1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples showing how the generic n-ary operations the stdlib provides
-- can be used
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module README.Nary where
open import Level using (Level)
open import Data.Nat.Base
open import Data.Nat.Properties
open import Data.Fin using (Fin; fromℕ; #_; inject₁)
open import Data.List
open import Data.List.Properties
open import Data.Product.Base using (_×_; _,_)
open import Data.Sum.Base using (inj₁; inj₂)
open import Function.Base using (id; flip; _∘′_)
open import Relation.Nullary
open import Relation.Binary.Definitions using (module Tri); open Tri
open import Relation.Binary.PropositionalEquality
private
variable
a b c d e : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
------------------------------------------------------------------------
-- Introduction
------------------------------------------------------------------------
-- Function.Nary.NonDependent and Data.Product.N-ary.Heterogeneous provide
-- a generic representation of n-ary heterogeneous (non dependent) products
-- and the corresponding types of (non-dependent) n-ary functions. The
-- representation works well with inference thus allowing us to use generic
-- combinators to manipulate such functions.
open import Data.Product.Nary.NonDependent
open import Function.Nary.NonDependent
open import Relation.Nary
------------------------------------------------------------------------
-- Generalised equality-manipulating combinators
------------------------------------------------------------------------
-- By default the standard library provides users with (we are leaving out
-- the implicit arguments here):
--
-- cong : (f : A₁ → B) → a₁ ≡ b₁ → f a₁ ≡ f b₁
-- cong₂ : (f : A₁ → A₂ → B) → a₁ ≡ b₁ → a₂ ≡ b₂ → f a₁ a₂ ≡ f b₁ b₂
--
-- and
--
-- subst : (P : A₁ → Set p) → a₁ ≡ b₁ → P a₁ → P b₁
-- subst₂ : (P : A₁ → A₂ → Set p) → a₁ ≡ b₁ → a₂ ≡ b₂ → P a₁ a₂ → P b₁ b₂
--
-- This pattern can be generalised to any natural number `n`. Thanks to our
-- library for n-ary functions, we can write the types and implementations
-- of `congₙ` and `substₙ`.
------------------------------------------------------------------------
-- congₙ : ∀ n (f : A₁ → ⋯ → Aₙ → B) →
-- a₁ ≡ b₁ → ⋯ aₙ ≡ bₙ → f a₁ ⋯ aₙ ≡ f b₁ ⋯ bₙ
-- It may be used directly to prove something:
_ : ∀ (as bs cs : List ℕ) →
zip (zip (as ++ []) (map id cs)) (reverse (reverse bs))
≡ zip (zip as cs) bs
_ = λ as bs cs → congₙ 3 (λ as bs → zip (zip as bs))
(++-identityʳ as)
(map-id cs)
(reverse-involutive bs)
-- Or as part of a longer derivation:
_ : ∀ m n p q → suc (m + (p * n) + (q ^ (m + n)))
≡ (m + 0) + (n * p) + (q ^ m * q ^ n) + 1
_ = λ m n p q → begin
suc (m + (p * n) + (q ^ (m + n))) ≡⟨ +-comm 1 _ ⟩
m + (p * n) + (q ^ (m + n)) + 1 ≡⟨ congₙ 3 (λ m n p → m + n + p + 1)
(+-comm 0 m)
(*-comm p n)
(^-distribˡ-+-* q m n)
⟩
m + 0 + n * p + (q ^ m) * (q ^ n) + 1 ∎ where open ≡-Reasoning
-- Partial application of the functional argument is fine: the number of arguments
-- `congₙ` is going to take is determined by its first argument (a natural number)
-- and not by the type of the function it works on.
_ : ∀ m → (m +_) ≡ ((m + 0) +_)
_ = λ m → congₙ 1 _+_ (+-comm 0 m)
-- We don't have to work on the function's first argument either: we can just as
-- easily use `congₙ` to act on the second one by `flip`ping it. See `holeₙ` for
-- a generalisation of this idea allowing to target *any* of the function's
-- arguments and not just the first or second one.
_ : ∀ m → (_+ m) ≡ (_+ (m + 0))
_ = λ m → congₙ 1 (flip _+_) (+-comm 0 m)
------------------------------------------------------------------------
-- substₙ : (P : A₁ → ⋯ → Aₙ → Set p) →
-- a₁ ≡ b₁ → ⋯ aₙ ≡ bₙ → P a₁ ⋯ aₙ → P b₁ ⋯ bₙ
-- We can play the same type of game with subst
open import Agda.Builtin.Nat using (mod-helper)
-- Because we know from the definition `mod-helper` that this equation holds:
-- mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
-- we should be able to prove the slightly modified statement by transforming
-- all the `x + 1` into `suc x`. We can do so using `substₙ`.
_ : ∀ k m n j → mod-helper k m (n + 1) (j + 1) ≡ mod-helper (k + 1) m n j
_ = λ k m n j →
let P sk sn sj = mod-helper k m sn sj ≡ mod-helper sk m n j
in substₙ P (+-comm 1 k) (+-comm 1 n) (+-comm 1 j) refl
-----------------------------------------------------------------------
-- Generic programs working on n-ary products & functions
-----------------------------------------------------------------------
-----------------------------------------------------------------------
-- curryₙ : ∀ n → (A₁ × ⋯ × Aₙ → B) → A₁ → ⋯ → Aₙ → B
-- uncurryₙ : ∀ n → (A₁ → ⋯ → Aₙ → B) → A₁ × ⋯ × Aₙ → B
-- The first thing we may want to do generically is convert between
-- curried function types and uncurried ones. We can do this by using:
-- They both work the same way so we will focus on curryₙ only here.
-- If we pass to `curryₙ` the arity of its argument then we obtain a
-- fully curried function.
curry₁ : (A × B × C × D → E) → A → B → C → D → E
curry₁ = curryₙ 4
-- Note that here we are not flattening arbitrary nestings: products have
-- to be right nested. Which means that if you have a deeply-nested product
-- then it won't be affected by the procedure.
curry₁′ : (A × (B × C) × D → E) → A → (B × C) → D → E
curry₁′ = curryₙ 3
-- When we are currying a function, we have no obligation to pass its exact
-- arity as the parameter: we can decide to only curry part of it like so:
-- Indeed (A₁ × ⋯ × Aₙ → B) can also be seen as (A₁ × ⋯ × (Aₖ × ⋯ × Aₙ) → B)
curry₂ : (A × B × C × D → E) → A → B → (C × D) → E
curry₂ = curryₙ 3
-----------------------------------------------------------------------
-- projₙ : ∀ n (k : Fin n) → (A₁ × ⋯ × Aₙ) → Aₖ₊₁
-- Another useful class of functions to manipulate n-ary product is a
-- generic projection function. Note the (k + 1) in the return index:
-- Fin counts from 0 up.
-- It behaves as one expects (Data.Fin's #_ comes in handy to write down
-- Fin literals):
proj₃ : (A × B × C × D × E) → C
proj₃ = projₙ 5 (# 2)
-- Of course we can once more project the "tail" of the n-ary product by
-- passing `projₙ` a natural number which is smaller than the size of the
-- n-ary product, seeing (A₁ × ⋯ × Aₙ) as (A₁ × ⋯ × (Aₖ × ⋯ × Aₙ)).
proj₃′ : (A × B × C × D × E) → C × D × E
proj₃′ = projₙ 3 (# 2)
-----------------------------------------------------------------------
-- insertₙ : ∀ n (k : Fin (suc n)) →
-- B → (A₁ × ⋯ Aₙ) → (A₁ × ⋯ × Aₖ × B × Aₖ₊₁ × ⋯ Aₙ)
insert₁ : C → (A × B × D × E) → (A × B × C × D × E)
insert₁ = insertₙ 4 (# 2)
insert₁′ : C → (A × B × D × E) → (A × B × C × D × E)
insert₁′ = insertₙ 3 (# 2)
-- Note that `insertₙ` takes a `Fin (suc n)`. Indeed in an n-ary product
-- there are (suc n) positions at which one may insert a value. We may
-- insert at the front or the back of the product:
insert-front : A → (B × C × D × E) → (A × B × C × D × E)
insert-front = insertₙ 4 (# 0)
insert-back : E → (A × B × C × D) → (A × B × C × D × E)
insert-back = insertₙ 4 (# 4)
-----------------------------------------------------------------------
-- removeₙ : ∀ n (k : Fin n) → (A₁ × ⋯ Aₙ) → (A₁ × ⋯ × Aₖ × Aₖ₊₂ × ⋯ Aₙ)
-- Dual to `insertₙ`, we may remove a value.
remove₁ : (A × B × C × D × E) → (A × B × D × E)
remove₁ = removeₙ 5 (# 2)
-- Inserting at `k` and then removing at `inject₁ k` should yield the identity
remove-insert : C → (A × B × D × E) → (A × B × D × E)
remove-insert c = removeₙ 5 (inject₁ k) ∘′ insertₙ 4 k c
where k = # 2
-----------------------------------------------------------------------
-- updateₙ : ∀ n (k : Fin n) (f : (a : Aₖ₊₁) → B a) →
-- (p : A₁ × ⋯ Aₙ) → (A₁ × ⋯ × Aₖ × B (projₙ n k p) × Aₖ₊₂ × ⋯ Aₙ)
-- We can not only project out, insert or remove values: we can update them
-- in place. The type (and value) of the replacement at position k may depend
-- upon the current value at position k.
update₁ : (p : A × B × ℕ × C × D) → (A × B × Fin _ × C × D)
update₁ = updateₙ 5 (# 2) fromℕ
-- We can explicitly use the primed version of `updateₙ` to make it known to
-- Agda that the update function is non dependent. This type of information
-- is useful for inference: the tighter the constraints, the easier it is to
-- find a solution (if possible).
update₂ : (p : A × B × ℕ × C × D) → (A × B × List D × C × D)
update₂ = λ p → updateₙ′ 5 (# 2) (λ n → replicate n (projₙ 5 (# 4) p)) p
-----------------------------------------------------------------------
-- _%=_⊢_ : ∀ n → (C → D) → (A₁ → ⋯ Aₙ → D → B) → A₁ → ⋯ → Aₙ → C → B
-- Traditional composition (also known as the index update operator `_⊢_`
-- in `Relation.Unary`) focuses solely on the first argument of an n-ary
-- function. `_%=_⊢_` on the other hand allows us to touch any one of the
-- arguments.
-- In the following example we have a function `f : A → B` and `replicate`
-- of type `ℕ → B → List B`. We want ̀f` to act on the second argument of
-- replicate. Which we can do like so.
compose₁ : (A → B) → ℕ → A → List B
compose₁ f = 1 %= f ⊢ replicate
-- Here we spell out the equivalent explicit variable-manipulation and
-- prove the two functions equal.
compose₁′ : (A → B) → ℕ → A → List B
compose₁′ f n a = replicate n (f a)
compose₁-eq : compose₁ {a} {A} {b} {B} ≡ compose₁′
compose₁-eq = refl
-----------------------------------------------------------------------
-- _∷=_⊢_ : ∀ n → A → (A₁ → ⋯ Aₙ → A → B) → A₁ → ⋯ → Aₙ → B
-- Partial application usually focuses on the first argument of a function.
-- We can now partially apply a function in any of its arguments using
-- `_∷=_⊢_`. Reusing our example involving replicate: we can specialise it
-- to only output finite lists of `0`:
apply₁ : ℕ → List ℕ
apply₁ = 1 ∷= 0 ⊢ replicate
apply₁-eq : apply₁ 3 ≡ 0 ∷ 0 ∷ 0 ∷ []
apply₁-eq = refl
------------------------------------------------------------------------
-- holeₙ : ∀ n → (A → (A₁ → ⋯ Aₙ → B)) → A₁ → ⋯ → Aₙ → (A → B)
-- As we have seen earlier, `cong` acts on a function's first variable.
-- If we want to access the second one, we can use `flip`. But what about
-- the fourth one? We typically use an explicit λ-abstraction shuffling
-- variables. Not anymore.
-- Reusing mod-helper just because it takes a lot of arguments:
hole₁ : ∀ k m n j → mod-helper k (m + 1) n j ≡ mod-helper k (suc m) n j
hole₁ = λ k m n j → cong (holeₙ 2 (mod-helper k) n j) (+-comm m 1)
-----------------------------------------------------------------------
-- mapₙ : ∀ n → (B → C) → (A₁ → ⋯ Aₙ → B) → (A₁ → ⋯ → Aₙ → C)
-- (R →_) gives us the reader monad (and, a fortiori, functor). That is to
-- say that given a function (A → B) and an (R → A) we can get an (R → B)
-- This generalises to n-ary functions.
-- Reusing our `composeₙ` example: instead of applying `f` to the replicated
-- element, we can map it on the resulting list. Giving us:
map₁ : (A → B) → ℕ → A → List B
map₁ f = mapₙ 2 (map f) replicate
------------------------------------------------------------------------
-- constₙ : ∀ n → B → A₁ → ⋯ → Aₙ → B
-- `const` is basically `pure` for the reader monad discussed above. Just
-- like we can generalise the functorial action corresponding to the reader
-- functor to n-ary functions, we can do the same for `pure`.
const₁ : A → B → C → D → E → A
const₁ = constₙ 4
-- Together with `holeₙ`, this means we can make a constant function out
-- of any of the arguments. The fourth for instance:
const₂ : A → B → C → D → E → D
const₂ = holeₙ 3 (constₙ 4)
------------------------------------------------------------------------
-- Generalised quantifiers
------------------------------------------------------------------------
-- As we have seen multiple times already, one of the advantages of working
-- with non-dependent products is that they can be easily inferred. This is
-- a prime opportunity to define generic quantifiers.
-- And because n-ary relations are Set-terminated, there is no ambiguity
-- where to split between arguments & codomain. As a consequence Agda can
-- infer even `n`, the number of arguments. We can use notations which are
-- just like the ones defined in `Relation.Unary`.
------------------------------------------------------------------------
-- ∃⟨_⟩ : (A₁ → ⋯ → Aₙ → Set r) → Set _
-- ∃⟨ P ⟩ = ∃ λ a₁ → ⋯ → ∃ λ aₙ → P a₁ ⋯ aₙ
-- Returning to our favourite function taking a lot of arguments: we can
-- find a set of input for which it evaluates to 666
exist₁ : ∃⟨ (λ k m n j → mod-helper k m n j ≡ 666) ⟩
exist₁ = 19 , 793 , 3059 , 10 , refl
------------------------------------------------------------------------
-- ∀[_] : (A₁ → ⋯ → Aₙ → Set r) → Set _
-- ∀[_] P = ∀ {a₁} → ⋯ → ∀ {aₙ} → P a₁ ⋯ aₙ
all₁ : ∀[ (λ (a₁ a₂ : ℕ) → Dec (a₁ ≡ a₂)) ]
all₁ {a₁} {a₂} = a₁ ≟ a₂
------------------------------------------------------------------------
-- Π : (A₁ → ⋯ → Aₙ → Set r) → Set _
-- Π P = ∀ a₁ → ⋯ → ∀ aₙ → P a₁ ⋯ aₙ
all₂ : Π[ (λ (a₁ a₂ : ℕ) → Dec (a₁ ≡ a₂)) ]
all₂ = _≟_
------------------------------------------------------------------------
-- _⇒_ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set s) → (A₁ → ⋯ → Aₙ → Set _)
-- P ⇒ Q = λ a₁ → ⋯ → λ aₙ → P a₁ ⋯ aₙ → Q a₁ ⋯ aₙ
antisym : ∀[ _≤_ ⇒ _≥_ ⇒ _≡_ ]
antisym = ≤-antisym
------------------------------------------------------------------------
-- _∪_ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set s) → (A₁ → ⋯ → Aₙ → Set _)
-- P ∪ Q = λ a₁ → ⋯ → λ aₙ → P a₁ ⋯ aₙ ⊎ Q a₁ ⋯ aₙ
≤->-connex : Π[ _≤_ ∪ _>_ ]
≤->-connex m n with <-cmp m n
... | tri< a ¬b ¬c = inj₁ (<⇒≤ a)
... | tri≈ ¬a b ¬c = inj₁ (≤-reflexive b)
... | tri> ¬a ¬b c = inj₂ c
------------------------------------------------------------------------
-- _∩_ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set s) → (A₁ → ⋯ → Aₙ → Set _)
-- P ∩ Q = λ a₁ → ⋯ → λ aₙ → P a₁ ⋯ aₙ × Q a₁ ⋯ aₙ
<-inversion : ∀[ _<_ ⇒ _≤_ ∩ _≢_ ]
<-inversion m<n = <⇒≤ m<n , <⇒≢ m<n
------------------------------------------------------------------------
-- ∁ : (A₁ → ⋯ → Aₙ → Set r) → (A₁ → ⋯ → Aₙ → Set _)
-- ∁ P = λ a₁ → ⋯ → λ aₙ → ¬ (P a₁ ⋯ aₙ)
m<n⇒m≱n : ∀[ _>_ ⇒ ∁ _≤_ ]
m<n⇒m≱n m>n m≤n = <⇒≱ m>n m≤n
|