File: README.agda

package info (click to toggle)
agda-stdlib 0.8-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,768 kB
  • ctags: 1
  • sloc: haskell: 119; sh: 18; makefile: 15; lisp: 1
file content (301 lines) | stat: -rw-r--r-- 10,419 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
module README where

------------------------------------------------------------------------
-- The Agda standard library, version 0.8
--
-- Author: Nils Anders Danielsson, with contributions from Andreas
-- Abel, Stevan Andjelkovic, Jean-Philippe Bernardy, Peter Berry,
-- Joachim Breitner, Samuel Bronson, Daniel Brown, James Chapman,
-- Liang-Ting Chen, Dominique Devriese, Dan Doel, Érdi Gergő, Helmut
-- Grohne, Simon Foster, Liyang Hu, Patrik Jansson, Alan Jeffrey,
-- Evgeny Kotelnikov, Eric Mertens, Darin Morrison, Guilhem Moulin,
-- Shin-Cheng Mu, Ulf Norell, Noriyuki OHKAWA, Nicolas Pouillard,
-- Andrés Sicard-Ramírez and Noam Zeilberger.
------------------------------------------------------------------------

-- This version of the library has been tested using Agda 2.4.0.

-- Note that no guarantees are currently made about forwards or
-- backwards compatibility, the library is still at an experimental
-- stage.

-- To make use of the library, add the path to the library’s root
-- directory (src) to the Agda search path, either using the
-- --include-path flag or by customising the Emacs mode variable
-- agda2-include-dirs (M-x customize-group RET agda2 RET).

-- To compile the library using the MAlonzo compiler you first need to
-- install some supporting Haskell code, for instance as follows:
--
--   cd ffi
--   cabal install
--
-- Currently the library does not support the Epic or JavaScript
-- compiler backends.

-- Contributions to this library are welcome (but to avoid wasted work
-- it is suggested that you discuss large changes before implementing
-- them). Please send contributions in the form of git pull requests, patch
-- bundles or ask for commmit rights to the repository.  It is appreciated if
-- every patch contains a single, complete change, and if the coding style used
-- in the library is adhered to.

------------------------------------------------------------------------
-- Module hierarchy
------------------------------------------------------------------------

-- The top-level module names of the library are currently allocated
-- as follows:
--
-- • Algebra
--     Abstract algebra (monoids, groups, rings etc.), along with
--     properties needed to specify these structures (associativity,
--     commutativity, etc.), and operations on and proofs about the
--     structures.
-- • Category
--     Category theory-inspired idioms used to structure functional
--     programs (functors and monads, for instance).
-- • Coinduction
--     Support for coinduction.
-- • Data
--     Data types and properties about data types.
-- • Function
--     Combinators and properties related to functions.
-- • Foreign
--     Related to the foreign function interface.
-- • Induction
--     A general framework for induction (includes lexicographic and
--     well-founded induction).
-- • IO
--     Input/output-related functions.
-- • Irrelevance
--     Definitions related to (proscriptive) irrelevance.
-- • Level
--     Universe levels.
-- • Record
--     An encoding of record types with manifest fields and "with".
-- • Reflection
--     Support for reflection.
-- • Relation
--     Properties of and proofs about relations (mostly homogeneous
--     binary relations).
-- • Size
--     Sizes used by the sized types mechanism.
-- • Universe
--     A definition of universes.

------------------------------------------------------------------------
-- A selection of useful library modules
------------------------------------------------------------------------

-- Note that module names in source code are often hyperlinked to the
-- corresponding module. In the Emacs mode you can follow these
-- hyperlinks by typing M-. or clicking with the middle mouse button.

-- • Some data types

import Data.Bool     -- Booleans.
import Data.Char     -- Characters.
import Data.Empty    -- The empty type.
import Data.Fin      -- Finite sets.
import Data.List     -- Lists.
import Data.Maybe    -- The maybe type.
import Data.Nat      -- Natural numbers.
import Data.Product  -- Products.
import Data.Stream   -- Streams.
import Data.String   -- Strings.
import Data.Sum      -- Disjoint sums.
import Data.Unit     -- The unit type.
import Data.Vec      -- Fixed-length vectors.

-- • Some types used to structure computations

import Category.Functor      -- Functors.
import Category.Applicative  -- Applicative functors.
import Category.Monad        -- Monads.

-- • Equality

-- Propositional equality:
import Relation.Binary.PropositionalEquality

-- Convenient syntax for "equational reasoning" using a preorder:
import Relation.Binary.PreorderReasoning

-- Solver for commutative ring or semiring equalities:
import Algebra.RingSolver

-- • Properties of functions, sets and relations

-- Monoids, rings and similar algebraic structures:
import Algebra

-- Negation, decidability, and similar operations on sets:
import Relation.Nullary

-- Properties of homogeneous binary relations:
import Relation.Binary

-- • Induction

-- An abstraction of various forms of recursion/induction:
import Induction

-- Well-founded induction:
import Induction.WellFounded

-- Various forms of induction for natural numbers:
import Induction.Nat

-- • Support for coinduction

import Coinduction

-- • IO

import IO

------------------------------------------------------------------------
-- Record hierarchies
------------------------------------------------------------------------

-- When an abstract hierarchy of some sort (for instance semigroup →
-- monoid → group) is included in the library the basic approach is to
-- specify the properties of every concept in terms of a record
-- containing just properties, parameterised on the underlying
-- operations, sets etc.:
--
--   record IsSemigroup {A} (≈ : Rel A) (∙ : Op₂ A) : Set where
--     open FunctionProperties ≈
--     field
--       isEquivalence : IsEquivalence ≈
--       assoc         : Associative ∙
--       ∙-cong        : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
--
-- More specific concepts are then specified in terms of the simpler
-- ones:
--
--     record IsMonoid {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) : Set where
--       open FunctionProperties ≈
--       field
--         isSemigroup : IsSemigroup ≈ ∙
--         identity    : Identity ε ∙
--
--     open IsSemigroup isSemigroup public
--
-- Note here that open IsSemigroup isSemigroup public ensures that the
-- fields of the isSemigroup record can be accessed directly; this
-- technique enables the user of an IsMonoid record to use underlying
-- records without having to manually open an entire record hierarchy.
-- This is not always possible, though. Consider the following definition
-- of preorders:
--
--   record IsPreorder {A : Set}
--                     (_≈_ : Rel A) -- The underlying equality.
--                     (_∼_ : Rel A) -- The relation.
--                     : Set where
--     field
--       isEquivalence : IsEquivalence _≈_
--       -- Reflexivity is expressed in terms of an underlying equality:
--       reflexive     : _≈_ ⇒ _∼_
--       trans         : Transitive _∼_
--
--     module Eq = IsEquivalence isEquivalence
--
--     ...
--
-- The Eq module in IsPreorder is not opened publicly, because it
-- contains some fields which clash with fields or other definitions
-- in IsPreorder.

-- Records packing up properties with the corresponding operations,
-- sets, etc. are sometimes also defined:
--
--   record Semigroup : Set₁ where
--     infixl 7 _∙_
--     infix  4 _≈_
--     field
--       Carrier     : Set
--       _≈_         : Rel Carrier
--       _∙_         : Op₂ Carrier
--       isSemigroup : IsSemigroup _≈_ _∙_
--
--     open IsSemigroup isSemigroup public
--
--     setoid : Setoid
--     setoid = record { isEquivalence = isEquivalence }
--
--   record Monoid : Set₁ where
--     infixl 7 _∙_
--     infix  4 _≈_
--     field
--       Carrier  : Set
--       _≈_      : Rel Carrier
--       _∙_      : Op₂ Carrier
--       ε        : Carrier
--       isMonoid : IsMonoid _≈_ _∙_ ε
--
--     open IsMonoid isMonoid public
--
--     semigroup : Semigroup
--     semigroup = record { isSemigroup = isSemigroup }
--
--     open Semigroup semigroup public using (setoid)
--
-- Note that the Monoid record does not include a Semigroup field.
-- Instead the Monoid /module/ includes a "repackaging function"
-- semigroup which converts a Monoid to a Semigroup.

-- The above setup may seem a bit complicated, but we think it makes the
-- library quite easy to work with, while also providing enough
-- flexibility.

------------------------------------------------------------------------
-- More documentation
------------------------------------------------------------------------

-- Some examples showing where the natural numbers/integers and some
-- related operations and properties are defined, and how they can be
-- used:

import README.Nat
import README.Integer

-- Some examples showing how the AVL tree module can be used.

import README.AVL

-- An example showing how the Record module can be used.

import README.Record

-- An example showing how the case expression can be used.

import README.Case

------------------------------------------------------------------------
-- Core modules
------------------------------------------------------------------------

-- Some modules have names ending in ".Core". These modules are
-- internal, and have (mostly) been created to avoid mutual recursion
-- between modules. They should not be imported directly; their
-- contents are reexported by other modules.

------------------------------------------------------------------------
-- All library modules
------------------------------------------------------------------------

-- For short descriptions of every library module, see Everything:

import Everything

-- Note that the Everything module is generated automatically. If you
-- have downloaded the library from its darcs repository and want to
-- type check README then you can (try to) construct Everything by
-- running "cabal install && GenerateEverything".

-- Note that all library sources are located under src or ffi. The
-- modules README, README.* and Everything are not really part of the
-- library, so these modules are located in the top-level directory
-- instead.