1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
#include "afl-fuzz.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#define BUF_SIZE_INIT 4096
#define SOCKET_NAME "./atnwalk.socket"
// how many errors (e.g. timeouts) to tolerate until moving on to the next queue
// entry
#define ATNWALK_ERRORS_MAX 1
// how many execution timeouts to tolerate until moving on to the next queue
// entry
#define EXEC_TIMEOUT_MAX 2
// handshake constants
const uint8_t SERVER_ARE_YOU_ALIVE = 213;
const uint8_t SERVER_YES_I_AM_ALIVE = 42;
// control bits
const uint8_t SERVER_CROSSOVER_BIT = 0b00000001;
const uint8_t SERVER_MUTATE_BIT = 0b00000010;
const uint8_t SERVER_DECODE_BIT = 0b00000100;
const uint8_t SERVER_ENCODE_BIT = 0b00001000;
typedef struct atnwalk_mutator {
afl_state_t *afl;
uint8_t atnwalk_error_count;
uint64_t prev_timeouts;
uint32_t prev_hits;
uint32_t stage_havoc_cur;
uint32_t stage_havoc_max;
uint32_t stage_splice_cur;
uint32_t stage_splice_max;
uint8_t *fuzz_buf;
size_t fuzz_size;
uint8_t *post_process_buf;
size_t post_process_size;
} atnwalk_mutator_t;
int read_all(int fd, uint8_t *buf, size_t buf_size) {
int n;
size_t offset = 0;
while (offset < buf_size) {
n = read(fd, buf + offset, buf_size - offset);
if (n == -1) { return 0; }
offset += n;
}
return 1;
}
int write_all(int fd, uint8_t *buf, size_t buf_size) {
int n;
size_t offset = 0;
while (offset < buf_size) {
n = write(fd, buf + offset, buf_size - offset);
if (n == -1) { return 0; }
offset += n;
}
return 1;
}
void put_uint32(uint8_t *buf, uint32_t val) {
buf[0] = (uint8_t)(val >> 24);
buf[1] = (uint8_t)((val & 0x00ff0000) >> 16);
buf[2] = (uint8_t)((val & 0x0000ff00) >> 8);
buf[3] = (uint8_t)(val & 0x000000ff);
}
uint32_t to_uint32(uint8_t *buf) {
uint32_t val = 0;
val |= (((uint32_t)buf[0]) << 24);
val |= (((uint32_t)buf[1]) << 16);
val |= (((uint32_t)buf[2]) << 8);
val |= ((uint32_t)buf[3]);
return val;
}
void put_uint64(uint8_t *buf, uint64_t val) {
buf[0] = (uint8_t)(val >> 56);
buf[1] = (uint8_t)((val & 0x00ff000000000000) >> 48);
buf[2] = (uint8_t)((val & 0x0000ff0000000000) >> 40);
buf[3] = (uint8_t)((val & 0x000000ff00000000) >> 32);
buf[4] = (uint8_t)((val & 0x00000000ff000000) >> 24);
buf[5] = (uint8_t)((val & 0x0000000000ff0000) >> 16);
buf[6] = (uint8_t)((val & 0x000000000000ff00) >> 8);
buf[7] = (uint8_t)(val & 0x00000000000000ff);
}
/**
* Initialize this custom mutator
*
* @param[in] afl a pointer to the internal state object. Can be ignored for
* now.
* @param[in] seed A seed for this mutator - the same seed should always mutate
* in the same way.
* @return Pointer to the data object this custom mutator instance should use.
* There may be multiple instances of this mutator in one afl-fuzz run!
* Return NULL on error.
*/
atnwalk_mutator_t *afl_custom_init(afl_state_t *afl, unsigned int seed) {
srand(seed);
atnwalk_mutator_t *data =
(atnwalk_mutator_t *)malloc(sizeof(atnwalk_mutator_t));
if (!data) {
perror("afl_custom_init alloc");
return NULL;
}
data->afl = afl;
data->prev_hits = 0;
data->fuzz_buf = (uint8_t *)malloc(BUF_SIZE_INIT);
data->fuzz_size = BUF_SIZE_INIT;
data->post_process_buf = (uint8_t *)malloc(BUF_SIZE_INIT);
data->post_process_size = BUF_SIZE_INIT;
return data;
}
unsigned int afl_custom_fuzz_count(atnwalk_mutator_t *data,
const unsigned char *buf, size_t buf_size) {
// afl_custom_fuzz_count is called exactly once before entering the
// 'stage-loop' for the current queue entry thus, we use it to reset the error
// count and to initialize stage variables (somewhat not intended by the API,
// but still better than rewriting the whole thing to have a custom mutator
// stage)
data->atnwalk_error_count = 0;
data->prev_timeouts = data->afl->total_tmouts;
// it might happen that on the last execution of the splice stage a new path
// is found we need to fix that here and count it
if (data->prev_hits) {
data->afl->stage_finds[STAGE_SPLICE] +=
data->afl->queued_items + data->afl->saved_crashes - data->prev_hits;
}
data->prev_hits = data->afl->queued_items + data->afl->saved_crashes;
data->stage_havoc_cur = 0;
data->stage_splice_cur = 0;
// 50% havoc, 50% splice
data->stage_havoc_max = data->afl->stage_max >> 1;
if (data->stage_havoc_max < HAVOC_MIN) { data->stage_havoc_max = HAVOC_MIN; }
data->stage_splice_max = data->stage_havoc_max;
return data->stage_havoc_max + data->stage_splice_max;
}
size_t fail_fatal(int fd_socket, uint8_t **out_buf) {
if (fd_socket != -1) { close(fd_socket); }
*out_buf = NULL;
return 0;
}
size_t fail_gracefully(int fd_socket, atnwalk_mutator_t *data, uint8_t *buf,
size_t buf_size, uint8_t **out_buf) {
if (fd_socket != -1) { close(fd_socket); }
data->atnwalk_error_count++;
if (data->atnwalk_error_count > ATNWALK_ERRORS_MAX) {
data->afl->stage_max = data->afl->stage_cur;
}
*out_buf = buf;
return buf_size;
}
/**
* Perform custom mutations on a given input
*
* (Optional for now. Required in the future)
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param[in] buf Pointer to input data to be mutated
* @param[in] buf_size Size of input data
* @param[out] out_buf the buffer we will work on. we can reuse *buf. NULL on
* error.
* @param[in] add_buf Buffer containing the additional test case
* @param[in] add_buf_size Size of the additional test case
* @param[in] max_size Maximum size of the mutated output. The mutation must not
* produce data larger than max_size.
* @return Size of the mutated output.
*/
size_t afl_custom_fuzz(atnwalk_mutator_t *data, uint8_t *buf, size_t buf_size,
uint8_t **out_buf, uint8_t *add_buf, size_t add_buf_size,
size_t max_size) {
struct sockaddr_un addr;
int fd_socket;
uint8_t ctrl_buf[8];
uint8_t wanted;
// let's display what's going on in a nice way
if (data->stage_havoc_cur == 0) {
data->afl->stage_name = (uint8_t *)"atnwalk - havoc";
}
if (data->stage_havoc_cur == data->stage_havoc_max) {
data->afl->stage_name = (uint8_t *)"atnwalk - splice";
}
// increase the respective havoc or splice counters
if (data->stage_havoc_cur < data->stage_havoc_max) {
data->stage_havoc_cur++;
data->afl->stage_cycles[STAGE_HAVOC]++;
} else {
// if there is nothing to splice, continue with havoc and skip splicing this
// time
if (data->afl->ready_for_splicing_count < 1) {
data->stage_havoc_max = data->afl->stage_max;
data->stage_havoc_cur++;
data->afl->stage_cycles[STAGE_HAVOC]++;
} else {
data->stage_splice_cur++;
data->afl->stage_cycles[STAGE_SPLICE]++;
}
}
// keep track of found new corpus seeds per stage
if (data->afl->queued_items + data->afl->saved_crashes > data->prev_hits) {
if (data->stage_splice_cur <= 1) {
data->afl->stage_finds[STAGE_HAVOC] +=
data->afl->queued_items + data->afl->saved_crashes - data->prev_hits;
} else {
data->afl->stage_finds[STAGE_SPLICE] +=
data->afl->queued_items + data->afl->saved_crashes - data->prev_hits;
}
}
data->prev_hits = data->afl->queued_items + data->afl->saved_crashes;
// check whether this input produces a lot of timeouts, if it does then
// abandon this queue entry
if (data->afl->total_tmouts - data->prev_timeouts >= EXEC_TIMEOUT_MAX) {
data->afl->stage_max = data->afl->stage_cur;
return fail_gracefully(-1, data, buf, buf_size, out_buf);
}
// initialize the socket
fd_socket = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd_socket == -1) { return fail_fatal(fd_socket, out_buf); }
memset(&addr, 0, sizeof(addr));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);
if (connect(fd_socket, (const struct sockaddr *)&addr, sizeof(addr)) == -1) {
return fail_fatal(fd_socket, out_buf);
}
// ask whether the server is alive
ctrl_buf[0] = SERVER_ARE_YOU_ALIVE;
if (!write_all(fd_socket, ctrl_buf, 1)) {
return fail_fatal(fd_socket, out_buf);
}
// see whether the server replies as expected
if (!read_all(fd_socket, ctrl_buf, 1) ||
ctrl_buf[0] != SERVER_YES_I_AM_ALIVE) {
return fail_fatal(fd_socket, out_buf);
}
// tell the server what we want to do
wanted = SERVER_MUTATE_BIT | SERVER_ENCODE_BIT;
// perform a crossover if we are splicing
if (data->stage_splice_cur > 0) { wanted |= SERVER_CROSSOVER_BIT; }
// tell the server what we want and how much data will be sent
ctrl_buf[0] = wanted;
put_uint32(ctrl_buf + 1, (uint32_t)buf_size);
if (!write_all(fd_socket, ctrl_buf, 5)) {
return fail_fatal(fd_socket, out_buf);
}
// send the data to mutate and encode
if (!write_all(fd_socket, buf, buf_size)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
if (wanted & SERVER_CROSSOVER_BIT) {
// since we requested crossover, we will first tell how much additional data
// is to be expected
put_uint32(ctrl_buf, (uint32_t)add_buf_size);
if (!write_all(fd_socket, ctrl_buf, 4)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
// send the additional data for crossover
if (!write_all(fd_socket, add_buf, add_buf_size)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
// lastly, a seed is required for crossover so send one
put_uint64(ctrl_buf, (uint64_t)rand());
if (!write_all(fd_socket, ctrl_buf, 8)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
}
// since we requested mutation, we need to provide a seed for that
put_uint64(ctrl_buf, (uint64_t)rand());
if (!write_all(fd_socket, ctrl_buf, 8)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
// obtain the required buffer size for the data that will be returned
if (!read_all(fd_socket, ctrl_buf, 4)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
size_t new_size = (size_t)to_uint32(ctrl_buf);
// if the data is too large then we ignore this round
if (new_size > max_size) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
if (new_size > buf_size) {
// buf is too small, need to use data->fuzz_buf, let's see whether we need
// to reallocate
if (new_size > data->fuzz_size) {
data->fuzz_size = new_size << 1;
data->fuzz_buf = (uint8_t *)realloc(data->fuzz_buf, data->fuzz_size);
}
*out_buf = data->fuzz_buf;
} else {
// new_size fits into buf, so re-use it
*out_buf = buf;
}
// obtain the encoded data
if (!read_all(fd_socket, *out_buf, new_size)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
close(fd_socket);
return new_size;
}
/**
* A post-processing function to use right before AFL writes the test case to
* disk in order to execute the target.
*
* (Optional) If this functionality is not needed, simply don't define this
* function.
*
* @param[in] data pointer returned in afl_custom_init for this fuzz case
* @param[in] buf Buffer containing the test case to be executed
* @param[in] buf_size Size of the test case
* @param[out] out_buf Pointer to the buffer containing the test case after
* processing. External library should allocate memory for out_buf.
* The buf pointer may be reused (up to the given buf_size);
* @return Size of the output buffer after processing or the needed amount.
* A return of 0 indicates an error.
*/
size_t afl_custom_post_process(atnwalk_mutator_t *data, uint8_t *buf,
size_t buf_size, uint8_t **out_buf) {
struct sockaddr_un addr;
int fd_socket;
uint8_t ctrl_buf[8];
// initialize the socket
fd_socket = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd_socket == -1) { return fail_fatal(fd_socket, out_buf); }
memset(&addr, 0, sizeof(addr));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);
if (connect(fd_socket, (const struct sockaddr *)&addr, sizeof(addr)) == -1) {
return fail_fatal(fd_socket, out_buf);
}
// ask whether the server is alive
ctrl_buf[0] = SERVER_ARE_YOU_ALIVE;
if (!write_all(fd_socket, ctrl_buf, 1)) {
return fail_fatal(fd_socket, out_buf);
}
// see whether the server replies as expected
if (!read_all(fd_socket, ctrl_buf, 1) ||
ctrl_buf[0] != SERVER_YES_I_AM_ALIVE) {
return fail_fatal(fd_socket, out_buf);
}
// tell the server what we want and how much data will be sent
ctrl_buf[0] = SERVER_DECODE_BIT;
put_uint32(ctrl_buf + 1, (uint32_t)buf_size);
if (!write_all(fd_socket, ctrl_buf, 5)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
// send the data to decode
if (!write_all(fd_socket, buf, buf_size)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
// obtain the required buffer size for the data that will be returned
if (!read_all(fd_socket, ctrl_buf, 4)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
size_t new_size = (size_t)to_uint32(ctrl_buf);
// need to use data->post_process_buf, let's see whether we need to reallocate
if (new_size > data->post_process_size) {
data->post_process_size = new_size << 1;
data->post_process_buf =
(uint8_t *)realloc(data->post_process_buf, data->post_process_size);
}
*out_buf = data->post_process_buf;
// obtain the decoded data
if (!read_all(fd_socket, *out_buf, new_size)) {
return fail_gracefully(fd_socket, data, buf, buf_size, out_buf);
}
close(fd_socket);
return new_size;
}
/**
* Deinitialize everything
*
* @param data The data ptr from afl_custom_init
*/
void afl_custom_deinit(atnwalk_mutator_t *data) {
free(data->fuzz_buf);
free(data->post_process_buf);
free(data);
}
|