1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*----------------------------------------------------------------------------
ADOL-C -- Automatic Differentiation by Overloading in C++
File: checkpointing.cpp
Revision: $Id: checkpointing.cpp 171 2010-10-04 13:57:19Z kulshres $
Contents: example for checkpointing
Copyright (c) Andrea Walther
This file is part of ADOL-C. This software is provided as open source.
Any use, reproduction, or distribution of the software constitutes
recipient's acceptance of the terms of the accompanying license file.
---------------------------------------------------------------------------*/
#include <math.h>
#include <adolc/adolc.h>
#define h 0.01
#define steps 100
// time step function
// double version
int euler_step(int n, double *y);
// adouble version
int euler_step_act(int n, adouble *y);
int tag_full, tag_part, tag_check;
int main()
{
// time interval
double t0, tf;
// state, double and adouble version
adouble y[2];
int n;
// control, double and adouble version
adouble con[2];
double conp[2];
// target value;
double f;
//variables for derivative caluclation
double grad[2];
int i;
// tape identifiers
tag_full = 1;
tag_part = 2;
tag_check = 3;
// two input and output variables for checkpointing function
n = 2;
// time interval
t0 = 0.0;
tf = 1.0;
//control
conp[0] = 1.0;
conp[1] = 1.0;
// basis variant: full taping of time step loop
trace_on(tag_full);
con[0] <<= conp[0];
con[1] <<= conp[1];
y[0] = con[0];
y[1] = con[1];
for(i=0;i<steps;i++)
{
euler_step_act(n,y);
}
y[0] + y[1] >>= f;
trace_off(1);
gradient(tag_full,2,conp,grad);
printf(" full taping:\n gradient=( %f, %f)\n\n",grad[0],grad[1]);
// Now using checkpointing facilities
// define checkpointing procedure
// generate checkpointing context => define active variante of the time step
CP_Context cpc(euler_step_act);
// double variante of the time step function
cpc.setDoubleFct(euler_step);
// number of time steps to perform
cpc.setNumberOfSteps(steps);
// number of checkpoint
cpc.setNumberOfCheckpoints(5);
// dimension of input/output
cpc.setDimensionXY(n);
// input vector
cpc.setInput(y);
// output vector
cpc.setOutput(y);
// tape number for checkpointing
cpc.setTapeNumber(tag_check);
// always retape or not ?
cpc.setAlwaysRetaping(false);
trace_on(tag_part);
con[0] <<= conp[0];
con[1] <<= conp[1];
y[0] = con[0];
y[1] = con[1];
cpc.checkpointing();
y[0] + y[1] >>= f;
trace_off(1);
gradient(tag_part,2,conp,grad);
printf(" taping with checkpointing facility:\n gradient=( %f, %f)\n\n",grad[0],grad[1]);
return 0;
}
int euler_step(int n, double *y)
{
// Euler step, double version
y[0] = y[0]+h*y[0];
y[1] = y[1]+h*2*y[1];
return 1;
}
int euler_step_act(int n, adouble *y)
{
// Euler step, adouble version
y[0] = y[0]+h*y[0];
y[1] = y[1]+h*2*y[1];
return 1;
}
|