1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*
* Distributed under the OSI-approved Apache License, Version 2.0. See
* accompanying file Copyright.txt for details.
*
* A Use Case for In Situ visulization frameworks (Conduit, SENSEI)
*
* Each processor contributes to a subset of all variables
* Each variable is written by a subset of all processes
* The per-writer-blocks in a variable have different sizes
* The variable cannot be nicely defined as a global array
*
* We still define the variables in this writer as global arrays but
* with k+1 dimensions for each variable, where the extra dimension is
* used as an index to the writer blocks. The other dimensions are
* defined as huge numbers to cover all possible dimension sizes on each
* process.
*
* The reader needs to discover the content of each variable block-by-block.
* It cannot rely on the global shape of the variable as most of it is empty.
*
* The global dimensions of a global array MUST NOT change over time.
* The decomposition of the array across the processes, however, can change
* between output steps.
*
* Created on: Jul 11, 2017
* Author: pnorbert
*/
#include <algorithm> // std::transform
#include <iostream>
#include <vector>
#include <adios2.h>
#if ADIOS2_USE_MPI
#include <mpi.h>
MPI_Comm writerComm;
#endif
const size_t NSTEPS = 5;
const size_t BIGDIM = 1000;
/* Variables:
a: size 8, written by rank 0 (5 elements) and rank 1 (3 elements)
b: size 9, written by rank 0 (5 elements) and rank 2 (4 elements)
c: size 10, written by rank 0 (5 elements) and rank 3 (5 elements)
d: size 7, written by rank 1 (3 elements) and rank 2 (4 elements)
Variables in the output:
2D arrays, 4 x BIGDIM
*/
// Which process writes which variables
std::vector<std::vector<std::string>> VarTree = {{"a", "b", "c"}, {"a", "d"}, {"b", "d"}, {"c"}};
// What size of data do they write
std::vector<std::vector<size_t>> SizesTree = {{5, 5, 5}, {3, 3}, {4, 4}, {5, 5}};
std::string argEngine = "BPFile";
adios2::Params engineParams;
std::map<std::string, adios2::Params> engineTransports;
void ProcessArgs(int rank, int argc, char *argv[])
{
if (argc > 1)
{
argEngine = argv[1];
}
std::string elc = argEngine;
std::transform(elc.begin(), elc.end(), elc.begin(), ::tolower);
if (elc == "sst")
{
engineParams["MarshalMethod"] = "BP";
}
else if (elc == "insitumpi")
{
engineParams["verbose"] = "1";
}
else if (elc == "dataman")
{
engineParams["WorkflowMode"] = "p2p";
engineTransports["WAN"] = {
{"Library", "ZMQ"}, {"IPAddress", "127.0.0.1"}, {"Port", "25600"}};
}
}
int main(int argc, char *argv[])
{
int rank = 0, nproc = 1;
#if ADIOS2_USE_MPI
int provided;
// MPI_THREAD_MULTIPLE is only required if you enable the SST MPI_DP
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
int wrank, wnproc;
MPI_Comm_rank(MPI_COMM_WORLD, &wrank);
MPI_Comm_size(MPI_COMM_WORLD, &wnproc);
const unsigned int color = 1;
MPI_Comm_split(MPI_COMM_WORLD, color, wrank, &writerComm);
MPI_Comm_rank(writerComm, &rank);
MPI_Comm_size(writerComm, &nproc);
#endif
const size_t maxProc = VarTree.size();
if (static_cast<size_t>(nproc) > maxProc)
{
if (!rank)
{
std::cout << "ERROR: Maximum number of processors for this example is " << maxProc
<< std::endl;
}
exit(1);
}
ProcessArgs(rank, argc, argv);
if (!rank)
{
std::cout << "Writer: ADIOS2 Engine set to: " << argEngine << " Parameters:";
for (auto &p : engineParams)
{
std::cout << " " << p.first << " = " << p.second;
}
std::cout << " Transports: ";
for (auto &t : engineTransports)
{
std::cout << " " << t.first << " : {";
for (auto &p : t.second)
{
std::cout << " {" << p.first << ", " << p.second << "}";
}
std::cout << " }";
}
std::cout << std::endl;
}
#if ADIOS2_USE_MPI
adios2::ADIOS adios(writerComm);
#else
adios2::ADIOS adios;
#endif
// We have a varying number of vars on each processor
const size_t nvars = VarTree[rank].size();
// A 1D array for each variable
std::vector<std::vector<double>> Vars(nvars);
for (size_t i = 0; i < nvars; i++)
{
Vars[i].resize(SizesTree[rank][i]);
}
std::vector<adios2::Variable<double>> ADIOSVars(nvars);
try
{
adios2::IO io = adios.DeclareIO("Output");
io.SetEngine(argEngine);
io.SetParameters(engineParams);
for (auto &t : engineTransports)
{
io.AddTransport(t.first, t.second);
}
for (size_t i = 0; i < nvars; i++)
{
size_t nelems = SizesTree[rank][i];
Vars[i].resize(nelems);
ADIOSVars[i] =
io.DefineVariable<double>(VarTree[rank][i], {(unsigned int)nproc, BIGDIM});
}
adios2::Engine writer = io.Open("output.bp", adios2::Mode::Write);
for (size_t step = 0; step < NSTEPS; step++)
{
writer.BeginStep();
for (size_t i = 0; i < nvars; i++)
{
size_t nelems = SizesTree[rank][i];
for (size_t j = 0; j < nelems; j++)
{
Vars[i][j] = ((double)step + 1.0) / 100.0 + (double)rank;
}
// Make a 2D selection to describe the local dimensions of the
// variable we write and its offsets in the global spaces
// adios2::SelectionBoundingBox sel();
ADIOSVars[i].SetSelection(adios2::Box<adios2::Dims>(
{static_cast<size_t>(rank), 0}, {1, static_cast<size_t>(nelems)}));
writer.Put<double>(ADIOSVars[i], Vars[i].data());
}
// Indicate we are done for this step.
// Disk I/O will be performed during this call unless
// time aggregation postpones all of that to some later step
writer.EndStep();
}
// Called once: indicate that we are done with this output for the run
writer.Close();
}
catch (std::invalid_argument &e)
{
if (rank == 0)
{
std::cout << "Invalid argument exception, STOPPING PROGRAM\n";
std::cout << e.what() << "\n";
}
}
catch (std::ios_base::failure &e)
{
if (rank == 0)
{
std::cout << "System exception, STOPPING PROGRAM\n";
std::cout << e.what() << "\n";
}
}
catch (std::exception &e)
{
if (rank == 0)
{
std::cout << "Exception, STOPPING PROGRAM\n";
std::cout << e.what() << "\n";
}
}
#if ADIOS2_USE_MPI
MPI_Finalize();
#endif
return 0;
}
|