1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*----------------------------------------------------------------------------
ADOL-C -- Automatic Differentiation by Overloading in C++
File: liborser.cpp
Revision: $Id$
Contents: example for differentiation of OpemMP parallel programs
serial version for comparisons
Copyright (c) Andrea Walther
This file is part of ADOL-C. This software is provided as open source.
Any use, reproduction, or distribution of the software constitutes
recipient's acceptance of the terms of the accompanying license file.
---------------------------------------------------------------------------*/
/* Program to compute deltas and vegas of swaption portfolio
from forward and reverse mode pathwise sensitivities
in parallel written by Andrea Walther in 2008-11 based on
code written by written by Mike Giles in 2005-7 which is
again based on code written by Zhao and Glasserman at
Columbia University */
using namespace std;
#include <stdlib.h>
#include <stdio.h>
#include <ctime>
#include <cmath>
#include <adolc/adolc.h>
/* calculate path values */
template <typename ADdouble>
void path_calc(const int N, const int Nmat, const double delta,
ADdouble L[], const double lambda[], ADdouble z[])
{
int i, n;
double lam, con1;
ADdouble v, vrat;
ADdouble sqez;
for(n=0; n<Nmat; n++) {
sqez = sqrt(delta)*z[n];
v = 0.0;
for (i=n+1; i<N; i++) {
lam = lambda[i-n-1];
con1 = delta*lam;
v += (con1*L[i])/(1.0+delta*L[i]);
vrat = exp(con1*v + lam*(sqez-0.5*con1));
L[i] = L[i]*vrat;
}
}
}
/* calculate the portfolio value v */
template <typename ADdouble>
void portfolio(const int N, const int Nmat, const double delta,
const int Nopt, const int maturities[],
const double swaprates[],
const ADdouble L[], ADdouble& v )
{
int i, m, n;
ADdouble b, s, swapval, *B, *S;
B = new ADdouble[N];
S = new ADdouble[N];
b = 1.0;
s = 0.0;
for (n=Nmat; n<N; n++) {
b = b/(1.0+delta*L[n]);
s = s + delta*b;
B[n] = b;
S[n] = s;
}
v = 0;
for (i=0; i<Nopt; i++){
m = maturities[i] + Nmat-1;
swapval = B[m] + swaprates[i]*S[m] - 1.0;
condassign(v,-swapval,v-100.0*swapval);
}
// apply discount //
for (n=0; n<Nmat; n++)
v = v/(1.0+delta*L[n]);
delete[](B);
delete[](S);
}
/* -------------------------------------------------------- */
int main(){
// LIBOR interval //
double delta = 0.25;
// data for swaption portfolio //
int Nopt = 15;
int maturities[] = {4,4,4,8,8,8,20,20,20,28,28,28,40,40,40};
double swaprates[] = {.045,.05,.055,.045,.05,.055,.045,.05,
.055,.045,.05,.055,.045,.05,.055 };
int i, j, N, Nmat, npath;
double vtot, *v, *lambda, **z,**grad, *gradtot, **xp;
Nmat = 40;
N = Nmat+40;
npath = 30;
lambda = new double[N];
v = new double[npath];
gradtot = new double[N];
z = new double*[npath];
grad = new double*[npath];
xp = new double*[npath];
for (i=0;i<npath;i++)
{
z[i] = new double[Nmat];
grad[i] = new double[N+Nmat];
xp[i] = new double[N+Nmat];
}
for (i=0;i<N;i++)
{
gradtot[i] = 0.0;
lambda[i] = 0.2;
}
for (j=0; j<npath; j++)
{
v[j] = 0;
for (i=0; i<N; i++)
xp[j][i]= 0.05;
for (i=0; i<Nmat; i++)
{
z[j][i] = 0.3;
xp[j][N+i]= 0.3;
}
}
//----------------------------------------------------------//
// //
// do a full path + portfolio sensitivity check //
// //
// A real application would generate a different random //
// vector z for each path but here we set one and reuse it //
// //
//----------------------------------------------------------//
adouble *La, va, *za;
La = new adouble[N];
za = new adouble[Nmat];
trace_on(1);
for(j=0;j<N;j++)
La[j] <<= 0.050000;
for(j=0;j<Nmat;j++)
za[j] <<= z[0][j];
path_calc(N,Nmat,delta,La,lambda,za);
portfolio(N,Nmat,delta,Nopt,maturities,swaprates,La,va);
va >>= v[i];
trace_off(1);
for(i=0;i<npath;i++)
gradient(1,N+Nmat,xp[i],grad[i]);
delete[] (La);
vtot = 0;
for (i=0; i<npath; i++)
{
vtot += v[i];
for(j=0;j<N;j++)
gradtot[j] += grad[i][j];
}
vtot = vtot/npath;
for(j=0;j<N;j++)
gradtot[j] /= npath;
printf("Gradient: \n");
for(i=0;i<N;i++)
printf(" %f \n",gradtot[i]);
return 0;
}
|