File: paramexam.cpp

package info (click to toggle)
adolc 2.7.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,496 kB
  • sloc: cpp: 40,481; ansic: 19,390; sh: 4,277; makefile: 551; python: 486
file content (251 lines) | stat: -rw-r--r-- 8,113 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*----------------------------------------------------------------------------
 ADOL-C -- Automatic Differentiation by Overloading in C++
 File:     paramexam.cpp
 Revision: $Id$
 Contents: example for parameter dependent functions
 
 Copyright (c) Kshitij Kulshreshtha

 This file is part of ADOL-C. This software is provided as open source.
 Any use, reproduction, or distribution of the software constitutes 
 recipient's acceptance of the terms of the accompanying license file.

----------------------------------------------------------------------------*/

#include <adolc/adolc.h>

#include <cmath>

#include "myclock.h"

using namespace std;

/****************************************************************************/
/*                                                    CONSTANTS & VARIABLES */
const double TE = 0.01; /* originally 0.0 */
const double R  = sqrt(2.0);


/****************************************************************************/
/*                                                         HELMHOLTZ ENERGY */
adouble energy( int n, adouble x[], double bv[] ) {
    adouble he, xax, bx, tem;
    int i,j;
    xax = 0;
    bx  = 0;
    he  = 0;
    for (i=0; i<n; i++) {
        he += x[i]*log(x[i]);
        bx +=  bv[i]*x[i];
        tem = (2.0/(1.0+i+i))*x[i];
        for (j=0; j<i; j++)
            tem += (1.0/(1.0+i+j))*x[j];
        xax += x[i]*tem;
    }
    xax *= 0.5;
    he   = 1.3625E-3*(he-TE*log(1.0-bx));
    he   = he - log((1+bx*(1+R))/(1+bx*(1-R)))*xax/bx;
    return he;
}

/* Now with parameters */
adouble energy_p( int n, adouble x[], double bv[] ) {
    adouble he, xax, bx, tem;
    int i,j;
    xax = 0;
    bx  = 0;
    he  = 0;
    for (i=0; i<n; i++) {
        he += x[i]*log(x[i]);
        bx +=  mkparam(bv[i])*x[i];
        tem = (2.0/(1.0+i+i))*x[i];
        for (j=0; j<i; j++)
            tem += (1.0/(1.0+i+j))*x[j];
        xax += x[i]*tem;
    }
    xax *= 0.5;
    he   = 1.3625E-3*(he-TE*log(1.0-bx));
    he   = he - log((1+bx*(1+R))/(1+bx*(1-R)))*xax/bx;
    return he;
}

/* now with more independents */
adouble energy_a( int n, adouble x[], adouble b[] ) {
    adouble he, xax, bx, tem;
    int i,j;
    xax = 0;
    bx  = 0;
    he  = 0;
    for (i=0; i<n; i++) {
        he += x[i]*log(x[i]);
        bx +=  b[i]*x[i];
        tem = (2.0/(1.0+i+i))*x[i];
        for (j=0; j<i; j++)
            tem += (1.0/(1.0+i+j))*x[j];
        xax += x[i]*tem;
    }
    xax *= 0.5;
    he   = 1.3625E-3*(he-TE*log(1.0-bx));
    he   = he - log((1+bx*(1+R))/(1+bx*(1-R)))*xax/bx;
    return he;
}

/****************************************************************************/
/*                                                                     MAIN */
/* This program computes first order directional derivatives
   for the helmholtz energy function */
int main() {
    int nf, n, j, l;
    fprintf(stdout,"HELM-AUTO-EXAM (ADOL-C Example)\n\n");
    fprintf(stdout," # of independents/10 =? \n ");
    scanf("%d",&nf);

    /*--------------------------------------------------------------------------*/
    double result = 0.0, result_p = 0.0, result_a;            /* Initilizations */
    double tt1s, tt1e, tt2s, tt2e, trt1s, trt1e, tpxs, tpxe, 
        tt3s, tt3e, tixs, tixe;
    n = 10 * nf;
    double* bv   = new double[n];
    double* grad = new double[n];
    double* grad_p = new double[n];
    double* px = new double[n];
    double* lpx = new double[2*n];
    double* grad_a = new double[2*n];
    double** hess = myalloc2(n,n);
    double** hess_p = myalloc2(n,n);
    double** hess_a = myalloc2(2*n,2*n);

    adouble* x   = new adouble[n];
    adouble* b   = new adouble[n];
    adouble he;

    double r = 1.0/n;
    for (j=0; j<n; j++)
        bv[j]= 0.02*(1.0+fabs(sin(double(j))));

   /*--------------------------------------------------------------------------*/
    int imd_rev = 1;                                     /* Tracing with keep */
    tt1s = myclock();
    trace_on(1,imd_rev);
    for (j=0; j<n; j++)
        x[j] <<= (px[j] = r*sqrt(1.0+j));
    he = energy(n,x,bv);
    he >>= result;
    trace_off();
    reverse(1,1,n,0,1.0,grad);             /* reverse computation of gradient */
    hessian2(1,n,px,hess);
    tt1e = myclock();

   /*--------------------------------------------------------------------------*/
    imd_rev = 1;                                     /* Tracing with keep */
    tt2s = myclock();
    trace_on(2,imd_rev);
    for (j=0; j<n; j++)
        x[j] <<= px[j];
    he = energy_p(n,x,bv);
    he >>= result_p;
    trace_off();
    reverse(2,1,n,0,1.0,grad_p);             /* reverse computation of gradient */
    hessian2(2,n,px,hess_p);
    tt2e = myclock();

    /*--------------------------------------------------------------------------*/
    
    for (j=0; j<n; j++) {
        lpx[j] = px[j];
        lpx[n+j] = bv[j];
    }
    imd_rev = 1;                                     /* Tracing with keep */
    tt3s = myclock();
    trace_on(3,imd_rev);
    for (j=0; j<n; j++) 
        x[j] <<= px[j];
    for (j=0; j<n; j++) 
        b[j] <<= bv[j];
    he = energy_a(n,x,b);
    he >>= result_a;
    trace_off();
    reverse(3,1,2*n,0,1.0,grad_a);             /* reverse computation of gradient */
    hessian2(3,2*n,lpx,hess_a);
    tt3e = myclock();
    /*--------------------------------------------------------------------------*/

    printTapeStats(stdout,1);
    printTapeStats(stdout,2);
    printTapeStats(stdout,3);
    fprintf(stdout, "%14.6E -- energy\n",result);
    fprintf(stdout, "%14.6E -- energy\n",result_p);
    fprintf(stdout, "%14.6E -- energy\n",result_a);

    /*--------------------------------------------------------------------------*/

    for (l=0; l<n; l++)                                            /* results */
        fprintf(stdout,"%3d: 2*%14.6E - %14.6E - %14.6E = %14.6E ( = 0 )\n",l,grad[l],grad_p[l],grad_a[l],2*grad[l]-grad_p[l]-grad_a[l]);

    /*--------------------------------------------------------------------------*/
    /* change constant parameters */
    fprintf(stdout, "changed constant parameters\n");
    for (j=0; j<n; j++)
        bv[j]= 0.01*(1.0+fabs(sin(double(j))));

    /* parameter tape */
    tpxs = myclock();
    set_param_vec(2,n,bv);
    zos_forward(2,1,n,1,px,&result_p);
    reverse(2,1,n,0,1.0,grad_p);
    hessian2(2,n,px,hess_p);
    tpxe = myclock();

    /* double independents tape */
    for (j=0; j<n; j++) {
        lpx[j] = px[j];
        lpx[n+j] = bv[j];
    }
    tixs = myclock();
    zos_forward(3,1,2*n,1,lpx,&result_a);
    reverse(3,1,2*n,0,1.0,grad_a);
    hessian2(3,2*n,lpx,hess_a);
    tixe = myclock();

    /*--------------------------------------------------------------------------*/
    /* with retaping on tape 1 */
    trt1s = myclock();
    trace_on(1,imd_rev);
    for (j=0; j<n; j++)
        x[j] <<= px[j];
    he = energy(n,x,bv);
    he >>= result;
    trace_off();

    reverse(1,1,n,0,1.0,grad);             /* reverse computation of gradient */
    hessian2(1,n,px,hess);
    trt1e = myclock();

    fprintf(stdout, "%14.6E -- energy\n",result);
    fprintf(stdout, "%14.6E -- energy\n",result_p);
    fprintf(stdout, "%14.6E -- energy\n",result_a);
    
    for (l=0; l<n; l++)                                            /* results */
        fprintf(stdout,"%3d: 2*%14.6E - %14.6E - %14.6E = %14.6E ( = 0 )\n",l,grad[l],grad_p[l],grad_a[l],2*grad[l]-grad_p[l]-grad_a[l]);

    fprintf(stdout, "\n\n Times for ");
    fprintf(stdout, "\n Tracing + Reverse + Hess2 1: \t%E", tt1e-tt1s);
    fprintf(stdout, "\n Tracing + Reverse + Hess2 2: \t%E", tt2e-tt2s);
    fprintf(stdout, "\n Tracing + Reverse + Hess2 3: \t%E", tt3e-tt3s);
    fprintf(stdout, "\n Retracing Reverse + Hess2 1: \t%E", trt1e-trt1s);
    fprintf(stdout, "\n Point change grad + Hess2 2: \t%E", tpxe-tpxs);
    fprintf(stdout, "\n Point change grad + Hess2 3: \t%E", tixe-tixs);
    

    myfree2(hess);
    myfree2(hess_p);
    myfree2(hess_a);
    delete[] bv;
    delete[] px;
    delete[] grad;
    delete[] grad_p;
    delete[] lpx;
    delete[] grad_a;
    delete[] x;
    return 0;
}