1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some examples of how to use non-trivial induction over the natural
-- numbers.
------------------------------------------------------------------------
module README.Data.Nat.Induction where
open import Data.Nat
open import Data.Nat.Induction
open import Data.Product.Base using (_,_)
open import Function.Base using (_∘_)
open import Induction.WellFounded
open import Relation.Binary.PropositionalEquality
private
n<′1+n : ∀ {n} → n <′ suc n
n<′1+n = ≤′-refl
n<′2+n : ∀ {n} → n <′ suc (suc n)
n<′2+n = ≤′-step ≤′-refl
-- Doubles its input.
twice : ℕ → ℕ
twice = rec _ λ
{ zero _ → zero
; (suc n) twice-n → suc (suc twice-n)
}
-- Halves its input (rounding downwards).
--
-- The step function is mentioned in a proof below, so it has been
-- given a name. (The mutual keyword is used to avoid having to give
-- a type signature for the step function.)
mutual
half₁-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) (_ , half₁n , _) → suc half₁n
}
half₁ : ℕ → ℕ
half₁ = cRec _ half₁-step
-- An alternative implementation of half₁.
mutual
half₂-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) rec → suc (rec n<′2+n)
}
half₂ : ℕ → ℕ
half₂ = <′-rec _ half₂-step
-- The application half₁ (2 + n) is definitionally equal to
-- 1 + half₁ n. Perhaps it is instructive to see why.
half₁-2+ : ∀ n → half₁ (2 + n) ≡ 1 + half₁ n
half₁-2+ n = begin
half₁ (2 + n) ≡⟨⟩
cRec _ half₁-step (2 + n) ≡⟨⟩
half₁-step (2 + n) (cRecBuilder _ half₁-step (2 + n)) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRecBuilder _ half₁-step (1 + n) in
half₁-step (1 + n) ih , ih) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRecBuilder _ half₁-step n in
half₁-step (1 + n) (half₁-step n ih , ih) , half₁-step n ih , ih) ≡⟨⟩
1 + half₁-step n (cRecBuilder _ half₁-step n) ≡⟨⟩
1 + cRec _ half₁-step n ≡⟨⟩
1 + half₁ n ∎
where open ≡-Reasoning
-- The application half₂ (2 + n) is definitionally equal to
-- 1 + half₂ n. Perhaps it is instructive to see why.
half₂-2+ : ∀ n → half₂ (2 + n) ≡ 1 + half₂ n
half₂-2+ n = begin
half₂ (2 + n) ≡⟨⟩
<′-rec _ half₂-step (2 + n) ≡⟨⟩
half₂-step (2 + n) (<′-recBuilder _ half₂-step (2 + n)) ≡⟨⟩
1 + <′-recBuilder _ half₂-step (2 + n) n<′2+n ≡⟨⟩
1 + Some.wfRecBuilder _ half₂-step (2 + n)
(<′-wellFounded (2 + n)) n<′2+n ≡⟨⟩
1 + Some.wfRecBuilder _ half₂-step (2 + n)
(acc (<′-wellFounded′ (2 + n))) n<′2+n ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n
(<′-wellFounded′ (2 + n) n<′2+n)) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n
(<′-wellFounded′ (1 + n) n<′1+n)) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n (<′-wellFounded n)) ≡⟨⟩
1 + half₂-step n (<′-recBuilder _ half₂-step n) ≡⟨⟩
1 + <′-rec _ half₂-step n ≡⟨⟩
1 + half₂ n ∎
where open ≡-Reasoning
-- Some properties that the functions above satisfy, proved using
-- cRec.
half₁-+₁ : ∀ n → half₁ (twice n) ≡ n
half₁-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
half₂-+₁ : ∀ n → half₂ (twice n) ≡ n
half₂-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
-- Some properties that the functions above satisfy, proved using
-- <′-rec.
half₁-+₂ : ∀ n → half₁ (twice n) ≡ n
half₁-+₂ = <′-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n<′2+n)
}
half₂-+₂ : ∀ n → half₂ (twice n) ≡ n
half₂-+₂ = <′-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n<′2+n)
}
|