1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/*
Simple test harness for AFL++'s unicornafl c mode.
This loads the simple_target_x86_64 binary into
Unicorn's memory map for emulation, places the specified input into
argv[1], sets up argv, and argc and executes 'main()'.
If run inside AFL, afl_fuzz automatically does the "right thing"
Run under AFL as follows:
$ cd <afl_path>/unicorn_mode/samples/speedtest/c
$ make
$ ../../../../afl-fuzz -i ../sample_inputs -o out -U -- ./harness @@
*/
// This is not your everyday Unicorn.
#define UNICORN_AFL
#include <string.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unicorn/unicorn.h>
#include <unicornafl/unicornafl.h>
// Path to the file containing the binary to emulate
#define BINARY_FILE ("../target")
// Memory map for the code to be tested
// Arbitrary address where code to test will be loaded
static const int64_t BASE_ADDRESS = 0x0;
// Max size for the code (64kb)
static const int64_t CODE_SIZE_MAX = 0x00010000;
// Location where the input will be placed (make sure the emulated program knows this somehow, too ;) )
static const int64_t INPUT_ADDRESS = 0x00100000;
// Maximum size for our input
static const int64_t INPUT_MAX = 0x00100000;
// Where our pseudo-heap is at
static const int64_t HEAP_ADDRESS = 0x00200000;
// Maximum allowable size for the heap
static const int64_t HEAP_SIZE_MAX = 0x000F0000;
// Address of the stack (Some random address again)
static const int64_t STACK_ADDRESS = 0x00400000;
// Size of the stack (arbitrarily chosen, just make it big enough)
static const int64_t STACK_SIZE = 0x000F0000;
// Alignment for unicorn mappings (seems to be needed)
static const int64_t ALIGNMENT = 0x1000;
static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size);
}
static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size);
}
/* Unicorn page needs to be 0x1000 aligned, apparently */
static uint64_t pad(uint64_t size) {
if (size % ALIGNMENT == 0) { return size; }
return ((size / ALIGNMENT) + 1) * ALIGNMENT;
}
/* returns the filesize in bytes, -1 or error. */
static off_t afl_mmap_file(char *filename, char **buf_ptr) {
off_t ret = -1;
int fd = open(filename, O_RDONLY);
struct stat st = {0};
if (fstat(fd, &st)) goto exit;
off_t in_len = st.st_size;
if (in_len == -1) {
/* This can only ever happen on 32 bit if the file is exactly 4gb. */
fprintf(stderr, "Filesize of %s too large\n", filename);
goto exit;
}
*buf_ptr = mmap(0, in_len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (*buf_ptr != MAP_FAILED) ret = in_len;
exit:
close(fd);
return ret;
}
/* Place the input at the right spot inside unicorn.
This code path is *HOT*, do as little work as possible! */
static bool place_input_callback(
uc_engine *uc,
char *input,
size_t input_len,
uint32_t persistent_round,
void *data
){
// printf("Placing input with len %ld to %x\n", input_len, DATA_ADDRESS);
if (input_len >= INPUT_MAX) {
// Test input too short or too long, ignore this testcase
return false;
}
// We need a valid c string, make sure it never goes out of bounds.
input[input_len-1] = '\0';
// Write the testcase to unicorn.
uc_mem_write(uc, INPUT_ADDRESS, input, input_len);
return true;
}
// exit in case the unicorn-internal mmap fails.
static void mem_map_checked(uc_engine *uc, uint64_t addr, size_t size, uint32_t mode) {
size = pad(size);
//printf("SIZE %llx, align: %llx\n", size, ALIGNMENT);
uc_err err = uc_mem_map(uc, addr, size, mode);
if (err != UC_ERR_OK) {
printf("Error mapping %ld bytes at 0x%llx: %s (mode: %d)\n", (unsigned long) size, (unsigned long long) addr, uc_strerror(err), (int) mode);
exit(1);
}
}
// allocates an array, reads all addrs to the given array ptr, returns a size
ssize_t read_all_addrs(char *path, uint64_t *addrs, size_t max_count) {
FILE *f = fopen(path, "r");
if (!f) {
perror("fopen");
fprintf(stderr, "Could not read %s, make sure you ran ./get_offsets.py\n", path);
exit(-1);
}
for (size_t i = 0; i < max_count; i++) {
bool end = false;
if(fscanf(f, "%lx", &addrs[i]) == EOF) {
end = true;
i--;
} else if (fgetc(f) == EOF) {
end = true;
}
if (end) {
printf("Set %ld addrs for %s\n", i + 1, path);
fclose(f);
return i + 1;
}
}
return max_count;
}
// Read all addresses from the given file, and set a hook for them.
void set_all_hooks(uc_engine *uc, char *hook_file, void *hook_fn) {
FILE *f = fopen(hook_file, "r");
if (!f) {
fprintf(stderr, "Could not read %s, make sure you ran ./get_offsets.py\n", hook_file);
exit(-1);
}
uint64_t hook_addr;
for (int hook_count = 0; 1; hook_count++) {
if(fscanf(f, "%lx", &hook_addr) == EOF) {
printf("Set %d hooks for %s\n", hook_count, hook_file);
fclose(f);
return;
}
printf("got new hook addr %lx (count: %d) ohbytw: sizeof %lx\n", hook_addr, hook_count, sizeof(uc_hook));
hook_addr += BASE_ADDRESS;
// We'll leek these hooks like a good citizen.
uc_hook *hook = calloc(1, sizeof(uc_hook));
if (!hook) {
perror("calloc");
exit(-1);
}
uc_hook_add(uc, hook, UC_HOOK_CODE, hook_fn, NULL, hook_addr, hook_addr);
// guzzle up newline
if (fgetc(f) == EOF) {
printf("Set %d hooks for %s\n", hook_count, hook_file);
fclose(f);
return;
}
}
}
// This is a fancy print function that we're just going to skip for fuzzing.
static void hook_magicfn(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
address += size;
uc_reg_write(uc, UC_X86_REG_RIP, &address);
}
static bool already_allocated = false;
// We use a very simple malloc/free stub here, that only works for exactly one allocation at a time.
static void hook_malloc(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
if (already_allocated) {
printf("Double malloc, not supported right now!\n");
abort();
}
// read the first param.
uint64_t malloc_size;
uc_reg_read(uc, UC_X86_REG_RDI, &malloc_size);
if (malloc_size > HEAP_SIZE_MAX) {
printf("Tried to allocated %ld bytes, but we only support up to %ld\n", malloc_size, HEAP_SIZE_MAX);
abort();
}
uc_reg_write(uc, UC_X86_REG_RAX, &HEAP_ADDRESS);
address += size;
uc_reg_write(uc, UC_X86_REG_RIP, &address);
already_allocated = true;
}
// No real free, just set the "used"-flag to false.
static void hook_free(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) {
if (!already_allocated) {
printf("Double free detected. Real bug?\n");
abort();
}
// read the first param.
uint64_t free_ptr;
uc_reg_read(uc, UC_X86_REG_RDI, &free_ptr);
if (free_ptr != HEAP_ADDRESS) {
printf("Tried to free wrong mem region: 0x%lx at code loc 0x%lx\n", free_ptr, address);
abort();
}
address += size;
uc_reg_write(uc, UC_X86_REG_RIP, &address);
already_allocated = false;
}
int main(int argc, char **argv, char **envp) {
if (argc == 1) {
printf("Test harness to measure speed against Rust and python. Usage: harness [-t] <inputfile>\n");
exit(1);
}
bool tracing = false;
char *filename = argv[1];
if (argc > 2 && !strcmp(argv[1], "-t")) {
tracing = true;
filename = argv[2];
}
uc_engine *uc;
uc_err err;
uc_hook hooks[2];
char *file_contents;
// Initialize emulator in X86_64 mode
err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc);
if (err) {
printf("Failed on uc_open() with error returned: %u (%s)\n",
err, uc_strerror(err));
return -1;
}
// If we want tracing output, set the callbacks here
if (tracing) {
// tracing all basic blocks with customized callback
uc_hook_add(uc, &hooks[0], UC_HOOK_BLOCK, hook_block, NULL, 1, 0);
uc_hook_add(uc, &hooks[1], UC_HOOK_CODE, hook_code, NULL, 1, 0);
}
printf("The input testcase is set to %s\n", filename);
printf("Loading target from %s\n", BINARY_FILE);
off_t len = afl_mmap_file(BINARY_FILE, &file_contents);
printf("Binary file size: %lx\n", len);
if (len < 0) {
perror("Could not read binary to emulate");
return -2;
}
if (len == 0) {
fprintf(stderr, "File at '%s' is empty\n", BINARY_FILE);
return -3;
}
if (len > CODE_SIZE_MAX) {
fprintf(stderr, "Binary too large, increase CODE_SIZE_MAX\n");
return -4;
}
// Map memory.
mem_map_checked(uc, BASE_ADDRESS, len, UC_PROT_ALL);
fflush(stdout);
// write machine code to be emulated to memory
if (uc_mem_write(uc, BASE_ADDRESS, file_contents, len) != UC_ERR_OK) {
puts("Error writing to CODE");
exit(-1);
}
// Release copied contents
munmap(file_contents, len);
// Set the program counter to the start of the code
FILE *f = fopen("../target.offsets.main", "r");
if (!f) {
perror("fopen");
puts("Could not read offset to main function, make sure you ran ./get_offsets.py");
exit(-1);
}
uint64_t start_address;
if(fscanf(f, "%llx", (unsigned long long) &start_address) == EOF) {
puts("Start address not found in target.offests.main");
exit(-1);
}
fclose(f);
start_address += BASE_ADDRESS;
printf("Execution will start at 0x%lx", start_address);
// Set the program counter to the start of the code
uc_reg_write(uc, UC_X86_REG_RIP, &start_address); // address of entry point of main()
// Setup the Stack
mem_map_checked(uc, STACK_ADDRESS, STACK_SIZE, UC_PROT_READ | UC_PROT_WRITE);
// Setup the stack pointer, but allocate two pointers for the pointers to input
uint64_t val = STACK_ADDRESS + STACK_SIZE - 16;
//printf("Stack at %lu\n", stack_val);
uc_reg_write(uc, UC_X86_REG_RSP, &val);
// reserve some space for our input data
mem_map_checked(uc, INPUT_ADDRESS, INPUT_MAX, UC_PROT_READ);
// argc = 2
val = 2;
uc_reg_write(uc, UC_X86_REG_RDI, &val);
//RSI points to our little 2 QWORD space at the beginning of the stack...
val = STACK_ADDRESS + STACK_SIZE - 16;
uc_reg_write(uc, UC_X86_REG_RSI, &val);
//... which points to the Input. Write the ptr to mem in little endian.
uint32_t addr_little = STACK_ADDRESS;
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
// The chances you are on a big_endian system aren't too high, but still...
__builtin_bswap32(addr_little);
#endif
uc_mem_write(uc, STACK_ADDRESS + STACK_SIZE - 16, (char *)&addr_little, 4);
set_all_hooks(uc, "../target.offsets.malloc", hook_malloc);
set_all_hooks(uc, "../target.offsets.magicfn", hook_magicfn);
set_all_hooks(uc, "../target.offsets.free", hook_free);
int exit_count_max = 100;
// we don't need more exits for now.
uint64_t exits[exit_count_max];
ssize_t exit_count = read_all_addrs("../target.offsets.main_ends", exits, exit_count_max);
if (exit_count < 1) {
printf("Could not find exits! aborting.\n");
abort();
}
printf("Starting to fuzz. Running from addr %ld to one of these %ld exits:\n", start_address, exit_count);
for (ssize_t i = 0; i < exit_count; i++) {
printf(" exit %ld: %ld\n", i, exits[i]);
}
fflush(stdout);
// let's gooo
uc_afl_ret afl_ret = uc_afl_fuzz(
uc, // The unicorn instance we prepared
filename, // Filename of the input to process. In AFL this is usually the '@@' placeholder, outside it's any input file.
place_input_callback, // Callback that places the input (automatically loaded from the file at filename) in the unicorninstance
exits, // Where to exit (this is an array)
exit_count, // Count of end addresses
NULL, // Optional calback to run after each exec
false, // true, if the optional callback should be run also for non-crashes
1000, // For persistent mode: How many rounds to run
NULL // additional data pointer
);
switch(afl_ret) {
case UC_AFL_RET_ERROR:
printf("Error starting to fuzz");
return -3;
break;
case UC_AFL_RET_NO_AFL:
printf("No AFL attached - We are done with a single run.");
break;
default:
break;
}
return 0;
}
|