File: Cong.agda

package info (click to toggle)
agda-stdlib 2.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,196 kB
  • sloc: haskell: 375; makefile: 32; sh: 28; lisp: 1
file content (196 lines) | stat: -rw-r--r-- 5,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{-# OPTIONS --cubical-compatible --safe #-}

module README.Tactic.Cong where

open import Data.Nat
open import Data.Nat.DivMod
open import Data.Nat.Properties

open import Relation.Binary.PropositionalEquality
  using (_≡_; refl; sym; cong; module ≡-Reasoning)

open import Tactic.Cong using (cong! ; ⌞_⌟)

----------------------------------------------------------------------
-- Usage
----------------------------------------------------------------------

-- When performing large equational reasoning proofs, it's quite
-- common to have to construct sophisticated lambdas to pass
-- into 'cong'. This can be extremely tedious, and can bog down
-- large proofs in piles of boilerplate. The 'cong!' tactic
-- simplifies this process by synthesizing the appropriate call
-- to 'cong' by inspecting both sides of the goal.
--
-- This is best demonstrated with a small example. Consider
-- the following proof:

verbose-example : ∀ m n → m ≡ n → suc (suc (m + 0)) + m ≡ suc (suc n) + (n + 0)
verbose-example m n eq =
  let open ≡-Reasoning in
  begin
    suc (suc (m + 0)) + m
  ≡⟨ cong (λ ϕ → suc (suc (ϕ + m))) (+-identityʳ m) ⟩
    suc (suc m) + m
  ≡⟨ cong (λ ϕ → suc (suc (ϕ + ϕ))) eq ⟩
    suc (suc n) + n
  ≡⟨ cong (λ ϕ → suc (suc (n + ϕ))) (+-identityʳ n) ⟨
    suc (suc n) + (n + 0)

-- The calls to 'cong' add a lot of boilerplate, and also
-- clutter up the proof, making it more difficult to read.
-- We can simplify this by using 'cong!' to deduce those
-- lambdas for us.

succinct-example : ∀ m n → m ≡ n → suc (suc (m + 0)) + m ≡ suc (suc n) + (n + 0)
succinct-example m n eq =
  let open ≡-Reasoning in
  begin
    suc (suc (m + 0)) + m
  ≡⟨ cong! (+-identityʳ m) ⟩
    suc (suc m) + m
  ≡⟨ cong! eq ⟩
    suc (suc n) + n
  ≡⟨ cong! (+-identityʳ n) ⟨
    suc (suc n) + (n + 0)

----------------------------------------------------------------------
-- Explicit markings
----------------------------------------------------------------------

-- The 'cong!' tactic can handle simple cases, but will
-- struggle when presented with equality proofs like
-- 'm + n ≡ n + m' or 'm + (n + o) ≡ (m + n) + o'.
--
-- The reason behind this is that this tactic operates by simple
-- anti-unification; it examines both sides of the equality goal
-- to deduce where to generalize. When presented with two sides
-- of an equality like 'm + n ≡ n + m', it will anti-unify to
-- 'ϕ + ϕ', which is too specific.
--
-- In cases like these, you may explicitly mark the subterms to
-- be generalized by wrapping them in the marker function, ⌞_⌟.

marker-example₁ : ∀ m n o p → m + n + (o + p) ≡ n + m + (p + o)
marker-example₁ m n o p =
  let open ≡-Reasoning in
  begin
    ⌞ m + n ⌟ + (o + p)
  ≡⟨ cong! (+-comm m n) ⟩
    n + m + ⌞ o + p ⌟
  ≡⟨ cong! (+-comm p o) ⟨
    n + m + (p + o)

marker-example₂ : ∀ m n → m + n + (m + n) ≡ n + m + (n + m)
marker-example₂ m n =
  let open ≤-Reasoning in
  begin-equality
    ⌞ m + n ⌟ + ⌞ m + n ⌟
  ≡⟨ cong! (+-comm m n) ⟩
    n + m + (n + m)

----------------------------------------------------------------------
-- Unit Tests
----------------------------------------------------------------------

module LiteralTests
  (assumption : 48 ≡ 42)
  (f : ℕ → ℕ → ℕ → ℕ)
  where

  test₁ : 40 + 2 ≡ 42
  test₁ = cong! refl

  test₂ : 48 ≡ 42 → 42 ≡ 48
  test₂ eq = cong! (sym eq)

  test₃ : (f : ℕ → ℕ) → f 48 ≡ f 42
  test₃ f = cong! assumption

  test₄ : (f : ℕ → ℕ → ℕ) → f 48 48 ≡ f 42 42
  test₄ f = cong! assumption

  test₅ : f 48 45 48 ≡ f 42 45 42
  test₅ = cong! assumption

module LambdaTests
  (assumption : 48 ≡ 42)
  where

  test₁ : (λ x → x + 48) ≡ (λ x → x + 42)
  test₁ = cong! assumption

  test₂ : (λ x y z → x + (y + 48 + z)) ≡ (λ x y z → x + (y + 42 + z))
  test₂ = cong! assumption

module HigherOrderTests
  (f g : ℕ → ℕ)
  where

  test₁ : f ≡ g → ∀ n → f n ≡ g n
  test₁ eq n = cong! eq

  test₂ : f ≡ g → ∀ n → f (f (f n)) ≡ g (g (g n))
  test₂ eq n = cong! eq

module EquationalReasoningTests where

  test₁ : ∀ m n → m ≡ n → suc (suc (m + 0)) + m ≡ suc (suc n) + (n + 0)
  test₁ m n eq =
    let open ≡-Reasoning in
    begin
      suc (suc (m + 0)) + m
    ≡⟨ cong! (+-identityʳ m) ⟩
      suc (suc m) + m
    ≡⟨ cong! eq ⟩
      suc (suc n) + n
    ≡⟨ cong! (+-identityʳ n) ⟨
      suc (suc n) + (n + 0)

  test₂ : ∀ m n → m ≡ n → suc (m + m) ≤ suc (suc (n + n))
  test₂ m n eq =
    let open ≤-Reasoning in
    begin
      suc (m + m)
    ≡⟨ cong! eq ⟩
      suc (n + n)
    ≤⟨ n≤1+n _ ⟩
      suc (suc (n + n))

module MetaTests where

  test₁ : ∀ m n o → .⦃ _ : NonZero o ⦄ → (m + n) / o ≡ (n + m) / o
  test₁ m n o =
    let open ≤-Reasoning in
    begin-equality
      ⌞ m + n ⌟ / o
     ≡⟨ cong! (+-comm m n) ⟩
      (n + m) / o

  test₂ : ∀ m n o p q r → .⦃ _ : NonZero o ⦄ → .⦃ _ : NonZero p ⦄ →
          .⦃ _ : NonZero q ⦄ → p ≡ q ^ r → (m + n) % o % p ≡ (n + m) % o % p
  test₂ m n o p q r eq =
    let
      open ≤-Reasoning
      instance q^r≢0 = m^n≢0 q r
    in
    begin-equality
      (m + n) % o % p
     ≡⟨ %-congʳ eq ⟩
      ⌞ m + n ⌟ % o % q ^ r
     ≡⟨ cong! (+-comm m n) ⟩
      ⌞ n + m ⌟ % o % q ^ r
     ≡⟨ cong! (+-comm m n) ⟨
      ⌞ m + n ⌟ % o % q ^ r
     ≡⟨ cong! (+-comm m n) ⟩
      (n + m) % o % q ^ r
     ≡⟨ %-congʳ eq ⟨
      (n + m) % o % p