File: tri2d.c

package info (click to toggle)
adios 1.13.1-31
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,692 kB
  • sloc: ansic: 133,236; f90: 8,791; sh: 7,779; python: 7,648; xml: 3,793; makefile: 2,996; cpp: 2,340; java: 626; sed: 16; perl: 8
file content (304 lines) | stat: -rw-r--r-- 11,580 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/* 
 * ADIOS is freely available under the terms of the BSD license described
 * in the COPYING file in the top level directory of this source distribution.
 *
 * Copyright (c) 2008 - 2009.  UT-BATTELLE, LLC. All rights reserved.
 */

/* ADIOS C Example: write variables along with an unstructured mesh. 
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef __APPLE__
#include <malloc.h>
#endif
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include "mpi.h"
#include "adios.h"

//will work with 12 cores, which are arranged by npx=4, npy=3 (4x3)
char   npx_str[256];       // # of procs in x dim (string value)
char   npy_str[256];       // # of procs in y dim (string value)
int    npx;                // # of procs in x direction
int    npy;                // # of procs in y direction
int    nproc;               // # of total procs

void printUsage(char *prgname)
{
    printf("Usage: mpirun -np <N> %s <nx> <ny>\n"
           "    <nx> <ny>  2D decomposition values in each dimension of an 2D array\n"
           "         The product of these number must be equal the number of processes\n"
           "         e.g. for N=12 you may use  4 3\n"
        ,prgname);
}

int processArgs(int argc, char ** argv)
{
    if (argc < 3) {
        printUsage (argv[0]);
        return 1;
    }

    strncpy(npx_str, argv[1], sizeof(npx_str));
    strncpy(npy_str, argv[2], sizeof(npy_str));  

    npx = atoi(npx_str);
    npy = atoi(npy_str);

    if (npx*npy != nproc) {
        printf ("ERROR: Product of decomposition numbers in X and Y dimension %d != number of processes %d\n", npx*npy, nproc);
        printUsage(argv[0]);
        return 1;
    }

    return 0;
}



int main (int argc, char ** argv ) 
{
    MPI_Comm    comm = MPI_COMM_WORLD;
    int         npoints, num_cells;
    int         rank;
    int         ndx, ndy;             // size of array per processor
    double      *N;                   // node centered variable
    double      *C;                   // cell centered variable
    double      *points;              //X,Y coordinate
    int         *cells;

    // Offsets and sizes
    int         offs_x, offs_y;       //offset in x and y direction
    int         nx_local, ny_local;   //local address
    int         nx_global, ny_global; //global address
    int         posx, posy;           // position index in the array
    int         i,j;
  
    /* ADIOS variables declarations for matching gwrite_temperature.ch */
    uint64_t    adios_groupsize, adios_totalsize;
    int64_t     adios_handle;

    MPI_Init (&argc, &argv);
    MPI_Comm_rank (comm, &rank);
    MPI_Comm_size (comm, &nproc);

    if (processArgs(argc, argv)) {
        return 1;
    }
    //will work with each core writing ndx = 65, ndy = 129, (65*3,129*4) global
    ndx = 4;
    ndy = 3;

    npoints = ndx * ndy * npx * npy;
    num_cells = (ndx * npx - 1) * (ndy * npy -1) * 2;

    //2D array with block,block decomposition
    posx = rank%npx;           // 1st dim
    posy = rank/npx;           // 2nd dim
    offs_x = posx * ndx;
    offs_y = posy * ndy;
    nx_local = ndx;
    ny_local = ndy;
    nx_global = npx * ndx;
    ny_global = npy * ndy;

    // local mesh + data
    N = malloc (ndx * ndy * sizeof(double));
    points = malloc (2 * ndx * ndy * sizeof(double));

    if( posx == npx-1 && posy < npy-1 )            //only need to extend in Y direction
    {
        C = malloc (sizeof(double) * (ndx-1)*ndy*2);
        cells = malloc(sizeof(int) * ((ndx-1)*ndy*2*3));
    }
    else if( posy == npy-1 && posx < npx-1 )      ////only need to extend in X direction
    {
        C = malloc (sizeof(double) * ndx*(ndy-1)*2);
        cells = malloc(sizeof(int) * ndx*(ndy-1)*2*3);
//        printf("rank %d cells size is %d\n", rank, ndx*(ndy-1)*2*3);
    }
    else if( posx == npx-1 && posy == npy-1 )    //do not need to extend in any direction
    {
        C = malloc (sizeof(double) * (ndx-1)*(ndy-1)*2);
        cells = malloc(sizeof(int) * (ndx-1)*(ndy-1)*2*3);
//        printf("rank %d cells size is %d\n", rank, ndx*(ndy-1)*2*3);
    }
    else               // if( posx < npx-1 && posy < npy-1 )   //need to extend in both X and Y direction
    {
        C = malloc (sizeof(double) * ndx*ndy*2);
        cells = malloc(sizeof(int) * ndx*ndy*2*3);
    }

    // generate local data
    int lp = ndx * ndy; // number of points in this local array
    int op = ndx * ndy * rank; // offset in global points array 
    for( i = 0; i < ndx; i++ )
        for( j = 0; j < ndy; j++)
        {
            points[(i*ndy + j)*2] = offs_x + posy*ndx + i*ndx/ndx + (double)ndx*j/ndy;
            points[(i*ndy + j)*2+1] = offs_y + ndy*j/ndy;
        }

    for( i = 0; i < lp; i++ )
        N[i] = 1.0*rank;

    // cells
    int lc;
    int oc;

    if( posx == npx-1 && posy < npy-1 )  
    {
        lc = (ndx-1)*ndy*2;
        oc = posx*ndx*ndy*2 + posy*(ndx*npx-1)*ndy*2;
        for (i = 0; i < ndx-1; i++)
        {
            for (j = 0; j < ndy; j++)
            {
                int p = i*ndy+j;
                if( i<ndx-1 && j<ndy-1 )
                {
                    cells[6*p+0] = op+p; cells[6*p+1] = op+p+ndy; cells[6*p+2] = op+p+ndy+1;
                    cells[6*p+3] = op+p; cells[6*p+4] =op+p+ndy+1; cells[6*p+5] = op+p+1;
                }
                else   //extend in Y direction only
                {
                    cells[6*p+0] = op+p; cells[6*p+1] = op+p+ndy; cells[6*p+2] = op+nx_global*ndy+(i+1)*ndy;
                    cells[6*p+3] = op+p; cells[6*p+4] = op+nx_global*ndy+(i+1)*ndy; cells[6*p+5] = op+nx_global*ndy+i*ndy;
/*                    if(rank == 3){
                        printf("i = %d, j = %d\n", i, j);
                        printf("op = %d, p = %d\n", op, p);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+0, op+p, 6*p+1, op+p+ndy, 6*p+2, op+nx_global*ndy+(i+1)*ndy);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+3, op+p, 6*p+4, op+nx_global*ndy+(i+1)*ndy, 6*p+5, op+nx_global*ndy+i*ndy);
                    }*/
                } 
            }
        }
    }
    else if( posy == npy-1 && posx < npx-1 ) 
    {
        lc = ndx*(ndy-1)*2;
        oc = posy*(ndx*npx-1)*ndy*2 + posx*ndx*(ndy-1)*2;
        for (i = 0; i < ndx; i++)
            for (j = 0; j < ndy-1; j++)
            {
                int p = i*(ndy-1)+j;
                int p1 = i*ndy+j;
                if( i<ndx-1 && j<ndy-1 )
                {
                    cells[6*p+0] = op+p1; cells[6*p+1] = op+p1+ndy; cells[6*p+2] = op+p1+ndy+1;
                    cells[6*p+3] = op+p1; cells[6*p+4] =op+p1+ndy+1; cells[6*p+5] = op+p1+1;
/*                    if(rank == 8){
                        printf("i = %d, j = %d\n", i, j);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+0, op+p, 6*p+1, op+p+ndy, 6*p+2, op+p+ndy+1);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+3, op+p, 6*p+4, op+p+ndy+1, 6*p+5, op+p+1);
                    }*/
                }
                else   //extend in x direction only
                {
                    cells[6*p+0] = op+p1; cells[6*p+1] = op+ndx*ndy+j; cells[6*p+2] = op+ndx*ndy+j+1;
                    cells[6*p+3] = op+p1; cells[6*p+4] = op+ndx*ndy+j+1; cells[6*p+5] = op+p1+1;
/*                    if(rank == 8){
                        printf("i = %d, j = %d\n", i, j);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+0, op+p, 6*p+1, op+ndx*ndy+j, 6*p+2, op+ndx*ndy+j+1);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+3, op+p, 6*p+4, op+ndx*ndy+j+1, 6*p+5, op+p+1);
                    }*/
                }
            }
    }
    else if( posx == npx-1 && posy == npy-1 )
    {
        lc = (ndx-1)*(ndy-1)*2;
        oc = posy*(ndx*npx-1)*ndy*2 + posx*ndx*(ndy-1)*2;
        for (i = 0; i < ndx-1; i++)
            for (j = 0; j < ndy-1; j++)
            {
                int p = i*(ndy-1)+j;
                int p1 = i*ndy+j;
                cells[6*p+0] = op+p1; cells[6*p+1] = op+p1+ndy; cells[6*p+2] = op+p1+ndy+1;
                cells[6*p+3] = op+p1; cells[6*p+4] =op+p1+ndy+1; cells[6*p+5] = op+p1+1;
/*                if(rank == 11){
                        printf("i = %d, j = %d\n", i, j);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+0, op+p, 6*p+1, op+ndx*ndy+j, 6*p+2, op+ndx*ndy+j+1);
                        printf("cells[%d] = %d, cells[%d] = %d, cells[%d] = %d\n", 6*p+3, op+p, 6*p+4, op+ndx*ndy+j+1, 6*p+5, op+p+1);
                    }*/
            }
    }
    else
    {
        lc = ndx*ndy*2;
        oc = posx*ndx*ndy*2 + posy*(ndx*npx-1)*ndy*2;
        for (i = 0; i < ndx; i++)
            for (j = 0; j < ndy; j++)
            {
                int p = i*ndy+j;
                if( i<ndx-1 && j<ndy-1 )
                {
                    cells[6*p+0] = op+p; cells[6*p+1] = op+p+ndy; cells[6*p+2] = op+p+ndy+1;
                    cells[6*p+3] = op+p; cells[6*p+4] =op+p+ndy+1; cells[6*p+5] = op+p+1;
                }
                else if( i==ndx-1 && j<ndy-1 )
                {
                    cells[6*p+0] = op+p; cells[6*p+1] = op+ndx*ndy+j; cells[6*p+2] = op+ndx*ndy+j+1;
                    cells[6*p+3] = op+p; cells[6*p+4] = op+ndx*ndy+j+1; cells[6*p+5] = op+p+1;
                }
                else if( i<ndx-1 && j==ndy-1 )
                {
                    cells[6*p+0] = op+p; cells[6*p+1] = op+p+ndy; cells[6*p+2] = op+nx_global*ndy+(i+1)*ndy;
                    cells[6*p+3] = op+p; cells[6*p+4] = op+nx_global*ndy+(i+1)*ndy; cells[6*p+5] = op+nx_global*ndy+i*ndy;    
                }
                else // inter corner point
                {
                    cells[6*p+0] = op+p; cells[6*p+1] = op+ndx*ndy+j; cells[6*p+2] = op+nx_global*ndy+ndx*ndy;
                    cells[6*p+3] = op+p; cells[6*p+4] = op+nx_global*ndy+ndx*ndy; cells[6*p+5] = op+nx_global*ndy+i*ndy;
                }
            }
    }

    for (i=0; i<lc; i++)
        C[i] = 1.0*rank;
//        C[i] = rank*lc+i;          //????????????????????


    adios_init ("tri2d.xml", comm);
    adios_open (&adios_handle, "tri2d", "tri2d.bp", "w", comm);
    adios_groupsize = 13*sizeof(int) \
	+ sizeof(double) * (lp) \
    + sizeof(double) * (lc) \
    + sizeof(double) * (lp) * (2) \
    + sizeof(int) * (lc) * (3);

    adios_group_size (adios_handle, adios_groupsize, &adios_totalsize);
    adios_write (adios_handle, "nproc", &nproc);
    adios_write (adios_handle, "npoints", &npoints);
    adios_write (adios_handle, "num_cells", &num_cells);
    adios_write (adios_handle, "nx_global", &nx_global);
    adios_write (adios_handle, "ny_global", &ny_global);
    adios_write (adios_handle, "offs_x", &offs_x);
    adios_write (adios_handle, "offs_y", &offs_y);
    adios_write (adios_handle, "nx_local", &nx_local);
    adios_write (adios_handle, "ny_local", &ny_local);
    adios_write (adios_handle, "lp", &lp);
    adios_write (adios_handle, "op", &op);
    adios_write (adios_handle, "lc", &lc);
    adios_write (adios_handle, "oc", &oc);
    adios_write (adios_handle, "N", N);
    adios_write (adios_handle, "C", C);
    adios_write (adios_handle, "points", points);
    adios_write (adios_handle, "cells", cells);

    adios_close (adios_handle);

    MPI_Barrier (comm);
    free (N);
    free (points);
    free (C);
    free (cells);

//    adios_finalize (rank);

    MPI_Finalize ();
    return 0;
}