File: AdCoulombAndLennardJonesB.c

package info (click to toggle)
adun.app 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 6,824 kB
  • ctags: 713
  • sloc: objc: 49,683; ansic: 4,680; sh: 523; python: 79; makefile: 67; cpp: 33
file content (375 lines) | stat: -rwxr-xr-x 12,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
   Project: Adun

   Copyright (C) 2005 Michael Johnston & Jordi Villa-Freixa

   Author: Michael Johnston

   This application is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public
   License as published by the Free Software Foundation; either
   version 2 of the License, or (at your option) any later version.

   This application is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU General Public
   License along with this library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA.
*/

#include <Base/AdForceFieldFunctions.h>

inline void AdCoulombAndLennardJonesBEnergy(ListElement* interaction, 
		double** coordinates, 
		double EPSILON_RP, 
		double cutoff,
		double* vdw_pot, 
		double* est_pot)
{
	int atom_one, atom_two;
	double length_rec, vdw_hold, est_hold;
	double eqSeparation, wellDepth, chargeProduct;
	Vector3D seperation_s;
	
	atom_one = interaction->bond[0];
	atom_two = interaction->bond[1];
	wellDepth = interaction->params[0];
	eqSeparation = interaction->params[1];
	chargeProduct = interaction->params[2];
			
	//calculate seperation vector (r1 - r2)
	*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
	*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
	*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
	
	//calculate the interatomic distance
	Ad3DVectorLength(&seperation_s);
	if(seperation_s.length > cutoff)
		return;
	
	//add this length to the linked list element the bond belongs to
	interaction->length = seperation_s.length;

	//get reciprocal of seperation
	length_rec = 1/seperation_s.length;
	
	vdw_hold = pow(eqSeparation*length_rec, 6);
	est_hold = (EPSILON_RP*chargeProduct*length_rec);

	*vdw_pot += wellDepth*vdw_hold*(vdw_hold - 2);	
	*est_pot += est_hold;
	
#ifdef BASE_NONBONDED_DEBUG
	AdNonbondedEnergyLog("Normal", "B", atomOne, atomTwo, lennardJonesA, lennardJonesB, 
			     chargeProduct, separation_s.length, est_hold, *vdw_pot,
			     __NonbondedEnergyDebug__); 
#endif
}

inline void AdCoulombAndLennardJonesBForce(ListElement* interaction, 
		double** coordinates, 
		double** forces,
		double EPSILON_RP, 
		double cutoff,
		double* vdw_pot, 
		double* est_pot)
{
	int atom_one, atom_two;
	double force_mag;
	double length_rec, vdw_hold, est_hold;
	double wellDepth, eqSeparation, chargeProduct;
	Vector3D seperation_s;
	
	atom_one = interaction->bond[0];
	atom_two = interaction->bond[1];
	wellDepth = interaction->params[0];
	eqSeparation = interaction->params[1];
	chargeProduct = interaction->params[2];
			
	//calculate seperation vector (r1 - r2)
	*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
	*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
	*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
	
	//calculate the interatomic distance
	Ad3DVectorLength(&seperation_s);
	if(seperation_s.length > cutoff)
		return;
	
	//add this length to the linked list wlement the bond belongs to
	interaction->length = seperation_s.length;

	//get reciprocal of seperation
	length_rec = 1/seperation_s.length;
	
	//calculate vdw holder (r*/r)^6 
	vdw_hold = pow(eqSeparation*length_rec, 6);

	//est holder
	est_hold = EPSILON_RP*chargeProduct*length_rec;

	//Precompute wellDepth*vdw_hold since it occurs twice
	*est_pot += est_hold;
	wellDepth *= vdw_hold;
	//Note wellDepth here is the actual wellDepth*vdw_hold
	*vdw_pot += wellDepth*(vdw_hold - 2);	

	force_mag = est_hold*length_rec;
	//add the vdw force to the est force
	force_mag +=  12*length_rec*wellDepth*(vdw_hold - 1);
	//We have to find the unit vector in the direction
	//given by seperation_s. We divide force_mag by separation_s
	//length here so we dont have to do it three times below.
	force_mag *= length_rec;

	//calculate the force on atom one along the vector (r1 - r2)
	//the force on atom two is the opposite of this force
	*(seperation_s.vector + 0) *= force_mag;
	*(seperation_s.vector + 1) *= force_mag;
	*(seperation_s.vector + 2) *= force_mag;
	
	forces[atom_one][0] += *(seperation_s.vector + 0);
	forces[atom_one][1] += *(seperation_s.vector + 1);
	forces[atom_one][2] += *(seperation_s.vector + 2);

	forces[atom_two][0] -= *(seperation_s.vector + 0);
	forces[atom_two][1] -= *(seperation_s.vector + 1);
	forces[atom_two][2] -= *(seperation_s.vector + 2);
	
#ifdef BASE_NONBONDED_DEBUG
	AdNonbondedForceLog("Normal", "B", atomOne, atomTwo, lennardJonesA, lennardJonesB, 
			    chargeProduct, separation_s.length, est_hold, *vdw_pot, forceMag,
			    __NonbondedForceDebug__); 
#endif
}


inline void AdShiftedCoulombAndLennardJonesBForce(ListElement* interaction, 
		double** coordinates, 
		double** forces,
		double EPSILON_RP, 
		double cut,
		double r_cutoff2,
		double* vdw_pot, 
		double* est_pot)
{
	int atom_one, atom_two;
	double force_mag;
	double length_rec, vdw_hold, est_hold;
	double shift_fac;
	double wellDepth, eqSeparation, chargeProduct;
	Vector3D seperation_s;
	
	atom_one = interaction->bond[0];
	atom_two = interaction->bond[1];
	wellDepth = interaction->params[0];
	eqSeparation = interaction->params[1];
	chargeProduct = interaction->params[2];

	*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
	*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
	*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
	
	Ad3DVectorLength(&seperation_s);
	if(seperation_s.length > cut)
		return;
	interaction->length = seperation_s.length;

	length_rec = 1/seperation_s.length;
	vdw_hold = pow(eqSeparation*length_rec, 6);
	est_hold = EPSILON_RP*chargeProduct*length_rec;
	
	//est shift factor
	shift_fac = (cut - seperation_s.length)*(cut - seperation_s.length)*r_cutoff2;

	//the shifted est force is EST_HOLD*(length_rec - r_cutoff2*length)
	force_mag = (length_rec - r_cutoff2*seperation_s.length);

	wellDepth *= vdw_hold;
	*est_pot += (est_hold*shift_fac);
	*vdw_pot += wellDepth*(vdw_hold - 2);	
	
	//apply the shift to the est force
	force_mag *= est_hold;

	//add the vdw force
	force_mag +=  12*length_rec*wellDepth*(vdw_hold - 1);
	force_mag *= length_rec;

	*(seperation_s.vector + 0) *= force_mag;
	*(seperation_s.vector + 1) *= force_mag;
	*(seperation_s.vector + 2) *= force_mag;
	
	forces[atom_one][0] += *(seperation_s.vector + 0);
	forces[atom_one][1] += *(seperation_s.vector + 1);
	forces[atom_one][2] += *(seperation_s.vector + 2);

	forces[atom_two][0] -= *(seperation_s.vector + 0);
	forces[atom_two][1] -= *(seperation_s.vector + 1);
	forces[atom_two][2] -= *(seperation_s.vector + 2);
	
#ifdef BASE_NONBONDED_DEBUG
	AdNonbondedForceLog("Shifted", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB, 
			    chargeProduct, separation_s.length, est_hold, *vdw_pot, forceMag,
			    __ShiftedNonbondedForceDebug__); 
#endif
}

inline void AdGRFCoulombAndLennardJonesBForce(ListElement* interaction, 
		double** coordinates, 
		double** forces,
		double EPSILON_RP, 
		double cutoff,
		double b0, 
		double b1,
		double* vdw_pot, 
		double* est_pot) 
{
	int atom_one, atom_two;
	double force_mag;
	double length_rec, vdw_hold, est_hold;
	double wellDepth, eqSeparation, chargeProduct;
	Vector3D seperation_s;
	
	atom_one = interaction->bond[0];
	atom_two = interaction->bond[1];
	wellDepth = interaction->params[0];
	eqSeparation = interaction->params[1];
	chargeProduct = interaction->params[2];
			
	*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
	*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
	*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];

	Ad3DVectorLength(&seperation_s);
	if(seperation_s.length > cutoff)
		return;
	interaction->length = seperation_s.length;
	length_rec = 1/seperation_s.length;
	
	vdw_hold = pow(eqSeparation*length_rec, 6);
	est_hold = EPSILON_RP*chargeProduct*length_rec;
	wellDepth *= vdw_hold;
	*vdw_pot += wellDepth*(vdw_hold - 2);	
	
	//GRF
	*est_pot += est_hold + EPSILON_RP*chargeProduct*b0;
	force_mag = est_hold*length_rec + EPSILON_RP*chargeProduct*b1*seperation_s.length;

	//add the vdw force to the est force
	
	force_mag +=  12*length_rec*wellDepth*(vdw_hold - 1);
	force_mag *=length_rec;

	*(seperation_s.vector + 0) *= force_mag;
	*(seperation_s.vector + 1) *= force_mag;
	*(seperation_s.vector + 2) *= force_mag;
	
	forces[atom_one][0] += *(seperation_s.vector + 0);
	forces[atom_one][1] += *(seperation_s.vector + 1);
	forces[atom_one][2] += *(seperation_s.vector + 2);

	forces[atom_two][0] -= *(seperation_s.vector + 0);
	forces[atom_two][1] -= *(seperation_s.vector + 1);
	forces[atom_two][2] -= *(seperation_s.vector + 2);
	
#ifdef BASE_NONBONDED_DEBUG
	AdNonbondedForceLog("GRF", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB, 
			    chargeProduct, separation_s.length, est_hold, *vdw_pot, forceMag,
			    __GRFNonbondedForceDebug__); 
#endif
}

inline void AdShiftedCoulombAndLennardJonesBEnergy(ListElement* interaction, 
		double** coordinates, 
		double EPSILON_RP, 
		double cut,
		double r_cutoff2,
		double* vdw_pot, 
		double* est_pot)
{		
	int atom_one, atom_two;
	double length_rec, vdw_hold, est_hold;
	double shift_fac;
	double wellDepth, eqSeparation, chargeProduct;
	Vector3D seperation_s;
	
	atom_one = interaction->bond[0];
	atom_two = interaction->bond[1];
	wellDepth = interaction->params[0];
	eqSeparation = interaction->params[1];
	chargeProduct = interaction->params[2];
			
	*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
	*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
	*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
	
	Ad3DVectorLength(&seperation_s);
	if(seperation_s.length > cut)
		return;
	interaction->length = seperation_s.length;
			
	length_rec = 1/seperation_s.length;
	
	vdw_hold = pow(eqSeparation*length_rec, 6);
	est_hold = (EPSILON_RP*chargeProduct*length_rec);

	//est shift factor
	shift_fac = (cut - seperation_s.length)*(cut - seperation_s.length)*r_cutoff2;
	
	//modify the potential by the shift function
	*vdw_pot += wellDepth*vdw_hold*(vdw_hold - 2);	
	*est_pot += (est_hold*shift_fac);
	
#ifdef BASE_NONBONDED_DEBUG
	AdNonbondedEnergyLog("Shifted", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB, 
			     chargeProduct, separation_s.length, est_hold, *vdw_pot,
			     __ShiftedNonbondedEnergyDebug__); 
#endif
}

inline void AdGRFCoulombAndLennardJonesBEnergy(ListElement* interaction, 
		double** coordinates, 
		double EPSILON_RP, 
		double cutoff,
		double b0, 
		double b1,
		double* vdw_pot, 
		double* est_pot) 
{
	int atom_one, atom_two;
	double length_rec, vdw_hold, est_hold;
	double wellDepth, eqSeparation, chargeProduct;
	Vector3D seperation_s;
	
	atom_one = interaction->bond[0];
	atom_two = interaction->bond[1];
	wellDepth = interaction->params[0];
	eqSeparation = interaction->params[1];
	chargeProduct = interaction->params[2];
			
	*(seperation_s.vector + 0) = coordinates[atom_one][0] - coordinates[atom_two][0];
	*(seperation_s.vector + 1) = coordinates[atom_one][1] - coordinates[atom_two][1];
	*(seperation_s.vector + 2) = coordinates[atom_one][2] - coordinates[atom_two][2];
	
	Ad3DVectorLength(&seperation_s);
	if(seperation_s.length > cutoff)
		return;
	interaction->length = seperation_s.length;
	length_rec = 1/seperation_s.length;
	vdw_hold = pow(eqSeparation*length_rec, 6);
	est_hold = EPSILON_RP*chargeProduct*(length_rec + b0);

	*vdw_pot += wellDepth*vdw_hold*(vdw_hold - 2);	
	*est_pot += est_hold;
	
#ifdef BASE_NONBONDED_DEBUG
	AdNonbondedEnergyLog("GRF", "A", atomOne, atomTwo, lennardJonesA, lennardJonesB, 
			     chargeProduct, separation_s.length, est_hold, *vdw_pot,
			     __GRFNonbondedEnergyDebug__); 
#endif
}