1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#include "config.h"
#include "types.h"
#if (defined(__AVX512F__) && defined(__AVX512DQ__)) || defined(__AVX2__)
#include <immintrin.h>
#endif
u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end);
u64 classify_word(u64 word);
inline u64 classify_word(u64 word) {
u16 mem16[4];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
mem16[2] = count_class_lookup16[mem16[2]];
mem16[3] = count_class_lookup16[mem16[3]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u64 *mem = (u64 *)bytes;
u32 i = (afl->fsrv.map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
mem8[4] = simplify_lookup[mem8[4]];
mem8[5] = simplify_lookup[mem8[5]];
mem8[6] = simplify_lookup[mem8[6]];
mem8[7] = simplify_lookup[mem8[7]];
} else
*mem = 0x0101010101010101ULL;
mem++;
}
}
inline void classify_counts(afl_forkserver_t *fsrv) {
u64 *mem = (u64 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u64 *current, u64 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (*current & *virgin) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#if defined(__AVX512F__) && defined(__AVX512DQ__)
#define PACK_SIZE 64
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current != current_end; virgin += 8, current += 8) {
__m512i value = *(__m512i *)current;
__mmask8 mask = _mm512_testn_epi64_mask(value, value);
/* All bytes are zero. */
if (likely(mask == 0xff)) continue;
/* Look for nonzero bytes and check for new bits. */
#define UNROLL(x) \
if (unlikely(!(mask & (1 << x)) && classify_word(current[x]) & virgin[x])) \
return 1
UNROLL(0);
UNROLL(1);
UNROLL(2);
UNROLL(3);
UNROLL(4);
UNROLL(5);
UNROLL(6);
UNROLL(7);
#undef UNROLL
}
return 0;
}
#endif
#if !defined(PACK_SIZE) && defined(__AVX2__)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
__m256i zeroes = _mm256_setzero_si256();
for (; current < current_end; virgin += 4, current += 4) {
__m256i value = *(__m256i *)current;
__m256i cmp = _mm256_cmpeq_epi64(value, zeroes);
u32 mask = _mm256_movemask_epi8(cmp);
/* All bytes are zero. */
if (likely(mask == (u32)-1)) continue;
/* Look for nonzero bytes and check for new bits. */
if (unlikely(!(mask & 0xff) && classify_word(current[0]) & virgin[0]))
return 1;
if (unlikely(!(mask & 0xff00) && classify_word(current[1]) & virgin[1]))
return 1;
if (unlikely(!(mask & 0xff0000) && classify_word(current[2]) & virgin[2]))
return 1;
if (unlikely(!(mask & 0xff000000) && classify_word(current[3]) & virgin[3]))
return 1;
}
return 0;
}
#endif
#if !defined(PACK_SIZE)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current < current_end; virgin += 4, current += 4) {
if (unlikely(current[0] && classify_word(current[0]) & virgin[0])) return 1;
if (unlikely(current[1] && classify_word(current[1]) & virgin[1])) return 1;
if (unlikely(current[2] && classify_word(current[2]) & virgin[2])) return 1;
if (unlikely(current[3] && classify_word(current[3]) & virgin[3])) return 1;
}
return 0;
}
#endif
|