File: scalexam.cpp

package info (click to toggle)
adolc 2.7.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,496 kB
  • sloc: cpp: 40,481; ansic: 19,390; sh: 4,277; makefile: 551; python: 486
file content (188 lines) | stat: -rw-r--r-- 7,385 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*----------------------------------------------------------------------------
 ADOL-C -- Automatic Differentiation by Overloading in C++
 File:     scalexam.cpp
 Revision: $Id$
 Contents:
          This program can be used to verify the consistency and 
          correctness of derivatives computed by ADOL-C in its forward 
          and reverse mode.  
          Ther use is required to select one integer input id. 
          For positive n = id the monomial x^n is evaluated recursively 
          at x=0.5 and all its nonzero Taylor coeffcients at this point 
          are evaluated in the forward and reverse mode. 
          A negative choice of id >= -9 leads to one of nine
          identities, whose derivatives should be trivial. These identities
          may be used to check the correctness of particular code segments
          in the ADOL-C sources uni5_.c and *o_rev.c. No timings are
          performed in this example program.

 Copyright (c) Andrea Walther, Andreas Griewank, Andreas Kowarz, 
               Hristo Mitev, Sebastian Schlenkrich, Jean Utke, Olaf Vogel
  
 This file is part of ADOL-C. This software is provided as open source.
 Any use, reproduction, or distribution of the software constitutes 
 recipient's acceptance of the terms of the accompanying license file.
 
---------------------------------------------------------------------------*/

/****************************************************************************/
/*                                                                 INCLUDES */
#include <adolc/adolc.h>

#include <math.h>
#include <iostream>
using namespace std;

/****************************************************************************/
/*                                                                    POWER */
/* The monomial evaluation routine which has been obtained from
   the original version by retyping all `doubles' as `adoubles' */
adouble power( adouble x, int n ) {
    adouble z = 1;
    if (n > 0) {
        int nh =n/2;
        z = power(x,nh);
        z *= z;
        if (2*nh != n)
            z *= x;
        return z;
    } else
        if (n == 0)
            return z;
        else
            return 1.0/power(x,-n);
}


/****************************************************************************/
/*                                                                     MAIN */
int main() {
    int n, i, id;
    int tag = 0;
    /*--------------------------------------------------------------------------*/
    fprintf(stdout,"SCALEXAM (ADOL-C Example)\n\n");
    fprintf(stdout,"problem number(-1 .. -10) / degree of monomial =? \n");
    scanf("%d",&id);
    n = id >0 ? id : 3;

    double *xp,*yp;
    xp = new double[n+4];
    yp = new double[n+4];
    yp[0] = 0;
    xp[0] = 0.5;
    xp[1] = 1.0;

    /*--------------------------------------------------------------------------*/
    int dum = 1;
    trace_on(tag,dum);   // Begin taping all calculations with 'adoubles'
    adouble y,x;
    x <<= xp[0];
    if (id >= 0) {
        fprintf(stdout,"Evaluate and differentiate recursive power routine \n");
        y = power(x,n);
    } else {
        fprintf(stdout,
                "Check Operations and Functions by Algebraic Identities \n");
        switch (id) {
            case -1 :
                fprintf(stdout,
                        "Addition/Subtraction: y = x + x - (2.0/3)*x - x/3 \n");
                y =  x + x - (2.0/3)*x - x/3 ;
                break;
            case -2 :
                fprintf(stdout,"Multiplication/divison:  y = x*x/x \n");
                y = x*x/x;
                break;
            case -3 :
                fprintf(stdout,"Square root and power: y = sqrt(pow(x,2)) \n");
                y = sqrt(pow(x,2));
                break;
            case -4 :
                fprintf(stdout,"Exponential and log: y = exp(log(log(exp(x)))) \n");
                y = exp(log(log(exp(x))));
                break;
            case -5 :
                fprintf(stdout,"Trig identity: y = x + sin(2*x)-2*cos(x)*sin(x) \n");
                y =  x + sin(2.0*x)-2.0*cos(x)*sin(x);
                break;
            case -6 :
                fprintf(stdout,"Check out quadrature macro \n");
                y = exp(myquad(myquad(exp(x))));
                break;
            case -7 :
                fprintf(stdout,"Arcsin: y = sin(asin(acos(cos(x)))) \n");
                y = sin(asin(acos(cos(x))));
                break;
            case -8 :
                fprintf(stdout,
                        "Hyperbolic tangent: y = x + tanh(x)-sinh(x)/cosh(x) \n");
                y = x + tanh(x)-sinh(x)/cosh(x) ;
                break;
            case -9 :
                fprintf(stdout,"Absolute value: y = x + fabs(x) - fabs(-x) \n");
                y = x + fabs(-x) - fabs(x);
                break;
            case -10 :
                fprintf(stdout,"atan2: y = atan2(sin(x-0.5+pi),cos(x-0.5+pi)) \n");
                y = atan2(sin(x),cos(x));
                break;
            default :
                fprintf(stdout," Please select problem number >= -10 \n");
                exit(-1);
        }
    }
    y >>= yp[0];
    trace_off();  // The (partial) execution trace is completed.

    /*--------------------------------------------------------------------------*/
    if( id < 0 )
        fprintf(stdout,"Round-off error: %14.6E\n",(y-x).value());

    /*--------------------------------------------------------------------------*/
    size_t tape_stats[STAT_SIZE];
    tapestats(tag,tape_stats);

    fprintf(stdout,"\n    independents            %zu\n",tape_stats[NUM_INDEPENDENTS]);
    fprintf(stdout,"    dependents              %zu\n",tape_stats[NUM_DEPENDENTS]);
    fprintf(stdout,"    operations              %zu\n",tape_stats[NUM_OPERATIONS]);
    fprintf(stdout,"    operations buffer size  %zu\n",tape_stats[OP_BUFFER_SIZE]);
    fprintf(stdout,"    locations buffer size   %zu\n",tape_stats[LOC_BUFFER_SIZE]);
    fprintf(stdout,"    constants buffer size   %zu\n",tape_stats[VAL_BUFFER_SIZE]);
    fprintf(stdout,"    maxlive                 %zu\n",tape_stats[NUM_MAX_LIVES]);
    fprintf(stdout,"    valstack size           %zu\n\n",tape_stats[TAY_STACK_SIZE]);

    /*--------------------------------------------------------------------------*/
    double *res;
    res = new double[n+2];
    double u[1];
    u[0] = 1;
    fprintf(stdout,
            "\nThe two Taylor coefficients in each row should agree\n\n");

    double ***V = (double***)new double**[1];
    V[0] = new double*[1];
    V[0][0] = new double[n+2];
    double **U = new double*[1];
    U[0] = new double[1];
    U[0][0] = 1;
    double** xpoint = &xp;
    double** ypoint = &yp;
    double** respoint = &res;

    // tape_doc(tag,depen,indep,*xpoint,*respoint);

    fprintf(stdout," \n \t   forward  \t    reverse  \n");
    for (i=0; i < n+2; i++) {
        xp[i+2]=0;
        forward(tag,1,1,i,i+1,xpoint,respoint);
        fprintf(stdout,"%d\t%14.6E\t\t%14.6E\n",i,res[i],yp[i]);
        reverse(tag,1,1,i,u,ypoint); // call higher order scalar reverse
        reverse(tag,1,1,i,1,U,V);
        yp[i+1] = yp[i]/(i+1);
        if (V[0][0][i] != yp[i])
            fprintf(stdout,"%d-th component in error %14.6E\n",i,V[0][0][i]-yp[i]);
    }
    cout << "\nWhen n<0 all rows except the first two should vanish \n";

    return 1;
}