File: hessmat.cpp

package info (click to toggle)
adolc 2.7.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,496 kB
  • sloc: cpp: 40,481; ansic: 19,390; sh: 4,277; makefile: 551; python: 486
file content (250 lines) | stat: -rw-r--r-- 8,162 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*----------------------------------------------------------------------------
 ADOL-C -- Automatic Differentiation by Overloading in C++
 File:     hessmat.cpp
 Revision: $Id$
 Contents: example for testing the routines: 
           hov_wk_forward    ( = Higher Order Vector forward With Keep )
           hos_ov_reverse    ( = Higher Order Scalar reverse over vectors)

 Copyright (c) Andrea Walther, Andreas Kowarz, Olaf Vogel
  
 This file is part of ADOL-C. This software is provided as open source.
 Any use, reproduction, or distribution of the software constitutes 
 recipient's acceptance of the terms of the accompanying license file.
 
---------------------------------------------------------------------------*/

/****************************************************************************/
/*                                                                 INCLUDES */
#include <adolc/adolc.h>

#include <stdlib.h>
#include <iostream>
using namespace std;

/****************************************************************************/
/*                                                                     MAIN */
int main() {
    int i,j,l,m,n,d,q,bd, keep;

    /*--------------------------------------------------------------------------*/
    /* inputs */
    cout << "vector x Hessian x matrix for the function \n\n";
    cout << " y[0] = cos(x[0])* ...*cos(x[n]) \n";
    cout << " y[1] = x[0]^n \n";
    cout << " y[2] = condassign(y[i],y[0]>y[1],y[1],y[0]) \n";
    cout << " y[3] = sin(x[0])+ ...+sin(x[n]) \n";
    cout << " y[4] = exp(x[0])- ...-exp(x[n]) \n";
    cout << " y[5] = pow(y[1],3) \n";
    cout << " y[6] += y[5]*y[4] \n";
    cout << " y[7] -= y[6]*y[5] \n";
    cout << " y[j] = 1/x[0]/ .../x[n], j > 3 \n\n";

    cout << " Number of independents = ?\n ";
    cin >> n;
    cout << " Number of dependents =  ?\n ";
    cin >> m;
    cout << " Degree d (for forward) =  ?\n";
    cin >> d;
    cout << " keep (degree of corresponding reverse = keep-1) =  ?\n";
    cout << "       keep <= d+1 must be valid \n";
    cin >> keep;
    cout << " Number of directions =  ?\n ";
    cin >> q;

    /*--------------------------------------------------------------------------*/
    /* allocations and inits */

    double* xp = new double[n];                      /* passive indeps        */
    double* yp = new double[m];                      /* passive depends       */

    /* vector x Hessian x matrix = Upp x H x XPPP */

    double* Up = myalloc(m);        /* vector on left-hand side                */
    double** Upp = myalloc(m,d+1);   /* vector on left-hand side                */
    double*** Xppp = myalloc(n,q,d); /* matrix on right-hand side             */
    double*** Zppp = myalloc(q,n,d+1); /* result of Up x H x XPPP             */

    double*** Yppp = myalloc(m,q,d); /* results of needed hos_wk_forward      */

    /* check results with usual lagra-Hess-vec  */

    double** Xpp = myalloc(n,d);
    double** V   = myalloc(n,q);
    double** W   = myalloc(q,n);
    double** H   = myalloc(n,n);
    double** Ypp = myalloc(m,d);
    double** Zpp = myalloc(n,d+1);
    /* inits */

    for (l=0; l<d; l++)                    /* first everything is set to zero */
        for (i=0; i<n; i++)
            for (j=0;j<q;j++)
                Xppp[i][j][l] = 0;

    /* now carthesian directions as choosen as    */
    /* matrix on right-hand side of Up x H x XPPP */
    bd = (n<q)?n:q;
    for (j=0;j<bd;j++)
        Xppp[j][j][0] = 1;

    for (i=0; i<m; i++)         /* vector on left-hand side of Up x H x XPPP  */
    {Up[i] = 1;                /* is initialised with 1's                    */
        Upp[i][0] = 1;
        for (j=1;j<=d;j++)
            Upp[i][j] = 0;
    }

    for (i=0; i<n; i++)                    /* first everything is set to zero */
        for (j=0;j<d;j++)
            Xpp[i][j] = 0;
    Xpp[0][0] = 1;                 /* now one carthesian direction as choosen */
    /* as vector for lagra-Hess-vec            */

    for (i=0; i<n; i++)                            /* inits of passive indeps */
        xp[i] = (i+1.0)/(2.0+i);

    for (i=0; i<n; i++) {
        for (j=0;j<q;j++)
            V[i][j] = 0;
        if (i < q)
            V[i][i] = 1;
    }

    /*--------------------------------------------------------------------------*/
    trace_on(1);                                      /* tracing the function */

    adouble* x = new adouble[n];                     /* active indeps         */
    adouble* y = new adouble[m];                     /* active depends        */
    for(i=0;i<m;i++)
        y[i] = 1;
    for (i=0; i<n; i++) {
        x[i] <<= xp[i];
        y[0] *= cos(x[i]);
    }

    for(i=1;i<m;i++)
        for(j=0;j<n;j++) {
            switch (i) {
                case 1 :
                    y[i] *= x[0];
                    break;
                case 2 :
#ifndef ADOLC_ADVANCED_BRANCHING
                    condassign(y[i],adouble(y[0]>y[1]),y[1],y[0]);
#else 
                    condassign(y[i],(y[0]>y[1]),y[1],y[0]);
#endif 
                    break;
                case 3 :
                    y[i] -= sin(x[j]);
                    break;
                case 4 :
                    y[i] -= exp(x[j]);
                    break;
                case 5 :
                    y[5] = pow(y[1],3);
                case 6 :
                    y[6] += y[5]*y[4];
                case 7 :
                    y[7] -= y[6]*y[5];
                default :
                    y[i] /= x[j];
            }
        }
    for (i=0; i<m; i++)
        y[i] >>= yp[i] ;
    trace_off();


    /*--------------------------------------------------------------------------*/
    /* work on the tape */


    /* compute results of lagra_hess_vec */
    /* the following is equal to calls inside of lagra_hess_vec(..) */
    /* direct calls to the basic routines hos_forward and hos_reverse */
    /* seem to be faster than call of lagra_hess_vec(..) */
    /* at least in some of our test cases */

    hos_forward(1,m,n,d,keep,xp,Xpp,yp,Ypp);
    hos_reverse(1,m,n,keep-1,Up,Zpp);

    printf("\n Results of hos_reverse:\n\n");

    for (i=0; i<=d; i++) {
        printf(" d = %d \n",i);
        for (j=0;j<n;j++)
            printf(" %6.3f ",Zpp[j][i]);
        printf("\n");
    }

    /* The new drivers. First, hov_wk_forward(..) is called.
       So far, it was impossible to store the results of 
       a higher-order-vector (=hov) forward in order to perform
       a corresponding reverse sweep (for no particular reason.
       Now we have hov with keep (=wk) and the results needed on
       the way back are stored in a specific tape */

    hov_wk_forward(1,m,n,d,keep,q,xp,Xppp,yp,Yppp);

    /* The corresponding reverse sweep
       So far we had only a higher-order-scalar (=hos, scalar because
       only one vector on the left-hand-side) for a scalar forward
       call.
       Now, we use the stored vector information (= hos vector)
       to compute multiple lagra_hess_vec at once */

    hos_ov_reverse(1,m,n,keep-1,q,Upp,Zppp);

    printf("\n Results of hosv_reverse:\n");

    for (l=0; l<q; l++) {
        for (i=0; i<=d; i++) {
            printf(" d = %d \n",i);
            for (j=0;j<n;j++)
                printf(" %6.3f ",Zppp[l][j][i]);
            printf("\n");
        }
        printf("\n\n");
    }

    if (m==1) {
        printf("hess_mat:\n");
        hess_mat(1,n,q,xp,V,W);
        for (i=0; i<q; i++) {
            for (j=0;j<n;j++)
                printf(" %6.3f ",W[i][j]);
            printf("\n");
        }
        printf("hessian2:\n");
        hessian2(1,n,xp,H);
        for (i=0; i<n; i++) {
            for (j=0;j<n;j++)
                printf(" %6.3f ",H[i][j]);
            printf("\n");
        }
    }

    myfree(Zpp);
    myfree(Ypp);
    myfree(H);
    myfree(W);
    myfree(V);
    myfree(Xpp);
    myfree(Zppp);
    myfree(Yppp);
    myfree(Xppp);
    myfree(yp);
    myfree(xp);
    myfree(Up);
    return 1;
}


/****************************************************************************/
/*                                                               THAT'S ALL */