1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*----------------------------------------------------------------------------
ADOL-C -- Automatic Differentiation by Overloading in C++
File: GantryCrane.cpp
Revision: $Id$
Contents: example for calculation of Lie derivatives
Copyright (c) Siquian Wang, Klaus Röbenack, Jan Winkler, Mirko Franke
This file is part of ADOL-C. This software is provided as open source.
Any use, reproduction, or distribution of the software constitutes
recipient's acceptance of the terms of the accompanying license file.
---------------------------------------------------------------------------*/
/** By the example of the gantry crane (as shown in Röbenack, Winkler and
* Wang. 'LIEDRIVERS - A Toolbox for the Efficient Computation of Lie
* Derivatives Based on the Object-Oriented Algorithmic Differentiation
* Package ADOL-C') the usage of the drivers of the Lie Toolbox is
* illustrated.
* Beside Lie derivatives of scalar fields and their gradients also Lie
* brackets are computed.
*/
/****************************************************************************/
/* INCLUDES */
#include <adolc/adolc.h>
#include <adolc/lie/drivers.h>
#include <iostream>
/****************************************************************************/
/* NAMESPACES AND DEFINES */
using namespace std;
#define TAPE_F 1
#define TAPE_G 2
#define TAPE_H 3
/****************************************************************************/
/* MAIN PROGRAM */
int main()
{
const int n = 4, m_H = 2;
double* x0 = myalloc(n);
double vf[n], vg[n], vh[n];
adouble aX[n], af[n], ag[n], ah[m_H];
const double mc = 1.0, ml = 1.0, l = 1.0, g = 9.81;
/****************************
* Trace for vector field f *
****************************/
trace_on(TAPE_F);
{
for (int i = 0; i < n; i++)
aX[i] <<= x0[i];
af[0] = aX[2];
af[1] = aX[3];
af[2] = (ml*l*pow(aX[3],2)*sin(aX[1]) + ml*g*sin(aX[1])*cos(aX[1]))/(ml*pow(sin(aX[1]),2)+mc);
af[3] = -(ml*l*pow(aX[3],2)*sin(aX[1])*cos(aX[1]) + (ml + mc)*g*sin(aX[1]))/(l*(ml*pow(sin(aX[1]),2)+mc));
for (int i = 0; i < n; i++)
af[i] >>= vf[i];
}
trace_off();
/****************************
* Trace for vector field g *
****************************/
trace_on(TAPE_G);
{
for (int i = 0; i < n; i++)
aX[i] <<= x0[i];
ag[0] = 0;
ag[1] = 0;
ag[2] = 1/(ml*pow(sin(aX[1]),2)+mc);
ag[3] = -cos(aX[1])/(l*(ml*pow(sin(aX[1]),2)+mc));
for (int i = 0; i < n; i++)
ag[i] >>= vg[i];
}
trace_off();
/**********************************
* Trace for scalar fields h1, h2 *
**********************************/
trace_on(TAPE_H);
{
for (int i = 0; i < n; i++)
aX[i] <<= x0[i];
ah[0] = aX[0] + l*sin(aX[1]);
ah[1] = l*cos(aX[1]);
for (int i = 0; i < m_H; i++)
ah[i] >>= vh[i];
}
trace_off();
const int d = 12;
x0[0] = 1.;
x0[1] = 0.2;
x0[2] = -0.5;
x0[3] = -0.4;
cout.precision(6); cout << scientific;
/***************************************************
* calculation of Lie derivatives of scalar fields *
***************************************************/
double** scalar = myalloc2(m_H, d+1);
cout << "Lie derivatives:" << endl << endl;
// calculate Lie derivatives using Lie drivers
lie_scalar(TAPE_F, TAPE_H, n, m_H, x0, d, scalar);
for (int i = 0; i <= d; i++)
{
for (int j = 0; j < m_H; j++)
cout << "Lfh_" << i << "_" << j << " =\t" << scalar[j][i] << endl;
cout << endl;
}
cout << endl;
myfree2(scalar);
/****************************************************************
* calculation of gradients of Lie derivatives of scalar fields *
****************************************************************/
double*** gradient = myalloc3(m_H, n, d+1);
cout << "gradients of Lie derivatives:" << endl << endl;
// calculate gradients of Lie derivatives using Lie drivers
lie_gradient(TAPE_F, TAPE_H, n, m_H, x0, d, gradient);
for (int i = 0; i <= d; i++)
{
for (int j = 0; j < m_H; j++)
cout << "dLfh_" << i << "_" << j << " =\t" << gradient[j][0][i] << "\t" << gradient[j][1][i] << "\t" << gradient[j][2][i] << "\t" << gradient[j][3][i] << endl;
cout << endl;
}
cout << endl;
myfree3(gradient);
/*******************************
* calculation of Lie brackets *
*******************************/
double** bracket = myalloc2(n, d+1);
cout << "Lie brackets:" << endl << endl;
// calculate Lie brackets using Lie drivers
lie_bracket(TAPE_F, TAPE_G, n, x0, d, bracket);
for (int i = 0; i <= d; i++)
{
for (int j = 0; j < n; j++)
cout << "adfg_" << i << "_" << j << " =\t" << bracket[j][i] << endl;
cout << endl;
}
myfree2(bracket);
myfree(x0);
cout << "Press RETURN to continue" << endl;
cin.get();
return 0;
}
|