1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/*
Project: Adun
Copyright (C) 2005 Michael Johnston & Jordi Villa-Freixa
Author: Michael Johnston
This application is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This application is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA.
*/
#include <Base/AdForceFieldFunctions.h>
inline void AdCoulombAndLennardJonesBEnergy(ListElement* interaction,
double** coordinates,
double EPSILON_RP,
double cutoff,
double* vdw_pot,
double* est_pot)
{
int atom_one, atom_two;
double length_rec, vdw_hold, est_hold;
double eqSeparation, wellDepth, chargeProduct;
Vector3D seperation_s;
atom_one = interaction->bond[0];
atom_two = interaction->bond[1];
wellDepth = interaction->params[0];
eqSeparation = interaction->params[1];
chargeProduct = interaction->params[2];
//calculate seperation vector (r1 - r2)
*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
//calculate the interatomic distance
Ad3DVectorLength(&seperation_s);
if(seperation_s.length > cutoff)
return;
//add this length to the linked list element the bond belongs to
interaction->length = seperation_s.length;
//get reciprocal of seperation
length_rec = 1/seperation_s.length;
vdw_hold = pow(eqSeparation*length_rec, 6);
est_hold = (EPSILON_RP*chargeProduct*length_rec);
*vdw_pot += wellDepth*vdw_hold*(vdw_hold - 2);
*est_pot += est_hold;
#ifdef BASE_NONBONDED_DEBUG
AdNonbondedEnergyLog("Normal", "B", atomOne, atomTwo, lennardJonesA, lennardJonesB,
chargeProduct, separation_s.length, est_hold, *vdw_pot,
__NonbondedEnergyDebug__);
#endif
}
inline void AdCoulombAndLennardJonesBForce(ListElement* interaction,
double** coordinates,
double** forces,
double EPSILON_RP,
double cutoff,
double* vdw_pot,
double* est_pot)
{
int atom_one, atom_two;
double force_mag;
double length_rec, vdw_hold, est_hold;
double wellDepth, eqSeparation, chargeProduct;
Vector3D seperation_s;
atom_one = interaction->bond[0];
atom_two = interaction->bond[1];
wellDepth = interaction->params[0];
eqSeparation = interaction->params[1];
chargeProduct = interaction->params[2];
//calculate seperation vector (r1 - r2)
*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
//calculate the interatomic distance
Ad3DVectorLength(&seperation_s);
if(seperation_s.length > cutoff)
return;
//add this length to the linked list wlement the bond belongs to
interaction->length = seperation_s.length;
//get reciprocal of seperation
length_rec = 1/seperation_s.length;
//calculate vdw holder (r*/r)^6
vdw_hold = pow(eqSeparation*length_rec, 6);
//est holder
est_hold = EPSILON_RP*chargeProduct*length_rec;
//Precompute wellDepth*vdw_hold since it occurs twice
*est_pot += est_hold;
wellDepth *= vdw_hold;
//Note wellDepth here is the actual wellDepth*vdw_hold
*vdw_pot += wellDepth*(vdw_hold - 2);
force_mag = est_hold*length_rec;
//add the vdw force to the est force
force_mag += 12*length_rec*wellDepth*(vdw_hold - 1);
//We have to find the unit vector in the direction
//given by seperation_s. We divide force_mag by separation_s
//length here so we dont have to do it three times below.
force_mag *= length_rec;
//calculate the force on atom one along the vector (r1 - r2)
//the force on atom two is the opposite of this force
*(seperation_s.vector + 0) *= force_mag;
*(seperation_s.vector + 1) *= force_mag;
*(seperation_s.vector + 2) *= force_mag;
forces[atom_one][0] += *(seperation_s.vector + 0);
forces[atom_one][1] += *(seperation_s.vector + 1);
forces[atom_one][2] += *(seperation_s.vector + 2);
forces[atom_two][0] -= *(seperation_s.vector + 0);
forces[atom_two][1] -= *(seperation_s.vector + 1);
forces[atom_two][2] -= *(seperation_s.vector + 2);
#ifdef BASE_NONBONDED_DEBUG
AdNonbondedForceLog("Normal", "B", atomOne, atomTwo, lennardJonesA, lennardJonesB,
chargeProduct, separation_s.length, est_hold, *vdw_pot, forceMag,
__NonbondedForceDebug__);
#endif
}
inline void AdShiftedCoulombAndLennardJonesBForce(ListElement* interaction,
double** coordinates,
double** forces,
double EPSILON_RP,
double cut,
double r_cutoff2,
double* vdw_pot,
double* est_pot)
{
int atom_one, atom_two;
double force_mag;
double length_rec, vdw_hold, est_hold;
double shift_fac;
double wellDepth, eqSeparation, chargeProduct;
Vector3D seperation_s;
atom_one = interaction->bond[0];
atom_two = interaction->bond[1];
wellDepth = interaction->params[0];
eqSeparation = interaction->params[1];
chargeProduct = interaction->params[2];
*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
Ad3DVectorLength(&seperation_s);
if(seperation_s.length > cut)
return;
interaction->length = seperation_s.length;
length_rec = 1/seperation_s.length;
vdw_hold = pow(eqSeparation*length_rec, 6);
est_hold = EPSILON_RP*chargeProduct*length_rec;
//est shift factor
shift_fac = (cut - seperation_s.length)*(cut - seperation_s.length)*r_cutoff2;
//the shifted est force is EST_HOLD*(length_rec - r_cutoff2*length)
force_mag = (length_rec - r_cutoff2*seperation_s.length);
wellDepth *= vdw_hold;
*est_pot += (est_hold*shift_fac);
*vdw_pot += wellDepth*(vdw_hold - 2);
//apply the shift to the est force
force_mag *= est_hold;
//add the vdw force
force_mag += 12*length_rec*wellDepth*(vdw_hold - 1);
force_mag *= length_rec;
*(seperation_s.vector + 0) *= force_mag;
*(seperation_s.vector + 1) *= force_mag;
*(seperation_s.vector + 2) *= force_mag;
forces[atom_one][0] += *(seperation_s.vector + 0);
forces[atom_one][1] += *(seperation_s.vector + 1);
forces[atom_one][2] += *(seperation_s.vector + 2);
forces[atom_two][0] -= *(seperation_s.vector + 0);
forces[atom_two][1] -= *(seperation_s.vector + 1);
forces[atom_two][2] -= *(seperation_s.vector + 2);
#ifdef BASE_NONBONDED_DEBUG
AdNonbondedForceLog("Shifted", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB,
chargeProduct, separation_s.length, est_hold, *vdw_pot, forceMag,
__ShiftedNonbondedForceDebug__);
#endif
}
inline void AdGRFCoulombAndLennardJonesBForce(ListElement* interaction,
double** coordinates,
double** forces,
double EPSILON_RP,
double cutoff,
double b0,
double b1,
double* vdw_pot,
double* est_pot)
{
int atom_one, atom_two;
double force_mag;
double length_rec, vdw_hold, est_hold;
double wellDepth, eqSeparation, chargeProduct;
Vector3D seperation_s;
atom_one = interaction->bond[0];
atom_two = interaction->bond[1];
wellDepth = interaction->params[0];
eqSeparation = interaction->params[1];
chargeProduct = interaction->params[2];
*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
Ad3DVectorLength(&seperation_s);
if(seperation_s.length > cutoff)
return;
interaction->length = seperation_s.length;
length_rec = 1/seperation_s.length;
vdw_hold = pow(eqSeparation*length_rec, 6);
est_hold = EPSILON_RP*chargeProduct*length_rec;
wellDepth *= vdw_hold;
*vdw_pot += wellDepth*(vdw_hold - 2);
//GRF
*est_pot += est_hold + EPSILON_RP*chargeProduct*b0;
force_mag = est_hold*length_rec + EPSILON_RP*chargeProduct*b1*seperation_s.length;
//add the vdw force to the est force
force_mag += 12*length_rec*wellDepth*(vdw_hold - 1);
force_mag *=length_rec;
*(seperation_s.vector + 0) *= force_mag;
*(seperation_s.vector + 1) *= force_mag;
*(seperation_s.vector + 2) *= force_mag;
forces[atom_one][0] += *(seperation_s.vector + 0);
forces[atom_one][1] += *(seperation_s.vector + 1);
forces[atom_one][2] += *(seperation_s.vector + 2);
forces[atom_two][0] -= *(seperation_s.vector + 0);
forces[atom_two][1] -= *(seperation_s.vector + 1);
forces[atom_two][2] -= *(seperation_s.vector + 2);
#ifdef BASE_NONBONDED_DEBUG
AdNonbondedForceLog("GRF", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB,
chargeProduct, separation_s.length, est_hold, *vdw_pot, forceMag,
__GRFNonbondedForceDebug__);
#endif
}
inline void AdShiftedCoulombAndLennardJonesBEnergy(ListElement* interaction,
double** coordinates,
double EPSILON_RP,
double cut,
double r_cutoff2,
double* vdw_pot,
double* est_pot)
{
int atom_one, atom_two;
double length_rec, vdw_hold, est_hold;
double shift_fac;
double wellDepth, eqSeparation, chargeProduct;
Vector3D seperation_s;
atom_one = interaction->bond[0];
atom_two = interaction->bond[1];
wellDepth = interaction->params[0];
eqSeparation = interaction->params[1];
chargeProduct = interaction->params[2];
*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
Ad3DVectorLength(&seperation_s);
if(seperation_s.length > cut)
return;
interaction->length = seperation_s.length;
length_rec = 1/seperation_s.length;
vdw_hold = pow(eqSeparation*length_rec, 6);
est_hold = (EPSILON_RP*chargeProduct*length_rec);
//est shift factor
shift_fac = (cut - seperation_s.length)*(cut - seperation_s.length)*r_cutoff2;
//modify the potential by the shift function
*vdw_pot += wellDepth*vdw_hold*(vdw_hold - 2);
*est_pot += (est_hold*shift_fac);
#ifdef BASE_NONBONDED_DEBUG
AdNonbondedEnergyLog("Shifted", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB,
chargeProduct, separation_s.length, est_hold, *vdw_pot,
__ShiftedNonbondedEnergyDebug__);
#endif
}
inline void AdGRFCoulombAndLennardJonesBEnergy(ListElement* interaction,
double** coordinates,
double EPSILON_RP,
double cutoff,
double b0,
double b1,
double* vdw_pot,
double* est_pot)
{
int atom_one, atom_two;
double length_rec, vdw_hold, est_hold;
double wellDepth, eqSeparation, chargeProduct;
Vector3D seperation_s;
atom_one = interaction->bond[0];
atom_two = interaction->bond[1];
wellDepth = interaction->params[0];
eqSeparation = interaction->params[1];
chargeProduct = interaction->params[2];
*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
Ad3DVectorLength(&seperation_s);
if(seperation_s.length > cutoff)
return;
interaction->length = seperation_s.length;
length_rec = 1/seperation_s.length;
vdw_hold = pow(eqSeparation*length_rec, 6);
est_hold = EPSILON_RP*chargeProduct*(length_rec + b0);
*vdw_pot += wellDepth*vdw_hold*(vdw_hold - 2);
*est_pot += est_hold;
#ifdef BASE_NONBONDED_DEBUG
AdNonbondedEnergyLog("GRF", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB,
chargeProduct, separation_s.length, est_hold, *vdw_pot,
__GRFNonbondedEnergyDebug__);
#endif
}
|