1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
"""
unicorn_loader.py
Loads a process context dumped created using a
Unicorn Context Dumper script into a Unicorn Engine
instance. Once this is performed emulation can be
started.
"""
import argparse
import binascii
from collections import namedtuple
import datetime
import hashlib
import json
import os
import signal
import struct
import time
import zlib
# Unicorn imports
from unicornafl import *
from unicorn.arm_const import *
from unicorn.arm64_const import *
from unicorn.x86_const import *
from unicorn.mips_const import *
# If Capstone libraries are available (only check once)
try:
from capstone import *
CAPSTONE_EXISTS = 1
except:
CAPSTONE_EXISTS = 0
# Name of the index file
INDEX_FILE_NAME = "_index.json"
# Page size required by Unicorn
UNICORN_PAGE_SIZE = 0x1000
# Max allowable segment size (1G)
MAX_ALLOWABLE_SEG_SIZE = 1024 * 1024 * 1024
# Alignment functions to align all memory segments to Unicorn page boundaries (4KB pages only)
ALIGN_PAGE_DOWN = lambda x: x & ~(UNICORN_PAGE_SIZE - 1)
ALIGN_PAGE_UP = lambda x: (x + UNICORN_PAGE_SIZE - 1) & ~(UNICORN_PAGE_SIZE - 1)
# ---------------------------------------
# ---- Unicorn-based heap implementation
class UnicornSimpleHeap(object):
"""Use this class to provide a simple heap implementation. This should
be used if malloc/free calls break things during emulation. This heap also
implements basic guard-page capabilities which enable immediate notice of
heap overflow and underflows.
"""
# Helper data-container used to track chunks
class HeapChunk(object):
def __init__(self, actual_addr, total_size, data_size):
self.total_size = (
total_size # Total size of the chunk (including padding and guard page)
)
self.actual_addr = actual_addr # Actual start address of the chunk
self.data_size = (
data_size # Size requested by the caller of actual malloc call
)
self.data_addr = (
actual_addr + UNICORN_PAGE_SIZE
) # Address where data actually starts
# Returns true if the specified buffer is completely within the chunk, else false
def is_buffer_in_chunk(self, addr, size):
if addr >= self.data_addr and (
(addr + size) <= (self.data_addr + self.data_size)
):
return True
else:
return False
# Skip the zero-page to avoid weird potential issues with segment registers
HEAP_MIN_ADDR = 0x00002000
HEAP_MAX_ADDR = 0xFFFFFFFF
_uc = None # Unicorn engine instance to interact with
_chunks = [] # List of all known chunks
_chunks_freed = [] # List of all freed chunks
_debug_print = False # True to print debug information
def __init__(self, uc, debug_print=False, uaf_check=False):
self._uc = uc
self._debug_print = debug_print
# Add the watchpoint hook that will be used to implement psuedo-guard page support
self._uc.hook_add(UC_HOOK_MEM_WRITE | UC_HOOK_MEM_READ, self.__check_mem_access)
def malloc(self, size):
# Figure out the overall size to be allocated/mapped
# - Allocate at least 1 4k page of memory to make Unicorn happy
# - Add guard pages at the start and end of the region
total_chunk_size = UNICORN_PAGE_SIZE + ALIGN_PAGE_UP(size) + UNICORN_PAGE_SIZE
if size == 0:
return 0
# Gross but efficient way to find space for the chunk:
chunk = None
for addr in range(self.HEAP_MIN_ADDR, self.HEAP_MAX_ADDR, UNICORN_PAGE_SIZE):
try:
self._uc.mem_map(addr, total_chunk_size, UC_PROT_READ | UC_PROT_WRITE)
chunk = self.HeapChunk(addr, total_chunk_size, size)
if self.uaf_check:
for chunk_freed in self._chunks_freed:
if chunk_freed.is_buffer_in_chunk(chunk.data_addr, 1):
self._chunks_freed.remove(chunk_freed)
break
if self._debug_print:
print(
"Allocating 0x{0:x}-byte chunk @ 0x{1:016x}".format(
chunk.data_size, chunk.data_addr
)
)
break
except UcError as e:
continue
# Something went very wrong
if chunk == None:
return 0
self._chunks.append(chunk)
return chunk.data_addr
def calloc(self, size, count):
# Simple wrapper around malloc with calloc() args
return self.malloc(size * count)
def realloc(self, ptr, new_size):
# Wrapper around malloc(new_size) / memcpy(new, old, old_size) / free(old)
if self._debug_print:
print(
"Reallocating chunk @ 0x{0:016x} to be 0x{1:x} bytes".format(
ptr, new_size
)
)
old_chunk = None
for chunk in self._chunks:
if chunk.data_addr == ptr:
old_chunk = chunk
new_chunk_addr = self.malloc(new_size)
if old_chunk != None:
self._uc.mem_write(
new_chunk_addr,
str(self._uc.mem_read(old_chunk.data_addr, old_chunk.data_size)),
)
self.free(old_chunk.data_addr)
return new_chunk_addr
def free(self, addr):
if addr == 0:
return False
for chunk in self._chunks:
if chunk.is_buffer_in_chunk(addr, 1):
if self._debug_print:
print(
"Freeing 0x{0:x}-byte chunk @ 0x{0:016x}".format(
chunk.req_size, chunk.data_addr
)
)
self._uc.mem_unmap(chunk.actual_addr, chunk.total_size)
if self.uaf_check:
self._chunks_freed.append(chunk)
self._chunks.remove(chunk)
return True
# Freed an object that doesn't exist. Maybe 'dobule-free' or 'invalid free' vulnerability here.
self._uc.force_crash(UcError(UC_ERR_FETCH_UNMAPPED))
# Implements basic guard-page functionality
def __check_mem_access(self, uc, access, address, size, value, user_data):
for chunk in self._chunks:
if address >= chunk.actual_addr and (
(address + size) <= (chunk.actual_addr + chunk.total_size)
):
if chunk.is_buffer_in_chunk(address, size) == False:
if self._debug_print:
print(
"Heap over/underflow attempting to {0} 0x{1:x} bytes @ {2:016x}".format(
"write" if access == UC_MEM_WRITE else "read",
size,
address,
)
)
# Force a memory-based crash
uc.force_crash(UcError(UC_ERR_READ_PROT))
if self.uaf_check:
for chunk in self._chunks_freed:
if address >= chunk.actual_addr and (
(address + size) <= (chunk.actual_addr + chunk.total_size)
):
if chunk.is_buffer_in_chunk(address, size):
print("Use-after-free @ 0x{0:016x}".format(address))
uc.force_crash(UcError(UC_ERR_FETCH_UNMAPPED))
# ---------------------------
# ---- Loading function
class AflUnicornEngine(Uc):
def __init__(self, context_directory, enable_trace=False, debug_print=False):
"""
Initializes an AflUnicornEngine instance, which extends standard the UnicornEngine
with a bunch of helper routines that are useful for creating afl-unicorn test harnesses.
Parameters:
- context_directory: Path to the directory generated by one of the context dumper scripts
- enable_trace: If True trace information will be printed to STDOUT
- debug_print: If True debugging information will be printed while loading the context
"""
# Make sure the index file exists and load it
index_file_path = os.path.join(context_directory, INDEX_FILE_NAME)
if not os.path.isfile(index_file_path):
raise Exception(
"Index file not found. Expected it to be at {}".format(index_file_path)
)
# Load the process context from the index file
if debug_print:
print("Loading process context index from {}".format(index_file_path))
index_file = open(index_file_path, "r")
context = json.load(index_file)
index_file.close()
# Check the context to make sure we have the basic essential components
if "arch" not in context:
raise Exception("Couldn't find architecture information in index file")
if "regs" not in context:
raise Exception("Couldn't find register information in index file")
if "segments" not in context:
raise Exception("Couldn't find segment/memory information in index file")
# Set the UnicornEngine instance's architecture and mode
self._arch_str = context["arch"]["arch"]
arch, mode = self.__get_arch_and_mode(self._arch_str)
Uc.__init__(self, arch, mode)
# Load the registers
regs = context["regs"]
reg_map = self.__get_register_map(self._arch_str)
self.__load_registers(regs, reg_map, debug_print)
# If we have extra FLOATING POINT regs, load them in!
if "regs_extended" in context:
if context["regs_extended"]:
regs_extended = context["regs_extended"]
reg_map = self.__get_registers_extended(self._arch_str)
self.__load_registers(regs_extended, reg_map, debug_print)
# For ARM, sometimes the stack pointer is erased ??? (I think I fixed this (issue with ordering of dumper.py, I'll keep the write anyways)
if self.__get_arch_and_mode(self.get_arch_str())[0] == UC_ARCH_ARM:
self.reg_write(UC_ARM_REG_SP, regs["sp"])
# Setup the memory map and load memory content
self.__map_segments(context["segments"], context_directory, debug_print)
if enable_trace:
self.hook_add(UC_HOOK_BLOCK, self.__trace_block)
self.hook_add(UC_HOOK_CODE, self.__trace_instruction)
self.hook_add(UC_HOOK_MEM_WRITE | UC_HOOK_MEM_READ, self.__trace_mem_access)
self.hook_add(
UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_READ_INVALID,
self.__trace_mem_invalid_access,
)
if debug_print:
print("Done loading context.")
def get_arch(self):
return self._arch
def get_mode(self):
return self._mode
def get_arch_str(self):
return self._arch_str
def force_crash(self, uc_error):
"""This function should be called to indicate to AFL that a crash occurred during emulation.
You can pass the exception received from Uc.emu_start
"""
mem_errors = [
UC_ERR_READ_UNMAPPED,
UC_ERR_READ_PROT,
UC_ERR_READ_UNALIGNED,
UC_ERR_WRITE_UNMAPPED,
UC_ERR_WRITE_PROT,
UC_ERR_WRITE_UNALIGNED,
UC_ERR_FETCH_UNMAPPED,
UC_ERR_FETCH_PROT,
UC_ERR_FETCH_UNALIGNED,
]
if uc_error.errno in mem_errors:
# Memory error - throw SIGSEGV
os.kill(os.getpid(), signal.SIGSEGV)
elif uc_error.errno == UC_ERR_INSN_INVALID:
# Invalid instruction - throw SIGILL
os.kill(os.getpid(), signal.SIGILL)
else:
# Not sure what happened - throw SIGABRT
os.kill(os.getpid(), signal.SIGABRT)
def dump_regs(self):
""" Dumps the contents of all the registers to STDOUT """
for reg in sorted(
self.__get_register_map(self._arch_str).items(), key=lambda reg: reg[0]
):
print(">>> {0:>4}: 0x{1:016x}".format(reg[0], self.reg_read(reg[1])))
def dump_regs_extended(self):
""" Dumps the contents of all the registers to STDOUT """
try:
for reg in sorted(
self.__get_registers_extended(self._arch_str).items(),
key=lambda reg: reg[0],
):
print(">>> {0:>4}: 0x{1:016x}".format(reg[0], self.reg_read(reg[1])))
except Exception as e:
print("ERROR: Are extended registers loaded?")
# TODO: Make this dynamically get the stack pointer register and pointer width for the current architecture
"""
def dump_stack(self, window=10):
arch = self.get_arch()
mode = self.get_mode()
# Get stack pointers and bit sizes for given architecture
if arch == UC_ARCH_X86 and mode == UC_MODE_64:
stack_ptr_addr = self.reg_read(UC_X86_REG_RSP)
bit_size = 8
elif arch == UC_ARCH_X86 and mode == UC_MODE_32:
stack_ptr_addr = self.reg_read(UC_X86_REG_ESP)
bit_size = 4
elif arch == UC_ARCH_ARM64:
stack_ptr_addr = self.reg_read(UC_ARM64_REG_SP)
bit_size = 8
elif arch == UC_ARCH_ARM:
stack_ptr_addr = self.reg_read(UC_ARM_REG_SP)
bit_size = 4
elif arch == UC_ARCH_ARM and mode == UC_MODE_THUMB:
stack_ptr_addr = self.reg_read(UC_ARM_REG_SP)
bit_size = 4
elif arch == UC_ARCH_MIPS:
stack_ptr_addr = self.reg_read(UC_MIPS_REG_SP)
bit_size = 4
print("")
print(">>> Stack:")
stack_ptr_addr = self.reg_read(UC_X86_REG_RSP)
for i in xrange(-window, window + 1):
addr = stack_ptr_addr + (i*8)
print("{0}0x{1:016x}: 0x{2:016x}".format( \
'SP->' if i == 0 else ' ', addr, \
struct.unpack('<Q', self.mem_read(addr, 8))[0]))
"""
# -----------------------------
# ---- Loader Helper Functions
def __load_registers(self, regs, reg_map, debug_print):
for register, value in regs.items():
if debug_print:
print("Reg {0} = {1}".format(register, value))
if register.lower() not in reg_map:
if debug_print:
print("Skipping Reg: {}".format(register))
else:
reg_write_retry = True
try:
self.reg_write(reg_map[register.lower()], value)
reg_write_retry = False
except Exception as e:
if debug_print:
print(
"ERROR writing register: {}, value: {} -- {}".format(
register, value, repr(e)
)
)
if reg_write_retry:
if debug_print:
print("Trying to parse value ({}) as hex string".format(value))
try:
self.reg_write(reg_map[register.lower()], int(value, 16))
except Exception as e:
if debug_print:
print(
"ERROR writing hex string register: {}, value: {} -- {}".format(
register, value, repr(e)
)
)
def __map_segment(self, name, address, size, perms, debug_print=False):
# - size is unsigned and must be != 0
# - starting address must be aligned to 4KB
# - map size must be multiple of the page size (4KB)
mem_start = address
mem_end = address + size
mem_start_aligned = ALIGN_PAGE_DOWN(mem_start)
mem_end_aligned = ALIGN_PAGE_UP(mem_end)
if debug_print:
if mem_start_aligned != mem_start or mem_end_aligned != mem_end:
print("Aligning segment to page boundary:")
print(" name: {}".format(name))
print(
" start: {0:016x} -> {1:016x}".format(mem_start, mem_start_aligned)
)
print(" end: {0:016x} -> {1:016x}".format(mem_end, mem_end_aligned))
print(
"Mapping segment from {0:016x} - {1:016x} with perm={2}: {3}".format(
mem_start_aligned, mem_end_aligned, perms, name
)
)
if mem_start_aligned < mem_end_aligned:
self.mem_map(mem_start_aligned, mem_end_aligned - mem_start_aligned, perms)
def __map_segments(self, segment_list, context_directory, debug_print=False):
for segment in segment_list:
# Get the segment information from the index
name = segment["name"]
seg_start = segment["start"]
seg_end = segment["end"]
perms = (
(UC_PROT_READ if segment["permissions"]["r"] == True else 0)
| (UC_PROT_WRITE if segment["permissions"]["w"] == True else 0)
| (UC_PROT_EXEC if segment["permissions"]["x"] == True else 0)
)
if debug_print:
print("Handling segment {}".format(name))
# Check for any overlap with existing segments. If there is, it must
# be consolidated and merged together before mapping since Unicorn
# doesn't allow overlapping segments.
found = False
overlap_start = False
overlap_end = False
tmp = 0
for (mem_start, mem_end, mem_perm) in self.mem_regions():
mem_end = mem_end + 1
if seg_start >= mem_start and seg_end < mem_end:
found = True
break
if seg_start >= mem_start and seg_start < mem_end:
overlap_start = True
tmp = mem_end
break
if seg_end >= mem_start and seg_end < mem_end:
overlap_end = True
tmp = mem_start
break
# Map memory into the address space if it is of an acceptable size.
if (seg_end - seg_start) > MAX_ALLOWABLE_SEG_SIZE:
if debug_print:
print(
"Skipping segment (LARGER THAN {0}) from {1:016x} - {2:016x} with perm={3}: {4}".format(
MAX_ALLOWABLE_SEG_SIZE, seg_start, seg_end, perms, name
)
)
continue
elif not found: # Make sure it's not already mapped
if overlap_start: # Partial overlap (start)
self.__map_segment(name, tmp, seg_end - tmp, perms, debug_print)
elif overlap_end: # Patrial overlap (end)
self.__map_segment(
name, seg_start, tmp - seg_start, perms, debug_print
)
else: # Not found
self.__map_segment(
name, seg_start, seg_end - seg_start, perms, debug_print
)
else:
if debug_print:
print("Segment {} already mapped. Moving on.".format(name))
# Load the content (if available)
if "content_file" in segment and len(segment["content_file"]) > 0:
content_file_path = os.path.join(
context_directory, segment["content_file"]
)
if not os.path.isfile(content_file_path):
raise Exception(
"Unable to find segment content file. Expected it to be at {}".format(
content_file_path
)
)
# if debug_print:
# print("Loading content for segment {} from {}".format(name, segment['content_file']))
content_file = open(content_file_path, "rb")
compressed_content = content_file.read()
content_file.close()
self.mem_write(seg_start, zlib.decompress(compressed_content))
else:
if debug_print:
print(
"No content found for segment {0} @ {1:016x}".format(
name, seg_start
)
)
self.mem_write(seg_start, b"\x00" * (seg_end - seg_start))
def __get_arch_and_mode(self, arch_str):
arch_map = {
"x64": [UC_X86_REG_RIP, UC_ARCH_X86, UC_MODE_64],
"x86": [UC_X86_REG_EIP, UC_ARCH_X86, UC_MODE_32],
"arm64be": [
UC_ARM64_REG_PC,
UC_ARCH_ARM64,
UC_MODE_ARM | UC_MODE_BIG_ENDIAN,
],
"arm64le": [
UC_ARM64_REG_PC,
UC_ARCH_ARM64,
UC_MODE_ARM | UC_MODE_LITTLE_ENDIAN,
],
"armbe": [UC_ARM_REG_PC, UC_ARCH_ARM, UC_MODE_ARM | UC_MODE_BIG_ENDIAN],
"armle": [UC_ARM_REG_PC, UC_ARCH_ARM, UC_MODE_ARM | UC_MODE_LITTLE_ENDIAN],
"armbethumb": [
UC_ARM_REG_PC,
UC_ARCH_ARM,
UC_MODE_THUMB | UC_MODE_BIG_ENDIAN,
],
"armlethumb": [
UC_ARM_REG_PC,
UC_ARCH_ARM,
UC_MODE_THUMB | UC_MODE_LITTLE_ENDIAN,
],
"mips": [UC_MIPS_REG_PC, UC_ARCH_MIPS, UC_MODE_MIPS32 | UC_MODE_BIG_ENDIAN],
"mipsel": [
UC_MIPS_REG_PC,
UC_ARCH_MIPS,
UC_MODE_MIPS32 | UC_MODE_LITTLE_ENDIAN,
],
}
return (arch_map[arch_str][1], arch_map[arch_str][2])
def __get_register_map(self, arch):
if arch == "arm64le" or arch == "arm64be":
arch = "arm64"
elif arch == "armle" or arch == "armbe" or "thumb" in arch:
arch = "arm"
elif arch == "mipsel":
arch = "mips"
registers = {
"x64": {
"rax": UC_X86_REG_RAX,
"rbx": UC_X86_REG_RBX,
"rcx": UC_X86_REG_RCX,
"rdx": UC_X86_REG_RDX,
"rsi": UC_X86_REG_RSI,
"rdi": UC_X86_REG_RDI,
"rbp": UC_X86_REG_RBP,
"rsp": UC_X86_REG_RSP,
"r8": UC_X86_REG_R8,
"r9": UC_X86_REG_R9,
"r10": UC_X86_REG_R10,
"r11": UC_X86_REG_R11,
"r12": UC_X86_REG_R12,
"r13": UC_X86_REG_R13,
"r14": UC_X86_REG_R14,
"r15": UC_X86_REG_R15,
"rip": UC_X86_REG_RIP,
"efl": UC_X86_REG_EFLAGS,
"cs": UC_X86_REG_CS,
"ds": UC_X86_REG_DS,
"es": UC_X86_REG_ES,
"fs": UC_X86_REG_FS,
"gs": UC_X86_REG_GS,
"ss": UC_X86_REG_SS,
},
"x86": {
"eax": UC_X86_REG_EAX,
"ebx": UC_X86_REG_EBX,
"ecx": UC_X86_REG_ECX,
"edx": UC_X86_REG_EDX,
"esi": UC_X86_REG_ESI,
"edi": UC_X86_REG_EDI,
"ebp": UC_X86_REG_EBP,
"eip": UC_X86_REG_EIP,
"esp": UC_X86_REG_ESP,
"efl": UC_X86_REG_EFLAGS,
# Segment registers removed...
# They caused segfaults (from unicorn?) when they were here
},
"arm": {
"r0": UC_ARM_REG_R0,
"r1": UC_ARM_REG_R1,
"r2": UC_ARM_REG_R2,
"r3": UC_ARM_REG_R3,
"r4": UC_ARM_REG_R4,
"r5": UC_ARM_REG_R5,
"r6": UC_ARM_REG_R6,
"r7": UC_ARM_REG_R7,
"r8": UC_ARM_REG_R8,
"r9": UC_ARM_REG_R9,
"r10": UC_ARM_REG_R10,
"r11": UC_ARM_REG_R11,
"r12": UC_ARM_REG_R12,
"pc": UC_ARM_REG_PC,
"sp": UC_ARM_REG_SP,
"lr": UC_ARM_REG_LR,
"cpsr": UC_ARM_REG_CPSR,
},
"arm64": {
"x0": UC_ARM64_REG_X0,
"x1": UC_ARM64_REG_X1,
"x2": UC_ARM64_REG_X2,
"x3": UC_ARM64_REG_X3,
"x4": UC_ARM64_REG_X4,
"x5": UC_ARM64_REG_X5,
"x6": UC_ARM64_REG_X6,
"x7": UC_ARM64_REG_X7,
"x8": UC_ARM64_REG_X8,
"x9": UC_ARM64_REG_X9,
"x10": UC_ARM64_REG_X10,
"x11": UC_ARM64_REG_X11,
"x12": UC_ARM64_REG_X12,
"x13": UC_ARM64_REG_X13,
"x14": UC_ARM64_REG_X14,
"x15": UC_ARM64_REG_X15,
"x16": UC_ARM64_REG_X16,
"x17": UC_ARM64_REG_X17,
"x18": UC_ARM64_REG_X18,
"x19": UC_ARM64_REG_X19,
"x20": UC_ARM64_REG_X20,
"x21": UC_ARM64_REG_X21,
"x22": UC_ARM64_REG_X22,
"x23": UC_ARM64_REG_X23,
"x24": UC_ARM64_REG_X24,
"x25": UC_ARM64_REG_X25,
"x26": UC_ARM64_REG_X26,
"x27": UC_ARM64_REG_X27,
"x28": UC_ARM64_REG_X28,
"pc": UC_ARM64_REG_PC,
"sp": UC_ARM64_REG_SP,
"fp": UC_ARM64_REG_FP,
"lr": UC_ARM64_REG_LR,
"nzcv": UC_ARM64_REG_NZCV,
"cpsr": UC_ARM_REG_CPSR,
},
"mips": {
"0": UC_MIPS_REG_ZERO,
"at": UC_MIPS_REG_AT,
"v0": UC_MIPS_REG_V0,
"v1": UC_MIPS_REG_V1,
"a0": UC_MIPS_REG_A0,
"a1": UC_MIPS_REG_A1,
"a2": UC_MIPS_REG_A2,
"a3": UC_MIPS_REG_A3,
"t0": UC_MIPS_REG_T0,
"t1": UC_MIPS_REG_T1,
"t2": UC_MIPS_REG_T2,
"t3": UC_MIPS_REG_T3,
"t4": UC_MIPS_REG_T4,
"t5": UC_MIPS_REG_T5,
"t6": UC_MIPS_REG_T6,
"t7": UC_MIPS_REG_T7,
"t8": UC_MIPS_REG_T8,
"t9": UC_MIPS_REG_T9,
"s0": UC_MIPS_REG_S0,
"s1": UC_MIPS_REG_S1,
"s2": UC_MIPS_REG_S2,
"s3": UC_MIPS_REG_S3,
"s4": UC_MIPS_REG_S4,
"s5": UC_MIPS_REG_S5,
"s6": UC_MIPS_REG_S6,
"s7": UC_MIPS_REG_S7,
"s8": UC_MIPS_REG_S8,
"k0": UC_MIPS_REG_K0,
"k1": UC_MIPS_REG_K1,
"gp": UC_MIPS_REG_GP,
"pc": UC_MIPS_REG_PC,
"sp": UC_MIPS_REG_SP,
"fp": UC_MIPS_REG_FP,
"ra": UC_MIPS_REG_RA,
"hi": UC_MIPS_REG_HI,
"lo": UC_MIPS_REG_LO,
},
}
return registers[arch]
def __get_registers_extended(self, arch):
# Similar to __get_register_map, but for ARM floating point registers
if arch == "arm64le" or arch == "arm64be":
arch = "arm64"
elif arch == "armle" or arch == "armbe" or "thumb" in arch:
arch = "arm"
elif arch == "mipsel":
arch = "mips"
registers = {
"arm": {
"d0": UC_ARM_REG_D0,
"d1": UC_ARM_REG_D1,
"d2": UC_ARM_REG_D2,
"d3": UC_ARM_REG_D3,
"d4": UC_ARM_REG_D4,
"d5": UC_ARM_REG_D5,
"d6": UC_ARM_REG_D6,
"d7": UC_ARM_REG_D7,
"d8": UC_ARM_REG_D8,
"d9": UC_ARM_REG_D9,
"d10": UC_ARM_REG_D10,
"d11": UC_ARM_REG_D11,
"d12": UC_ARM_REG_D12,
"d13": UC_ARM_REG_D13,
"d14": UC_ARM_REG_D14,
"d15": UC_ARM_REG_D15,
"d16": UC_ARM_REG_D16,
"d17": UC_ARM_REG_D17,
"d18": UC_ARM_REG_D18,
"d19": UC_ARM_REG_D19,
"d20": UC_ARM_REG_D20,
"d21": UC_ARM_REG_D21,
"d22": UC_ARM_REG_D22,
"d23": UC_ARM_REG_D23,
"d24": UC_ARM_REG_D24,
"d25": UC_ARM_REG_D25,
"d26": UC_ARM_REG_D26,
"d27": UC_ARM_REG_D27,
"d28": UC_ARM_REG_D28,
"d29": UC_ARM_REG_D29,
"d30": UC_ARM_REG_D30,
"d31": UC_ARM_REG_D31,
"fpscr": UC_ARM_REG_FPSCR,
}
}
return registers[arch]
# ---------------------------
# Callbacks for tracing
# TODO: Extra mode for Capstone (i.e. Cs(cs_arch, cs_mode + cs_extra) not implemented
def __trace_instruction(self, uc, address, size, user_data):
if CAPSTONE_EXISTS == 1:
# If Capstone is installed then we'll dump disassembly, otherwise just dump the binary.
arch = self.get_arch()
mode = self.get_mode()
bit_size = self.bit_size_arch()
# Map current arch to capstone labeling
if arch == UC_ARCH_X86 and mode == UC_MODE_64:
cs_arch = CS_ARCH_X86
cs_mode = CS_MODE_64
elif arch == UC_ARCH_X86 and mode == UC_MODE_32:
cs_arch = CS_ARCH_X86
cs_mode = CS_MODE_32
elif arch == UC_ARCH_ARM64:
cs_arch = CS_ARCH_ARM64
cs_mode = CS_MODE_ARM
elif arch == UC_ARCH_ARM and mode == UC_MODE_THUMB:
cs_arch = CS_ARCH_ARM
cs_mode = CS_MODE_THUMB
elif arch == UC_ARCH_ARM:
cs_arch = CS_ARCH_ARM
cs_mode = CS_MODE_ARM
elif arch == UC_ARCH_MIPS:
cs_arch = CS_ARCH_MIPS
cs_mode = CS_MODE_MIPS32 # No other MIPS supported in program
cs = Cs(cs_arch, cs_mode)
mem = uc.mem_read(address, size)
if bit_size == 4:
for (cs_address, cs_size, cs_mnemonic, cs_opstr) in cs.disasm_lite(
bytes(mem), size
):
print(
" Instr: {:#08x}:\t{}\t{}".format(
address, cs_mnemonic, cs_opstr
)
)
else:
for (cs_address, cs_size, cs_mnemonic, cs_opstr) in cs.disasm_lite(
bytes(mem), size
):
print(
" Instr: {:#16x}:\t{}\t{}".format(
address, cs_mnemonic, cs_opstr
)
)
else:
print(" Instr: addr=0x{0:016x}, size=0x{1:016x}".format(address, size))
def __trace_block(self, uc, address, size, user_data):
print("Basic Block: addr=0x{0:016x}, size=0x{1:016x}".format(address, size))
def __trace_mem_access(self, uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE:
print(
" >>> Write: addr=0x{0:016x} size={1} data=0x{2:016x}".format(
address, size, value
)
)
else:
print(" >>> Read: addr=0x{0:016x} size={1}".format(address, size))
def __trace_mem_invalid_access(self, uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE_UNMAPPED:
print(
" >>> INVALID Write: addr=0x{0:016x} size={1} data=0x{2:016x}".format(
address, size, value
)
)
else:
print(
" >>> INVALID Read: addr=0x{0:016x} size={1}".format(
address, size
)
)
def bit_size_arch(self):
arch = self.get_arch()
mode = self.get_mode()
# Get bit sizes for given architecture
if arch == UC_ARCH_X86 and mode == UC_MODE_64:
bit_size = 8
elif arch == UC_ARCH_X86 and mode == UC_MODE_32:
bit_size = 4
elif arch == UC_ARCH_ARM64:
bit_size = 8
elif arch == UC_ARCH_ARM:
bit_size = 4
elif arch == UC_ARCH_MIPS:
bit_size = 4
return bit_size
|