1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
#include <gtest/gtest.h>
#include <libaff4.h>
#include <unistd.h>
#include <glog/logging.h>
class AFF4MapTest: public ::testing::Test {
protected:
string filename = "/tmp/aff4_test.zip";
string source_filename = "/tmp/source.txt";
string image_name = "image.dd";
URN volume_urn;
URN image_urn;
// Remove the file on teardown.
virtual void TearDown() {
unlink(filename.c_str());
unlink(source_filename.c_str());
}
// Create a sparse AFF4Map stream with some data in it.
virtual void SetUp() {
MemoryDataStore resolver;
URN filename_urn = URN::NewURNFromFilename(filename);
// We are allowed to write on the output filename.
resolver.Set(filename_urn, AFF4_STREAM_WRITE_MODE,
new XSDString("truncate"));
// The backing file is given to the volume.
AFF4ScopedPtr<ZipFile> zip = ZipFile::NewZipFile(
&resolver, filename_urn);
// Store the URN for the test to use.
volume_urn = zip->urn;
image_urn = volume_urn.Append(image_name);
// Write Map image sequentially (Seek/Write method).
{
AFF4ScopedPtr<AFF4Map> image = AFF4Map::NewAFF4Map(
&resolver, image_urn, zip->urn);
// Maps are written in random order.
image->Seek(50, SEEK_SET);
image->Write("XX - This is the position.");
image->Seek(0, SEEK_SET);
image->Write("00 - This is the position.");
// We can "overwrite" data by writing the same range again.
image->Seek(50, SEEK_SET);
image->Write("50");
}
// Test the Stream method.
{
// First create a stream and add it to the Cache.
AFF4ScopedPtr<AFF4Stream> source = resolver.CachePut<AFF4Stream>(
new StringIO(&resolver));
// Fill it with data.
source->Write("AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH");
// Make a temporary map that defines our plan.
AFF4Map helper_map(&resolver);
helper_map.AddRange(4, 0, 4, source->urn); // 0000AAAA
helper_map.AddRange(0, 12, 4, source->urn); // DDDDAAAA
helper_map.AddRange(12, 16, 4, source->urn); // DDDDAAAA0000EEEE
AFF4ScopedPtr<AFF4Map> image = AFF4Map::NewAFF4Map(
&resolver, image_urn.Append("streamed"), zip->urn);
// Now we create the real map by copying the temporary map stream.
image->WriteStream(&helper_map);
}
}
};
TEST_F(AFF4MapTest, TestAddRange) {
MemoryDataStore resolver;
vector<Range> ranges;
URN filename_urn = URN::NewURNFromFilename(filename);
// Load the zip file into the resolver.
AFF4ScopedPtr<ZipFile> zip = ZipFile::NewZipFile(
&resolver, filename_urn);
ASSERT_TRUE(zip.get());
AFF4ScopedPtr<AFF4Map> map = AFF4Map::NewAFF4Map(
&resolver, volume_urn.Append(image_name), volume_urn);
ASSERT_TRUE(map.get());
// First test - overlapping regions:
map->AddRange(0, 0, 100, "a");
map->AddRange(10, 10, 100, "a");
// Should be merged into a single range.
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 1);
EXPECT_EQ(ranges[0].length, 110);
map->Clear();
// Repeating regions - should not be merged but first region should be
// truncated.
map->AddRange(0, 0, 100, "a");
map->AddRange(50, 0, 100, "a");
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 2);
EXPECT_EQ(ranges[0].length, 50);
// Inserted region. Should split existing region into three.
map->Clear();
map->AddRange(0, 0, 100, "a");
map->AddRange(50, 0, 10, "b");
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 3);
EXPECT_EQ(ranges[0].length, 50);
EXPECT_EQ(ranges[0].target_id, 0);
EXPECT_EQ(ranges[1].length, 10);
EXPECT_EQ(ranges[1].target_id, 1);
EXPECT_EQ(ranges[2].length, 40);
EXPECT_EQ(ranges[2].target_id, 0);
// New range overwrites all the old ranges.
map->AddRange(0, 0, 100, "b");
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 1);
EXPECT_EQ(ranges[0].length, 100);
EXPECT_EQ(ranges[0].target_id, 1);
// Simulate writing contiguous regions. These should be merged into a single
// region automatically.
map->Clear();
map->AddRange(0, 100, 10, "a");
map->AddRange(10, 110, 10, "a");
map->AddRange(20, 120, 10, "a");
map->AddRange(30, 130, 10, "a");
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 1);
EXPECT_EQ(ranges[0].length, 40);
EXPECT_EQ(ranges[0].target_id, 0);
// Writing sparse image.
map->Clear();
map->AddRange(0, 100, 10, "a");
map->AddRange(30, 130, 10, "a");
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 2);
EXPECT_EQ(ranges[0].length, 10);
EXPECT_EQ(ranges[0].target_id, 0);
EXPECT_EQ(ranges[1].length, 10);
EXPECT_EQ(ranges[1].map_offset, 30);
EXPECT_EQ(ranges[1].target_id, 0);
// Now merge. Adding the missing region makes the image not sparse.
map->AddRange(10, 110, 20, "a");
ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 1);
EXPECT_EQ(ranges[0].length, 40);
}
TEST_F(AFF4MapTest, CreateMapStream) {
MemoryDataStore resolver;
URN filename_urn = URN::NewURNFromFilename(filename);
// Load the zip file into the resolver.
AFF4ScopedPtr<ZipFile> zip = ZipFile::NewZipFile(
&resolver, filename_urn);
ASSERT_TRUE(zip.get());
{
AFF4ScopedPtr<AFF4Map> map = resolver.AFF4FactoryOpen<AFF4Map>(image_urn);
ASSERT_TRUE(map.get());
map->Seek(50, SEEK_SET);
EXPECT_STREQ(map->Read(2).c_str(), "50");
map->Seek(0, SEEK_SET);
EXPECT_STREQ(map->Read(2).c_str(), "00");
vector<Range> ranges = map->GetRanges();
EXPECT_EQ(ranges.size(), 3);
EXPECT_EQ(ranges[0].length, 26);
EXPECT_EQ(ranges[0].map_offset, 0);
EXPECT_EQ(ranges[0].target_offset, 26);
// This is the extra "overwritten" 2 bytes which were appended to the end of
// the target stream and occupy the map range from 50-52.
EXPECT_EQ(ranges[1].length, 2);
EXPECT_EQ(ranges[1].map_offset, 50);
EXPECT_EQ(ranges[1].target_offset, 52);
EXPECT_EQ(ranges[2].length, 24);
EXPECT_EQ(ranges[2].map_offset, 52);
EXPECT_EQ(ranges[2].target_offset, 2);
// Test that reads outside the ranges null pad correctly.
map->Seek(48, SEEK_SET);
string read_string = map->Read(4);
EXPECT_EQ(read_string[0], 0);
EXPECT_EQ(read_string[1], 0);
EXPECT_EQ(read_string[2], '5');
EXPECT_EQ(read_string[3], '0');
}
// Test the streaming interface.
{
AFF4ScopedPtr<AFF4Map> map = resolver.AFF4FactoryOpen<AFF4Map>(
image_urn.Append("streamed"));
EXPECT_EQ(map->Size(), 16);
string read_string = map->Read(1000);
EXPECT_EQ(read_string, string("DDDDAAAA\0\0\0\0EEEE", 16));
}
// Check the untransformed data stream - it is written in the same order as
// the ranges are given.
{
AFF4ScopedPtr<AFF4Stream> map_data = resolver.AFF4FactoryOpen<AFF4Stream>(
image_urn.Append("streamed").Append("data"));
string read_string = map_data->Read(1000);
EXPECT_STREQ(read_string.c_str(), "DDDDAAAAEEEE");
}
}
|