1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* ADIOS is freely available under the terms of the BSD license described
* in the COPYING file in the top level directory of this source distribution.
*
* Copyright (c) 2008 - 2009. UT-BATTELLE, LLC. All rights reserved.
*/
/* ADIOS C Example: write variables along with an rectilinear mesh.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include "mpi.h"
#include "public/adios.h"
#include "public/adios_types.h"
//will work with 12 cores, which are arranged by npx=4, npy=3 (4x3)
char npx_str[256]; // # of procs in x dim (string value)
char npy_str[256]; // # of procs in y dim (string value)
int npx; // # of procs in x direction
int npy; // # of procs in y direction
int nproc; // # of total procs
void printUsage(char *prgname)
{
printf("Usage: mpirun -np <N> %s <nx> <ny>\n"
" <nx> <ny> 2D decomposition values in each dimension of an 2D array\n"
" The product of these number must be equal the number of processes\n"
" e.g. for N=12 you may use 4 3\n"
,prgname);
}
int processArgs(int argc, char ** argv)
{
if (argc < 3) {
printUsage (argv[0]);
return 1;
}
strncpy(npx_str, argv[1], sizeof(npx_str));
strncpy(npy_str, argv[2], sizeof(npy_str));
npx = atoi(npx_str);
npy = atoi(npy_str);
if (npx*npy != nproc) {
printf ("ERROR: Product of decomposition numbers in X and Y dimension %d != number of processes %d\n", npx*npy, nproc);
printUsage(argv[0]);
return 1;
}
return 0;
}
int main (int argc, char ** argv)
{
MPI_Comm comm = MPI_COMM_WORLD;
int rank;
int ndx, ndy; // size of array per processor
double * data;
double *X; //X coordinate
double *Y; //Y coordinate
// Offsets and sizes
int offs_x, offs_y; //offset in x and y direction
int nx_local, ny_local; //local address
int nx_global, ny_global; //global address
int posx, posy; // position index in the array
int i,j;
int64_t m_adios_group;
uint64_t adios_groupsize, adios_totalsize;
int64_t adios_handle;
MPI_Init (&argc, &argv);
MPI_Comm_rank (comm, &rank);
MPI_Comm_size (comm, &nproc);
if (processArgs(argc, argv)) {
return 1;
}
//will work with each core writing ndx = 65, ndy = 129, (65*4,129*3) global
ndx = 65;
ndy = 129;
//2D array with block,block decomposition
posx = rank%npx; // 1st dim
posy = rank/npx; // 2nd dim
offs_x = posx * ndx;
offs_y = posy * ndy;
nx_local = ndx;
ny_local = ndy;
nx_global = npx * ndx;
ny_global = npy * ndy;
data = malloc (ndx * ndy * sizeof(double));
for( i = 0; i < ndx; i++ )
for( j = 0; j < ndy; j++)
data[i*ndy + j] = 1.0*rank;
X = malloc (ndx * ndy * sizeof(double));
for( i = 0; i < ndx; i++ )
for( j = 0; j < ndy; j++)
X[i*ndy + j] = offs_x + posy*ndx + i*ndx/ndx + (double)ndx*j/ndy;
Y = malloc (ndx * ndy * sizeof(double));
Y[0] = offs_y;
for( i = 0; i < ndx; i++ )
for( j = 0; j < ndy; j++)
Y[i*ndy + j] = offs_y + ndy*j/ndy;
char * schema_version = "1.1";
char * dimemsions = "nx_global,ny_global";
adios_init_noxml (comm);
adios_set_max_buffer_size (50);
adios_declare_group (&m_adios_group, "structured2d", "", adios_stat_default);
adios_select_method (m_adios_group, "MPI", "", "");
adios_define_var (m_adios_group, "nx_global"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "ny_global"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "nproc"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "offs_x"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "offs_y"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "nx_local"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "ny_local"
,"", adios_integer
,0, 0, 0);
adios_define_var (m_adios_group, "X"
,"", adios_double
,"nx_local,ny_local", "nx_global,ny_global", "offs_x,offs_y");
adios_define_var (m_adios_group, "Y"
,"", adios_double
,"nx_local,ny_local", "nx_global,ny_global", "offs_x,offs_y");
adios_define_var (m_adios_group, "data"
,"", adios_double
,"nx_local,ny_local", "nx_global,ny_global", "offs_x,offs_y");
adios_define_schema_version (m_adios_group, schema_version);
adios_define_mesh_structured (dimemsions, "X,Y", "2", m_adios_group, "structuredmesh");
adios_define_mesh_timevarying ("no", m_adios_group, "structuredmesh");
adios_define_var_mesh (m_adios_group, "data", "structuredmesh");
adios_define_var_centering (m_adios_group, "data", "point");
adios_open (&adios_handle, "structured2d", "structured2d_noxml.bp", "w", comm);
adios_groupsize = 7*sizeof(int) \
+ 3*sizeof(double) * (nx_local*ny_local);
adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
adios_write (adios_handle, "nproc", &nproc);
adios_write (adios_handle, "nx_global", &nx_global);
adios_write (adios_handle, "ny_global", &ny_global);
adios_write (adios_handle, "offs_x", &offs_x);
adios_write (adios_handle, "offs_y", &offs_y);
adios_write (adios_handle, "nx_local", &nx_local);
adios_write (adios_handle, "ny_local", &ny_local);
adios_write (adios_handle, "X", X);
adios_write (adios_handle, "Y", Y);
adios_write (adios_handle, "data", data);
adios_close (adios_handle);
MPI_Barrier (comm);
free (data);
free (X);
free (Y);
adios_finalize (rank);
MPI_Finalize ();
return 0;
}
|