1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
/*
Project: Adun
Copyright (C) 2005 Michael Johnston & Jordi Villa-Freixa
Author: Michael Johnston
This application is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This application is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA.
*/
#include <Base/AdForceFieldFunctions.h>
bool __HarmonicAngleEnergyDebug__ = false;
bool __HarmonicAngleForceDebug__ = false;
inline void AdHarmonicAngleForce(double *interaction, double **coordinates, double **forces, double *ang_pot)
{
register int i;
int atom_one, atom_two, atom_three;
double coff_A, ang_cnst, eq_ang;
double cosine_ang, angle, d_theta, forceMag;
double forceOne, forceThree;
double numerator, denominator, dtheta_du;
Vector3D ba_v, bc_v;
//decode interaction
atom_one = (int)interaction[0];
atom_two = (int)interaction[1];
atom_three = (int)interaction[2];
ang_cnst = interaction[3];
eq_ang = interaction[4];
//find the two vectors ba_v, bc_v
for(i=0; i<3; i++)
{
ba_v.vector[i] = coordinates[atom_one][i] - coordinates[atom_two][i];
bc_v.vector[i] = coordinates[atom_three][i] - coordinates[atom_two][i];
}
//ba.bc/|ba||bc| = cos(theta)
//therefore calculate ba.bc
numerator = Ad3DDotProduct(&ba_v, &bc_v);
//now find the length of ba and bc
Ad3DVectorLength(&ba_v);
Ad3DVectorLength(&bc_v);
//find |ba|*|bc|
denominator = ba_v.length*bc_v.length;
//now calculate cosine of theta
cosine_ang = numerator/denominator;
#ifdef SAFE_ANGLE
//check if the cosin_ang has slipped beyond
//the valid range due to numerical imprecision.
if(cosine_ang > 1)
cosine_ang = 1;
else if(cosine_ang < -1)
cosine_ang = -1;
#endif
//find the associated angle
angle = acos(cosine_ang);
//calculate d_theta and hence the potential and the angular acceleration
d_theta = angle - eq_ang;
forceMag = -ang_cnst*d_theta;
*ang_pot -= forceMag*d_theta*0.5;
//find dtheta_du
dtheta_du = (1 - cosine_ang*cosine_ang);
dtheta_du = -1/sqrt(dtheta_du);
//calculate coff_A
coff_A = (forceMag*dtheta_du);
//find the nine partial derivatives needed
for(i=0; i<3;i++)
{
forceOne = (coff_A/denominator)*( bc_v.vector[i] - (bc_v.length/ba_v.length)*cosine_ang*ba_v.vector[i]);
forceThree = (coff_A/denominator)*( ba_v.vector[i] - (ba_v.length/bc_v.length)*cosine_ang*bc_v.vector[i]);
forces[atom_two][i] -= (forceOne + forceThree);
forces[atom_one][i] += forceOne;
forces[atom_three][i] += forceThree;
}
#ifdef BASE_BONDED_DEBUG
if(__HarmonicAngleForceDebug__)
{
fprintf(stderr, "%-6d%-6d%-6d%-12.5lf%-12.5lf%-12.5lf%-12.5lf%-12.5lf\n",
atom_one,
atom_two,
atom_three,
ang_cnst,
eq_ang,
angle,
*ang_pot,
forceMag);
}
#endif
}
inline void AdHarmonicAngleEnergy(double* interaction, double** coordinates, double* ang_pot)
{
register int i;
int atom_one, atom_two, atom_three;
double ang_cnst, eq_ang;
double cosine_ang, angle, d_theta, forceMag;
double numerator, denominator;
Vector3D ba_v, bc_v;
//decode interaction
atom_one = (int)interaction[0];
atom_two = (int)interaction[1];
atom_three = (int)interaction[2];
ang_cnst = interaction[3];
eq_ang = interaction[4];
//find the two vectors ba_v, bc_v
for(i=0; i<3; i++)
{
ba_v.vector[i] = coordinates[atom_one][i] - coordinates[atom_two][i];
bc_v.vector[i] = coordinates[atom_three][i] - coordinates[atom_two][i];
}
//ba.bc/|ba||bc| = cos(theta)
//therefore calculate ba.bc
numerator = Ad3DDotProduct(&ba_v, &bc_v);
//now find the length of ba and bc
Ad3DVectorLength(&ba_v);
Ad3DVectorLength(&bc_v);
//find |ba|*|bc|
denominator = ba_v.length*bc_v.length;
//now calculate cosine of theta
cosine_ang = numerator/denominator;
#ifdef SAFE_ANGLE
//check if the cosin_ang has slipped beyond
//the valid range due to numerical imprecision.
if(cosine_ang > 1)
cosine_ang = 1;
else if(cosine_ang < -1)
cosine_ang = -1;
#endif
//find the associated angle
angle = acos(cosine_ang);
//calculate d_theta and hence the potential and the angular acceleration
d_theta = angle - eq_ang;
forceMag = -ang_cnst*d_theta;
*ang_pot -= forceMag*d_theta*0.5;
#ifdef BASE_BONDED_DEBUG
if(__HarmonicAngleEnergyDebug__)
{
fprintf(stderr, "%-6d%-6d%-6d%-12.5lf%-12.5lf%-12.5lf%-12.5lf%-12.5lf%\n",
atom_one,
atom_two,
atom_three,
ang_cnst,
eq_ang,
cosine_ang,
angle,
*ang_pot);
}
#endif
}
|