1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
/*
* Copyright (C) 2018 Joseph Benden <joe@benden.us>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* is provided AS IS, WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, and
* NON-INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301, USA.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define _GNU_SOURCE
#include <string.h>
#include <stdint.h>
#include <aircrack-ng/crypto/crypto.h>
#include "aircrack-ng/ce-wpa/simd-intrinsics.h"
#include "aircrack-ng/ce-wpa/wpapsk.h"
#include "aircrack-ng/cpu/trampoline.h"
#include "aircrack-ng/ce-wpa/crypto_engine.h"
// #define XDEBUG
#if defined(HAVE_OPENSSL_CMAC_H) || defined(GCRYPT_WITH_CMAC_AES)
/* Code borrowed from https://w1.fi/wpa_supplicant/ starts */
#define CMAC_AES_128_MAC_LEN 16
#define SHA256_MAC_LEN 32
typedef uint16_t u16;
typedef uint8_t u8;
static inline void WPA_PUT_LE16(u8 * a, u16 val)
{
a[1] = (u8)(val >> 8u);
a[0] = (u8)(val & 0xff);
}
static void
sha256_vector(size_t num_elem, const u8 * addr[], const size_t * len, u8 * mac)
{
SHA256_CTX ctx;
size_t i;
SHA256_Init(&ctx);
for (i = 0; i < num_elem; i++)
{
SHA256_Update(&ctx, addr[i], len[i]);
}
SHA256_Final(mac, &ctx);
}
static void hmac_sha256_vector(const u8 * key,
size_t key_len,
size_t num_elem,
const u8 * addr[],
const size_t * len,
u8 * mac)
{
unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
const u8 * _addr[6];
size_t _len[6], i;
/* the HMAC_SHA256 transform looks like:
*
* SHA256(K XOR opad, SHA256(K XOR ipad, text))
*
* where K is an n byte key
* ipad is the byte 0x36 repeated 64 times
* opad is the byte 0x5c repeated 64 times
* and text is the data being protected */
/* start out by storing key in ipad */
memset(k_pad, 0, sizeof(k_pad));
memcpy(k_pad, key, key_len);
/* XOR key with ipad values */
for (i = 0; i < 64; i++) k_pad[i] ^= 0x36;
/* perform inner SHA256 */
_addr[0] = k_pad;
_len[0] = 64;
for (i = 0; i < num_elem; i++)
{
_addr[i + 1] = addr[i];
_len[i + 1] = len[i];
}
sha256_vector(1 + num_elem, _addr, _len, mac);
memset(k_pad, 0, sizeof(k_pad));
memcpy(k_pad, key, key_len);
/* XOR key with opad values */
for (i = 0; i < 64; i++) k_pad[i] ^= 0x5c;
/* perform outer SHA256 */
_addr[0] = k_pad;
_len[0] = 64;
_addr[1] = mac;
_len[1] = SHA256_MAC_LEN;
sha256_vector(2, _addr, _len, mac);
}
static void sha256_prf_bits(const u8 * key,
size_t key_len,
const char * label,
const u8 * data,
size_t data_len,
u8 * buf,
size_t buf_len_bits)
{
u16 counter = 1;
size_t pos, plen;
u8 hash[SHA256_MAC_LEN];
const u8 * addr[4];
size_t len[4];
u8 counter_le[2], length_le[2];
size_t buf_len = (buf_len_bits + 7) / 8;
addr[0] = counter_le;
len[0] = 2;
addr[1] = (u8 *) label;
len[1] = strlen(label);
addr[2] = data;
len[2] = data_len;
addr[3] = length_le;
len[3] = sizeof(length_le);
WPA_PUT_LE16(length_le, (u16) buf_len_bits);
pos = 0;
while (pos < buf_len)
{
plen = buf_len - pos;
WPA_PUT_LE16(counter_le, counter);
if (plen >= SHA256_MAC_LEN)
{
hmac_sha256_vector(key, key_len, 4, addr, len, &buf[pos]);
pos += SHA256_MAC_LEN;
}
else
{
hmac_sha256_vector(key, key_len, 4, addr, len, hash);
memcpy(&buf[pos], hash, plen);
pos += plen;
break;
}
counter++;
}
/*
* Mask out unused bits in the last octet if it does not use all the
* bits.
*/
if (buf_len_bits % 8)
{
u8 mask = (u8)(0xff << (8u - buf_len_bits % 8));
buf[pos - 1] &= mask;
}
}
#endif /* HAVE_OPENSSL_CMAC_H || GCRYPT_WITH_CMAC_AES */
EXPORT int ac_crypto_engine_supported_features(void)
{
#if defined(JOHN_AVX512F)
return SIMD_SUPPORTS_AVX512F;
#elif defined(JOHN_AVX2)
return SIMD_SUPPORTS_AVX2;
#elif defined(JOHN_AVX)
return SIMD_SUPPORTS_AVX;
#elif defined(JOHN_SSE2)
return SIMD_SUPPORTS_SSE2;
#elif defined(JOHN_NEON)
return SIMD_SUPPORTS_NEON;
#elif defined(JOHN_ASIMD)
return SIMD_SUPPORTS_ASIMD;
#elif defined(JOHN_POWER8)
return SIMD_SUPPORTS_POWER8;
#elif defined(JOHN_ALTIVEC)
return SIMD_SUPPORTS_ALTIVEC;
#else
return SIMD_SUPPORTS_NONE;
#endif
}
EXPORT int ac_crypto_engine_simd_width()
{
#ifdef SIMD_COEF_32
return SIMD_COEF_32;
#else
return 1;
#endif
}
EXPORT int ac_crypto_engine_init(ac_crypto_engine_t * engine)
{
assert(engine != NULL);
#ifdef XDEBUG
fprintf(stderr, "ac_crypto_engine_init(%p)\n", engine);
#endif
init_atoi();
engine->essid = mem_calloc_align(1, ESSID_LENGTH + 1, MEM_ALIGN_SIMD);
engine->essid_length = 0;
for (int i = 0; i < MAX_THREADS; ++i) engine->thread_data[i] = NULL;
return 0;
}
EXPORT void ac_crypto_engine_destroy(ac_crypto_engine_t * engine)
{
assert(engine != NULL);
#ifdef XDEBUG
fprintf(stderr, "ac_crypto_engine_destroy(%p)\n", engine);
#endif
MEM_FREE(engine->essid);
}
EXPORT void ac_crypto_engine_set_essid(ac_crypto_engine_t * engine,
const uint8_t * essid)
{
assert(engine != NULL);
#ifdef XDEBUG
fprintf(stderr, "ac_crypto_engine_set_essid(%p, %s)\n", engine, essid);
#endif
memccpy(engine->essid, essid, 0, ESSID_LENGTH);
engine->essid_length = (uint32_t) strlen((char *) essid);
}
EXPORT int ac_crypto_engine_thread_init(ac_crypto_engine_t * engine,
int threadid)
{
assert(engine != NULL);
#ifdef XDEBUG
fprintf(stderr, "ac_crypto_engine_thread_init(%p, %d)\n", engine, threadid);
#endif
// allocate per-thread data.
engine->thread_data[threadid] = mem_calloc_align(
1, sizeof(struct ac_crypto_engine_perthread), MEM_ALIGN_SIMD);
return 0;
}
EXPORT void ac_crypto_engine_thread_destroy(ac_crypto_engine_t * engine,
int threadid)
{
assert(engine != NULL);
#ifdef XDEBUG
fprintf(
stderr, "ac_crypto_engine_thread_destroy(%p, %d)\n", engine, threadid);
#endif
if (engine->thread_data[threadid] != NULL)
{
MEM_FREE(engine->thread_data[threadid]);
}
}
EXPORT uint8_t *
ac_crypto_engine_get_pmk(ac_crypto_engine_t * engine, int threadid, int index)
{
return (uint8_t *) engine->thread_data[threadid]->pmk
+ (sizeof(wpapsk_hash) * index);
}
EXPORT uint8_t *
ac_crypto_engine_get_ptk(ac_crypto_engine_t * engine, int threadid, int index)
{
return (uint8_t *) engine->thread_data[threadid]->ptk + (20 * index);
}
EXPORT void ac_crypto_engine_calc_pke(ac_crypto_engine_t * engine,
const uint8_t bssid[6],
const uint8_t stmac[6],
const uint8_t anonce[32],
const uint8_t snonce[32],
int threadid)
{
uint8_t * pke = engine->thread_data[threadid]->pke;
assert(pke != NULL); //-V547
/* pre-compute the key expansion buffer */
memcpy(pke, "Pairwise key expansion", 23);
if (memcmp(stmac, bssid, 6) < 0)
{
memcpy(pke + 23, stmac, 6);
memcpy(pke + 29, bssid, 6);
}
else
{
memcpy(pke + 23, bssid, 6);
memcpy(pke + 29, stmac, 6);
}
if (memcmp(snonce, anonce, 32) < 0)
{
memcpy(pke + 35, snonce, 32);
memcpy(pke + 67, anonce, 32);
}
else
{
memcpy(pke + 35, anonce, 32);
memcpy(pke + 67, snonce, 32);
}
}
/* derive the PMK from the passphrase and the essid */
EXPORT void ac_crypto_engine_calc_one_pmk(const uint8_t * key,
const uint8_t * essid_pre,
uint32_t essid_pre_len,
uint8_t pmk[40])
{
int i, j, slen;
unsigned char buffer[65];
char essid[33 + 4];
SHA_CTX ctx_ipad;
SHA_CTX ctx_opad;
SHA_CTX sha1_ctx;
assert(essid_pre != NULL);
if (essid_pre_len > 32)
{
essid_pre_len = 32;
}
memset(essid, 0, sizeof(essid));
memcpy(essid, essid_pre, essid_pre_len);
slen = (int) essid_pre_len + 4;
/* setup the inner and outer contexts */
memset(buffer, 0, sizeof(buffer));
strncpy((char *) buffer, (char *) key, sizeof(buffer) - 1);
for (i = 0; i < 64; i++) buffer[i] ^= 0x36;
SHA1_Init(&ctx_ipad);
SHA1_Update(&ctx_ipad, buffer, 64);
for (i = 0; i < 64; i++) buffer[i] ^= 0x6A;
SHA1_Init(&ctx_opad);
SHA1_Update(&ctx_opad, buffer, 64);
/* iterate HMAC-SHA1 over itself 8192 times */
essid[slen - 1] = '\1';
HMAC(EVP_sha1(),
key,
(int) strlen((char *) key),
(unsigned char *) essid,
(size_t) slen,
pmk,
NULL);
memcpy(buffer, pmk, 20); //-V512
for (i = 1; i < 4096; i++)
{
memcpy(&sha1_ctx, &ctx_ipad, sizeof(sha1_ctx));
SHA1_Update(&sha1_ctx, buffer, 20);
SHA1_Final(buffer, &sha1_ctx);
memcpy(&sha1_ctx, &ctx_opad, sizeof(sha1_ctx));
SHA1_Update(&sha1_ctx, buffer, 20);
SHA1_Final(buffer, &sha1_ctx);
for (j = 0; j < 20; j++) pmk[j] ^= buffer[j];
}
essid[slen - 1] = '\2';
HMAC(EVP_sha1(),
(unsigned char *) key,
(int) strlen((char *) key),
(unsigned char *) essid,
(size_t) slen,
pmk + 20,
NULL);
memcpy(buffer, pmk + 20, 20);
for (i = 1; i < 4096; i++)
{
memcpy(&sha1_ctx, &ctx_ipad, sizeof(sha1_ctx));
SHA1_Update(&sha1_ctx, buffer, 20);
SHA1_Final(buffer, &sha1_ctx);
memcpy(&sha1_ctx, &ctx_opad, sizeof(sha1_ctx));
SHA1_Update(&sha1_ctx, buffer, 20);
SHA1_Final(buffer, &sha1_ctx);
for (j = 0; j < 20; j++) pmk[j + 20] ^= buffer[j];
}
}
EXPORT void ac_crypto_engine_calc_pmk(
ac_crypto_engine_t * engine,
const wpapsk_password key[MAX_KEYS_PER_CRYPT_SUPPORTED],
const int nparallel,
const int threadid)
{
wpapsk_hash * pmk = engine->thread_data[threadid]->pmk;
// PMK calculation
#ifdef SIMD_CORE
if (nparallel >= 4)
{
init_wpapsk(engine, key, nparallel, threadid);
}
else
#endif
for (int j = 0; j < nparallel; ++j)
{
#ifdef XDEBUG
printf("%lu: Trying: %s\n", pthread_self(), (char *) key[j].v);
#endif
ac_crypto_engine_calc_one_pmk(key[j].v,
(uint8_t *) engine->essid,
engine->essid_length,
(uint8_t *) (&pmk[j]));
}
}
EXPORT void ac_crypto_engine_calc_ptk(ac_crypto_engine_t * engine,
const uint8_t keyver,
int vectorIdx,
int threadid)
{
uint8_t * ptk = engine->thread_data[threadid]->ptk;
wpapsk_hash * pmk = engine->thread_data[threadid]->pmk;
if (keyver < 3)
{
for (int i = 0; i < 4; i++)
{
*(engine->thread_data[threadid]->pke + 99) = (unsigned char) i;
HMAC(EVP_sha1(),
(&pmk[vectorIdx]),
32,
engine->thread_data[threadid]->pke,
100,
&ptk[vectorIdx] + i * 20,
NULL);
}
}
#if defined(HAVE_OPENSSL_CMAC_H) || defined(GCRYPT_WITH_CMAC_AES)
else
{
uint8_t data[64 + 12];
uint8_t * pke = &engine->thread_data[threadid]->pke[23];
memset(data, 0, sizeof(data));
memcpy(data, pke, 6);
memcpy(data + 6, pke + 6, 6);
memcpy(data + 12, pke + 35 - 23, 64); //-V512
sha256_prf_bits((unsigned char *) (pmk[vectorIdx].data.v),
32,
"Pairwise key expansion",
data,
76,
ptk,
48 * 8);
}
#endif
}
EXPORT void ac_crypto_engine_calc_mic(ac_crypto_engine_t * engine,
const uint8_t eapol[256],
const uint32_t eapol_size,
uint8_t mic[MAX_KEYS_PER_CRYPT_SUPPORTED]
[20],
const uint8_t keyver,
const int vectorIdx,
const int threadid)
{
uint8_t * ptk = engine->thread_data[threadid]->ptk;
if (keyver == 1)
HMAC(EVP_md5(),
&ptk[vectorIdx],
16,
eapol,
eapol_size,
mic[vectorIdx],
NULL);
else if (keyver == 2)
HMAC(EVP_sha1(),
&ptk[vectorIdx],
16,
eapol,
eapol_size,
mic[vectorIdx],
NULL);
#if defined(HAVE_OPENSSL_CMAC_H) || defined(GCRYPT_WITH_CMAC_AES)
else if (keyver == 3)
{
size_t miclen = CMAC_AES_128_MAC_LEN;
CMAC_CTX * ctx = NULL;
// Compute MIC
ctx = CMAC_CTX_new();
CMAC_Init(ctx, ptk, 16, EVP_aes_128_cbc(), 0);
CMAC_Update(ctx, eapol, eapol_size);
CMAC_Final(ctx, mic[vectorIdx], &miclen);
CMAC_CTX_free(ctx);
}
#else
else if (keyver == 3)
{
fprintf(stderr,
"Key version %d is only supported when OpenSSL (or similar) "
"supports CMAC.\n",
keyver);
abort();
}
#endif /* HAVE_OPENSSL_CMAC_H */
else
{
fprintf(stderr, "Unsupported key version %d encountered.\n", keyver);
if (keyver == 0) fprintf(stderr, "May be WPA3 - not yet supported.\n");
abort();
}
}
EXPORT int ac_crypto_engine_wpa_crack(
ac_crypto_engine_t * engine,
const wpapsk_password key[MAX_KEYS_PER_CRYPT_SUPPORTED],
const uint8_t eapol[256],
const uint32_t eapol_size,
uint8_t mic[MAX_KEYS_PER_CRYPT_SUPPORTED][20],
const uint8_t keyver,
const uint8_t cmpmic[20],
const int nparallel,
const int threadid)
{
ac_crypto_engine_calc_pmk(engine, key, nparallel, threadid);
for (int j = 0; j < nparallel; ++j)
{
/* compute the pairwise transient key and the frame MIC */
ac_crypto_engine_calc_ptk(engine, keyver, j, threadid);
ac_crypto_engine_calc_mic(
engine, eapol, eapol_size, mic, keyver, j, threadid);
/* did we successfully crack it? */
if (memcmp(mic[j], cmpmic, 16) == 0) //-V512
{
return j;
}
}
return -1;
}
EXPORT void ac_crypto_engine_set_pmkid_salt(ac_crypto_engine_t * engine,
const uint8_t bssid[6],
const uint8_t stmac[6],
int threadid)
{
uint8_t * pke = engine->thread_data[threadid]->pke;
assert(pke != NULL); //-V547
/* pre-compute the PMKID salt buffer */
memcpy(pke, "PMK Name", 8);
memcpy(pke + 8, bssid, 6);
memcpy(pke + 14, stmac, 6);
}
EXPORT int ac_crypto_engine_wpa_pmkid_crack(
ac_crypto_engine_t * engine,
const wpapsk_password key[MAX_KEYS_PER_CRYPT_SUPPORTED],
const uint8_t pmkid[32],
const int nparallel,
const int threadid)
{
ac_crypto_engine_calc_pmk(engine, key, nparallel, threadid);
uint8_t * pke = engine->thread_data[threadid]->pke;
wpapsk_hash * pmk = engine->thread_data[threadid]->pmk;
uint8_t l_pmkid[32];
for (int j = 0; j < nparallel; ++j)
{
HMAC(EVP_sha1(), &pmk[j], 32, pke, 20, l_pmkid, NULL);
/* did we successfully crack it? */
if (memcmp(l_pmkid, pmkid, 16) == 0) //-V512
{
return j;
}
}
return -1;
}
|