1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/*----------------------------------------------------------------------------
ADOL-C -- Automatic Differentiation by Overloading in C++
File: luexam.cpp
Revision: $Id$
Contents: computation of LU factorization with pivoting
Copyright (c) Kshitij Kulshreshtha
This file is part of ADOL-C. This software is provided as open source.
Any use, reproduction, or distribution of the software constitutes
recipient's acceptance of the terms of the accompanying license file.
---------------------------------------------------------------------------*/
#include <adolc/adouble.h>
#include <adolc/advector.h>
#include <adolc/taping.h>
#include <adolc/interfaces.h>
#include <adolc/drivers/drivers.h>
#include <iostream>
#include <fstream>
#include <cstring>
#include <iomanip>
#include <sstream>
using namespace std;
adouble findmaxindex(const size_t n, const advector& col, const size_t k) {
adouble idx = k;
for (size_t j = k + 1; j < n; j++ )
condassign(idx,(fabs(col[j]) - fabs(col[idx])), adouble((double)j));
return idx;
}
// Assuming A is stored row-wise in the vector
void lufactorize(const size_t n, advector& A, advector& p) {
adouble idx, tmp;
for (size_t j = 0; j < n; j++)
p[j] = j;
for (size_t k = 0; k < n; k++) {
advector column(n);
for(size_t j = 0; j < n; j++)
condassign(column[j], adouble(double(j - k + 1)), A[j*n + k]);
idx = findmaxindex(n, column, k);
tmp = p[k];
p[k] = p[idx];
p[idx] = tmp;
for(size_t j = 0; j < n; j++) {
tmp = A[k*n + j];
A[k*n + j] = A[idx*n + j];
A[idx*n + j] = tmp;
}
tmp = 1.0/A[k*n + k];
for (size_t i = k + 1; i < n; i++) {
A[i*n + k] *= tmp;
for (size_t j = k + 1; j < n; j++) {
A[i*n + j] -= A[i*n + k] * A[k*n+j];
}
}
}
}
void Lsolve(const size_t n, const advector& A, const advector& p, advector& b, advector& x) {
for (size_t j = 0; j < n; j++) {
x[j] = b[p[j]];
for (size_t k = j+1; k <n; k++) {
b[p[k]] -= A[k*n+j]*x[j];
}
}
}
void Rsolve(const size_t n, const advector& A, advector& x) {
for (size_t j = 1; j <= n; j++) {
x[n-j] *= 1.0/A[(n-j)*n + n-j];
for (size_t k = 0; k < n-j; k++) {
x[k] -= A[k*n + n-j]*x[n-j];
}
}
}
void printL(const size_t n, const advector& A, ostream &outf = std::cout) {
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < n; j++)
if (j < i)
outf << setw(8) << A[i*n + j].value() << " ";
else if (j == i)
outf << setw(8) << 1.0 << " ";
else
outf << setw(8) << 0.0 << " ";
outf << "\n";
}
}
void printR(const size_t n, const advector& A, ostream &outf = std::cout) {
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < n; j++)
if (j >= i)
outf << setw(8) << A[i*n + j].value() << " ";
else
outf << setw(8) << 0.0 << " ";
outf << "\n";
}
}
double norm2(const double *const v, const size_t n)
{
size_t j;
double abs,scale,sum;
scale=0.0;
sum=0.0;
for (j=0; j<n; j++) {
if (v[j] != 0.0) {
abs = fabs(v[j]);
if (scale <= abs) {
sum = 1.0 + sum * (scale/abs)*(scale/abs);
scale = abs;
} else
sum += (abs/scale)*(abs/scale);
}
}
sum = sqrt(sum)*scale;
return sum;
}
double scalar(double *x, double *y, size_t n)
{
size_t j;
int8_t sign;
double abs,scale,sum,prod;
scale = 0.0;
sum = 0.0;
for(j=0; j<n; j++) {
sign = 1;
prod = x[j]*y[j];
if( prod != 0.0) {
abs = prod;
if (abs < 0.0) {
sign = -1;
abs = -abs;
}
if( scale <= fabs(abs)) {
sum = sign * 1.0 + sum *(scale/abs);
scale = abs;
} else
sum+=sign*(abs/scale);
}
}
sum = sum*scale;
return sum;
}
void matvec(const double *const A, const size_t m, const double *const b, const size_t n, double *const ret)
{
size_t i,j;
memset(ret,0,n*sizeof(double));
for (i=0; i<m; i++) {
double abs, scale = 0.0, prod, sum = 0.0;
int8_t sign;
for (j=0; j<n; j++) {
sign = 1;
prod = A[i*n+j]*b[j];
if (prod != 0.0) {
abs = prod;
if (abs < 0.0) {
sign = -1;
abs = -abs;
}
if (scale <=fabs(abs)) {
sum = sign * 1.0 + sum * (scale/abs);
scale = abs;
} else
sum += sign*(abs/scale);
}
}
ret[i] = sum*scale;
}
}
void residue(const double *const A, const size_t m, const double *const b, const size_t n, const double *const x, double *const ret) {
double *b2 = new double[n];
matvec(A,m,x,n,b2);
for (size_t i = 0; i < n; i++)
ret[i] = b[i] - b2[i];
delete[] b2;
}
double normresidue(const double *const A, const size_t m, const double *const b, const size_t n, const double*const x) {
double *res = new double[n];
residue(A,m,b,n,x,res);
double ans = norm2(res, n);
delete[] res;
return ans;
}
int main() {
int tag = 1;
int keep = 1;
int n;
string matrixname, rhsname;
ifstream matf, rhsf;
double *mat, *rhs, *ans, err, normx, normb;
cout << "COMPUTATION OF LU-Factorization with pivoting (ADOL-C Documented Example)\n\n";
cout << "order of matrix = ? \n"; // select matrix size
cin >> n;
cout << "---------------------------------\nNow tracing:\n";
rhs = new double[n*n + n];
mat = rhs + n;
ans = new double[n];
cout << "file name for matrix = ?\n";
cin >> matrixname;
cout << "file name for rhs = ?\n";
cin >> rhsname;
matf.open(matrixname.c_str());
for (size_t i = 0; i < n*n; i++)
matf >> mat[i];
matf.close();
rhsf.open(rhsname.c_str());
for (size_t i = 0; i < n; i++)
rhsf >> rhs[i];
rhsf.close();
{
trace_on(tag,keep); // tag=1=keep
advector A(n*n), b(n), x(n), p(n);
for(size_t i = 0; i < n; i++)
b[i] <<= rhs[i];
for(size_t i = 0; i < n*n; i++)
A[i] <<= mat[i];
lufactorize(n, A, p);
Lsolve(n, A, p, b, x);
Rsolve(n, A, x);
for(size_t i = 0; i < n; i++)
x[i] >>= ans[i];
trace_off();
}
err = normresidue(mat, n, rhs, n, ans);
normb = norm2(rhs, n);
normx = norm2(ans, n);
cout << "Norm rhs = " << normb <<"\n";
cout << "Norm solution = " << normx <<"\n";
cout << "Norm of residue = " << err <<"\t relative error = " << err/normx << "\n";
cout << "---------------------------------\nNow computing from trace:\n";
cout << "file name for matrix = ?\n";
cin >> matrixname;
cout << "file name for rhs = ?\n";
cin >> rhsname;
matf.open(matrixname.c_str());
for (size_t i = 0; i < n*n; i++)
matf >> mat[i];
matf.close();
rhsf.open(rhsname.c_str());
for (size_t i = 0; i < n; i++)
rhsf >> rhs[i];
rhsf.close();
zos_forward(tag, n, n*n + n, keep, rhs, ans);
err = normresidue(mat, n, rhs, n, ans);
normb = norm2(rhs, n);
normx = norm2(ans, n);
cout << "Norm rhs = " << normb <<"\n";
cout << "Norm solution = " << normx <<"\n";
cout << "Norm of residue = " << err <<"\t relative error = " << err/normx <<"\n";
double *ansbar = new double[n];
double *matcol = new double[n];
double *rhsbar = new double[n*n+n];
double *matbar = rhsbar + n;
double scprod = 0.0;
memset(rhsbar, 0, (n*n+n)*sizeof(double));
memset(ansbar, 0, n*sizeof(double));
for (size_t k = 0; k < n; k++) {
cout << "computing gradient of element " << k + 1 << " of solution w.r.t. matrix elements and rhs\n";
ansbar[k] = 1.0;
fos_reverse(tag, n, n*n+n, ansbar, rhsbar);
for (size_t i = 0; i < n*n + n; i++)
cout << "bar[" << i << "] = " << rhsbar[i] << "\n";
for (size_t j = 0; j < n; j++) {
for (size_t i = 0; i < n; i++)
matcol[i] = mat[i*n + j];
scprod = scalar(rhsbar, matcol, n);
cout << "gradient w.r.t. rhs times column " << j + 1 << " of matrix = " << scprod << "\n";
}
ansbar[k] = 0.0;
}
delete[] ansbar;
delete[] matcol;
delete[] rhsbar;
delete[] rhs;
delete[] ans;
}
|