1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.2
// Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_MATH_INCLUDED
#define AGG_MATH_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
const double intersection_epsilon = 1.0e-8;
//------------------------------------------------------calc_point_location
inline double calc_point_location(double x1, double y1,
double x2, double y2,
double x, double y)
{
return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
}
//--------------------------------------------------------point_in_triangle
inline bool point_in_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x, double y)
{
bool cp1 = calc_point_location(x1, y1, x2, y2, x, y) < 0.0;
bool cp2 = calc_point_location(x2, y2, x3, y3, x, y) < 0.0;
bool cp3 = calc_point_location(x3, y3, x1, y1, x, y) < 0.0;
return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
}
//-----------------------------------------------------------calc_distance
inline double calc_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return sqrt(dx * dx + dy * dy);
}
//------------------------------------------------calc_point_line_distance
inline double calc_point_line_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2-x1;
double dy = y2-y1;
return ((x - x2) * dy - (y - y2) * dx) / sqrt(dx * dx + dy * dy);
}
//-------------------------------------------------------calc_intersection
inline bool calc_intersection(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy,
double* x, double* y)
{
double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
if(fabs(den) < intersection_epsilon) return false;
double r = num / den;
*x = ax + r * (bx-ax);
*y = ay + r * (by-ay);
return true;
}
//--------------------------------------------------------calc_orthogonal
inline void calc_orthogonal(double thickness,
double x1, double y1,
double x2, double y2,
double* x, double* y)
{
double dx = x2 - x1;
double dy = y2 - y1;
double d = sqrt(dx*dx + dy*dy);
*x = thickness * dy / d;
*y = thickness * dx / d;
}
//--------------------------------------------------------dilate_triangle
inline void dilate_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double *x, double* y,
double d)
{
double dx1=0.0;
double dy1=0.0;
double dx2=0.0;
double dy2=0.0;
double dx3=0.0;
double dy3=0.0;
double loc = calc_point_location(x1, y1, x2, y2, x3, y3);
if(fabs(loc) > intersection_epsilon)
{
if(calc_point_location(x1, y1, x2, y2, x3, y3) > 0.0)
{
d = -d;
}
calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
}
*x++ = x1 + dx1; *y++ = y1 - dy1;
*x++ = x2 + dx1; *y++ = y2 - dy1;
*x++ = x2 + dx2; *y++ = y2 - dy2;
*x++ = x3 + dx2; *y++ = y3 - dy2;
*x++ = x3 + dx3; *y++ = y3 - dy3;
*x++ = x1 + dx3; *y++ = y1 - dy3;
}
//-------------------------------------------------------calc_polygon_area
template<class Storage> double calc_polygon_area(const Storage& st)
{
unsigned i;
double sum = 0.0;
double x = st[0].x;
double y = st[0].y;
double xs = x;
double ys = y;
for(i = 1; i < st.size(); i++)
{
const typename Storage::value_type& v = st[i];
sum += x * v.y - y * v.x;
x = v.x;
y = v.y;
}
return (sum + x * ys - y * xs) * 0.5;
}
//------------------------------------------------------------------------
// Tables for fast sqrt
extern int16u g_sqrt_table[1024];
extern int8 g_elder_bit_table[256];
//---------------------------------------------------------------fast_sqrt
//Fast integer Sqrt - really fast: no cycles, divisions or multiplications
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
#endif
inline unsigned fast_sqrt(unsigned val)
{
#if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
//For Ix86 family processors this assembler code is used.
//The key command here is bsr - determination the number of the most
//significant bit of the value. For other processors
//(and maybe compilers) the pure C "#else" section is used.
__asm
{
mov ebx, val
mov edx, 11
bsr ecx, ebx
sub ecx, 9
jle less_than_9_bits
shr ecx, 1
adc ecx, 0
sub edx, ecx
shl ecx, 1
shr ebx, cl
less_than_9_bits:
xor eax, eax
mov ax, g_sqrt_table[ebx*2]
mov ecx, edx
shr eax, cl
}
#else
//This code is actually pure C and portable to most
//arcitectures including 64bit ones.
unsigned t = val;
int bit=0;
unsigned shift = 11;
//The following piece of code is just an emulation of the
//Ix86 assembler command "bsr" (see above). However on old
//Intels (like Intel MMX 233MHz) this code is about twice
//faster (sic!) then just one "bsr". On PIII and PIV the
//bsr is optimized quite well.
bit = t >> 24;
if(bit)
{
bit = g_elder_bit_table[bit] + 24;
}
else
{
bit = (t >> 16) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 16;
}
else
{
bit = (t >> 8) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 8;
}
else
{
bit = g_elder_bit_table[t];
}
}
}
//This is calculation sqrt itself.
bit -= 9;
if(bit > 0)
{
bit = (bit >> 1) + (bit & 1);
shift -= bit;
val >>= (bit << 1);
}
return g_sqrt_table[val] >> shift;
#endif
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}
#endif
|