1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#!/usr/bin/env python3
"""
Simple test harness for AFL's Unicorn Mode.
This loads the speedtest target binary (precompiled X64 code) into
Unicorn's memory map for emulation, places the specified input into
Argv, and executes main.
There should not be any crashes - it's a speedtest against Rust and c.
Before running this harness, call make in the parent folder.
Run under AFL as follows:
$ cd <afl_path>/unicorn_mode/samples/speedtest/python
$ ../../../../afl-fuzz -U -i ../sample_inputs -o ./output -- python3 harness.py @@
"""
import argparse
import os
import struct
from unicornafl import *
from unicorn.unicorn_const import UC_ARCH_X86, UC_HOOK_CODE, UC_MODE_64
from unicorn.x86_const import (
UC_X86_REG_RAX,
UC_X86_REG_RDI,
UC_X86_REG_RIP,
UC_X86_REG_RSI,
UC_X86_REG_RSP,
)
# Memory map for the code to be tested
BASE_ADDRESS = 0x0 # Arbitrary address where the (PIE) target binary will be loaded to
CODE_SIZE_MAX = 0x00010000 # Max size for the code (64kb)
INPUT_ADDRESS = 0x00100000 # where we put our stuff
INPUT_MAX = 0x00100000 # max size for our input
HEAP_ADDRESS = 0x00200000 # Heap addr
HEAP_SIZE_MAX = 0x000F0000 # Maximum allowable size for the heap
STACK_ADDRESS = 0x00400000 # Address of the stack (arbitrarily chosen)
STACK_SIZE = 0x000F0000 # Size of the stack (arbitrarily chosen)
target_path = os.path.abspath(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "..")
)
target_bin = os.path.join(target_path, "target")
def get_offsets_for(name):
full_path = os.path.join(target_path, f"target.offsets.{name}")
with open(full_path) as f:
return [int(x, 16) + BASE_ADDRESS for x in f.readlines()]
# Read all offsets from our objdump file
main_offset = get_offsets_for("main")[0]
main_ends = get_offsets_for("main_ends")
malloc_callsites = get_offsets_for("malloc")
free_callsites = get_offsets_for("free")
magicfn_callsites = get_offsets_for("magicfn")
# Joke's on me: strlen got inlined by my compiler
strlen_callsites = get_offsets_for("strlen")
try:
# If Capstone is installed then we'll dump disassembly, otherwise just dump the binary.
from capstone import *
cs = Cs(CS_ARCH_MIPS, CS_MODE_MIPS32 + CS_MODE_BIG_ENDIAN)
def unicorn_debug_instruction(uc, address, size, user_data):
mem = uc.mem_read(address, size)
for (cs_address, cs_size, cs_mnemonic, cs_opstr) in cs.disasm_lite(
bytes(mem), size
):
print(" Instr: {:#016x}:\t{}\t{}".format(address, cs_mnemonic, cs_opstr))
except ImportError:
def unicorn_debug_instruction(uc, address, size, user_data):
print(" Instr: addr=0x{0:016x}, size=0x{1:016x}".format(address, size))
def unicorn_debug_block(uc, address, size, user_data):
print("Basic Block: addr=0x{0:016x}, size=0x{1:016x}".format(address, size))
def unicorn_debug_mem_access(uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE:
print(
" >>> Write: addr=0x{0:016x} size={1} data=0x{2:016x}".format(
address, size, value
)
)
else:
print(" >>> Read: addr=0x{0:016x} size={1}".format(address, size))
def unicorn_debug_mem_invalid_access(uc, access, address, size, value, user_data):
if access == UC_MEM_WRITE_UNMAPPED:
print(
" >>> INVALID Write: addr=0x{0:016x} size={1} data=0x{2:016x}".format(
address, size, value
)
)
else:
print(
" >>> INVALID Read: addr=0x{0:016x} size={1}".format(address, size)
)
already_allocated = False
def malloc_hook(uc, address, size, user_data):
"""
We use a very simple malloc/free stub here, that only works for exactly one allocation at a time.
"""
global already_allocated
if already_allocated:
print("Double malloc, not supported right now!")
os.abort()
# read the first param
malloc_size = uc.reg_read(UC_X86_REG_RDI)
if malloc_size > HEAP_SIZE_MAX:
print(
f"Tried to allocate {malloc_size} bytes, aint't nobody got space for that! (We may only allocate up to {HEAP_SIZE_MAX})"
)
os.abort()
uc.reg_write(UC_X86_REG_RAX, HEAP_ADDRESS)
uc.reg_write(UC_X86_REG_RIP, address + size)
already_allocated = True
def free_hook(uc, address, size, user_data):
"""
No real free, just set the "used"-flag to false.
"""
global already_allocated
if not already_allocated:
print("Double free detected. Real bug?")
os.abort()
# read the first param
free_ptr = uc.reg_read(UC_X86_REG_RDI)
if free_ptr != HEAP_ADDRESS:
print(
f"Tried to free wrong mem region: {hex(free_ptr)} at code loc {hex(address)}"
)
os.abort()
uc.reg_write(UC_X86_REG_RIP, address + size)
already_allocated = False
# def strlen_hook(uc, address, size, user_data):
# """
# No real strlen, we know the len is == our input.
# This completely ignores '\0', but for this target, do we really care?
# """
# global input_len
# print(f"Returning len {input_len}")
# uc.reg_write(UC_X86_REG_RAX, input_len)
# uc.reg_write(UC_X86_REG_RIP, address + size)
def magicfn_hook(uc, address, size, user_data):
"""
This is a fancy print function that we're just going to skip for fuzzing.
"""
uc.reg_write(UC_X86_REG_RIP, address + size)
def main():
parser = argparse.ArgumentParser(description="Test harness for simple_target.bin")
parser.add_argument(
"input_file",
type=str,
help="Path to the file containing the mutated input to load",
)
parser.add_argument(
"-t",
"--trace",
default=False,
action="store_true",
help="Enables debug tracing",
)
args = parser.parse_args()
# Instantiate a MIPS32 big endian Unicorn Engine instance
uc = Uc(UC_ARCH_X86, UC_MODE_64)
if args.trace:
uc.hook_add(UC_HOOK_BLOCK, unicorn_debug_block)
uc.hook_add(UC_HOOK_CODE, unicorn_debug_instruction)
uc.hook_add(UC_HOOK_MEM_WRITE | UC_HOOK_MEM_READ, unicorn_debug_mem_access)
uc.hook_add(
UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_READ_INVALID,
unicorn_debug_mem_invalid_access,
)
print("The input testcase is set to {}".format(args.input_file))
# ---------------------------------------------------
# Load the binary to emulate and map it into memory
with open(target_bin, "rb") as f:
binary_code = f.read()
# Apply constraints to the mutated input
if len(binary_code) > CODE_SIZE_MAX:
print("Binary code is too large (> {} bytes)".format(CODE_SIZE_MAX))
return
# Write the binary to its place in mem
uc.mem_map(BASE_ADDRESS, CODE_SIZE_MAX)
uc.mem_write(BASE_ADDRESS, binary_code)
# Set the program counter to the start of the code
uc.reg_write(UC_X86_REG_RIP, main_offset)
# Setup the stack.
uc.mem_map(STACK_ADDRESS, STACK_SIZE)
# Setup the stack pointer, but allocate two pointers for the pointers to input.
uc.reg_write(UC_X86_REG_RSP, STACK_ADDRESS + STACK_SIZE - 16)
# Setup our input space, and push the pointer to it in the function params
uc.mem_map(INPUT_ADDRESS, INPUT_MAX)
# We have argc = 2
uc.reg_write(UC_X86_REG_RDI, 2)
# RSI points to our little 2 QWORD space at the beginning of the stack...
uc.reg_write(UC_X86_REG_RSI, STACK_ADDRESS + STACK_SIZE - 16)
# ... which points to the Input. Write the ptr to mem in little endian.
uc.mem_write(STACK_ADDRESS + STACK_SIZE - 16, struct.pack("<Q", INPUT_ADDRESS))
for addr in malloc_callsites:
uc.hook_add(UC_HOOK_CODE, malloc_hook, begin=addr, end=addr)
for addr in free_callsites:
uc.hook_add(UC_HOOK_CODE, free_hook, begin=addr, end=addr)
if len(strlen_callsites):
# strlen got inlined for my compiler.
print(
"Oops, your compiler emitted strlen as function. You may have to change the harness."
)
# for addr in strlen_callsites:
# uc.hook_add(UC_HOOK_CODE, strlen_hook, begin=addr, end=addr)
for addr in magicfn_callsites:
uc.hook_add(UC_HOOK_CODE, magicfn_hook, begin=addr, end=addr + 1)
# -----------------------------------------------------
# Set up a callback to place input data (do little work here, it's called for every single iteration! This code is *HOT*)
# We did not pass in any data and don't use persistent mode, so we can ignore these params.
# Be sure to check out the docstrings for the uc.afl_* functions.
def place_input_callback(uc, input, persistent_round, data):
# Apply constraints to the mutated input
input_len = len(input)
# global input_len
if input_len > INPUT_MAX:
# print("Test input is too long (> {} bytes)")
return False
# print(f"Placing input: {input} in round {persistent_round}")
# Make sure the string is always 0-terminated (as it would be "in the wild")
input[-1] = b"\0"
# Write the mutated command into the data buffer
uc.mem_write(INPUT_ADDRESS, input)
# uc.reg_write(UC_X86_REG_RIP, main_offset)
print(f"Starting to fuzz. Running from addr {main_offset} to one of {main_ends}")
# Start the fuzzer.
uc.afl_fuzz(args.input_file, place_input_callback, main_ends, persistent_iters=1000)
if __name__ == "__main__":
main()
|