1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
* affsign.cpp:
*
* Sign an existing AFF file.
* This file is a work of a US government employee and as such is in the Public domain.
* Simson L. Garfinkel, March 12, 2012
*/
#include "affconfig.h"
#include "afflib.h"
#include "afflib_i.h"
#ifdef USE_AFFSIGS
#include "utils.h"
#include "base64.h"
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <iostream>
#include <openssl/pem.h>
#include <openssl/x509.h>
#include "aff_bom.h"
int opt_note = 0;
const char *opt_sign_key_file = 0;
const char *opt_sign_cert_file = 0;
using namespace std;
using namespace aff;
const char *progname = "affsign";
void usage()
{
printf("%s version %s\n",progname,PACKAGE_VERSION);
printf("usage: %s [options] filename.aff\n",progname);
printf("This program will:\n");
printf(" * Sign each segment if there are no segment signatures.\n");
printf(" * Write signed chain-of-custody Bill of Materials segment.\n");
printf("\nSignature Options:\n");
printf(" -k filename.key = specify private key for signing\n");
printf(" -c filename.cer = specify a X.509 certificate that matches the private key\n");
printf(" (by default, the file is assumed to be the same one\n");
printf(" provided with the -k option.)\n");
printf(" -Z = ZAP (remove) all signature segments.\n");
printf("options:\n");
printf(" -n --- ask for a chain-of-custody note.\n");
printf(" -v --- Just print the version number and exit.\n");
exit(0);
}
int affsign(const char *fn)
{
AFFILE *af = af_open(fn,O_RDWR,0);
if(!af) af_err(1,"%s",fn);
struct af_vnode_info vni;
if(af_vstat(af,&vni)) err(1,"af_vstat");
if(vni.supports_metadata==0){
/* If it is a raw file, we can create an AFM file to sign */
if(vni.is_raw==0) errx(1,"%s: file does not support metadata. Cannot sign\n",fn);
af_close(af); // afm will open it
char afmfile[MAXPATHLEN+1];
char file000[MAXPATHLEN+1];
char extension[MAXPATHLEN+1];
strcpy(afmfile,fn);
char *period = strrchr(afmfile,'.');
if(!period) errx(1,"%s: file does not support metadata and lacks a file extension,\n"
"which is needed to create an AFM file '%s\n",afmfile,fn);
strcpy(extension,period+1); // get the extension
/* If the file being opened is not a .000 file, and a .000 file exists, do not proceed */
strcpy(period,".000");
strcpy(file000,afmfile); // make the 000 file
strcpy(period,".afm");
if(strcmp(extension,"000")!=0){
if(access(file000,F_OK)==0){
errx(1,"Can't create .afm file because %s exists.\n",file000);
}
}
strcpy(period,".afm"); // we are now going to make an afm file
af = af_open(afmfile,O_RDWR|O_CREAT,0600);
if(!af) af_err(1,"%s: file does not support metadata and cannot create AFM file '%s\n",fn,afmfile);
if(strcmp(extension,"000")!=0){
af_update_seg(af,AF_RAW_IMAGE_FILE_EXTENSION,0,(const u_char *)extension,strlen(extension));
af_close(af);
unlink(file000); // get rid of that .000 file
af = af_open(afmfile,O_RDWR,0600);
if(!af) af_err(1,"%s: Created AFM file but cannot re-open it\n",fn);
/* Read the first byte to force a call to afm_split_raw_setup().
* The results of the read don't matter, but we better be able to read.
*/
u_char buf[1];
if(af_read(af,buf,1)!=1){
err(1,"Cannot read first byte of %s",fn);
}
af_seek(af,0L,0);
}
}
seglist segments(af);
if(isatty(fileno(stdout))){
printf("Signing segments...\n");
fflush(stdout);
}
bool signed_unsigned_segments = false;
if(segments.has_signed_segments()==false){
if(af_set_sign_files(af,opt_sign_key_file,opt_sign_cert_file)){
errx(1,"key file '%s' or certificate file '%s' is invalid",
opt_sign_key_file,opt_sign_cert_file);
}
int r = af_sign_all_unsigned_segments(af);
if(r<0) af_err(1,"%s: all unsigned segments cannot be signed.",fn);
if(r>0) signed_unsigned_segments = true;
}
aff_bom bom(opt_note);
if(bom.read_files(opt_sign_cert_file,opt_sign_key_file)) err(1,"Can't read signature files???");
u_char *pagebuf = (unsigned char *)calloc(af_page_size(af),1);
u_char *parity_buf = (unsigned char *)calloc(af_page_size(af),1);
bool compute_parity = true; // do we need to compute the parity?
/* Create the parity buffer if it doesn't exist. If the parity buffer exists, we'll just trust it.
* We could do a two-pass here, one for creating the parity buffer, another for creating the BOM.
* But that would require reading the data twice; hence this extra layer of complexity.
*/
size_t parity_buf_len = af_page_size(af);
if(af_get_seg(af,AF_PARITY0,0,parity_buf,&parity_buf_len)==0){
compute_parity = false; // no need to compute it; we read it
}
for(seglist::const_iterator seg = segments.begin(); seg!= segments.end();seg++){
const char *segname = seg->name.c_str();
if(isatty(fileno(stdout))){
printf("\rCalculating BOM for segment %s... ",segname);
printf("\n");
fflush(stdout);
}
u_char seghash[32]; /* resultant message digest; could be any size */
unsigned int seghash_len = sizeof(seghash); /* big enough to hold SHA256 */
int sigmode = 0;
int64_t pagenumber = af_segname_page_number(segname);
if(pagenumber>=0){
/* Page segments must run in SIGNATURE_MODE1 - the actual data in the page */
size_t this_pagesize = af_page_size(af);
if(af_get_page(af,pagenumber,pagebuf,&this_pagesize)){
free(pagebuf);
return -1;
}
/* Add to parity buf if we are making a parity page*/
if(compute_parity){
for(u_int i=0;i<this_pagesize;i++){
parity_buf[i] ^= pagebuf[i];
}
}
aff_bom::make_hash(seghash,0,segname,pagebuf,this_pagesize);
sigmode = AF_SIGNATURE_MODE1;
}
else{
/* Non-Page segments can be run in SIGNATURE_MODE0 - the actual data in the file */
size_t seglen=0;
if(af_get_seg(af,segname,0,0,&seglen)){
err(1,"Cannot read length of segment '%s' on input file %s", segname,af_filename(af));
}
unsigned char *segbuf = (unsigned char *)malloc(seglen);
if(!segbuf){
err(1,"Cannot allocated %d bytes for segment '%s' in %s",
(int)seglen,segname,af_filename(af));
}
/* Now get the raw source segment */
uint32_t arg=0;
if(af_get_seg(af,segname,&arg,segbuf,&seglen)){
err(1,"Cannot read segment '%s' in %s. Deleting output file", segname,af_filename(af));
}
aff_bom::make_hash(seghash,arg,segname,segbuf,seglen);
sigmode = AF_SIGNATURE_MODE0;
free(segbuf);
}
bom.add(segname,sigmode,seghash,seghash_len); // add to the BOM
}
/* If we have been making the parity buf:
* 1 - Write it out; add it to the BOM
* 2 - Write out the signature segment for the parity buf; add it to the bom
*/
if(compute_parity){
if(af_update_seg(af,AF_PARITY0,0,parity_buf,af_page_size(af))) err(1,"Can't write %s",AF_PARITY0);
/* Add the parity page that we made to the BOM */
u_char seghash[32]; /* resultant message digest; could be any size */
unsigned int seghash_len = sizeof(seghash); /* big enough to hold SHA256 */
aff_bom::make_hash(seghash,0,AF_PARITY0,parity_buf,af_page_size(af));
bom.add(AF_PARITY0,AF_SIGNATURE_MODE0,seghash,seghash_len);
/* If we are signing segments for the first time, we need to sign the parity page
* and then add the parity page's signature segment to the BOM as well.
*/
if(signed_unsigned_segments){
af_sign_seg(af,AF_PARITY0); // sign the parity segment if we signed the other segments
bom.add(af,AF_PARITY0_SIG);
u_char buf[1024];
size_t buflen = sizeof(buf);
const char *segname = AF_PARITY0_SIG;
if(af_get_seg(af,segname,0,buf,&buflen)==0){ // Get the signature
aff_bom::make_hash(seghash,0,segname,buf,buflen); // and add it to the BOM
bom.add(segname,AF_SIGNATURE_MODE0,seghash,seghash_len);
}
}
}
if(isatty(fileno(stdout))){
printf(" \r\n");
fflush(stdout);
}
bom.close();
bom.write(af,segments);
af_close(af);
return 0;
}
int remove_signatures(const char *fn)
{
AFFILE *af = af_open(fn,O_RDWR,0);
if(!af) af_err(1,"%s",fn);
aff::seglist sl(af);
for(aff::seglist::const_iterator i = sl.begin();
i!= sl.end();
i++){
if(af_is_signature_segment(i->name.c_str()) || i->name==AF_SIGN256_CERT){
cout << "Deleting " << i->name << "\n";
af_del_seg(af,i->name.c_str());
}
}
af_close(af);
return 0;
}
int main(int argc,char **argv)
{
int ch;
int opt_zap = 0;
while ((ch = getopt(argc, argv, "nk:c:h?vZ")) != -1) {
switch (ch) {
case 'n': opt_note = 1;break;
case 'k':
if(access(optarg,R_OK)) err(1,"%s",optarg);
opt_sign_key_file = optarg;
break;
case 'c':
if(access(optarg,R_OK)) err(1,"%s",optarg);
opt_sign_cert_file = optarg;
break;
case 'v':
printf("%s version %s\n",progname,PACKAGE_VERSION);
exit(0);
case 'Z':
opt_zap = 1;
break;
case 'h':
case '?':
default:
usage();
break;
}
}
argc -= optind;
argv += optind;
if(opt_sign_cert_file==0) opt_sign_cert_file=opt_sign_key_file; // if not set, make same as key file
if(argc!=1){
usage();
}
if(opt_zap) return remove_signatures(argv[0]);
/* We either need both a key file and a cert file, or neither */
if((opt_sign_key_file==0) || (opt_sign_cert_file==0)){
errx(1,"Both a private key and a certificate must be specified.");
}
return affsign(argv[0]);
}
#else
int main(int argc,char **argv)
{
fprintf(stderr,"afflib compiled without USE_AFFSIGS. affsign cannot run.\n");
exit(-1);
}
#endif
|