1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
Release notes for Agda version 2.4.2.4
======================================
Installation and infrastructure
-------------------------------
* Removed support for GHC 7.4.2.
Pragmas and options
-------------------
* Option `--copatterns` is now on by default. To switch off
parsing of copatterns, use:
```agda
{-# OPTIONS --no-copatterns #-}
```
* Option `--rewriting` is now needed to use `REWRITE` pragmas and
rewriting during reduction. Rewriting is not `--safe`.
To use rewriting, first specify a relation symbol `R` that will
later be used to add rewrite rules. A canonical candidate would be
propositional equality
```agda
{-# BUILTIN REWRITE _≡_ #-}
```
but any symbol `R` of type `Δ → A → A → Set i` for some `A` and `i`
is accepted. Then symbols `q` can be added to rewriting provided
their type is of the form `Γ → R ds l r`. This will add a rewrite
rule
```
Γ ⊢ l ↦ r : A[ds/Δ]
```
to the signature, which fires whenever a term is an instance of `l`.
For example, if
```agda
plus0 : ∀ x → x + 0 ≡ x
```
(ideally, there is a proof for `plus0`, but it could be a
postulate), then
```agda
{-# REWRITE plus0 #-}
```
will prompt Agda to rewrite any well-typed term of the form `t + 0`
to `t`.
Some caveats: Agda accepts and applies rewrite rules naively, it is
very easy to break consistency and termination of type checking.
Some examples of rewrite rules that should *not* be added:
```agda
refl : ∀ x → x ≡ x -- Agda loops
plus-sym : ∀ x y → x + y ≡ y + x -- Agda loops
absurd : true ≡ false -- Breaks consistency
```
Adding only proven equations should at least preserve consistency,
but this is only a conjecture, so know what you are doing! Using
rewriting, you are entering into the wilderness, where you are on
your own!
Language
--------
* `forall` / `∀` now parses like `λ`, i.e., the following parses now
[Issue [#1583](https://github.com/agda/agda/issues/1538)]:
```agda
⊤ × ∀ (B : Set) → B → B
```
* The underscore pattern `_` can now also stand for an inaccessible
pattern (dot pattern). This alleviates the need for writing `._`.
[Issue #[1605](https://github.com/agda/agda/issues/1605)] Instead of
```agda
transVOld : ∀{A : Set} (a b c : A) → a ≡ b → b ≡ c → a ≡ c
transVOld _ ._ ._ refl refl = refl
```
one can now write
```agda
transVNew : ∀{A : Set} (a b c : A) → a ≡ b → b ≡ c → a ≡ c
transVNew _ _ _ refl refl = refl
```
and let Agda decide where to put the dots. This was always possible
by using hidden arguments
```agda
transH : ∀{A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c
transH refl refl = refl
```
which is now equivalent to
```agda
transHNew : ∀{A : Set}{a b c : A} → a ≡ b → b ≡ c → a ≡ c
transHNew {a = _}{b = _}{c = _} refl refl = refl
```
Before, underscore `_` stood for an unnamed variable that could not
be instantiated by an inaccessible pattern. If one no wants to
prevent Agda from instantiating, one needs to use a variable name
other than underscore (however, in practice this situation seems
unlikely).
Type checking
-------------
* Polarity of phantom arguments to data and record types has
changed. [Issue [#1596](https://github.com/agda/agda/issues/1596)]
Polarity of size arguments is Nonvariant (both monotone and
antitone). Polarity of other arguments is Covariant (monotone).
Both were Invariant before (neither monotone nor antitone).
The following example type-checks now:
```agda
open import Common.Size
-- List should be monotone in both arguments
-- (even when `cons' is missing).
data List (i : Size) (A : Set) : Set where
[] : List i A
castLL : ∀{i A} → List i (List i A) → List ∞ (List ∞ A)
castLL x = x
-- Stream should be antitone in the first and monotone in the second argument
-- (even with field `tail' missing).
record Stream (i : Size) (A : Set) : Set where
coinductive
field
head : A
castSS : ∀{i A} → Stream ∞ (Stream ∞ A) → Stream i (Stream i A)
castSS x = x
```
* `SIZELT` lambdas must be consistent
[Issue [#1523](https://github.com/agda/agda/issues/1523), see Abel
and Pientka, ICFP 2013]. When lambda-abstracting over type (`Size<
size`) then `size` must be non-zero, for any valid instantiation of
size variables.
- The good:
```agda
data Nat (i : Size) : Set where
zero : ∀ (j : Size< i) → Nat i
suc : ∀ (j : Size< i) → Nat j → Nat i
{-# TERMINATING #-}
-- This definition is fine, the termination checker is too strict at the moment.
fix : ∀ {C : Size → Set}
→ (∀ i → (∀ (j : Size< i) → Nat j -> C j) → Nat i → C i)
→ ∀ i → Nat i → C i
fix t i (zero j) = t i (λ (k : Size< i) → fix t k) (zero j)
fix t i (suc j n) = t i (λ (k : Size< i) → fix t k) (suc j n)
```
The `λ (k : Size< i)` is fine in both cases, as context
```agda
i : Size, j : Size< i
```
guarantees that `i` is non-zero.
- The bad:
```agda
record Stream {i : Size} (A : Set) : Set where
coinductive
constructor _∷ˢ_
field
head : A
tail : ∀ {j : Size< i} → Stream {j} A
open Stream public
_++ˢ_ : ∀ {i A} → List A → Stream {i} A → Stream {i} A
[] ++ˢ s = s
(a ∷ as) ++ˢ s = a ∷ˢ (as ++ˢ s)
```
This fails, maybe unjustified, at
```agda
i : Size, s : Stream {i} A
⊢
a ∷ˢ (λ {j : Size< i} → as ++ˢ s)
```
Fixed by defining the constructor by copattern matching:
```agda
record Stream {i : Size} (A : Set) : Set where
coinductive
field
head : A
tail : ∀ {j : Size< i} → Stream {j} A
open Stream public
_∷ˢ_ : ∀ {i A} → A → Stream {i} A → Stream {↑ i} A
head (a ∷ˢ as) = a
tail (a ∷ˢ as) = as
_++ˢ_ : ∀ {i A} → List A → Stream {i} A → Stream {i} A
[] ++ˢ s = s
(a ∷ as) ++ˢ s = a ∷ˢ (as ++ˢ s)
```
- The ugly:
```agda
fix : ∀ {C : Size → Set}
→ (∀ i → (∀ (j : Size< i) → C j) → C i)
→ ∀ i → C i
fix t i = t i λ (j : Size< i) → fix t j
```
For `i=0`, there is no such `j` at runtime, leading to looping
behavior.
Interaction
-----------
* Issue [#635](https://github.com/agda/agda/issues/635) has been
fixed. Case splitting does not spit out implicit record patterns
any more.
```agda
record Cont : Set₁ where
constructor _◃_
field
Sh : Set
Pos : Sh → Set
open Cont
data W (C : Cont) : Set where
sup : (s : Sh C) (k : Pos C s → W C) → W C
bogus : {C : Cont} → W C → Set
bogus w = {!w!}
```
Case splitting on `w` yielded, since the fix of
Issue [#473](https://github.com/agda/agda/issues/473),
```agda
bogus {Sh ◃ Pos} (sup s k) = ?
```
Now it gives, as expected,
```agda
bogus (sup s k) = ?
```
Performance
-----------
* As one result of the 21st Agda Implementor's Meeting (AIM XXI),
serialization of the standard library is 50% faster (time reduced by
a third), without using additional disk space for the interface
files.
Bug fixes
---------
Issues fixed (see [bug tracker](https://github.com/agda/agda/issues)):
[#1546](https://github.com/agda/agda/issues/1546) (copattern matching
and with-clauses)
[#1560](https://github.com/agda/agda/issues/1560) (positivity checker
inefficiency)
[#1584](https://github.com/agda/agda/issues/1548) (let pattern with
trailing implicit)
|