[The @nt{sequence_of_statements} of a
@nt{loop_statement} with a @nt{procedural_iterator} as its @nt{iteration_scheme}
shall contain an @nt{exit_statement}, return statement, @nt{goto_statement}, or
@nt{requeue_statement} that leaves the loop only if the callable entity
associated with the @nt{procedural_iterator} allows exit.]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0294-1]}
@ChgAdded{Version=[5],Text=[The @nt{sequence_of_statements} of a
@nt{loop_statement} with a @nt{procedural_iterator} as its @nt{iteration_scheme}
shall not contain an @nt{accept_statement} whose @nt{entry_declaration} occurs
outside the @nt{loop_statement}.]}
@begin{Reason}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[An @nt{accept_statement} is not allowed in a
procedure (see 9.5.2), it has to be directly in a @nt{task_body}. Since the
loop body here is implemented as a procedure, we can't allow
@nt{accept_statement}s there, either, even if the loop itself is directly in
a @nt{task_body}.]}
@end{Reason}
@begin{Ramification}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[This includes cases where the
@nt{accept_statement} is part of another construct, for instance, a
@nt{select_statement}.]}
@end{Ramification}
@end{Legality}
@begin{Runtime}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[@Redundant[For the execution of a
@nt{loop_statement} with an @nt{iteration_scheme} that has a
@nt{procedural_iterator}, the procedure denoted by the @nt{name} or
@nt{prefix} of the @nt{iterator_procedure_call} (the @i<iterating
procedure>)@Defn{iterating procedure} is invoked, passing an access value
designating the loop body procedure as a parameter. The iterating procedure
then calls the loop body procedure zero or more times and returns, whereupon
the @nt{loop_statement} is complete. If the @key[parallel] reserved word is
present, the iterating procedure might invoke the loop body procedure from
multiple distinct logical threads of control.]]}
@begin{TheProof}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[The stated dynamic semantics are implied by the
static semantics given above and the bounded errors given below.]}
@end{TheProof}
@end{Runtime}
@begin{Bounded}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[@PDefn2{Term=(bounded error),Sec=(cause)}
If the callable entity identified in the @nt{iterator_procedure_call} allows
exit, then it is a bounded error for a call of the loop body procedure
to be performed from within an abort-deferred operation (see
@RefSecNum{Abort of a Task - Abort of a Sequence of Statements}),
unless the entire @nt{loop_statement} was within the same abort-deferred
operation. If detected, Program_Error is raised at the point of the
call; otherwise, a transfer of control from the @nt{sequence_of_statements}
of the @nt{loop_statement} might not terminate the @nt{loop_statement}, and the
loop body procedure might be called
again.@Defn2{Term=[Program_Error],Sec=(raised by detection of a bounded error)}]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[If a @nt{loop_statement} with the
@nt{procedural_iterator} as its @nt{iteration_scheme}
(see @RefSecNum{Loop Statements}) does not begin with the reserved word
@key[parallel], it is a bounded error if the loop body procedure is invoked
from a different logical thread of control than the one that initiates
the @nt{loop_statement}. If detected, Program_Error is raised; otherwise,
conflicts associated with concurrent executions of the loop body
procedure can occur without being detected by the applicable conflict
check policy (see @RefSecNum{Conflict Check Policies}). Furthermore, propagating
an exception or making an attempt to exit in the presence of multiple threads of
control might not terminate the @nt{loop_statement}, deadlock might occur, or
the loop body procedure might be called
again.@Defn2{Term=[Program_Error],Sec=(raised by detection of a bounded error)}]}
@begin{Discussion}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[Other Ada rules are still in effect for the
allows exit subprogram @i<A>, of course. For instance, if a transfer of
control causes finalization which raises an exception, Program_Error will be
propagated by @i<A> (rather than the transfer of control). In such a case,
the bounded error above would still apply. Another example is the case where
an unrelated task is waiting on the normal completion of the loop body
procedure call in @i<A>. Such a task might end up waiting forever if a
transfer of control happens (this is a deadlock situation). This case does
not require additional wording, as the same thing would happen if an
exception is propagated from the loop body procedure or if @i<A> executed a
transfer of control (such as a return statement).]}
@end{Discussion}
@end{Bounded}
@begin{Examples}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1],ARef=[AI12-0379-1]}
@ChgAdded{Version=[5],Type=[Leading],Text=[Example of iterating over a map from
My_Key_Type to My_Element_Type (see @RefSecNum{Maps}):]}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[@key[for] (C : Cursor) @key[of] My_Map.Iterate @key[loop]
Put_Line (My_Key_Type'Image (Key (C)) & " => " &
My_Element_Type'Image (Element (C)));
@key[end loop];]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[--@Examcom{ The above is equivalent to:}]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[@key[declare]
@key[procedure] P (C : Cursor) @key[is]
@key[begin]
Put_Line (My_Key_Type'Image (Key (c)) & " => " &
My_Element_Type'Image (Element (C)));
@key[end] P;
@key[begin]
My_Map.Iterate (P'Access);
@key[end];]}
@end{Example}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0189-1]}
@ChgAdded{Version=[5],Type=[Leading],Text=[Example of iterating over the
environment variables (see @RefSecNum{The Package Environment_Variables}):]}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[@key[for] (Name, Val) @key[of] Ada.Environment_Variables.Iterate(<>) @key[loop]
--@examcom{ "(<>)" is optional because it is the last parameter}
Put_Line (Name & " => " & Val);
@key[end loop];]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[--@Examcom{ The above is equivalent to:}]}
@ChgRef{Version=[5],Kind=[AddedNormal]}
@ChgAdded{Version=[5],Text=[@key[declare]
@key[procedure] P (Name : String; Val : String) @key[is]
@key[begin]
Put_Line (Name & " => " & Val);
@key[end] P;
@key[begin]
Ada.Environment_Variables.Iterate (P'Access);
@key[end];]}
@end{Example}
@end{Examples}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],
ARef=[AI12-0189-1],ARef=[AI12-0292-1],ARef=[AI12-0294-1],ARef=[AI12-0326-2]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}Procedural
iterators, and the Allows_Exit and Parallel_Iterator aspects are
new in Ada 202x.]}
@end{Extend2012}
@RMNewPageVer{Version=[0]}@Comment{For printed version of Ada 95}
@RMNewPageVer{Version=[1]}@Comment{For printed version of Ada 95 + TC1 RM}
@RMNewPageVer{Version=[2]}@Comment{For printed version of Ada 2005 RM}
@LabeledClause{Block Statements}
@begin{Intro}
@Redundant[A @nt{block_statement} encloses a
@nt{handled_sequence_of_statements}
optionally preceded by a @nt{declarative_part}.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<block_statement>,rhs="
[@SynI{block_}@Syn2{statement_identifier}:]
[@key{declare}
@Syn2{declarative_part}]
@key{begin}
@Syn2{handled_sequence_of_statements}
@key{end} [@SynI{block_}@Syn2{identifier}];"}
@begin(SyntaxText)
If a @nt{block_statement} has a @SynI{block_}@nt{statement_identifier},
then the @nt<identifier> shall be repeated after the @key{end};
otherwise, there shall not be an @nt<identifier> after the @key{end}.
@end(SyntaxText)
@end{Syntax}
@begin{StaticSem}
A @nt{block_statement} that has no
explicit @nt{declarative_part} has an implicit empty
@nt{declarative_part}.
@begin{Ramification}
Thus, other rules can always
refer to the @nt{declarative_part} of a @nt<block_statement>.
@end{Ramification}
@end{StaticSem}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(block_statement)}
The execution of a @nt{block_statement} consists of the elaboration
of its @nt{declarative_part} followed by the execution of
its @nt{handled_sequence_of_statements}.
@end{RunTime}
@begin{Examples}
@Leading@keepnext@i{Example of a block statement with a local variable:}
@begin{Example}
Swap:
@key[declare]
Temp : Integer;
@key[begin]
Temp := V; V := U; U := Temp;
@key[end] Swap;
@end{Example}
@begin{Ramification}
If task objects are declared within a @nt{block_statement} whose execution
is completed, the @nt{block_statement} is not left until all its dependent
tasks are terminated
(see @RefSecNum{Assignment and Finalization}).
This rule applies to completion caused by a transfer of control.
Within a @nt{block_statement}, the block name can be used in expanded
names denoting local entities such as Swap.Temp in the above example
(see @RefSecNum{Selected Components}).
@end{Ramification}
@end{Examples}
@begin{DiffWord83}
The syntax rule for @nt{block_statement} now uses the syntactic category
@nt{handled_sequence_of_statements}.
@end{DiffWord83}
@LabeledAddedSubClause{Version=[5], Name=[Parallel Block Statements]}
@begin{Intro}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[@Redundant[A @nt{parallel_block_statement}
comprises two or more @nt{handled_sequence_of_statements} separated by
@key[and] where each represents an independent activity that is intended to
proceed concurrently with the others.]]}
@end{Intro}
@begin{Syntax}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@AddedSyn{Version=[5],lhs=<@Chg{Version=[5],New=<parallel_block_statement>,Old=<>}>,
rhs="@Chg{Version=[5],New=<
@key[parallel] @key[do]
@Syn2{handled_sequence_of_statements}
@key[and]
@Syn2{handled_sequence_of_statements}
{@key[and]
@Syn2{handled_sequence_of_statements}}
@key[end do];>,Old=<>}"}
@end{Syntax}
@begin{StaticSem}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[
Each @nt{handled_sequence_of_statements} represents a separate logical thread
of control that proceeds independently and concurrently. The
@nt{parallel_block_statement} is complete once every one of the
@nt{handled_sequence_of_statements} has completed, either by reaching the end
of its execution, or due to a transfer of control out of the construct
by one of the @nt{handled_sequence_of_statements}
(see @RefSecNum{Simple and Compound Statements - Sequences of Statements}).]}
@begin{ImplNote}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[Although each @nt{handled_sequence_of_statements}
of a parallel block represents a separate logical thread of control, the
implementation may choose to combine two or more such logical threads
of control into a single physical thread of control to reduce the cost
of creating numerous physical threads of control.]}
@end{ImplNote}
@end{StaticSem}
@begin{Examples}
@begin{Example}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[@key[procedure] Traverse (T : Expr_Ptr) @key[is] --@Examcom{ see @RefSecNum{Tagged Types and Type Extensions}}
@key[begin]
@key[if] T /= @key[null] @key[and then]
T.@key[all] @key[in] Binary_Operation'Class --@Examcom{ see @RefSecNum{Type Extensions}}
@key[then] --@Examcom{ recurse down the binary tree}
@key[parallel do]
Traverse (T.Left);
@key[and]
Traverse (T.Right);
@key[and]
Ada.Text_IO.Put_Line
("Processing " & Ada.Tags.Expanded_Name (T'Tag));
@key[end do];
@key[end if];
@key[end] Traverse;]}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[@key[function] Search (S : String; Char : Character) @key[return] Boolean @key[is]
@key[begin]
@key[if] S'Length <= 1000 @key[then]
--@Examcom{ Sequential scan}
@key[return] (@key[for] @key[some] C @key[of] S => C = Char);
@key[else]
--@Examcom{ Parallel divide and conquer}
@key[declare]
Mid : @key[constant] Positive := S'First + S'Length/2 - 1;
@key[begin]
@key[parallel do]
@key[for] C @key[of] S(S'First .. Mid) @key[loop]
@key[if] C = Char @key[then]
@key[return] True; --@Examcom{ Terminates enclosing @key[do]}
@key[end if];
@key[end loop];
@key[and]
@key[for] C @key[of] S(Mid + 1 .. S'Last) @key[loop]
@key[if] C = Char @key[then]
@key[return] True; --@Examcom{ Terminates enclosing @key[do]}
@key[end if];
@key[end loop];
@key[end do];
--@Examcom{ Not found}
@key[return] False;
@key[end];
@key[end if];
@key[end] Search;]}
@end{Example}
@end{Examples}
@begin{Extend2012}
@ChgRef{Version=[5],Kind=[AddedNormal],ARef=[AI12-0119-1]}
@ChgAdded{Version=[5],Text=[@Defn{extensions to Ada 2012}
The @nt{parallel_block_statement} is new.]}
@end{Extend2012}
@LabeledClause{Exit Statements}
@begin{Intro}
@Redundant[An @nt{exit_statement} is used to complete the execution
of an enclosing @nt{loop_statement}; the
completion is conditional if the @nt{exit_statement} includes a
@nt{condition}.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<exit_statement>,rhs="
@key{exit} [@SynI{loop_}@Syn2{name}] [@key{when} @Syn2{condition}];"}
@end{Syntax}
@begin{Resolution}
The @i(loop_)@nt{name}, if any, in an @nt{exit_statement} shall resolve to
denote a @nt{loop_statement}.
@end{Resolution}
@begin{Legality}
@Defn2{Term=[apply], Sec=(to a @nt{loop_statement} by an @nt{exit_statement})}
Each @nt{exit_@!statement} @i{applies to} a
@nt{loop_@!statement}; this is the @nt{loop_@!statement} being exited.
An @nt{exit_@!statement} with a @nt{name} is only allowed within the
@nt{loop_@!statement} denoted by the @nt{name},
and applies to that @nt{loop_@!statement}.
An @nt{exit_@!statement} without a @nt{name} is only allowed within a
@nt{loop_@!statement}, and applies to the innermost enclosing one.
An @nt{exit_@!statement} that applies to a given @nt{loop_@!statement}
shall not appear within a body or @nt{accept_@!statement}, if
this construct is itself enclosed by the given @nt{loop_statement}.
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(exit_statement)}
For the execution of an @nt{exit_statement}, the @nt{condition}, if
present, is first evaluated.
If the value of the @nt{condition} is True, or if there is no @nt{condition},
a transfer of control is done to complete the @nt{loop_@!statement}.
If the value of the @nt{condition} is False, no transfer of control takes
place.
@end{RunTime}
@begin{Notes}
Several nested loops can be exited by an @nt{exit_statement} that names
the outer loop.
@end{Notes}
@begin{Examples}
@i{Examples of loops with exit statements:}
@begin{Example}
@key[for] N @key[in] 1 .. Max_Num_Items @key[loop]
Get_New_Item(New_Item);
Merge_Item(New_Item, Storage_File);
@key[exit] @key[when] New_Item = Terminal_Item;
@key[end] @key[loop];
Main_Cycle:
@key[loop]
--@RI{ initial statements}
@key[exit] Main_Cycle @key[when] Found;
--@RI{ final statements}
@key[end] @key[loop] Main_Cycle;
@end{Example}
@end{Examples}
@LabeledClause{Goto Statements}
@begin{Intro}
@Redundant[A @nt{goto_statement} specifies an explicit transfer of control
from this @nt{statement} to a target
statement with a given label.]
@end{Intro}
@begin{Syntax}
@Syn{lhs=<goto_statement>,rhs="@key{goto} @SynI{label_}@Syn2{name};"}
@end{Syntax}
@begin{Resolution}
@Defn2{Term=[target statement], Sec=(of a @nt{goto_statement})}
The @i(label_)@nt{name} shall resolve to denote a @nt<label>;
the @nt{statement} with that @nt{label} is the @i(target statement).
@end{Resolution}
@begin{Legality}
The innermost @nt{sequence_of_statements} that encloses the target
statement shall also enclose the @nt{goto_statement}.
Furthermore, if a @nt{goto_statement} is enclosed by an
@nt{accept_statement} or a body, then the target
statement shall not be outside this enclosing construct.
@begin{Ramification}
The @nt{goto_statement} can be a @nt{statement} of an inner
@ntf{sequence_}.
It follows from the second rule that if the target @nt{statement}
is enclosed by such a construct, then the @nt{goto_statement}
cannot be outside.
@end{Ramification}
@end{Legality}
@begin{RunTime}
@PDefn2{Term=[execution], Sec=(goto_statement)}
The execution of a @nt{goto_statement} transfers control to the
target statement, completing the execution
of any @nt<compound_statement> that encloses the @nt<goto_statement>
but does not enclose the target.
@end{RunTime}
@begin{Notes}
The above rules allow transfer of control to a @nt{statement} of an
enclosing @nt{sequence_of_statements} but not the reverse. Similarly,
they prohibit transfers of control such as between alternatives of a
@nt{case_statement}, @nt{if_statement}, or @nt{select_statement};
between @nt{exception_handler}s; or from an @nt{exception_handler} of
a @nt{handled_sequence_of_statements}
back to its @nt{sequence_of_statements}.
@end{Notes}
@begin{Examples}
@Leading@keepnext@i{Example of a loop containing a goto statement:}
@begin{Example}
<<Sort>>
@key[for] I @key[in] 1 .. N-1 @key[loop]
@key[if] A(I) > A(I+1) @key[then]
Exchange(A(I), A(I+1));
@key[goto] Sort;
@key[end] @key[if];
@key[end] @key[loop];
@end{Example}
@end{Examples}
|