1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
|
/*
* This file is a work of a US government employee and as such is in the Public domain.
* Simson L. Garfinkel, March 12, 2012
*/
#include "affconfig.h"
#include "afflib.h"
#include "afflib_i.h"
#include "utils.h"
#ifdef HAVE_OPENSSL_PEM_H
#include <openssl/pem.h>
#include <openssl/bio.h>
#endif
#ifdef HAVE_STL
#include <vector>
#include <set>
#include <string>
using namespace std;
#endif
#ifdef HAVE_CSTRING
#include <cstring>
#endif
/* Support OpenSSL before 1.1.0 */
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
#define EVP_MD_CTX_new EVP_MD_CTX_create
#define EVP_MD_CTX_free EVP_MD_CTX_destroy
#endif
/****************************************************************
*** LOW LEVEL ROUTINES
****************************************************************/
/**
* Returns TRUE if the segment named 'buf' has the suffixi indicating
* that it is an encrypted segment.
*/
int af_is_encrypted_segment(const char *segname){
if(strcmp(segname,AF_AFFKEY)==0) return 1;
if(aff::ends_with(segname,AF_AES256_SUFFIX)) return 1;
if(strncmp(segname,AF_AFFKEY_EVP,strlen(AF_AFFKEY_EVP)-1)==0) return 1;
return 0;
}
/**
* Returns TRUE if the segment named 'buf' has the suffix indicating
* that it is a signature segment.
*
* @param segname - segment to check
*/
int af_is_signature_segment(const char *segname){
int num = 0;
char cc;
if(aff::ends_with(segname,AF_SIG256_SUFFIX)) return 1;
if(sscanf(segname,"affbom%d%c",&num,&cc)==1) return 1; // it's a bom segment
return 0;
}
/****************************************************************
*** AES ENCRYPTION LAYER
****************************************************************/
static const char *aff_cannot_sign = "AFFLIB: OpenSSL does not have SHA256! "\
"AFF segments cannot be signed. "\
"See http://www.afflib.org/requirements.php for additional information.";
void af_crypto_allocate(AFFILE *af)
{
af->crypto = (struct af_crypto *)calloc(sizeof(struct af_crypto),1); // give space
}
/** compute SHA256.
* Return 0 if success, -1 if error.
*/
int af_SHA256(const unsigned char *data,size_t datalen,unsigned char md[32])
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256) return -1;
uint32_t sha256_buflen = 32;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
EVP_DigestInit(ctx,sha256);
EVP_DigestUpdate(ctx,data,datalen);
if(EVP_DigestFinal(ctx,md,&sha256_buflen)!=1){ // EVP_DigestFinal returns 1 for success
EVP_MD_CTX_free(ctx);
return -1;
}
EVP_MD_CTX_free(ctx);
return 0;
}
void af_crypto_deallocate(AFFILE *af)
{
#ifdef AES_BLOCK_SIZE
memset(&af->crypto->ekey,0,sizeof(af->crypto->ekey));
memset(&af->crypto->dkey,0,sizeof(af->crypto->dkey));
#endif
#ifdef HAVE_PEM_READ_BIO_RSA_PUBKEY
if(af->crypto->sign_privkey){
EVP_PKEY_free(af->crypto->sign_privkey);
af->crypto->sign_privkey = 0;
}
if(af->crypto->sign_pubkey){
EVP_PKEY_free(af->crypto->sign_pubkey);
af->crypto->sign_pubkey = 0;
}
if(af->crypto->sign_cert){
X509_free(af->crypto->sign_cert);
af->crypto->sign_cert = 0;
}
#endif
free(af->crypto);
af->crypto = 0;
}
int af_set_aes_key(AFFILE *af,const unsigned char *userKey,const int bits)
{
#ifdef HAVE_AES_ENCRYPT
if(af->crypto->sealing_key_set){
if(userKey==0){ // key was set and it is being cleared
af->crypto->sealing_key_set = 0;
return 0;
}
return AF_ERROR_KEY_SET; // key is already set
}
int r;
r = AES_set_encrypt_key(userKey,bits,&af->crypto->ekey);
if(r) return r;
r = AES_set_decrypt_key(userKey,bits,&af->crypto->dkey);
if(r) return r;
af->crypto->sealing_key_set = 1;
af->crypto->auto_encrypt = 1; // default
af->crypto->auto_decrypt = 1; // default
af_invalidate_vni_cache(af); // invalidate the cache, because now we can read encrypted values
return 0;
#else
return AF_ERROR_NO_AES;
#endif
}
/**
* Take an unencrypted AFFKEY, encrypt it with the SHA256 of the passphrase,
* and save it in the appropriate segment.
*/
int af_save_aes_key_with_passphrase(AFFILE *af,const char *passphrase, const u_char affkey[32])
{
#if defined(HAVE_AES_ENCRYPT)
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
/* Make an encrypted copy of the AFFkey */
unsigned char passphrase_hash[32];
af_SHA256((const unsigned char *)passphrase, strlen(passphrase), passphrase_hash);
struct affkey affkey_seg;
assert(sizeof(affkey_seg)==AFFKEY_SIZE);
memset((unsigned char *)&affkey_seg,0,sizeof(affkey_seg));
uint32_t version_number = htonl(1); // version 1
memcpy(affkey_seg.version,(u_char *)&version_number,4);
memcpy(affkey_seg.affkey_aes256,affkey,32);
/* Use the hash to encrypt the key and all zeros */
AES_KEY ekey;
AES_set_encrypt_key(passphrase_hash,256,&ekey);
AES_encrypt(affkey_seg.affkey_aes256,
affkey_seg.affkey_aes256,&ekey);
AES_encrypt(affkey_seg.affkey_aes256+AES_BLOCK_SIZE,
affkey_seg.affkey_aes256+AES_BLOCK_SIZE,&ekey);
AES_encrypt(affkey_seg.zeros_aes256,affkey_seg.zeros_aes256,&ekey);
/* Write this to a segment */
if(af_update_seg(af,AF_AFFKEY,0,(const u_char *)&affkey_seg,sizeof(affkey_seg))) return -1;
memset((unsigned char *)&affkey_seg,0,sizeof(affkey_seg)); // erase the temp data
return 0;
#endif
#if !defined(HAVE_AES_ENCRYPT)
return AF_ERROR_NO_AES;
#endif
}
/** MacOS 10.5 with GCC 4.0.1 packed affkey at 52 bytes.
** Linux GCC 4.1.2 packed affkey at 56 bytes. It should be 52 bytes
** --- 4 bytes for the version number, 32 bytes for the affkey, 16 bytes for encryption of zeros.
** original code specified the version as uint32_t version:32, for which the
** compiler allocated 64 bits...
** So this code needs to be willing to accept a 52-byte or 56-byte affkey.
**/
/* Legacy - this version of the structure was improperly used in AFFLIB prior to
* 3.1.6. Unfortunately, the structure didn't pack properly, resulting in some images
* in which the affkey structure was too large.
*/
struct affkey_legacy {
uint32_t version:32;
u_char affkey_aes256[32]; // AFF key encrypted with SHA-256 of passphrase
// encrypted as two codebooks in a row; no need for CBC
u_char zeros_aes256[16]; // all zeros encrypted with SHA-256 of passphrase
};
int af_get_aes_key_from_passphrase(AFFILE *af,const char *passphrase,
unsigned char affkey[32])
{
#if defined(HAVE_AES_ENCRYPT)
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
/* Get the segment with the key in it. It should be AFFKEY_SIZE
* but there are a few images out there with the wrong key size due
* to a compiler packing bug. Automatically handle those.
*/
struct affkey affkey_seg; // in-memory copy
u_char kbuf[1024];
size_t klen=sizeof(kbuf);
uint32_t version;
int kversion=0;
/* Try to get the segment */
if(af_get_seg(af,AF_AFFKEY,0,kbuf,&klen)) return AF_ERROR_AFFKEY_NOT_EXIST;
if(sizeof(affkey_seg)==klen){
// On-disk structure is correct; copy it over
memcpy(&affkey_seg,kbuf,klen);
memcpy((char *)&version,affkey_seg.version,4);
kversion = ntohl(version);
} else {
// Try to figure it out manually
memcpy((char *)&version,kbuf,4);
kversion = ntohl(version);
memcpy(affkey_seg.affkey_aes256,kbuf+4,sizeof(affkey_seg.affkey_aes256));
memcpy(affkey_seg.zeros_aes256,kbuf+36,sizeof(affkey_seg.zeros_aes256));
}
/* make sure version is correct */
if(kversion != 1){
errno = EINVAL;
return AF_ERROR_AFFKEY_WRONG_VERSION;
}
/* hash the passphrase */
unsigned char passphrase_hash[32];
if(af_SHA256((const unsigned char *)passphrase,strlen(passphrase), passphrase_hash)){
return AF_ERROR_NO_SHA256;
}
/* Try to decrypt the key */
AES_KEY dkey;
AES_set_decrypt_key(passphrase_hash,256,&dkey);
AES_decrypt(affkey_seg.affkey_aes256,
affkey_seg.affkey_aes256,&dkey);
AES_decrypt(affkey_seg.affkey_aes256+AES_BLOCK_SIZE,
affkey_seg.affkey_aes256+AES_BLOCK_SIZE,&dkey);
AES_decrypt(affkey_seg.zeros_aes256,affkey_seg.zeros_aes256,&dkey);
/* See if its zero? */
for(u_int i=0;i<sizeof(affkey_seg.zeros_aes256);i++){
if(affkey_seg.zeros_aes256[i]) return AF_ERROR_WRONG_PASSPHRASE;
}
memcpy(affkey,affkey_seg.affkey_aes256,32); /* copy out the result */
memset((unsigned char *)&affkey_seg,0,sizeof(affkey_seg)); // erase the temp data
return 0;
#endif
#if !defined(HAVE_AES_ENCRYPT)
return AF_ERROR_NO_AES;
#endif
}
/**
* make a random affkey and encrypt it with passphrase.
*/
int af_establish_aes_passphrase(AFFILE *af,const char *passphrase)
{
#ifdef HAVE_AES_ENCRYPT
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
/* Can only establish a passphrase if the encryption segment doesn't exist */
if(af_get_seg(af,AF_AFFKEY,0,0,0)==0) return AF_ERROR_AFFKEY_EXISTS;
/* Check to make sure it wasn't public key encrypted */
char segname[AF_MAX_NAME_LEN];
snprintf(segname,sizeof(segname),AF_AFFKEY_EVP,0);
if(af_get_seg(af,segname,0,0,0)==0) return AF_ERROR_AFFKEY_EXISTS;
/* Okay; make a random key and encrypt it with the passphrase */
unsigned char affkey[32];
int r = RAND_bytes(affkey,sizeof(affkey)); // makes a random key; with REAL random bytes
if(r!=1) return AF_ERROR_RNG_FAIL; // pretty bad...
/* I have the key, now save it */
r = af_save_aes_key_with_passphrase(af,passphrase,affkey);
memset(affkey,0,sizeof(affkey)); /* Erase the encryption key in memory */
return r;
#else
return AF_ERROR_NO_AES;
#endif
}
/** Like the one above, this public interface actually wipes the key after it is created.
* @param passphrase - Passphrae, use NULL to erase the encryption key.
* This can only be done if the file is opened read-only.
*/
int af_use_aes_passphrase(AFFILE *af,const char *passphrase)
{
af_invalidate_vni_cache(af);
if(passphrase==0 && !(af->openflags & O_RDWR)){
af->crypto->sealing_key_set = 0;
return 0;
}
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
unsigned char affkey[32];
int r = af_get_aes_key_from_passphrase(af,passphrase,affkey);
if(r) return r; // wrong keyphrase
r = af_set_aes_key(af,affkey,256); /* Set the encryption key */
memset(affkey,0,sizeof(affkey)); /* Erase the encryption key in memory */
return r;
}
/* gets the key with the old phrase and then changes it to the new one */
int af_change_aes_passphrase(AFFILE *af,const char *oldphrase,const char *newphrase)
{
if(af->crypto->sealing_key_set) return AF_ERROR_KEY_SET; // already enabled
unsigned char affkey[32];
int r = af_get_aes_key_from_passphrase(af,oldphrase,affkey);
if(r) return r;
r = af_save_aes_key_with_passphrase(af,newphrase,affkey);
memset(affkey,0,sizeof(affkey)); // erase the temp data
return r;
}
int af_has_encrypted_segments(AFFILE *af)
{
struct af_vnode_info vni;
af_vstat(af,&vni);
return vni.segment_count_encrypted>0;
}
/**
* Returns true if there are segments that cannot be decrypted
* (other than key segments)
*/
int af_cannot_decrypt(AFFILE *af){
if(af_has_encrypted_segments(af)==0) return 0; // no encrypted segments to decrypt
/* Now start at the beginning and see if any segments are read which are encrypted.
* If they are encrypted, then we don't have the encryption key.
*/
if(af_rewind_seg(af)) return -1;
char segname[AF_MAX_NAME_LEN];
memset(segname,0,sizeof(segname));
while(af_get_next_seg(af,segname,sizeof(segname),0,0,0)==0){
if(aff::ends_with(segname,AF_AES256_SUFFIX)) return 1; // we shouldn't see these.
}
return 0;
}
/****************************************************************
***
*** Signature Routines
***
****************************************************************/
/** See if the public key and private key match by dial a trial encryption and decryption.
*
* @param pubkey
* @param privkey
* @returns 0 if successful, -1 if failure.
*/
static int check_keys(EVP_PKEY *privkey,EVP_PKEY *pubkey)
{
char ptext[16]; /* plaintext of a 128-bit message */
unsigned char sig[1024]; /* signature; bigger than needed */
uint32_t siglen = sizeof(sig); /* length of signature */
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256) return -1; // no SHA256.
EVP_MD_CTX *md = EVP_MD_CTX_new(); /* EVP message digest */
/* make the plaintext message */
memset(ptext,0,sizeof(ptext));
strcpy(ptext,"Test Message");
EVP_SignInit(md,sha256);
EVP_SignUpdate(md,ptext,sizeof(ptext));
EVP_SignFinal(md,sig,&siglen,privkey);
/* Verify the message */
EVP_VerifyInit(md,sha256);
EVP_VerifyUpdate(md,ptext,sizeof(ptext));
if(EVP_VerifyFinal(md,sig,siglen,pubkey)!=1){
EVP_MD_CTX_free(md);
return -3;
}
EVP_MD_CTX_free(md);
return 0;
}
/**
* af_set_sign_files:
*
* Load the private key & certificate, make sure they are matched, and
* write to the AFF. This requirest not just AES256, but EVP_SHA256
* because we use the openSSL signature functions.
*
* @param af - The open AFFILE
* @param keyfile - The filename of the key file to read
* @param certfile - The filename of the certificate file to read
*/
int af_set_sign_files(AFFILE *af,const char *keyfile,const char *certfile)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
BIO *bp = BIO_new_file(keyfile,"r");
if(!bp) return -1;
af->crypto->sign_privkey = PEM_read_bio_PrivateKey(bp,0,0,NULL);
BIO_free(bp);
if(!af->crypto->sign_privkey) return -2; // can't decode keyfile
bp = BIO_new_file(certfile,"r");
if(!bp) return -1;
PEM_read_bio_X509(bp,&af->crypto->sign_cert,0,0);
if(af->crypto->sign_cert==0){
EVP_PKEY_free(af->crypto->sign_privkey);
af->crypto->sign_privkey = 0;
return -3;
}
af->crypto->sign_pubkey = X509_get_pubkey(af->crypto->sign_cert);
BIO_free(bp);
if(check_keys(af->crypto->sign_privkey,af->crypto->sign_pubkey)){
/* private key doesn't match certificate */
EVP_PKEY_free(af->crypto->sign_privkey); af->crypto->sign_privkey = 0;
EVP_PKEY_free(af->crypto->sign_pubkey); af->crypto->sign_pubkey = 0;
return -4;
}
/* Looks good; save the cert in a segment */
BIO *xbp = BIO_new(BIO_s_mem()); // where we are writing
PEM_write_bio_X509(xbp,af->crypto->sign_cert);
af_update_seg_frombio(af,AF_SIGN256_CERT,0,xbp);
BIO_free(xbp);
return 0;
}
/* Sign the segment with the signing key. Signatures are calculated
* by taking the SHA256 of the following concatenated together:
* segment name
* segment arg (in network byte order)
* segment data
*/
int af_sign_seg3(AFFILE *af,const char *segname,
uint32_t arg,const unsigned char *data,uint32_t datalen,
uint32_t signmode)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
if(af->crypto->sign_privkey==0) return -1; // can't sign; no signing key
if(strlen(segname)+strlen(AF_SIG256_SUFFIX)+1 > AF_MAX_NAME_LEN) return -1; // too long
char signed_segname[AF_MAX_NAME_LEN];
strlcpy(signed_segname,segname,AF_MAX_NAME_LEN);
strlcat(signed_segname,AF_SIG256_SUFFIX,AF_MAX_NAME_LEN);
if(signmode==AF_SIGNATURE_DELETE){
af_del_seg(af,signed_segname);
return 0;
}
uint32_t arg_net = htonl(arg);
unsigned char sig[1024]; /* signature; bigger than needed */
uint32_t siglen = sizeof(sig); /* length of signature */
EVP_MD_CTX *md = EVP_MD_CTX_new(); /* EVP message digest */
EVP_SignInit(md,sha256);
EVP_SignUpdate(md,(const unsigned char *)segname,strlen(segname)+1);
EVP_SignUpdate(md,(const unsigned char *)&arg_net,sizeof(arg_net));
EVP_SignUpdate(md,data,datalen);
EVP_SignFinal(md,sig,&siglen,af->crypto->sign_privkey);
EVP_MD_CTX_free(md);
return (*af->v->update_seg)(af,signed_segname,signmode,sig,siglen);
}
int af_sign_seg(AFFILE *af,const char *segname)
{
size_t datalen = 0;
/* Now get the data to verify */
if(af_get_seg(af,segname,0,0,&datalen)){
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Now read the segment */
unsigned char *data=(unsigned char *)malloc(datalen);
if(data==0) return AF_ERROR_SIG_MALLOC;
uint32_t arg=0;
if(af_get_seg(af,segname,&arg,data,&datalen)){
free(data);
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Note: it woudl be wrong to detect pages and sign them in mode1, because we don't really
* have access to the uncompressed data...
*/
int r = af_sign_seg3(af,segname,arg,data,datalen,AF_SIGNATURE_MODE0);
free(data);
return r;
}
#ifdef HAVE_STL
/** Returns number of segments that were signed.
* Returns -1 if there is an error.
*/
int af_sign_all_unsigned_segments(AFFILE *af)
{
vector<string> segs;
set<string>sigs;
char name[AF_MAX_NAME_LEN];
int count=0;
/* Get a list of all the segments and all the signatures */
if(af_rewind_seg(af)) return -1;
while(af_get_next_seg(af,name,sizeof(name),0,0,0)==0){
if(name[0]==0) continue; // don't sign the empty segments
if(aff::ends_with(name,AF_SIG256_SUFFIX)==0){
segs.push_back(name);
}
else{
sigs.insert(name);
}
}
/* Sign the ones that are unsigned. */
for(vector<string>::const_iterator s = segs.begin();
s != segs.end();
s++){
/* Compute name of the signature */
string signame = *s + AF_SIG256_SUFFIX;
if(sigs.find(signame) == sigs.end()){
if(af_sign_seg(af,s->c_str())){
(*af->error_reporter)("AFFLIB: Could not sign segment '%s'",s->c_str());
return -1;
}
count++;
}
}
return count;
}
#endif
/* Verify a segment against a particular signature and public key */
int af_hash_verify_seg2(AFFILE *af,const char *segname,u_char *sigbuf_,size_t sigbuf_len_,int sigmode)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
/* Now get the data to verify */
size_t seglen = 0;
unsigned char *segbuf = 0;
uint32_t arg=0;
/* Do we need to get the page */
if(sigmode==AF_SIGNATURE_MODE1){
int64_t pagenumber = af_segname_page_number(segname);
if(pagenumber>=0){
seglen = af_page_size(af);
segbuf = (unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_page(af,pagenumber,segbuf,&seglen)){
free(segbuf);
return -1;
}
}
}
if(segbuf==0){ // get the raw segment
if(af_get_seg(af,segname,0,0,&seglen)){
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Now read the segment */
segbuf=(unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_seg(af,segname,&arg,segbuf,&seglen)){
free(segbuf);
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
}
/* Verify the signature*/
uint8_t sigbuf[1024];
uint32_t sigbuf_len = sizeof(sigbuf);
uint32_t arg_net = htonl(arg);
EVP_MD_CTX *md = EVP_MD_CTX_new(); /* EVP message digest */
EVP_DigestInit(md,sha256);
EVP_DigestUpdate(md,(const unsigned char *)segname,strlen(segname)+1);
EVP_DigestUpdate(md,(const unsigned char *)&arg_net,sizeof(arg_net));
EVP_DigestUpdate(md,segbuf,seglen);
EVP_DigestFinal(md,sigbuf,&sigbuf_len);
EVP_MD_CTX_free(md);
int r = memcmp(sigbuf,sigbuf_,sigbuf_len);
if(sigbuf_len != sigbuf_len_) r = -1; // doesn't match
free(segbuf);
if(r==0) return 0; // verifies
return AF_ERROR_SIG_BAD; // doesn't verify
}
/* Verify a segment against a particular signature and public key */
int af_sig_verify_seg2(AFFILE *af,const char *segname,EVP_PKEY * /*pubkey*/,u_char *sigbuf,size_t sigbuf_len,int sigmode)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
/* Now get the data to verify */
size_t seglen = 0;
unsigned char *segbuf = 0;
uint32_t arg=0;
/* Do we need to get the page */
if(sigmode==AF_SIGNATURE_MODE1){
int64_t pagenumber = af_segname_page_number(segname);
if(pagenumber>=0){
seglen = af_page_size(af);
segbuf = (unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_page(af,pagenumber,segbuf,&seglen)){
free(segbuf);
return -1;
}
}
}
if(segbuf==0){ // get the raw segment
if(af_get_seg(af,segname,0,0,&seglen)){
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
/* Now read the segment */
segbuf=(unsigned char *)malloc(seglen);
if(segbuf==0) return AF_ERROR_SIG_MALLOC;
if(af_get_seg(af,segname,&arg,segbuf,&seglen)){
free(segbuf);
return AF_ERROR_SIG_DATAREAD_ERROR; // can't read the segment length
}
}
/* Verify the signature*/
uint32_t arg_net = htonl(arg);
EVP_MD_CTX *md = EVP_MD_CTX_new(); /* EVP message digest */
EVP_VerifyInit(md,sha256);
EVP_VerifyUpdate(md,(const unsigned char *)segname,strlen(segname)+1);
EVP_VerifyUpdate(md,(const unsigned char *)&arg_net,sizeof(arg_net));
EVP_VerifyUpdate(md,segbuf,seglen);
int r = EVP_VerifyFinal(md,sigbuf,sigbuf_len,af->crypto->sign_pubkey);
EVP_MD_CTX_free(md);
free(segbuf);
if(r==1) return 0; // verifies
return AF_ERROR_SIG_BAD; // doesn't verify
}
int af_sig_verify_seg(AFFILE *af,const char *segname)
{
#ifdef USE_AFFSIGS
if(aff::ends_with(segname,AF_SIG256_SUFFIX)){
return AF_ERROR_SIG_SIG_SEG; // don't verify the signature segments
}
/* Need the public key if I don't have it */
if(af->crypto->sign_pubkey==0){
unsigned char certbuf[65536];
size_t certbuf_len = sizeof(certbuf);
if(af_get_seg(af,AF_SIGN256_CERT,0,certbuf,&certbuf_len)!=0){
return AF_ERROR_SIG_NO_CERT;
}
af->crypto->sign_cert = 0;
BIO *cert_bio = BIO_new_mem_buf(certbuf,certbuf_len);
PEM_read_bio_X509(cert_bio,&af->crypto->sign_cert,0,0);
BIO_free(cert_bio);
af->crypto->sign_pubkey = X509_get_pubkey(af->crypto->sign_cert);
}
/* Figure out the signature segment name */
char sigseg[AF_MAX_NAME_LEN + 1 + sizeof(AF_SIG256_SUFFIX)];
strlcpy(sigseg,segname,sizeof(sigseg));
strlcat(sigseg,AF_SIG256_SUFFIX,sizeof(sigseg));
/* Get the signature (it says how we need to handle the data) */
unsigned char sigbuf[2048]; // big enough to hold any conceivable signature
size_t sigbuf_len=sizeof(sigbuf);
uint32_t sigmode=0;
if(af_get_seg(af,sigseg,&sigmode,sigbuf,&sigbuf_len)){
return AF_ERROR_SIG_READ_ERROR;
}
return af_sig_verify_seg2(af,segname,af->crypto->sign_pubkey,sigbuf,sigbuf_len,sigmode);
#else
return AF_ERROR_SIG_NOT_COMPILED; // sig support not compiled in
#endif
}
/****************************************************************
*** PUBLIC KEY ENCRYPION ROUTINES
****************************************************************/
/**
* af_set_seal_certfiles
*
* Specifies the certific file(s) to use for creating a new affkey.
* If an affkey is already on the disk, this returns with an error.
*
* @param af - The open AFFILE
* @param certfile - The filename of the certificate file to read
*/
int af_set_seal_certificates(AFFILE *af,const char *certfiles[],int numcertfiles)
{
const EVP_MD *sha256 = EVP_get_digestbyname("SHA256");
if(!sha256){
(*af->error_reporter)(aff_cannot_sign);
return AF_ERROR_NO_SHA256; //
}
char evp0[AF_MAX_NAME_LEN]; // segment where we will store the encrypted session key
snprintf(evp0,sizeof(evp0),AF_AFFKEY_EVP,0);
/* If an affkey has not been created, create one if there is a public key(s)...
* todo: this should probably see if there is ANY evp segment.
*/
if(af_get_seg(af,evp0,0,0,0)==0) return -1; // make sure no encrypted EVP exists
if(af_get_seg(af,AF_AFFKEY,0,0,0)==0) return -1; // make sure no passphrase exists
if(certfiles==0 || numcertfiles==0) return -1; // make sure the user supplied a certificate
/* First make the affkey */
unsigned char affkey[32];
int r = RAND_bytes(affkey,sizeof(affkey));
if(r!=1) return AF_ERROR_RNG_FAIL; // pretty bad...
af_seal_affkey_using_certificates(af, certfiles, numcertfiles, affkey);
return 0;
}
/**
* af_seal_affkey_using_certificates
*
* Encrypt the provided affkey.
*
*
*/
int af_seal_affkey_using_certificates(AFFILE *af,const char *certfiles[],int numcertfiles, unsigned char affkey[32])
{
/* Repeat for each public key.. */
int r;
for(int i=0;i<numcertfiles;i++){
EVP_PKEY *seal_pubkey=0; // encrypting public key (for encrypting the affkey)
X509 *seal_cert=0; // encrypting certificate that was used...
BIO *bp = BIO_new_file(certfiles[i],"r");
if(!bp) return -1;
PEM_read_bio_X509(bp,&seal_cert,0,0);
BIO_free(bp);
if(seal_cert==0){
return -2;
}
seal_pubkey = X509_get_pubkey(seal_cert);
/* Create the next encrypted key. First make a copy of it... */
unsigned char affkey_copy[32];
memcpy(affkey_copy,affkey,32);
EVP_CIPHER_CTX *cipher_ctx = EVP_CIPHER_CTX_new();
/* IV */
unsigned char iv[EVP_MAX_IV_LENGTH];
r = RAND_bytes(iv, EVP_MAX_IV_LENGTH); /* make a random iv */
if(r!=1) return AF_ERROR_RNG_FAIL; // pretty bad...
/* EK */
unsigned char *ek=0;
unsigned char *ek_array[1];
int ek_size = EVP_PKEY_size(seal_pubkey);
ek = (unsigned char *)malloc(ek_size);
ek_array[0] = ek;
/* Destination for encrypted AFF key */
unsigned char encrypted_affkey[1024];
int encrypted_bytes = 0;
memset(encrypted_affkey,0,sizeof(encrypted_affkey));
r = EVP_SealInit(cipher_ctx,EVP_aes_256_cbc(),ek_array,&ek_size,&iv[0],&seal_pubkey,1);
if(r!=1){
EVP_CIPHER_CTX_free(cipher_ctx);
return -10; // bad
}
r = EVP_SealUpdate(cipher_ctx,encrypted_affkey,&encrypted_bytes,affkey_copy,sizeof(affkey_copy));
if(r!=1){
EVP_CIPHER_CTX_free(cipher_ctx);
return -11; // bad
}
int total_encrypted_bytes = encrypted_bytes;
r = EVP_SealFinal(cipher_ctx,encrypted_affkey+total_encrypted_bytes,&encrypted_bytes);
if(r!=1){
EVP_CIPHER_CTX_free(cipher_ctx);
return -12;
}
EVP_CIPHER_CTX_free(cipher_ctx);
total_encrypted_bytes += encrypted_bytes;
/* Now we need to combine the IV, encrypted key, and the encrypted aff key onto a single structure
* and write it out
*/
const int int1 = sizeof(int)*1;
const int int2 = sizeof(int)*2;
const int int3 = sizeof(int)*3;
const int buflen = int3+EVP_MAX_IV_LENGTH+ek_size+total_encrypted_bytes;
unsigned char *buf = (unsigned char *)malloc(buflen);
*(u_int *)(buf) = htonl(1); // version 1.0
*(u_int *)(buf+int1) = htonl(ek_size);
*(u_int *)(buf+int2) = htonl(total_encrypted_bytes);
memcpy(buf+int3,iv,EVP_MAX_IV_LENGTH);
memcpy(buf+int3+EVP_MAX_IV_LENGTH,ek,ek_size);
memcpy(buf+int3+EVP_MAX_IV_LENGTH+ek_size,encrypted_affkey,total_encrypted_bytes);
/* Write this into the seg */
char segname[AF_MAX_NAME_LEN];
snprintf(segname,sizeof(segname),AF_AFFKEY_EVP,i);
if(af_update_segf(af,segname,0,buf,buflen,AF_SIGFLAG_NOSEAL)){
return -1; // update seg failed?
}
EVP_PKEY_free(seal_pubkey);
seal_pubkey = 0;
memset(affkey_copy,0,sizeof(affkey_copy)); // overwrite
memset(buf,0,buflen); // overwrite
free(buf);
}
/* Start using this key */
if(af_set_aes_key(af,affkey,256)) return -100; // hm. That's weird.
return 0; // good to go
}
/**
* Given a private key in a file:
* 1 - Scan all of the encrypted AFFKEYs to see if any can be decrypted.
* 2 - When the one is found that can be decrypted, put the AFFKEY in a buffer
* 3 - Return that buffer.
*
* @param af The open AFFILE
* @param private_keyfile - The filename of the key file to read
* @param affkey - The decrypted AFFkey (output)
*
* Load the private and/or public key files.
* Try to decrypt the affkey with the private key.p
*
*/
int af_get_affkey_using_keyfile(AFFILE *af, const char *private_keyfile,u_char affkey[32])
{
if(!private_keyfile) return -1;
BIO *bp = BIO_new_file(private_keyfile,"r");
if(!bp) return -2;
EVP_PKEY *seal_privkey = PEM_read_bio_PrivateKey(bp,0,0,0);
BIO_free(bp);
if(!seal_privkey) return -3;
int i = 0;
int ret = -1; // return code; set to 0 when successful
while(i<1000 && ret!=0){ // hopefully there aren't more than 1000 keys...
char segname[AF_MAX_NAME_LEN];
sprintf(segname,AF_AFFKEY_EVP,i++);
size_t buflen=0;
if(af_get_seg(af,segname,0,0,&buflen)){
return -1; // guess none of the keys work
}
unsigned char *buf = (unsigned char *)malloc(buflen);
if(buf==0) return -1; // malloc failed
if(af_get_seg(af,segname,0,buf,&buflen)){
free(buf);
return -1; // could not get the segment
}
/* Try to get and decrypt the segment */
unsigned char *decrypted = 0; //
if (*(u_int *)buf == htonl(1)){ // check to see if the encrypted EVP is rev 1
/* Handle rev 1 */
const u_int int1 = sizeof(int)*1; // offset #1
const u_int int2 = sizeof(int)*2; // offset #2
const u_int int3 = sizeof(int)*3; // offset #3
int ek_size = ntohl(*(u_int *)(buf+int1));
int total_encrypted_bytes = ntohl(*(u_int *)(buf+int2));
if(int3+EVP_MAX_IV_LENGTH+ek_size+total_encrypted_bytes != buflen){
goto next;
}
unsigned char *iv = buf+int3;
unsigned char *ek = buf+int3+EVP_MAX_IV_LENGTH;
unsigned char *encrypted_affkey = buf+int3+EVP_MAX_IV_LENGTH+ek_size;
/* Now let's see if we can decode it*/
EVP_CIPHER_CTX *cipher_ctx = EVP_CIPHER_CTX_new();
int r = EVP_OpenInit(cipher_ctx,EVP_aes_256_cbc(),ek,ek_size,iv,seal_privkey);
if(r==1){
/* allocate a buffer for the decrypted data */
decrypted = (unsigned char *)malloc(total_encrypted_bytes);
if(!decrypted){
EVP_CIPHER_CTX_free(cipher_ctx);
return -1; // shouldn't fail
}
int decrypted_len;
r = EVP_OpenUpdate(cipher_ctx,decrypted,&decrypted_len,encrypted_affkey,total_encrypted_bytes);
if(r==1){
/* OpenSSL requires that we call EVP_OpenFinal to finish the decryption */
unsigned char *decrypted2 = decrypted+decrypted_len; // where the decryption continues
int decrypted2_len = 0;
r = EVP_OpenFinal(cipher_ctx,decrypted2,&decrypted2_len);
if(r==1){
memcpy(affkey,decrypted,32);
ret = 0; // successful return
}
}
memset(decrypted,0,total_encrypted_bytes); // overwrite our temp buffer
free(decrypted);
}
EVP_CIPHER_CTX_free(cipher_ctx);
}
next:;
free(buf);
}
return ret; // return the code
}
/**
*
* Given a private key in a file:
* 1 - Scan all of the encrypted AFFKEYs to see if any can be decrypted.
* 2 - When the one is found that can be decrypted, put the AFFKEY in a buffer
* 3 - Set that buffer to be the active AFFKEY so that the AFF file can be read and written.
*
* @param af - The open AFFILE
* @param private_keyfile - The filename of the key file to read
* @param certfile - The filename of the certificate file to read
*/
int af_set_unseal_keyfile(AFFILE *af,const char *private_keyfile)
{
u_char affkey[32]; // place to put the decrypted affkey
if(af_get_affkey_using_keyfile(af,private_keyfile,affkey)){
return -1; // couldn't get the affkey
}
/* It decrypted. Looks like we got an AFF key */
return af_set_aes_key(af,affkey,256);
}
|