1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.2
// Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_ARRAY_INCLUDED
#define AGG_ARRAY_INCLUDED
#include <string.h>
#include "agg_basics.h"
namespace agg
{
//---------------------------------------------------------------pod_array
// A simple class template to store Plain Old Data, a vector
// of a fixed size. The data is continous in memory
//------------------------------------------------------------------------
template<class T> class pod_array
{
public:
typedef T value_type;
~pod_array() { delete [] m_array; }
pod_array() : m_size(0), m_capacity(0), m_array(0) {}
pod_array(unsigned cap, unsigned extra_tail=0);
// Copying
pod_array(const pod_array<T>&);
const pod_array<T>& operator = (const pod_array<T>&);
unsigned capacity() const { return m_capacity; }
void capacity(unsigned cap, unsigned extra_tail=0);
void resize(unsigned new_size);
void add(const T& v) { m_array[m_size++] = v; }
void inc_size(unsigned size) { m_size += size; }
unsigned size() const { return m_size; }
const T& operator [] (unsigned idx) const { return m_array[idx]; }
T& operator [] (unsigned idx) { return m_array[idx]; }
void remove_all() { m_size = 0; }
void cut_at(unsigned num) { if(num < m_size) m_size = num; }
private:
unsigned m_size;
unsigned m_capacity;
T* m_array;
};
//------------------------------------------------------------------------
template<class T>
void pod_array<T>::capacity(unsigned cap, unsigned extra_tail)
{
m_size = 0;
if(cap > m_capacity)
{
delete [] m_array;
m_capacity = cap + extra_tail;
m_array = m_capacity ? new T [m_capacity] : 0;
}
}
//------------------------------------------------------------------------
template<class T>
void pod_array<T>::resize(unsigned new_size)
{
if(new_size > m_size)
{
if(new_size > m_capacity)
{
T* data = new T[new_size];
memcpy(data, m_array, m_size * sizeof(T));
delete [] m_array;
m_array = data;
}
}
else
{
m_size = new_size;
}
}
//------------------------------------------------------------------------
template<class T> pod_array<T>::pod_array(unsigned cap, unsigned extra_tail) :
m_size(0), m_capacity(0), m_array(0)
{
capacity(cap, extra_tail);
}
//------------------------------------------------------------------------
template<class T> pod_array<T>::pod_array(const pod_array<T>& v) :
m_size(v.m_size),
m_capacity(v.m_capacity),
m_array(v.m_capacity ? new T [v.m_capacity] : 0)
{
memcpy(m_array, v.m_array, sizeof(T) * v.m_size);
}
//------------------------------------------------------------------------
template<class T> const pod_array<T>&
pod_array<T>::operator = (const pod_array<T>&v)
{
capacity(v.m_capacity);
if(v.m_size) memcpy(m_array, v.m_array, sizeof(T) * v.m_size);
return *this;
}
//------------------------------------------------------------------------
template<class T> class pod_array_adaptor
{
public:
typedef T value_type;
pod_array_adaptor(T* array, unsigned size) :
m_array(array), m_size(size) {}
unsigned size() const { return m_size; }
const T& operator [] (unsigned idx) const { return m_array[idx]; }
T& operator [] (unsigned idx) { return m_array[idx]; }
private:
T* m_array;
unsigned m_size;
};
//---------------------------------------------------------------pod_deque
// A simple class template to store Plain Old Data, similar to std::deque
// It doesn't reallocate memory but instead, uses blocks of data of size
// of (1 << S), that is, power of two. The data is NOT continuous in memory,
// so the only valid access method is operator [] or curr(), prev(), next()
//
// There reallocs occure only when the pool of pointers to blocks needs
// to be extended (it happens very rear). You can control the value
// of increment to reallocate the pointer buffer. See the second constructor.
// By default, the incremeent value equals (1 << S), i.e., the block size.
//------------------------------------------------------------------------
template<class T, unsigned S=6> class pod_deque
{
enum
{
block_shift = S,
block_size = 1 << block_shift,
block_mask = block_size - 1
};
public:
typedef T value_type;
~pod_deque();
pod_deque();
pod_deque(unsigned block_ptr_inc);
// Copying
pod_deque(const pod_deque<T, S>& v);
const pod_deque<T, S>& operator = (const pod_deque<T, S>& v);
void remove_all() { m_size = 0; }
void free_all() { free_tail(0); }
void free_tail(unsigned size);
void add(const T& val);
void modify_last(const T& val);
void remove_last();
int allocate_continuous_block(unsigned num_elements);
void cut_at(unsigned size)
{
if(size < m_size) m_size = size;
}
unsigned size() const { return m_size; }
const T& operator [] (unsigned idx) const
{
return m_blocks[idx >> block_shift][idx & block_mask];
}
T& operator [] (unsigned idx)
{
return m_blocks[idx >> block_shift][idx & block_mask];
}
const T& curr(unsigned idx) const
{
return (*this)[idx];
}
T& curr(unsigned idx)
{
return (*this)[idx];
}
const T& prev(unsigned idx) const
{
return (*this)[(idx + m_size - 1) % m_size];
}
T& prev(unsigned idx)
{
return (*this)[(idx + m_size - 1) % m_size];
}
const T& next(unsigned idx) const
{
return (*this)[(idx + 1) % m_size];
}
T& next(unsigned idx)
{
return (*this)[(idx + 1) % m_size];
}
const T& last() const
{
return (*this)[m_size - 1];
}
T& last()
{
return (*this)[m_size - 1];
}
unsigned byte_size() const;
void serialize(int8u* ptr) const;
private:
void allocate_block(unsigned nb);
T* data_ptr();
unsigned m_size;
unsigned m_num_blocks;
unsigned m_max_blocks;
T** m_blocks;
unsigned m_block_ptr_inc;
};
//------------------------------------------------------------------------
template<class T, unsigned S> pod_deque<T, S>::~pod_deque()
{
if(m_num_blocks)
{
T** blk = m_blocks + m_num_blocks - 1;
while(m_num_blocks--)
{
delete [] *blk;
--blk;
}
delete [] m_blocks;
}
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void pod_deque<T, S>::free_tail(unsigned size)
{
if(size < m_size)
{
unsigned nb = (size + block_mask) >> block_shift;
while(m_num_blocks > nb)
{
delete [] m_blocks[--m_num_blocks];
}
m_size = size;
}
}
//------------------------------------------------------------------------
template<class T, unsigned S> pod_deque<T, S>::pod_deque() :
m_size(0),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_block_ptr_inc(block_size)
{
}
//------------------------------------------------------------------------
template<class T, unsigned S>
pod_deque<T, S>::pod_deque(unsigned block_ptr_inc) :
m_size(0),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_block_ptr_inc(block_ptr_inc)
{
}
//------------------------------------------------------------------------
template<class T, unsigned S>
pod_deque<T, S>::pod_deque(const pod_deque<T, S>& v) :
m_size(v.m_size),
m_num_blocks(v.m_num_blocks),
m_max_blocks(v.m_max_blocks),
m_blocks(v.m_max_blocks ? new T* [v.m_max_blocks] : 0),
m_block_ptr_inc(v.m_block_ptr_inc)
{
unsigned i;
for(i = 0; i < v.m_num_blocks; ++i)
{
m_blocks[i] = new T [block_size];
memcpy(m_blocks[i], v.m_blocks[i], block_size * sizeof(T));
}
}
//------------------------------------------------------------------------
template<class T, unsigned S>
const pod_deque<T, S>& pod_deque<T, S>::operator = (const pod_deque<T, S>& v)
{
unsigned i;
for(i = m_num_blocks; i < v.m_num_blocks; ++i)
{
allocate_block(i);
}
for(i = 0; i < v.m_num_blocks; ++i)
{
memcpy(m_blocks[i], v.m_blocks[i], block_size * sizeof(T));
}
m_size = v.m_size;
return *this;
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void pod_deque<T, S>::allocate_block(unsigned nb)
{
if(nb >= m_max_blocks)
{
T** new_blocks = new T* [m_max_blocks + m_block_ptr_inc];
if(m_blocks)
{
memcpy(new_blocks,
m_blocks,
m_num_blocks * sizeof(T*));
delete [] m_blocks;
}
m_blocks = new_blocks;
m_max_blocks += m_block_ptr_inc;
}
m_blocks[nb] = new T [block_size];
m_num_blocks++;
}
//------------------------------------------------------------------------
template<class T, unsigned S>
inline T* pod_deque<T, S>::data_ptr()
{
unsigned nb = m_size >> block_shift;
if(nb >= m_num_blocks)
{
allocate_block(nb);
}
return m_blocks[nb] + (m_size & block_mask);
}
//------------------------------------------------------------------------
template<class T, unsigned S>
inline void pod_deque<T, S>::add(const T& val)
{
*data_ptr() = val;
++m_size;
}
//------------------------------------------------------------------------
template<class T, unsigned S>
inline void pod_deque<T, S>::remove_last()
{
if(m_size) --m_size;
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void pod_deque<T, S>::modify_last(const T& val)
{
remove_last();
add(val);
}
//------------------------------------------------------------------------
template<class T, unsigned S>
int pod_deque<T, S>::allocate_continuous_block(unsigned num_elements)
{
if(num_elements < block_size)
{
data_ptr(); // Allocate initial block if necessary
unsigned rest = block_size - (m_size & block_mask);
unsigned index;
if(num_elements <= rest)
{
// The rest of the block is good, we can use it
//-----------------
index = m_size;
m_size += num_elements;
return index;
}
// New block
//---------------
m_size += rest;
data_ptr();
index = m_size;
m_size += num_elements;
return index;
}
return -1; // Impossible to allocate
}
//------------------------------------------------------------------------
template<class T, unsigned S>
unsigned pod_deque<T, S>::byte_size() const
{
return m_size * sizeof(T);
}
//------------------------------------------------------------------------
template<class T, unsigned S>
void pod_deque<T, S>::serialize(int8u* ptr) const
{
unsigned i;
for(i = 0; i < m_size; i++)
{
memcpy(ptr, &(*this)[i], sizeof(T));
ptr += sizeof(T);
}
}
//-----------------------------------------------------------pod_allocator
// Allocator for arbitrary POD data. Most usable in different cache
// systems for efficient memory allocations.
// Memory is allocated with blocks of fixed size ("block_size" in
// the constructor). If required size exceeds the block size the allocator
// creates a new block of the required size. However, the most efficient
// use is when the average reqired size is much less than the block size.
//------------------------------------------------------------------------
class pod_allocator
{
public:
void remove_all()
{
if(m_num_blocks)
{
int8u** blk = m_blocks + m_num_blocks - 1;
while(m_num_blocks--)
{
delete [] *blk;
--blk;
}
delete [] m_blocks;
}
m_num_blocks = 0;
m_max_blocks = 0;
m_blocks = 0;
m_buf_ptr = 0;
m_rest = 0;
}
~pod_allocator()
{
remove_all();
}
pod_allocator(unsigned block_size, unsigned block_ptr_inc=256-8) :
m_block_size(block_size),
m_block_ptr_inc(block_ptr_inc),
m_num_blocks(0),
m_max_blocks(0),
m_blocks(0),
m_buf_ptr(0),
m_rest(0)
{
}
int8u* allocate(unsigned size, unsigned alignment=1)
{
if(size == 0) return 0;
if(size <= m_rest)
{
int8u* ptr = m_buf_ptr;
if(alignment > 1)
{
unsigned align = (alignment - (unsigned long)(ptr) % alignment) % alignment;
size += align;
ptr += align;
if(size <= m_rest)
{
m_rest -= size;
m_buf_ptr += size;
return ptr;
}
allocate_block(size);
return allocate(size - align, alignment);
}
m_rest -= size;
m_buf_ptr += size;
return ptr;
}
allocate_block(size + alignment - 1);
return allocate(size, alignment);
}
private:
void allocate_block(unsigned size)
{
if(size < m_block_size) size = m_block_size;
if(m_num_blocks >= m_max_blocks)
{
int8u** new_blocks = new int8u* [m_max_blocks + m_block_ptr_inc];
if(m_blocks)
{
memcpy(new_blocks,
m_blocks,
m_num_blocks * sizeof(int8u*));
delete [] m_blocks;
}
m_blocks = new_blocks;
m_max_blocks += m_block_ptr_inc;
}
m_blocks[m_num_blocks] = m_buf_ptr = new int8u [size];
m_num_blocks++;
m_rest = size;
}
unsigned m_block_size;
unsigned m_block_ptr_inc;
unsigned m_num_blocks;
unsigned m_max_blocks;
int8u** m_blocks;
int8u* m_buf_ptr;
unsigned m_rest;
};
//------------------------------------------------------------------------
enum
{
quick_sort_threshold = 9
};
//-----------------------------------------------------------swap_elements
template<class T> inline void swap_elements(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}
//--------------------------------------------------------------quick_sort
template<class Array, class Less>
void quick_sort(Array& arr, Less less)
{
if(arr.size() < 2) return;
typename Array::value_type* e1;
typename Array::value_type* e2;
int stack[80];
int* top = stack;
int limit = arr.size();
int base = 0;
for(;;)
{
int len = limit - base;
int i;
int j;
int pivot;
if(len > quick_sort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_elements(arr[base], arr[pivot]);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
e1 = &(arr[j]);
e2 = &(arr[i]);
if(less(*e1, *e2)) swap_elements(*e1, *e2);
e1 = &(arr[base]);
e2 = &(arr[i]);
if(less(*e1, *e2)) swap_elements(*e1, *e2);
e1 = &(arr[j]);
e2 = &(arr[base]);
if(less(*e1, *e2)) swap_elements(*e1, *e2);
for(;;)
{
do i++; while( less(arr[i], arr[base]) );
do j--; while( less(arr[base], arr[j]) );
if( i > j )
{
break;
}
swap_elements(arr[i], arr[j]);
}
swap_elements(arr[base], arr[j]);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; less(*(e1 = &(arr[j + 1])), *(e2 = &(arr[j]))); j--)
{
swap_elements(*e1, *e2);
if(j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------remove_duplicates
// Remove duplicates from a sorted array. It doesn't cut the the
// tail of the array, it just returns the number of remaining elements.
//-----------------------------------------------------------------------
template<class Array, class Equal>
unsigned remove_duplicates(Array& arr, Equal equal)
{
if(arr.size() < 2) return arr.size();
unsigned i, j;
for(i = 1, j = 1; i < arr.size(); i++)
{
typename Array::value_type& e = arr[i];
if(!equal(e, arr[i - 1]))
{
arr[j++] = e;
}
}
return j;
}
}
#endif
|