File: AdHarmonicAngle.c

package info (click to toggle)
adun.app 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 6,824 kB
  • ctags: 713
  • sloc: objc: 49,683; ansic: 4,680; sh: 523; python: 79; makefile: 67; cpp: 33
file content (184 lines) | stat: -rwxr-xr-x 4,945 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
   Project: Adun

   Copyright (C) 2005 Michael Johnston & Jordi Villa-Freixa

   Author: Michael Johnston

   This application is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public
   License as published by the Free Software Foundation; either
   version 2 of the License, or (at your option) any later version.

   This application is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU General Public
   License along with this library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA.
*/

#include <Base/AdForceFieldFunctions.h>

bool __HarmonicAngleEnergyDebug__ = false;
bool __HarmonicAngleForceDebug__ = false;

inline void AdHarmonicAngleForce(double *interaction, double **coordinates, double **forces, double *ang_pot)
{
	register int i;
	int atom_one, atom_two, atom_three; 
	double coff_A, ang_cnst, eq_ang;
	double cosine_ang, angle, d_theta, forceMag;
	double forceOne, forceThree;
	double numerator, denominator, dtheta_du; 
	Vector3D ba_v, bc_v;

	//decode interaction
	atom_one = (int)interaction[0];
	atom_two = (int)interaction[1];
	atom_three = (int)interaction[2];
	ang_cnst = interaction[3];	
	eq_ang = interaction[4];

	//find the two vectors ba_v, bc_v
	for(i=0; i<3; i++)
	{
		ba_v.vector[i] = coordinates[atom_one][i] - coordinates[atom_two][i];
		bc_v.vector[i] = coordinates[atom_three][i] - coordinates[atom_two][i];
	}
	
	//ba.bc/|ba||bc| = cos(theta)
	//therefore calculate ba.bc 
	numerator = Ad3DDotProduct(&ba_v, &bc_v);
	
	//now find the length of ba and bc
	Ad3DVectorLength(&ba_v);
	Ad3DVectorLength(&bc_v);

	//find |ba|*|bc|
	denominator = ba_v.length*bc_v.length;

	//now calculate cosine of theta
	cosine_ang = numerator/denominator;
	
#ifdef SAFE_ANGLE	
	//check if the cosin_ang has slipped beyond 
	//the valid range due to numerical imprecision.
	if(cosine_ang > 1)
		cosine_ang = 1;
	else if(cosine_ang < -1)
		cosine_ang = -1;
#endif
	//find the associated angle
	angle = acos(cosine_ang);

	//calculate d_theta and hence the potential and the angular acceleration 
	d_theta =  angle - eq_ang;
	forceMag = -ang_cnst*d_theta;
	*ang_pot -= forceMag*d_theta*0.5;

	//find dtheta_du
	dtheta_du = (1 - cosine_ang*cosine_ang);
	dtheta_du = -1/sqrt(dtheta_du);

	//calculate coff_A 
	coff_A = (forceMag*dtheta_du);

	//find the nine partial derivatives needed
	for(i=0; i<3;i++)
	{
		forceOne = (coff_A/denominator)*( bc_v.vector[i] - (bc_v.length/ba_v.length)*cosine_ang*ba_v.vector[i]);
		forceThree = (coff_A/denominator)*( ba_v.vector[i] - (ba_v.length/bc_v.length)*cosine_ang*bc_v.vector[i]);

		forces[atom_two][i] -= (forceOne + forceThree);
		forces[atom_one][i] += forceOne;
		forces[atom_three][i] += forceThree;
	}
	
#ifdef BASE_BONDED_DEBUG
	if(__HarmonicAngleForceDebug__)
	{
		fprintf(stderr, "%-6d%-6d%-6d%-12.5lf%-12.5lf%-12.5lf%-12.5lf%-12.5lf\n",
			atom_one,
			atom_two,
			atom_three,
			ang_cnst,
			eq_ang,
			angle,
			*ang_pot,
			forceMag);
	}
#endif
}

inline void AdHarmonicAngleEnergy(double* interaction, double** coordinates, double* ang_pot)
{
	register int i;
	int atom_one, atom_two, atom_three; 
	double ang_cnst, eq_ang;
	double cosine_ang, angle, d_theta, forceMag;
	double numerator, denominator; 
	Vector3D ba_v, bc_v;

	//decode interaction
	atom_one = (int)interaction[0];
	atom_two = (int)interaction[1];
	atom_three = (int)interaction[2];
	ang_cnst = interaction[3];	
	eq_ang = interaction[4];

	//find the two vectors ba_v, bc_v
	for(i=0; i<3; i++)
	{
		ba_v.vector[i] = coordinates[atom_one][i] - coordinates[atom_two][i];
		bc_v.vector[i] = coordinates[atom_three][i] - coordinates[atom_two][i];
	}
	
	//ba.bc/|ba||bc| = cos(theta)
	//therefore calculate ba.bc 
	numerator = Ad3DDotProduct(&ba_v, &bc_v);
	
	//now find the length of ba and bc
	Ad3DVectorLength(&ba_v);
	Ad3DVectorLength(&bc_v);

	//find |ba|*|bc|
	denominator = ba_v.length*bc_v.length;

	//now calculate cosine of theta
	cosine_ang = numerator/denominator;
	
#ifdef SAFE_ANGLE	
	//check if the cosin_ang has slipped beyond 
	//the valid range due to numerical imprecision.
	if(cosine_ang > 1)
		cosine_ang = 1;
	else if(cosine_ang < -1)
		cosine_ang = -1;
#endif		

	//find the associated angle
	angle = acos(cosine_ang);

	//calculate d_theta and hence the potential and the angular acceleration 
	d_theta =  angle - eq_ang;
	forceMag = -ang_cnst*d_theta;
	*ang_pot -= forceMag*d_theta*0.5;
	
#ifdef BASE_BONDED_DEBUG
	if(__HarmonicAngleEnergyDebug__)
	{
		fprintf(stderr, "%-6d%-6d%-6d%-12.5lf%-12.5lf%-12.5lf%-12.5lf%-12.5lf%\n",
			atom_one,
			atom_two,
			atom_three,
			ang_cnst,
			eq_ang,
			cosine_ang,
			angle,
			*ang_pot);
	}
#endif
}