1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
// AESFix 1.0.1 (2008-07-18)
// By Nadia Heninger and J. Alex Halderman
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <vector>
using namespace std;
#ifdef __FreeBSD__
#include <err.h>
#else
#define err(x,y) { perror(y); exit(x); }
#endif
#include "aes.h"
#include "errvect.h"
#define ROUND_SIZE 16 // Bytes in an AES round
#define ROUNDS 11 // Rounds in an AES-128 key schedule
#define SCHED_LEN (ROUND_SIZE * ROUNDS) // Bytes in an AES-128 key schedule
#define SLICES 4 // Number of slices used in decoding
#define SLICE_SIZE 7 // Bytes per slice
// AES-128 key schedule
union Sched {
uint8_t byte[ROUNDS*ROUND_SIZE];
union {
union {
uint8_t byte[4];
uint32_t all;
} word[ROUND_SIZE/4];
} round[ROUNDS];
union {
uint8_t byte[4];
uint32_t all;
} word[ROUNDS*ROUND_SIZE/4];
};
// Key schedule slice used for decoding
union Slice {
uint8_t byte[SLICE_SIZE];
uint32_t word;
uint64_t qword;
};
typedef std::vector<Slice> SliceVector;
// Tests whether codeword could have decayed to vector via
// unidirectional bit decay of 1->0 (i.e. that all the bits in vector
// that are 1 are also 1 in codeword) and returns the opposite
inline bool InvalidDecay(uint64_t vector, uint64_t codeword) {
return codeword ^ (vector | codeword);
}
inline bool InvalidDecay(uint32_t vector, uint32_t codeword) {
return codeword ^ (vector | codeword);
}
inline bool InvalidDecay(uint8_t vector, uint8_t codeword) {
return codeword ^ (vector | codeword);
}
// Prints a key schedule
void PrintSched(Sched &sched) {
for (int r=0; r < ROUNDS; r++) {
for (int w=0; w < ROUND_SIZE/4; w++) {
for (int b=0; b < 4; b++)
printf("%02X", sched.round[r].word[w].byte[b]);
printf(" ");
}
printf("\n");
}
printf("\n");
}
// Places the necessary bytes back in the key schedule in slice-position s
// (it wouldn't hurt to do all the bytes, but this is faster)
void inline SmushSched(Sched &sched, Slice &slice, int s)
{
sched.word[3].byte[(s+1)&3] = slice.byte[3];
sched.word[4].byte[s] = slice.byte[4];
sched.word[5].byte[s] = slice.byte[5];
sched.word[6].byte[s] = slice.byte[6];
}
// Places bytes of round 0 back in the key schedule in slice-position s
void SmushKey(Sched &sched, Slice &slice, int s)
{
sched.word[0].byte[s] = slice.byte[0];
sched.word[1].byte[s] = slice.byte[1];
sched.word[2].byte[s] = slice.byte[2];
sched.word[3].byte[(s+1)&3] = slice.byte[3];
}
// Expands candidate key schedule and checks whether the original key
// schedule could have been formed from it by unidirectional bit decay
inline bool TestDecoding(Sched &original, Sched &candidate) {
candidate.round[1].word[3].all = candidate.round[1].word[2].all ^ candidate.round[0].word[3].all;
if (InvalidDecay(original.round[1].word[3].all, candidate.round[1].word[3].all))
return false;
for (int r = 2; r < ROUNDS; r++) {
candidate.round[r].word[0].byte[0] =
sbox[candidate.round[r-1].word[3].byte[1]] ^ candidate.round[r-1].word[0].byte[0] ^ rcon[r];
candidate.round[r].word[0].byte[1] = sbox[candidate.round[r-1].word[3].byte[2]] ^ candidate.round[r-1].word[0].byte[1];
candidate.round[r].word[0].byte[2] = sbox[candidate.round[r-1].word[3].byte[3]] ^ candidate.round[r-1].word[0].byte[2];
candidate.round[r].word[0].byte[3] = sbox[candidate.round[r-1].word[3].byte[0]] ^ candidate.round[r-1].word[0].byte[3];
if (InvalidDecay(original.round[r].word[0].all, candidate.round[r].word[0].all))
return false;
for (int w = 1; w < ROUND_SIZE/4; w++) {
candidate.round[r].word[w].all = candidate.round[r].word[w-1].all ^ candidate.round[r-1].word[w].all;
if (InvalidDecay(original.round[r].word[w].all, candidate.round[r].word[w].all))
return false;
}
}
return true;
}
// Expands slices a and b to form a single byte,
// round[1].word[3].byte[s], and returns true if it could not have
// decayed into the corresponding byte of the original key schedule.
// (This test is a performance optimization, and may be skipped.)
inline bool TestDecodeByte(Sched &original, int s, Slice &a, Slice &b) {
return InvalidDecay(original.round[1].word[3].byte[s], a.byte[6] ^ b.byte[3]);
}
// Tests all combinations of current decodings that have the slice
// cand in slice-position s; prints the corrected key schedule if
// a combination passes the test
void CombineDecodings(Sched &original,
SliceVector decodings[SLICES],
Slice &cand, int s) {
int a, b, c;
switch (s) {
case 0: a = 3; b = 2; c = 1; break;
case 1: a = 0; b = 3; c = 2; break;
case 2: a = 1; b = 0; c = 3; break;
default: a = 2; b = 1; c = 0;
}
Sched sched;
SmushSched(sched, cand, s);
SmushKey(sched, cand, s);
SliceVector &A = decodings[a];
SliceVector &B = decodings[b];
SliceVector &C = decodings[c];
for (int i=A.size()-1; i >= 0; i--) {
if (TestDecodeByte(original, s, cand, A[i])) continue;
SmushSched(sched, A[i], (s+3)&3);
for (int j=B.size()-1; j >= 0; j--) {
if (TestDecodeByte(original, (s+3)&3, A[i], B[j])) continue;
SmushSched(sched, B[j], (s+6)&3);
for (int k=C.size()-1; k >= 0; k--) {
if (TestDecodeByte(original, (s+6)&3, B[j], C[k])) continue;
if (TestDecodeByte(original, (s+9)&3, C[k], cand)) continue;
SmushSched(sched, C[k], (s+9)&3);
if (TestDecoding(original, sched)) {
SmushKey(sched, A[i], a);
SmushKey(sched, B[j], b);
SmushKey(sched, C[k], c);
fprintf(stderr, "\ncorrected key schedule:\n");
PrintSched(sched);
exit(1);
}
}
}
}
}
// Tests all combinations of current decodings with at least one
// element from newDecodings
void TryNewDecodings(Sched &original,
SliceVector oldDecodings[4],
SliceVector newDecodings[4]) {
long long unsigned int p1=1, p2=1;
for (int i=0; i < SLICES; i++) {
p1 *= oldDecodings[i].size() + newDecodings[i].size();
p2 *= oldDecodings[i].size();
}
fprintf(stderr, "%llu possibilities\n", p1-p2);
for (int s=0; s < SLICES; s++) {
for (unsigned int i=0; i < newDecodings[s].size(); i++) {
CombineDecodings(original, oldDecodings, newDecodings[s][i], s);
oldDecodings[s].push_back(newDecodings[s][i]);
}
}
}
// Expands the first 4 bytes of slice n into 7 bytes
void SliceExpand(Slice &s, int n)
{
s.byte[4] = sbox[s.byte[3]] ^ s.byte[0];
if (n == 0)
s.byte[4] ^= rcon[1];
s.byte[5] = s.byte[1] ^ s.byte[4];
s.byte[6] = s.byte[2] ^ s.byte[5];
}
// Generates all legal decodings for slices with a given weight
void DecodeSlices(Slice slice[SLICES], int weight,
SliceVector decodings[4])
{
fprintf(stderr, "decoding for weight %d ... ", weight);
for (int i=0; i < SLICES; i++) {
ErrorVectorUnique ev(weight, 32, slice[i].byte);
while (!ev.Done()) {
Slice code = slice[i];
ev.Apply(code.byte);
SliceExpand(code,i);
if (!InvalidDecay(slice[i].qword, code.qword))
decodings[i].push_back(code);
ev.Next();
}
}
fprintf(stderr, "%lu new slices ... ",
decodings[0].size() + decodings[1].size() +
decodings[2].size() + decodings[3].size());
}
// Slices a key schedule into 4 groups of 7 bytes, each of which is
// uniquely defined by its first 4 bytes
void SliceSched(Sched &sched, Slice slices[4])
{
for (int w=0; w < SLICE_SIZE; w++) {
slices[0].byte[w] = sched.word[w].byte[0];
slices[1].byte[w] = sched.word[w].byte[1];
slices[2].byte[w] = sched.word[w].byte[2];
slices[3].byte[w] = sched.word[w].byte[3];
}
slices[0].byte[3] = sched.word[3].byte[1];
slices[1].byte[3] = sched.word[3].byte[2];
slices[2].byte[3] = sched.word[3].byte[3];
slices[3].byte[3] = sched.word[3].byte[0];
}
// Returns a decoded byte from a file of hex values, ignoring whitespace
int GetHexByte(FILE *f) {
for (;;) {
char a[3];
if ((a[0] = fgetc(f)) == EOF)
break;
if ((a[0] >= '0' && a[0] <= '9') ||
(a[0] >= 'a' && a[0] <= 'f') ||
(a[0] >= 'A' && a[0] <= 'F')) {
if ((a[1] = fgetc(f)) == EOF)
break;
a[2] = '\0';
return strtol(a,NULL,16);
}
}
return EOF;
}
// Reads hex-encoded bytes of a key schedule from filename
// into sched (does not return on error)
void ReadSched(char *filename, Sched &sched) {
FILE *f = fopen(filename, "r");
if (!f)
err(1, "key schedule open failed");
for (int i=0; i < SCHED_LEN; i++) {
int c = GetHexByte(f);
if (c == EOF) {
fprintf(stderr, "error reading key schedule\n");
exit(1);
}
sched.byte[i] = c;
}
fclose(f);
}
void Usage() {
fprintf(stderr, "usage: aesfix SCHEDULE-FILE\n"
"Corrects bit errors in an AES key schedule "
"read from the specified hex-encoded file.\n\n");
}
int main(int argc, char *argv[]) {
if (argc != 2) {
Usage();
exit(1);
}
Sched sched;
ReadSched(argv[1], sched);
Slice slices[SLICES];
SliceSched(sched, slices);
SliceVector oldDecodings[SLICES];
for (int weight=0; weight < 32; weight++) {
SliceVector newDecodings[SLICES];
DecodeSlices(slices, weight, newDecodings);
TryNewDecodings(sched, oldDecodings, newDecodings);
}
return 0;
}
|