1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/*
Project: AdunBase
Copyright (C) 2008 Michael Johnston & Jordi Villa-Freixa
Author: Michael Johnston
This application is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This application is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA.
*/
#include "AdGeneralizedBornFunctions.h"
static double electrostaticConstant;
void AdSetGeneralizedBornVariables(double tau, double estConstant)
{
electrostaticConstant = 0.5*estConstant*tau;
}
void AdGeneralizedBornEnergy(ListElement* interaction,
double** coordinates,
double* radii,
double* est_pot)
{
int atomOne, atomTwo;
double exponent, squaredSeparation, chargeProduct;
double radiusOne, radiusTwo, numerator;
Vector3D separation_s;
atomOne = interaction->bond[0];
atomTwo = interaction->bond[1];
chargeProduct = interaction->params[2];
//calculate seperation vector (r1 - r2)
*(separation_s.vector + 0) = coordinates[atomOne][0] - coordinates[atomTwo][0];
*(separation_s.vector + 1) = coordinates[atomOne][1] - coordinates[atomTwo][1];
*(separation_s.vector + 2) = coordinates[atomOne][2] - coordinates[atomTwo][2];
//calculate the interatomic distance
Ad3DVectorLength(&separation_s);
radiusOne = radii[atomOne];
radiusTwo = radii[atomTwo];
squaredSeparation = separation_s.length*separation_s.length;
numerator = -electrostaticConstant*chargeProduct;
exponent = exp(-squaredSeparation/(4*radiusOne*radiusTwo));
*est_pot += numerator/sqrt(squaredSeparation + radiusOne*radiusTwo*exponent);
}
/*
Returns the magnitude of the derivative of the GB energy with respect to the separation of the atoms.
*/
inline void AdGBESeparationDerivativeMagnitude(ListElement* interaction,
double** coordinates,
double* radii,
double* forceMagnitude)
{
int atomOne, atomTwo;
double exponent, squaredSeparation, chargeProduct;
double radiusOne, radiusTwo;
double numerator, denominator, preFactor;
Vector3D separation_s;
atomOne = interaction->bond[0];
atomTwo = interaction->bond[1];
chargeProduct = interaction->params[2];
//calculate seperation vector (r1 - r2)
*(separation_s.vector + 0) = coordinates[atomOne][0] - coordinates[atomTwo][0];
*(separation_s.vector + 1) = coordinates[atomOne][1] - coordinates[atomTwo][1];
*(separation_s.vector + 2) = coordinates[atomOne][2] - coordinates[atomTwo][2];
//Use the current length given by the interaction struct
separation_s.length = interaction->length;
radiusOne = radii[atomOne];
radiusTwo = radii[atomTwo];
squaredSeparation = separation_s.length*separation_s.length;
preFactor = -0.5*electrostaticConstant*chargeProduct;
//The value of the exponent in the derivative
exponent = squaredSeparation/(4*radiusOne*radiusTwo);
exponent = exp(-exponent);
numerator = preFactor*exponent;
denominator = pow((squaredSeparation + exponent), 1.5);
*forceMagnitude = numerator/denominator;
}
/*
This gives the derivate of the born energy with respect to the separation between the two atoms.
The resulting forces on the two atoms are equal in magnitude and opposite in direction.
The force vectors are accumulated into the corresponding rows of the matrix \e forces.
\param cutoff If the separation is greater than cutoff the calculation is aborted.
This parameter is an optimisation device which ensures that only
interactions within a certain distance are evaluated while keeping the calculations to a minimum.
\param flag Another optimisation device. If \e flag is zero the distance between the two
atoms is calculated as normal. Otherwise the value of the length memeber of the \e interaction
structure is used. This saves calculating length when it has been previously calculated for
\e interaction as part of a standard coloumb/LJ calculation.
\note Due to the use of \e cutoff this function does not used
AdGBSeparationDerivativeMagnitude() to calculate the magnitude.
This is because, if a cutoff is set, the calculation can be stoped
before most of the calculations in AdGBSeparationDerivativeMagnitude() would
be performed.
*/
void AdGBESeparationDerivative(ListElement* interaction,
double** coordinates,
double** forces,
double* radii,
double* est_pot)
{
int atomOne, atomTwo;
double exponent, squaredSeparation, chargeProduct;
double radiusOne, radiusTwo;
double numerator, denominator, forceMagnitude, preFactor;
Vector3D separation_s;
atomOne = interaction->bond[0];
atomTwo = interaction->bond[1];
chargeProduct = interaction->params[2];
//calculate seperation vector (r2 - r1)
//This is the vector from atom one to atom two
*(separation_s.vector + 0) = coordinates[atomTwo][0] - coordinates[atomOne][0];
*(separation_s.vector + 1) = coordinates[atomTwo][1] - coordinates[atomOne][1];
*(separation_s.vector + 2) = coordinates[atomTwo][2] - coordinates[atomOne][2];
separation_s.length = interaction->length;
//Calculate dG/d|r|
//where |r| is the separation length.
//In the following a factor of |r| is not included.
//Since it cancels when dG/d|r| is multiplied by d|r|/dr.
radiusOne = radii[atomOne];
radiusTwo = radii[atomTwo];
squaredSeparation = separation_s.length*separation_s.length;
//The value of the exponent in the derivative
exponent = squaredSeparation/(4*radiusOne*radiusTwo);
preFactor = 0.5*electrostaticConstant*chargeProduct;
exponent = exp(-exponent);
denominator = sqrt(squaredSeparation + radiusOne*radiusTwo*exponent);
numerator = preFactor*(4 - exponent);
*est_pot += -2*preFactor/denominator;
denominator = pow(denominator, 3);
//The force is the negative of the gradient.
//Multiply the above by minus 1 here.
forceMagnitude = -1*numerator/denominator;
//Finally the derivative of the separation
//The derivative of the vector (r2 - r1) w.r.t. atomOne
//is -1*(r2 - r1)/|r2 - r1|
//The factor |r2 - r1| cancels with a factor in the derivative
//of dG/d|r|.
//Therefore we dont calculate the unit vector.
//The overall effect is as follows for (+,-)
//The derivatives of the separation vector w.r.t each atoms position point
//away from each other.
//dG/d|r| is negative so this switches the vectors so they point towards each other.
//Multiplied by the -1 for the force, becomes overall repulsion again.
//That is for (+,-) pair the screening force opposes the attractive coulomb force.
//The screening potential becomes lower as the forces separate.
//The coulomb potential becomes lower (more negative) as the forces approach.
*(separation_s.vector + 0) *= forceMagnitude;
*(separation_s.vector + 1) *= forceMagnitude;
*(separation_s.vector + 2) *= forceMagnitude;
forces[atomOne][0] -= *(separation_s.vector + 0);
forces[atomOne][1] -= *(separation_s.vector + 1);
forces[atomOne][2] -= *(separation_s.vector + 2);
forces[atomTwo][0] += *(separation_s.vector + 0);
forces[atomTwo][1] += *(separation_s.vector + 1);
forces[atomTwo][2] += *(separation_s.vector + 2);
}
/*
Calculates derivative of the Born energy with respect to the born radii, R_a & R_b of the atoms.
On return the 2-element array \e results contains the derivatives.
The first element is the derivate w.r.t R_a and the second the derivative w.r.t. R_b.
*/
void AdGBEBornRadiusDerivative(ListElement* interaction,
double** coordinates,
double* radii,
double *coefficient1,
double *coefficient2)
{
int atomOne, atomTwo;
double exponent, squaredSeparation, chargeProduct;
double radiusOne, radiusTwo;
double numerator, denominator, preFactor, f;
Vector3D separation_s;
atomOne = interaction->bond[0];
atomTwo = interaction->bond[1];
chargeProduct = interaction->params[2];
//calculate seperation vector (r1 - r2)
*(separation_s.vector + 0) = coordinates[atomOne][0] - coordinates[atomTwo][0];
*(separation_s.vector + 1) = coordinates[atomOne][1] - coordinates[atomTwo][1];
*(separation_s.vector + 2) = coordinates[atomOne][2] - coordinates[atomTwo][2];
//Use the current length given by the interaction struct
separation_s.length = interaction->length;
radiusOne = radii[atomOne];
radiusTwo = radii[atomTwo];
squaredSeparation = separation_s.length*separation_s.length;
preFactor = electrostaticConstant*chargeProduct;
//The value of the exponent in the derivative
exponent = squaredSeparation/(4*radiusOne*radiusTwo);
exponent = exp(-exponent);
numerator = preFactor*exponent;
denominator = pow((squaredSeparation + exponent), 1.5);
f = numerator/denominator;
//The first atom term
*coefficient1 = f*(radiusTwo + squaredSeparation/(4*radiusOne));
//The second atom term
*coefficient2 = f*(radiusOne + squaredSeparation/(4*radiusTwo));
}
void AdGBEBornRadiusCoefficient(int atomOne, int atomTwo, double** coordinates, double* radii, double* charges, double* value)
{
double exponent, squaredSeparation, chargeProduct;
double radiusOne, radiusTwo;
double numerator, denominator, preFactor, f;
Vector3D separation_s;
chargeProduct = charges[atomOne]*charges[atomTwo];
//calculate seperation vector (r1 - r2)
*(separation_s.vector + 0) = coordinates[atomOne][0] - coordinates[atomTwo][0];
*(separation_s.vector + 1) = coordinates[atomOne][1] - coordinates[atomTwo][1];
*(separation_s.vector + 2) = coordinates[atomOne][2] - coordinates[atomTwo][2];
Ad3DVectorLengthSquared(&separation_s);
squaredSeparation = separation_s.length;
radiusOne = radii[atomOne];
radiusTwo = radii[atomTwo];
preFactor = electrostaticConstant*chargeProduct;
//The value of the exponent in the derivative
exponent = squaredSeparation/(4*radiusOne*radiusTwo);
exponent = exp(-exponent);
numerator = preFactor*exponent;
denominator = sqrt(squaredSeparation + exponent);
denominator = denominator*denominator*denominator;
f = numerator/denominator;
//The first atom term
*value = f*(radiusTwo + squaredSeparation/(4*radiusOne));
}
/*
Returns the solvation force acting on the atom i.e. the derivative of the atoms self-energy.
Note the derivative of the atoms born radius w.r.t. itself must have been previously calculated.
*/
void AdGBESelfDerivative(unsigned int atomIndex,
double bornRadius,
double charge,
Vector3D* radiusDerivative,
double** forces)
{
double factor;
factor = electrostaticConstant*charge*charge/(bornRadius*bornRadius);
//Update the forces
forces[atomIndex][0] += factor*radiusDerivative->vector[0];
forces[atomIndex][1] += factor*radiusDerivative->vector[1];
forces[atomIndex][2] += factor*radiusDerivative->vector[2];
}
|