File: aff4_map_tests.cc

package info (click to toggle)
aff4 0.24.post1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,516 kB
  • sloc: sh: 11,655; cpp: 5,438; python: 2,834; makefile: 91
file content (245 lines) | stat: -rw-r--r-- 6,962 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <gtest/gtest.h>
#include <libaff4.h>
#include <unistd.h>
#include <glog/logging.h>

class AFF4MapTest: public ::testing::Test {
 protected:
  string filename = "/tmp/aff4_test.zip";
  string source_filename = "/tmp/source.txt";
  string image_name = "image.dd";

  URN volume_urn;
  URN image_urn;

  // Remove the file on teardown.
  virtual void TearDown() {
    unlink(filename.c_str());
    unlink(source_filename.c_str());
  }

  // Create a sparse AFF4Map stream with some data in it.
  virtual void SetUp() {
    MemoryDataStore resolver;

    URN filename_urn = URN::NewURNFromFilename(filename);

    // We are allowed to write on the output filename.
    resolver.Set(filename_urn, AFF4_STREAM_WRITE_MODE,
                 new XSDString("truncate"));

    // The backing file is given to the volume.
    AFF4ScopedPtr<ZipFile> zip = ZipFile::NewZipFile(
        &resolver, filename_urn);

    // Store the URN for the test to use.
    volume_urn = zip->urn;
    image_urn = volume_urn.Append(image_name);

    // Write Map image sequentially (Seek/Write method).
    {
      AFF4ScopedPtr<AFF4Map> image = AFF4Map::NewAFF4Map(
          &resolver, image_urn, zip->urn);

      // Maps are written in random order.
      image->Seek(50, SEEK_SET);
      image->Write("XX - This is the position.");

      image->Seek(0, SEEK_SET);
      image->Write("00 - This is the position.");

      // We can "overwrite" data by writing the same range again.
      image->Seek(50, SEEK_SET);
      image->Write("50");
    }

    // Test the Stream method.
    {
      // First create a stream and add it to the Cache.
      AFF4ScopedPtr<AFF4Stream> source = resolver.CachePut<AFF4Stream>(
          new StringIO(&resolver));

      // Fill it with data.
      source->Write("AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH");

      // Make a temporary map that defines our plan.
      AFF4Map helper_map(&resolver);

      helper_map.AddRange(4, 0, 4, source->urn);    // 0000AAAA
      helper_map.AddRange(0, 12, 4, source->urn);   // DDDDAAAA
      helper_map.AddRange(12, 16, 4, source->urn);  // DDDDAAAA0000EEEE

      AFF4ScopedPtr<AFF4Map> image = AFF4Map::NewAFF4Map(
          &resolver, image_urn.Append("streamed"), zip->urn);

      // Now we create the real map by copying the temporary map stream.
      image->WriteStream(&helper_map);
    }
  }
};


TEST_F(AFF4MapTest, TestAddRange) {
  MemoryDataStore resolver;
  vector<Range> ranges;
  URN filename_urn = URN::NewURNFromFilename(filename);

  // Load the zip file into the resolver.
  AFF4ScopedPtr<ZipFile> zip = ZipFile::NewZipFile(
      &resolver, filename_urn);

  ASSERT_TRUE(zip.get());

  AFF4ScopedPtr<AFF4Map> map = AFF4Map::NewAFF4Map(
      &resolver, volume_urn.Append(image_name), volume_urn);

  ASSERT_TRUE(map.get());

  // First test - overlapping regions:
  map->AddRange(0, 0, 100, "a");
  map->AddRange(10, 10, 100, "a");

  // Should be merged into a single range.
  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 1);
  EXPECT_EQ(ranges[0].length, 110);

  map->Clear();

  // Repeating regions - should not be merged but first region should be
  // truncated.
  map->AddRange(0, 0, 100, "a");
  map->AddRange(50, 0, 100, "a");

  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 2);
  EXPECT_EQ(ranges[0].length, 50);

  // Inserted region. Should split existing region into three.
  map->Clear();

  map->AddRange(0, 0, 100, "a");
  map->AddRange(50, 0, 10, "b");

  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 3);
  EXPECT_EQ(ranges[0].length, 50);
  EXPECT_EQ(ranges[0].target_id, 0);

  EXPECT_EQ(ranges[1].length, 10);
  EXPECT_EQ(ranges[1].target_id, 1);

  EXPECT_EQ(ranges[2].length, 40);
  EXPECT_EQ(ranges[2].target_id, 0);

  // New range overwrites all the old ranges.
  map->AddRange(0, 0, 100, "b");

  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 1);
  EXPECT_EQ(ranges[0].length, 100);
  EXPECT_EQ(ranges[0].target_id, 1);


  // Simulate writing contiguous regions. These should be merged into a single
  // region automatically.
  map->Clear();

  map->AddRange(0, 100, 10, "a");
  map->AddRange(10, 110, 10, "a");
  map->AddRange(20, 120, 10, "a");
  map->AddRange(30, 130, 10, "a");

  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 1);
  EXPECT_EQ(ranges[0].length, 40);
  EXPECT_EQ(ranges[0].target_id, 0);

  // Writing sparse image.
  map->Clear();

  map->AddRange(0, 100, 10, "a");
  map->AddRange(30, 130, 10, "a");

  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 2);
  EXPECT_EQ(ranges[0].length, 10);
  EXPECT_EQ(ranges[0].target_id, 0);
  EXPECT_EQ(ranges[1].length, 10);
  EXPECT_EQ(ranges[1].map_offset, 30);
  EXPECT_EQ(ranges[1].target_id, 0);

  // Now merge. Adding the missing region makes the image not sparse.
  map->AddRange(10, 110, 20, "a");
  ranges = map->GetRanges();
  EXPECT_EQ(ranges.size(), 1);
  EXPECT_EQ(ranges[0].length, 40);
}


TEST_F(AFF4MapTest, CreateMapStream) {
  MemoryDataStore resolver;
  URN filename_urn = URN::NewURNFromFilename(filename);

  // Load the zip file into the resolver.
  AFF4ScopedPtr<ZipFile> zip = ZipFile::NewZipFile(
      &resolver, filename_urn);

  ASSERT_TRUE(zip.get());

  {
    AFF4ScopedPtr<AFF4Map> map = resolver.AFF4FactoryOpen<AFF4Map>(image_urn);

    ASSERT_TRUE(map.get());

    map->Seek(50, SEEK_SET);
    EXPECT_STREQ(map->Read(2).c_str(), "50");

    map->Seek(0, SEEK_SET);
    EXPECT_STREQ(map->Read(2).c_str(), "00");

    vector<Range> ranges = map->GetRanges();
    EXPECT_EQ(ranges.size(), 3);
    EXPECT_EQ(ranges[0].length, 26);
    EXPECT_EQ(ranges[0].map_offset, 0);
    EXPECT_EQ(ranges[0].target_offset, 26);

    // This is the extra "overwritten" 2 bytes which were appended to the end of
    // the target stream and occupy the map range from 50-52.
    EXPECT_EQ(ranges[1].length, 2);
    EXPECT_EQ(ranges[1].map_offset, 50);
    EXPECT_EQ(ranges[1].target_offset, 52);

    EXPECT_EQ(ranges[2].length, 24);
    EXPECT_EQ(ranges[2].map_offset, 52);
    EXPECT_EQ(ranges[2].target_offset, 2);

    // Test that reads outside the ranges null pad correctly.
    map->Seek(48, SEEK_SET);
    string read_string = map->Read(4);
    EXPECT_EQ(read_string[0], 0);
    EXPECT_EQ(read_string[1], 0);
    EXPECT_EQ(read_string[2], '5');
    EXPECT_EQ(read_string[3], '0');
  }

  // Test the streaming interface.
  {
    AFF4ScopedPtr<AFF4Map> map = resolver.AFF4FactoryOpen<AFF4Map>(
        image_urn.Append("streamed"));

    EXPECT_EQ(map->Size(), 16);

    string read_string = map->Read(1000);
    EXPECT_EQ(read_string, string("DDDDAAAA\0\0\0\0EEEE", 16));
  }

  // Check the untransformed data stream - it is written in the same order as
  // the ranges are given.
  {
    AFF4ScopedPtr<AFF4Stream> map_data = resolver.AFF4FactoryOpen<AFF4Stream>(
        image_urn.Append("streamed").Append("data"));
    string read_string = map_data->Read(1000);
    EXPECT_STREQ(read_string.c_str(), "DDDDAAAAEEEE");
  }
}