File: AdVolumeFunctions.c

package info (click to toggle)
adun.app 0.81-15
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,384 kB
  • sloc: objc: 70,952; ansic: 6,668; yacc: 394; python: 75; cpp: 36; makefile: 33; xml: 15; awk: 3
file content (639 lines) | stat: -rw-r--r-- 19,090 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
 Project: AdunBase
 
 Copyright (C) 2008 Michael Johnston & Jordi Villa-Freixa
 
 Author: Michael Johnston
 
 This application is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.
 
 This application is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Library General Public License for more details.
 
 You should have received a copy of the GNU General Public
 License along with this library; if not, write to the Free
 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA.
 */

#include "AdVolumeFunctions.h"

static double smoothingLength;
static double smoothingConstantA;
static double smoothingConstantB;

/*
 Precalculates some global variables which can greatly speed up the calculation.
 This avoids a large number of power and reciprocal calcs.
 */
void AdInitialiseGBSmoothingVariables(double value)
{
	smoothingLength = value;
	smoothingConstantA = 3/(4*smoothingLength);
	smoothingConstantB = 1/(4*pow(smoothingLength, 3));	
}	

/*
 Calculates the contribution to the atomic exclusion function for a point a distance
 \e separation from an atom which has PB radius \e radius.
 */
 double AdAtomicVolumeExclusionFunction(double separation, double radius)
{ 
	double lower, upper, difference, value;
	
	lower = radius - smoothingLength;
	//If the atom is closer than the lower boundary return 0
	if(separation < lower)
		return 0;
	
	//If its further than the upper boundary return 1
	upper = radius + smoothingLength;
	if(separation > upper)
		return 1;
	else
	{	
		//Find how far the atom is from the boundary defined by the radius
		difference = separation - radius;
		value = 0.5 + smoothingConstantA*difference - smoothingConstantB*pow(difference, 3);
	}
	
	return value;
}

 double AdAtomicVolumeExclusionFunctionNew(double* atomPosition, 
		double* pointPosition, 
		double radius, 
		Vector3D* separation, 
		bool *partial, bool* overlap)
{ 
	double lower, upper, difference, value, length;
	double* vec;
	
	*partial = false;
	*overlap = false;
	vec = separation->vector;
	vec[0] = pointPosition[0] - atomPosition[0];
	vec[1] = pointPosition[1] - atomPosition[1];
	vec[2] = pointPosition[2] - atomPosition[2];
	
	//If its further than the sqrt(3)*(upper boundary) return 1
	//This is 1.5*(upperBoundary)
	upper = radius + smoothingLength;
	if((AdCartesianDistanceVectorCheck(separation, upper)) == 0)
		return 1;
	
	//First do quick check for exclusion
	//If its closer than sqrt(3)/2*(lowerBoundary) return 0
	//This is 0.866*(lowerBoundary).
	//We can't use lower as the distance since this function
	//will then return 1 if the point is closer than 1.5*lower.
	//However in this case the point could be greater than lower.
	lower = radius - smoothingLength;
	if((AdCartesianDistanceVectorCheck(separation, 0.5*lower)) == 1)
	{
		*overlap = true;
		return 0;
	}
		
	//If we are still in the function we have to calculate 
	//the actual separation
	Ad3DVectorLengthSquared(separation);
	length = separation->length;
	
	if(length > upper*upper)
		return 1;
	
	//If the atom is closer than the lower boundary return 0
	if(length < lower*lower)
	{
		*overlap = true;
		return 0;
	}
		
	length = sqrt(length);
	separation->length = length;
	//Find how far the atom is from the boundary defined by the radius
	difference = length - radius;
	value = 0.5 + difference*(smoothingConstantA - smoothingConstantB*difference*difference);
	
	*partial = true;
	
	return value;
}

/*
 Derivative of the atomic volume exclusion function of an atom with respect to the point where the function is
 being calculated. That is
 \f[
 \frac{ dH(|r - r_{a}|}{dr}
 \f]
 
 The is equivalent to the gradient of the function at the point. 
 This function is simply a wrapper to aid in simulating a mathematical sequence of events where the
 above quantity enters rather then grad(H(r)).
 
 This can be seen simply since 
 \f[
 \frac{ d(|r - r_{a}|}{dr} = d(|r - r_{a}|)(d (r - r_{a})
 \f]
 */
void AdAVEFunctionPositionDerivative(Vector3D* relativePosition, double radius, Vector3D* gradientVector)
{
	AdAtomicVolumeExclusionFunctionGradient(relativePosition, radius, gradientVector);
}

/*
 Derivative of the atomic volume exclusion function of an atom at a certain point with respect to the atoms position
 That is
 \f[
 \frac{ dH(|r - r_{a}|}{dr_{a}}
 \f] 
 
 This is actually -1*grad(H(r)).
 The gradient at the point is away from the center of the atom i.e. H(r) increases as r gets further away.
 The derivative at the atom points away from the point i.e. H(r) increases as the atom moves away from r.
 Both have the same magnitude.
 */
 void AdAVEFunctionAtomDerivative(Vector3D* relativePosition, double radius, Vector3D* gradientVector)
{	
	//The derivative w.r.t. to the position of the atom is the negative 
	//of the gradient of the exclusion function at the point. grad(H(|r_r|))
	AdAtomicVolumeExclusionFunctionGradient(relativePosition, radius, gradientVector);
	if(gradientVector->length != 0)
	{
		gradientVector->vector[0] *= -1;
		gradientVector->vector[1] *= -1;
		gradientVector->vector[2] *= -1;
	}
}

/*
 Returns the gradient of the atomic volume exclusion function at a point \e position from an atom.
 i.e the derivative w.r.t to the points position relative to the atom.
 */
 void AdAtomicVolumeExclusionFunctionGradient(Vector3D* relativePosition, double radius, Vector3D* gradient)
{
	int isZero = 0;
	double separation, difference, value;
	double* v1, *v2;
	
	separation = relativePosition->length;
	
	//If the atom is closer than the lower boundary the gradient is 0
	if(separation < (radius - smoothingLength))
		isZero = 1;
	else if(separation > (radius + smoothingLength))
		isZero = 1;
	
	v1 = gradient->vector;
	
	if(isZero == 1)
	{
		v1[0] = v1[1] = v1[2] = 0;
		gradient->length = 0;
	}
	else
	{	
		v2 = relativePosition->vector;
		//Find how far the atom is from the boundary defined by the radius
		difference = separation - radius;
		value = (smoothingConstantA - 3*smoothingConstantB*difference*difference)/separation;
		v1[0] = value*v2[0];
		v1[1] = value*v2[1];
		v1[2] = value*v2[2];
		//This is just to differentiate from 0.
		//We dont calculate the length to avoid unnecessary square roots
		gradient->length = 1;
	}
}

/*
 Calculates the value of the volume exclusion function at a point, r, due to the solute environment defined by \e coordinates and \e radii. 
 This function returns 0 if any atom completly overlaps the point; 
 1 if no atom overlaps the point in any way.
 Otherwise some intermediate value is returned expressing the level of overlap.
 The boundaries defining no-overlap and complete overlap are given by the smoothing length;
 
 The array \e neighbourIndexes contains the indexes of the atoms which are
 close enough to \e r to affect the calculation - if this is NULL all the atoms are used.
 That is the return value of AdAtomicVolumeExclusionFunction for these atoms is \e not
 likely to be 1.
 
 The atomic volume function depends on the definition of the point.
 Usually the point is determined relative to a certain atom, a. 
 Therefore the function depends on the position of a, and the position of all other atoms.
 */
 double AdVolumeExclusionFunction(Vector3D* r, AdMatrix* coordinates, int* neighbourIndexes, int numberNeighbours, double* radii)
{
	bool partial, overlap;
	int i, index;
	uintptr_t j;
	double retVal, value;
	Vector3D vector;	
	
	//If numberNeighbours is 0 then the volume exclusion function is 1.
	//i.e. no atoms overlap the point at all. It is completly in the solvent.
	if(numberNeighbours == 0)
		return 1.0;
	
	//If a neighbour array is passed used it.
	if(neighbourIndexes != NULL)
	{
		for(retVal = 1, i=0; i<numberNeighbours; i++)
		{
			index = neighbourIndexes[i];
			value = AdAtomicVolumeExclusionFunctionNew(coordinates->matrix[index], 
					r->vector, 
					radii[index],
					&vector, &partial, &overlap);				
					
			//Since the value of the exclusion function is a product of the 
			//atomic exclusion functions, if any of these are 0 then the total is also 0.
			//Thus we can break out of this loop if this happens.
			
			if(overlap)
			{
				retVal = 0;
				i = numberNeighbours;
				
			}
			else if(partial)
			{
				retVal *= value;
			}
		}
	}
	else
	{
		for(retVal = 1, j=0; j<coordinates->no_rows; j++)
		{
			value = AdAtomicVolumeExclusionFunctionNew(coordinates->matrix[j],
								   r->vector, 
								   radii[j],
								   &vector, &partial, &overlap);
		
			//Since the value of the exclusion function is a product of the atomic exclusion functions
			//If any of these are 0 then the total is also 0.
			//Thus we can break out of this loop if this happens.
			if(partial)
			{
				retVal *= value;
			}
			else if(overlap)
			{
				retVal = 0;
				break;
			}
		}
	}
	
	return retVal;
}

/**
Ad AdVolumeExclusionFunction but also returning the atoms that contribute the function that
aren't 0 or 1.
If the function is 0 the length of this array is 0.
*/
 double AdVolumeExclusionFunction2(Vector3D* r, AdMatrix* coordinates, 
		int* neighbourIndexes, int numberNeighbours, double* radii, IntArrayStruct* contributingAtoms)
{
	bool partial, overlap;
	int i, index, count;
	double retVal;
	double** matrix;
	Vector3D separation;	
	//Variables for manually d AdAtomicVolumeExclusionFunctionNew()
	double lower, upper, difference;
	double atomicExclusionValue, length, radius;
	double* atomPosition, *pointPosition;
	
	//If numberNeighbours is 0 then the volume exclusion function is 1.
	//i.e. no atoms overlap the point at all. It is completly in the solvent.
	if(numberNeighbours == 0)
		return 1.0;
	
	//Dereference the coordinates matrix;
	matrix = coordinates->matrix;
	pointPosition = r->vector;
	
	//If a neighbour array is passed used it.
	for(count = 0, retVal = 1, i=0; i<numberNeighbours; i++)
	{
		index = neighbourIndexes[i];
	
		/******* Manual Inline ************/
		
		atomPosition = matrix[index];
		radius = radii[index];
		
		separation.vector[0] = pointPosition[0] - atomPosition[0];
		separation.vector[1] = pointPosition[1] - atomPosition[1];
		separation.vector[2] = pointPosition[2] - atomPosition[2];
		
		partial = false;
		overlap = false;
		
		upper = radius + smoothingLength;
		if((AdCartesianDistanceVectorCheck(&separation, upper)) == 0)
		{
			atomicExclusionValue = 1;
		}
		else
		{	
			lower = radius - smoothingLength;
			if((AdCartesianDistanceVectorCheck(&separation, 0.5*lower)) == 1)
			{
				atomicExclusionValue = 0;
				overlap = true;
			}
			else
			{
				Ad3DVectorLengthSquared(&separation);
				length = separation.length;
				if(length > upper*upper)
				{
					atomicExclusionValue = 1;
				}
				else if(length < lower*lower)
				{
					atomicExclusionValue = 0;
					overlap = true;
				}
				else
				{	
					partial = true;
					length = sqrt(length);
					separation.length = length;
					difference = length - radius;
					atomicExclusionValue = 0.5 + difference*(smoothingConstantA - 
										 smoothingConstantB*difference*difference);
				}
			}
		}
		
		/****************************/		
		
		//Since the value of the exclusion function is a product of the 
		//atomic exclusion functions, if any of these are 0 then the total is also 0.
		//Thus we can break out of this loop if this happens.
		//Also no need to multiply if value is 1.
		
		if(overlap)
		{
			retVal = 0;
			i = numberNeighbours;
			count = 0;
		}
		else if(partial)
		{
			retVal *= atomicExclusionValue;
			contributingAtoms->array[count] = index;
			count++;
		}
	}
	
	contributingAtoms->length  = count;
	
	return retVal;
}

/*
 This is simply 1 - volume exclusion function at the point, r.
 */
 double AdVolumeFunction(Vector3D* r, AdMatrix* coordinates, int* neighbourIndexes, int numberNeighbours, double* radii)
{
	return 1 - AdVolumeExclusionFunction(r, coordinates, neighbourIndexes, numberNeighbours, radii);
}

/*
 The derivative of the volume function at point \e r with respect to the position of \e atom.
 In this case r is a function of the atom position r = r_1 + r_m (hence atom)
 */
 void AdVolumeFunctionAtomDerivative(unsigned int atomIndex, Vector3D* r, AdMatrix* coordinates, 
		IntArrayStruct* contributingAtoms, double exclusionValue, double* radii, Vector3D* gradientVector)
{
	int i, index, numberAtoms;
	uintptr_t* array;
	double atomicExclusionValue, holder;
	double **matrix;
	Vector3D vector, separation;
	//Variables for manually d AdAtomicVolumeExclusionFunctionNew()
	double lower, upper, difference;
	double length, radius;
	double* atomPosition, *pointPosition, *vec;

	numberAtoms = contributingAtoms->length;
	//If the numberNeighbours is 0 then the gradient is 0.
	if(numberAtoms == 0)
	{
		Ad3DVectorInit(gradientVector);
		return;
	}
		
	vec = gradientVector->vector;	
		
	//Loop over all the atoms that contribute to the volume exclusion function at the point.
	//Calculating the position derivative of each atom NOT including the atom the derivative is with respect too
	matrix = coordinates->matrix;
	array = contributingAtoms->array;
	for(i=0; i<numberAtoms; i++)
	{
		index = array[i];
		
		//Skip the atom this derivative is w.r.t
		if((unsigned int)index == atomIndex)
			continue;
		
		//Calculate the atomic exclusion function value for the current at the point.
		//As below the compiler will not  the AVEF function and calls to
		//are generating a massing overhead (25% of time in function) 
		//- so I have manually d it.
		
		/******* Manual Inline ************/
		
		atomPosition = matrix[index];
		pointPosition = r->vector;
		radius = radii[index];
		
		separation.vector[0] = pointPosition[0] - atomPosition[0];
		separation.vector[1] = pointPosition[1] - atomPosition[1];
		separation.vector[2] = pointPosition[2] - atomPosition[2];
		
		upper = radius + smoothingLength;
		if((AdCartesianDistanceVectorCheck(&separation, upper)) == 0)
		{
			atomicExclusionValue = 1;
		}
		else
		{	
			lower = radius - smoothingLength;
			if((AdCartesianDistanceVectorCheck(&separation, 0.5*lower)) == 1)
			{
				atomicExclusionValue = 0;
			}
			else
			{
				Ad3DVectorLengthSquared(&separation);
				length = separation.length;
				if(length > upper*upper)
				{
					atomicExclusionValue = 1;
				}
				else if(length < lower*lower)
				{
					atomicExclusionValue = 0;
				}
				else
				{	
					length = sqrt(length);
					separation.length = length;
					difference = length - radius;
					atomicExclusionValue = 0.5 + difference*(smoothingConstantA - 
								smoothingConstantB*difference*difference);
				}
			}
		}
		
		/****************************/
	
		//If the atomicExclusionValue is 0 for any atom
		//Then the volumeExclusionValue will be 0 and hence the
		//gradient will be zero.							  
		if(atomicExclusionValue < 1E-10)
		{
			Ad3DVectorInit(gradientVector);
			return;
		}
									  							  
		//For each atom, not including a, calculate the derivative of their
		//atomic volume exclusion function at the point with respect to the point
		//However if the atomicExclusionValue of the atom is 1 skip it
		//since its gradient will be zero.
		if(atomicExclusionValue < 1)
		{
			AdAVEFunctionPositionDerivative(&separation, radii[index], &vector);
		
			holder = 1/atomicExclusionValue;
			Ad3DVectorScalarMultiply(&vector, holder);
			vec[0] += vector.vector[0];
			vec[1] += vector.vector[1];
			vec[2] += vector.vector[2];
		}
	}
	
	//The minus changes this to volume function derivative.
	Ad3DVectorScalarMultiply(gradientVector, -exclusionValue);
}

/*
 The derivative of the volume function at point \e r with respect to the position of \e atom.
 In this case r is not a function of the position of \e atom and hence this is considered the position derivative.
 
 This only has a value if no atom completely overlaps this point AND if the point lies within
 the smoothing region of \e atom.
*/
 void AdVolumeFunctionPositionDerivative(unsigned int atom, Vector3D* r, AdMatrix* coordinates, 
		double volumeExclusionValue, double* radii, Vector3D* gradient)
{
	double atomicExclusionValue;
	double factor;
	Vector3D separation;
	
	//If the volumeExclusionValue is zero then the gradient is zero.
	//That is some other atom completely overlaps the point.
	if(volumeExclusionValue == 0)
	{
		Ad3DVectorInit(gradient);
		return;
	}
	
	//r_m is the relative position vector
	//Calculate the value of the AVE of atom at the point r
	//H(|r - r_1|)
	//NOTE: The compiler will not  AdAtomicVolumeExclusionFunctionNew
	//and since it is called very often this is generating a large overhead.
	//Hence its code is implemented directly here.
	//Looks slightly different due to inlining needs - check original for docs.
	
	/******* Manual Inline ************/
	
	double lower, upper, difference;
	double length, radius;
	double* atomPosition, *pointPosition;
	
	atomPosition = coordinates->matrix[atom];
	pointPosition = r->vector;
	radius = radii[atom];
	
	separation.vector[0] = pointPosition[0] - atomPosition[0];
	separation.vector[1] = pointPosition[1] - atomPosition[1];
	separation.vector[2] = pointPosition[2] - atomPosition[2];
	
	upper = radius + smoothingLength;
	if((AdCartesianDistanceVectorCheck(&separation, upper)) == 0)
	{
		atomicExclusionValue = 1;
	}
	else
	{	
		lower = radius - smoothingLength;
		if((AdCartesianDistanceVectorCheck(&separation, 0.5*lower)) == 1)
		{
			atomicExclusionValue = 0;
		}
		else
		{
			Ad3DVectorLengthSquared(&separation);
			length = separation.length;
			if(length > upper*upper)
			{
				atomicExclusionValue = 1;
			}
			else if(length < lower*lower)
			{
				atomicExclusionValue = 0;
			}
			else
			{	
				length = sqrt(length);
				separation.length = length;
				difference = length - radius;
				atomicExclusionValue = 0.5 + difference*(smoothingConstantA - 
							smoothingConstantB*difference*difference);
			}
		}
	}
		
	/****************************/
	
	//If the atomicExclusionValue is 1 OR 0 the gradient is 0 so
	//we can exit early.
	//That is this point does not lie in the smoothing region
	//of this atom.
	//Note we use direct comparison of doubles since we
	//are assured that exactly 1 or 0 will be returned in the
	//cases that the exclusion function has these values.
	if(atomicExclusionValue == 1 || atomicExclusionValue == 0)
	{
		Ad3DVectorInit(gradient);
		return;
	}
		
	//The derivative of the AVE of the atom at the point with respect to
	//the atom position. Note this could normally be zero, but if so
	//we would have exitied already.
	AdAVEFunctionAtomDerivative(&separation, radii[atom], gradient);
	
	//Factor is the exclusion function minus the contribution of \e atom.
	factor = volumeExclusionValue/atomicExclusionValue;
	
	//The final gradient magnitude is -factor*gradient.
	//The minus is because this is the volume function derivative NOT the volume exclusion function derivative
	Ad3DVectorScalarMultiply(gradient, -factor);
}