1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
|
\def\vL{\vec{L}}
\section{Tools for the assemblage of linear systems}%
\label{S:ass_tools}%
\idx{assemblage tools|(}
This section describes data structures and subroutines for matrix and
vector assembly. Section \ref{S:update} presents basic routines for
the update of global matrices and vectors by adding contributions from
one single element. Data structures and routines for global matrix
assembly are described in Section \ref{S:matrix_assemblage}. This
includes library routines for the efficient implementation of a
general second order linear elliptic operator. Section
\ref{S:ass_info} presents data structures and routines for the
handling of pre--computed integrals, which are used to speed up
calculations in the case of problems with constant coefficients. The
assembly of (right hand side) vectors is described in Section
\ref{S:vector_update}. The incorporation of Dirichlet boundary values into
the right hand side is presented in Section \ref{S:dirichlet_bound}.
Finally, routines for generation of interpolation coefficients are
described in Section \ref{S:I_FES}.
\subsection{Element matrices and vectors}%
\label{S:update}
The usual way to assemble the system matrix and the load vector is to
loop over all (leaf) elements, calculate the local element
contributions and add these to the global system matrix and the global
load vector. The updating of the load vector is rather easy. The
contribution of a local degree of freedom is added to the value of the
corresponding global degree of freedom. Here we have to use the
function $j_S$ defined on each element $S$ in \mathref{book:E:global-lokal}
on page \pageref{book:E:global-lokal}. It combines uniquely the
local DOFs with the global ones. The basis functions provide in the
\code{BAS\_FCTS} structure the entry \code{get\_dof\_indices()}
which is an implementation of $j_S$, see \secref{S:basfct_data}.
The updating of the system matrix is not that easy. As mentioned
in \secref{book:S:FE-dis-2nd}, the system matrix is usually sparse and we use
special data structures for storing these matrices, compare
\secref{S:DOF_MATRIX}. For sparse matrices we do not have
for each DOF a matrix row storing values for all other DOFs; only the
values for pairs of DOFs are stored, where the corresponding
\emph{global} basis functions have a common support. Usually, the
exact number of entries in one row of a sparse matrix is not know a
priori and can change during grid modifications.
Thus, we use the following concept: A call of
\code{clear\_dof\_matrix()} will not set all matrix entries to zero,
but will remove all matrix rows from the matrix, compare the
description of this function on page \pageref{Func:clear_dof_matrix}.
During the updating of a matrix for the value corresponding to a pair
of local DOFs $(i,j)$, we look in the $j_S(i)$th row of the
matrix for a column $j_S(j)$ (the \code{col} member of
\code{matrix\_row}); if such an entry exists, we add
the current contribution; if this entry does not yet exist we will
create a new entry, set the current value and column number. This
creation may include an enlargement of the row, by linking a new
matrix row to the list of matrix rows, if no space for a new entry is
left. After the assemblage we then have a sparse matrix, storing all
values for pairs of global basis functions with common support.
The functions which we describe now allows also to handle matrices
where the DOFs indexing the rows can differ from the DOFs indexing the
columns; this makes the combination of DOFs from different finite
element spaces possible.
\begin{compatibility}
\label{compat:DOWB_MATRIX}
Previous versions of \ALBERTA defined extra-types for vector-valued
problems, like \code{DOF\_DOWB\_MATRIX}, \code{DOWB\_OPERATOR\_INFO}
etc. The ``\code{DOWB}'' (``DimOfWorldBlocks'') variants, however,
already incorporated all the functionality of the ordinary
scalar-only versions. Therefore the scalar-ony versions of most
data-structures have been abandoned and were replaced by the
``\code{DOWB}'' variants, which in turn were renamed to use the
scalar-only names. For example, in the current implementation a
\code{DOF\_MATRIX} is in fact what older versions called a
\code{DOF\_DOWB\_MATRIX}; and implements the scalar-only case as
well as the block-matrix case.
\end{compatibility}
\subsubsection{Element matrix and vector structures}
\label{S:elvecmat}
\paragraph{Block-matrix types}
\idx{assemblage tools!MATENT_TYPE@{\code{MATENT\_TYPE}}}
\ddx{MATENT_TYPE@{\code{MATENT\_TYPE}}}
\bv\begin{lstlisting}[label=T:MATENT_TYPE,name=MATENT_TYPE,caption={[data-type: \code{MATENT\_TYPE}]}]
typedef enum matent_type {
MATENT_NONE = -1,
MATENT_REAL = 0,
MATENT_REAL_D = 1,
MATENT_REAL_DD = 2
} MATENT_TYPE;
\end{lstlisting}\ev
\noindent
Description: This enumeration type defines symbolic types for
block-matrix entries. \code{MATENT\_REAL} means scalar blocks,
\code{MATENT\_REAL\_D} stands for diagonal blocks, and
\code{MATENT\_REAL\_DD} is a code for full matrix blocks. In general,
data-structures make use of these types to store the matrix blocks in
an efficient way.
\paragraph{Structure for element matrices}
\idx{assemblage tools!EL_MATRIX@{\code{EL\_MATRIX}}}
\ddx{EL_MATRIX@{\code{EL\_MATRIX}}}
\bv\begin{lstlisting}[label=T:EL_MATRIX,name=EL_MATRIX,caption={[data-type: \code{EL\_MATRIX}]}]
typedef struct el_matrix EL_MATRIX;
struct el_matrix
{
MATENT_TYPE type;
int n_row, n_col;
int n_row_max, n_col_max;
union {
REAL *const*real;
REAL_D *const*real_d;
REAL_DD *const*real_dd;
} data;
DBL_LIST_NODE row_chain;
DBL_LIST_NODE col_chain;
};
\end{lstlisting}\ev
\noindent
Description: A data structure to store per-element contributions
during the assembling of discrete systems. There is some limited
support for the operation of element-matrices on element-vectors and
global DOF-vectors, see \secref{S:elementblas}.
\begin{descr}
\kitem{type} One out of \code{MATENT\_REAL}, \code{MATENT\_REAL\_D}
or \code{MATENT\_REAL\_DD}. The entries stored in
\code{EL\_MATRIX->data} have to be interpreted accordingly. See
\code{MATENT\_TYPE} on page \pageref{T:MATENT_TYPE}.
%%
\kitem{n\_row} is the number of rows of the element matrix
%%
\kitem{n\_col} is the number of columns of the element matrix
%%
\kitem{n\_row\_max} is the maximal number of rows. The number of rows
can vary from element to element if the underlying basis functions
have a per-element initializer.
%%
\kitem{n\_col\_max} is the maximal number of columns.
%
\kitem{data, data.real, data.real\_d, data.real\_dd}
\code{EL\_MATRIX->data} is a union, its components should be accessed
according to the symmetry type indicated by \code{EL\_MATRIX->type}.
%%
\kitem{row\_chain, col\_chain} If the underlying finite element
spaces are a direct sum of function spaces, then the resulting
element matrices have a block-layout. The link to the other parts of
the resulting block-matrix is implemented using cyclic doubly linked
lists, \code{row\_chain} and \code{col\_chain} are the corresponding
list-nodes. There is a separate section explaining how to handle such
chains of objects, see \secref{S:chain_impl}.
\end{descr}
\paragraph{Structures for element vectors}
\ddx{EL_INT_VEC@{\code{EL\_INT\_VEC}}}
\idx{assemblage tools!EL_INT_VEC@{\code{EL\_INT\_VEC}}}
\ddx{EL_DOF_VEC@{\code{EL\_DOF\_VEC}}}
\idx{assemblage tools!EL_DOF_VEC@{\code{EL\_DOF\_VEC}}}
\ddx{EL_UCHAR_VEC@{\code{EL\_UCHAR\_VEC}}}
\idx{assemblage tools!EL_UCHAR_VEC@{\code{EL\_UCHAR\_VEC}}}
\ddx{EL_SCHAR_VEC@{\code{EL\_SCHAR\_VEC}}}
\idx{assemblage tools!EL_SCHAR_VEC@{\code{EL\_SCHAR\_VEC}}}
\ddx{EL_BNDRY_VEC@{\code{EL\_BNDRY\_VEC}}}
\idx{assemblage tools!EL_BNDRY_VEC@{\code{EL\_BNDRY\_VEC}}}
\ddx{EL_PTR_VEC@{\code{EL\_PTR\_VEC}}}
\idx{assemblage tools!EL_PTR_VEC@{\code{EL\_PTR\_VEC}}}
\ddx{EL_REAL_VEC@{\code{EL\_REAL\_VEC}}}
\idx{assemblage tools!EL_REAL_VEC@{\code{EL\_REAL\_VEC}}}
\ddx{EL_REAL_VEC_D@{\code{EL\_REAL\_VEC\_D}}}
\idx{assemblage tools!EL_REAL_VEC_D@{\code{EL\_REAL\_VEC\_D}}}
\ddx{EL_REAL_D_VEC@{\code{EL\_REAL\_D\_VEC}}}
\idx{assemblage tools!EL_REAL_D_VEC@{\code{EL\_REAL\_D\_VEC}}}
\bv\begin{lstlisting}[label=T:EL_INT_VEC,name=EL_XXX_VEC,caption={[data-types: \code{EL\_XXX\_VEC}]}]
typedef struct el_int_vec EL_INT_VEC;
typedef struct el_dof_vec EL_DOF_VEC;
typedef struct el_uchar_vec EL_UCHAR_VEC;
typedef struct el_schar_vec EL_SCHAR_VEC;
typedef struct el_bndry_vec EL_BNDRY_VEC;
typedef struct el_ptr_vec EL_PTR_VEC;
typedef struct el_real_vec EL_REAL_VEC;
typedef struct el_real_vec_d EL_REAL_VEC_D;
typedef struct el_real_d_vec EL_REAL_D_VEC;
\end{lstlisting}\ev
\label{T:EL_DOF_VEC}
\label{T:EL_UCHAR_VEC}
\label{T:EL_SCHAR_VEC}
\label{T:EL_BNDRY_VEC}
\label{T:EL_PTR_VEC}
\label{T:EL_REAL_D_VEC}
The \code{el\_*\_vec} structures are declared similary, the only
difference between them is the type of the structure entry vec. Below,
the \code{EL\_REAL\_VEC} structure is given:
%%
\bv\begin{lstlisting}[label=T:EL_REAL_VEC,name=EL_REAL_VEC,caption={data-type: \code{EL\_REAL\_VEC}}]
struct el_real_vec
{
int n_components;
int n_components_max;
DBL_LIST_NODE chain;
int reserved;
REAL vec[1]; /* different type in EL_INT_VEC, ... */
};
\end{lstlisting}\ev
%%
and the \code{EL\_REAL\_VEC\_D} structure is described in detail:
%%
\bv\begin{lstlisting}[label=T:EL_REAL_VEC_D,name=EL_REAL_VEC_D]
struct el_real_vec_d
{
int n_components;
int n_components_max;
DBL_LIST_NODE chain;
int stride; /* either 1 or DIM_OF_WORLD */
REAL vec[1];
};
\end{lstlisting}\ev
%%
Description:
\begin{descr}
\kitem{n\_components} The actual number of components available in
and following \code{EL\_XXX\_VEC->vec}. Note that the actual number
of components is -- of course -- larger than $1$ in general
\code{get\_el\_XXX\_vec(bas\_fcts)} takes care of allocating enough
space.
%
\kitem{n\_components\_max} Behing \code{EL\_XXX\_VEC->vec[0]} may
actually be more space available than the number of currently valid
entries as indicated by \code{EL\_XXX\_VEC->n\_components}; this is
the maximum size to access without crossing the bounds of the data
segment allocated for this element vector.
%
\kitem{chain} If the underlying basis-function implementation is
part of a chain of sets of basis functions, then this structure is
inherited also by the element vectors: they are chained using a
doubly linked list, \code{chain} is the corresponding list-node.
There is a separate section about such chained objects, see
\secref{S:chain_impl}.
%
\kitem{stride, reserved} For element vectors other than an
\code{EL\_REAL\_VEC\_D} this is a reserved value and actually tied to
the constant value $1$ with the exception of a
\code{EL\_REAL\_D\_VEC} were \code{reserved} is fixed at
\code{DIM\_OF\_WORLD}. For \code{EL\_REAL\_VEC\_D} this varies,
based on the dimension of the range of the underlying basis function
implementation. For vector-valued basis functions
\code{EL\_REAL\_VEC\_D->stride} is again tied to $1$, for
scalar-valued basis functions \code{EL\_REAL\_VEC\_D->stride} is
fixed at \code{DIM\_OF\_WORLD}, in both cases it gives the number of
\code{REAL}'s belonging to a single \code{DOF}. See also
\code{DOF\_REAL\_VEC\_D} on page \pageref{T:DOF_REAL_VEC_D}.
%
\kitem{vec[1]} Start of the data-segment,
\code{EL\_XXX\_VEC->n\_components} items contain valid data,
\code{EL\_XXX\_VEC->n\_components\_max} items are allocated. Note
that for a \code{EL\_REAL\_VEC\_D} vector the numbers have to be
multiplied by \code{EL\_REAL\_VEC\_D->stride} to get the actual
number of \code{REAL}'s allocated.
\end{descr}
\subsubsection{Accumulating per-element contributions}
The following functions can be used on elements for updating matrices
and vectors.
\fdx{add_element_matrix()@{\code{add\_element\_matrix()}}}
\idx{assemblage tools!add_element_matrix()@{\code{add\_element\_matrix()}}}
\fdx{add_element_vec()@{\code{add\_element\_vec()}}}
\idx{assemblage tools!add_element_vec()@{\code{add\_element\_vec()}}}
\fdx{add_element_d_vec()@{\code{add\_element\_d\_vec()}}}
\idx{assemblage tools!add_element_d_vec()@{\code{add\_element\_d\_vec()}}}
\fdx{add_element_vec_dow()@{\code{add\_element\_vec\_dow()}}}
\idx{assemblage tools!add_element_vec_dow()@{\code{add\_element\_vec\_dow()}}}
\bv\begin{lstlisting}[name={proto-type add_element_matrix()},label=C:add_element_matrix]
void add_element_matrix(DOF_MATRIX *matrix, REAL factor,
const EL_MATRIX *el_matrix, MatrixTranspose transpose,
const EL_DOF_VEC *row_dof, const EL_DOF_VEC *col_dof,
const EL_SCHAR_VEC *bound);
void add_element_vec(DOF_REAL_VEC *drv, REAL factor, const EL_REAL_VEC *el_vec,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void add_element_d_vec(DOF_REAL_D_VEC *drdv, REAL factor,
const EL_REAL_D_VEC *el_vec, const EL_DOF_VEC *dof,
const EL_SCHAR_VEC *bound);
void add_element_vec_dow(DOF_REAL_VEC_D *drdv, REAL factor,
const EL_REAL_VEC_D *el_vec, const EL_DOF_VEC *dof,
const EL_SCHAR_VEC *bound);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{add\_element\_matrix(mat,
\fdx{add_element_matrix()@{\code{add\_element\_matrix()}}}
\idx{assemblage tools!add_element_matrix()@{\code{add\_element\_matrix()}}}
factor, el\_mat, transpose, row\_dof, col\_dof, bound)}\hfill
Updates the global \code{DOF\_MATRIX} \code{mat} by adding element
contributions. If \code{row\_dof} equals \code{col\_dof}, the diagonal
element is \emph{always} the first entry in a matrix row; this makes
the access to the diagonal element easy for a diagonal preconditioner,
for example. In general, \code{add\_element\_matrix()} does the
following: for all \code{i} the values
\code{fac*el\_mat->data.\{REAL,REAL\_D,REAL\_DD\}[i][j]} are added to
the entries at the position (\code{row\_dof->vec[i],col\_dof->vec[j]})
in the global matrix \code{mat}
($\code{0}\leq\code{i}<\code{el\_mat->n\_row}$,
$\code{0}\leq\code{j}<\code{el\_mat->n\_col}$). If such an entry
exists in the row number \code{row\_dof->vec[i]} the global matrix
\code{mat} the value is simply added. Otherwise a new entry is created
in the row, the value is set and the column number is set to
\code{col\_dof[j]}. This may imply an enlargement of the row by adding
a new \code{MATRIX\_ROW} structure to the list of matrix rows.
Note that the first element matrix added to \code{mat} after calling
\code{clear\_dof\_matrix()} determines the block-type of the global
matrix \code{mat}. It is possible to add element-matrices with higher
block-symmetry to global \code{DOF\_MATRIX}es with lower
block-symmetry, for example it is allowed to add \code{el\_mat} to
\code{mat} if \code{el\_mat->type == MATENT\_REAL} and \code{mat->type
== MATENT\_REAL\_DD}.
\begin{description}
\item[Parameters]\hfill
\begin{description}
\item[\code{mat}] the global \code{DOF\_MATRIX}.
\item[\code{factor}] is a multiplier for the element contributions;
usually \code{factor} is \code{1} or \code{-1};
\item[\code{el\_mat}] is a matrix of size
$\code{n\_row}\times\code{n\_col}$ storing the element
contributions;
\item[\code{transpose}] the original matrix is used if
\code{transpose} == \code{NoTranspose} (= 0) and the transposed
matrix if \code{transpose} == \code{Transpose} (= 1);
\item[\code{row\_dof}] is a vector of length
\code{row\_dof->n\_components} storing the global row indices;
\item[\code{col\_dof}] is a vector of length
\code{col\_dof->n\_components} storing the global column indices,
\code{col\_dof} may be a \nil pointer if the DOFs indexing the
columns are the same as the DOFs indexing the rows; in this case
\code{col\_dof = row\_dof} is used;
\item[\code{bound}] is either \code{NULL} or an
\code{EL\_SCHAR\_Vec} stucture storing a vector of length
\code{bound->n\_components}. In this case
\code{bound->n\_components} must match either
\code{row\_dof->n\_components} or \code{col\_dof->n\_components},
depending on the value of \code{transpose}.
If \code{bound->vec[i] >= DIRICHLET}, then the following happens:
\begin{description}
\item[\code{row\_dof == col\_dof}] In the global \code{matrix} the
row \code{row\_dof->vec[i]} is cleared to zero, with the
exception of the diagonal entry, which is set to \code{1.0}.
\item[\code{row\_dof != col\_dof}] In the global \code{matrix} the
row \code{row\_dof->vec[i]} is cleared to zero.
\end{description}
All other contributions of \code{el\_mat} are added to
\code{matrix} as usual. This allows for a convenient way to
implement inhomogeneous Dirichlet boundary conditions, without
having to modify the right-hand-side of the discrete systems
explicitly.
\end{description}
\end{description}
\hrulefill
\fdx{add_element_vec()@{\code{add\_element\_vec()}}}
\idx{assemblage tools!add_element_vec()@{\code{add\_element\_vec()}}}
\fdx{add_element_d_vec()@{\code{add\_element\_d\_vec()}}}
\idx{assemblage tools!add_element_d_vec()@{\code{add\_element\_d\_vec()}}}
\fdx{add_element_vec_dow()@{\code{add\_element\_vec\_dow()}}}
\idx{assemblage tools!add_element_vec_dow()@{\code{add\_element\_vec\_dow()}}}
\kitem{add\_element\_vec(drv, factor, el\_vec, dof, bound)}
\kitem{add\_element\_d\_vec(drv, factor, el\_vec, dof, bound)}
\kitem{add\_element\_vec\_d(drv, factor, el\_vec, dof, bound)}\hfill
These do similar things as \code{add\_element\_matrix()}, but with
element vectors. \secref{S:elementblas} also lists other routines
which might be helpful in this context.
\end{descr}
\subsubsection{Allocation and filling of element vectors}
\label{S:fillgetelvec}
\paragraph{Prototypes}
\fdx{get_dof_indices()@{\code{get\_dof\_indices()}}}
\fdx{get_bound()@{\code{get\_bound()}}}
\fdx{el_interpol()@{\code{el\_interpol()}}}
\fdx{el_interpol_dow()@{\code{el\_interpol\_dow()}}}
\fdx{dirichlet_map()@{\code{dirichlet\_map()}}}
%%
%\fdx{init_el_int_vec()@{\code{init\_el\_int\_vec()}}}
%\fdx{init_el_dof_vec()@{\code{init\_el\_dof\_vec()}}}
%\fdx{init_el_real_vec()@{\code{init\_el\_real\_vec()}}}
%\fdx{init_el_real_d_vec()@{\code{init\_el\_real\_d\_vec()}}}
%\fdx{init_el_uchar_vec()@{\code{init\_el\_uchar\_vec()}}}
%\fdx{init_el_schar_vec()@{\code{init\_el\_schar\_vec()}}}
%\fdx{init_el_ptr_vec()@{\code{init\_el\_ptr\_vec()}}}
%%
\fdx{fill_el_int_vec()@{\code{fill\_el\_int\_vec()}}}
\fdx{fill_el_real_vec()@{\code{fill\_el\_real\_vec()}}}
\fdx{fill_el_real_d_vec()@{\code{fill\_el\_real\_d\_vec()}}}
\fdx{fill_el_real_vec_d()@{\code{fill\_el\_real\_vec\_d()}}}
\fdx{fill_el_uchar_vec()@{\code{fill\_el\_uchar\_vec()}}}
\fdx{fill_el_schar_vec()@{\code{fill\_el\_schar\_vec()}}}
%%
\fdx{get_el_int_vec()@{\code{get\_el\_int\_vec()}}}
\fdx{get_el_dof_vec()@{\code{get\_el\_dof\_vec()}}}
\fdx{get_el_uchar_vec()@{\code{get\_el\_uchar\_vec()}}}
\fdx{get_el_schar_vec()@{\code{get\_el\_schar\_vec()}}}
\fdx{get_el_bndry_vec()@{\code{get\_el\_bndry\_vec()}}}
\fdx{get_el_ptr_vec()@{\code{get\_el\_ptr\_vec()}}}
\fdx{get_el_real_vec()@{\code{get\_el\_real\_vec()}}}
\fdx{get_el_real_d_vec()@{\code{get\_el\_real\_d\_vec()}}}
\fdx{get_el_real_vec_d()@{\code{get\_el\_real\_vec\_d()}}}
%%
\fdx{free_el_int_vec()@{\code{free\_el\_int\_vec()}}}
\fdx{free_el_dof_vec()@{\code{free\_el\_dof\_vec()}}}
\fdx{free_el_uchar_vec()@{\code{free\_el\_uchar\_vec()}}}
\fdx{free_el_schar_vec()@{\code{free\_el\_schar\_vec()}}}
\fdx{free_el_bndry_vec()@{\code{free\_el\_bndry\_vec()}}}
\fdx{free_el_ptr_vec()@{\code{free\_el\_ptr\_vec()}}}
\fdx{free_el_real_vec()@{\code{free\_el\_real\_vec()}}}
\fdx{free_el_real_d_vec()@{\code{free\_el\_real\_d\_vec()}}}
\fdx{free_el_real_vec_d()@{\code{free\_el\_real\_vec\_d()}}}
\bv\begin{lstlisting}[label=P:ELVEC_PROTOS,name=ELVEC_PROTOS,caption={[proto-types: filling element vectors]}]
EL_DOF_VEC *get_dof_indices(EL_DOF_VEC *dofs, const FE_SPACE *fe_space,
const EL *el);
EL_BNDRY_VEC *get_bound(EL_BNDRY_VEC *bndry, const BAS_FCTS *bas_fcts,
const EL_INFO *el_info);
void el_interpol(EL_REAL_VEC *coeff, const EL_INFO *el_info, int wall,
const EL_INT_VEC *indices, LOC_FCT_AT_QP f, void *ud,
const BAS_FCTS *bas_fcts);
void el_interpol_dow(EL_REAL_VEC_D *coeff, const EL_INFO *el_info, int wall,
const EL_INT_VEC *indices, LOC_FCT_D_AT_QP f,
void *f_data, const BAS_FCTS *bas_fcts);
void dirichlet_map(EL_SCHAR_VEC *bound, const EL_BNDRY_VEC *bndry_bits,
const BNDRY_FLAGS mask);
const EL_INT_VEC *
fill_el_int_vec(EL_INT_VEC *el_vec, EL *el, const DOF_INT_VEC *dof_vec);
const EL_REAL_VEC *
fill_el_real_vec(EL_REAL_VEC *el_vec, EL *el, const DOF_REAL_VEC *dof_vec);
const EL_REAL_D_VEC *
fill_el_real_d_vec(EL_REAL_D_VEC *el_vec, EL *el, const DOF_REAL_D_VEC *dof_vec);
const EL_REAL_VEC_D *
fill_el_real_vec_d(EL_REAL_VEC_D *el_vec, EL *el, const DOF_REAL_VEC_D *dof_vec);
const EL_UCHAR_VEC *
fill_el_uchar_vec(EL_UCHAR_VEC *el_vec, EL *el, const DOF_UCHAR_VEC *dof_vec);
const EL_SCHAR_VEC *
fill_el_schar_vec(EL_SCHAR_VEC *el_vec, EL *el, const DOF_SCHAR_VEC *dof_vec);
EL_INT_VEC *get_el_int_vec(const BAS_FCTS *bas_fcts);
EL_DOF_VEC *get_el_dof_vec(const BAS_FCTS *bas_fcts);
EL_UCHAR_VEC *get_el_uchar_vec(const BAS_FCTS *bas_fcts);
EL_SCHAR_VEC *get_el_schar_vec(const BAS_FCTS *bas_fcts);
EL_BNDRY_VEC *get_el_bndry_vec(const BAS_FCTS *bas_fcts);
EL_PTR_VEC *get_el_ptr_vec(const BAS_FCTS *bas_fcts);
EL_REAL_VEC *get_el_real_vec(const BAS_FCTS *bas_fcts);
EL_REAL_D_VEC *get_el_real_d_vec(const BAS_FCTS *bas_fcts);
EL_REAL_VEC_D *get_el_real_vec_d(const BAS_FCTS *bas_fcts);
void free_el_int_vec(EL_INT_VEC *el_vec);
void free_el_dof_vec(EL_DOF_VEC *el_vec);
void free_el_uchar_vec(EL_UCHAR_VEC *el_vec);
void free_el_schar_vec(EL_SCHAR_VEC *el_vec);
void free_el_bndry_vec(EL_BNDRY_VEC *el_vec);
void free_el_ptr_vec(EL_PTR_VEC *el_vec);
void free_el_real_vec(EL_REAL_VEC *el_vec);
void free_el_real_d_vec(EL_REAL_D_VEC *el_vec);
void free_el_real_vec_d(EL_REAL_VEC_D *el_vec);
DEF_EL_VEC_VAR(VECNAME, name, _size, _size_max, _init);
DEF_EL_VEC_CONST(VECNAME, name, _size, _size_max);
ALLOC_EL_VEC(VECNAME, _size, _size_max);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{get\_dof\_indices(dofs, fe\_space, el)}
Compute the mapping
\fdx{get_dof_indices()@{\code{get\_dof\_indices()}}}
between the local \code{DOF}-indices on \code{el} and the global
\code{DOF}-indices according to \code{fe\_space->admin}.
\begin{description}
\item[Parameters]~
\begin{description}
\item[\code{dofs}] Storage for the result or \code{NULL}. In the
latter case the mapping is returned in a statically allocated
\code{EL\_DOF\_VEC}. \emph{Note: this storage area will be
overwritten on the next call to this function, even if the
\code{fe\_space} argument differs.}
\item[\code{fe\_space}] The finite element space to compute the mapping for.
\item[\code{el}] The current mesh element (\emph{not} the current
\code{EL\_INFO} pointer, use \code{EL\_INFO->el}).
\end{description}
\item[return] Either again the argument \code{dofs} or -- if
\code{dofs == NULL} -- a pointer to a statically allocated
\code{EL\_DOF\_VEC}.
\item[examples]
\begin{samepage}
With pre-allocated \code{EL\_DOF\_VEC}:
\bv\begin{lstlisting}[caption={[Example for \code{get\_dof\_indices()}]},label=C:get_dof_indices_example]
EL_DOF_VEC *dofs = get_el_dof_vec(fe_space->bas_fcts);
TRAVERSE_FIRST(mesh, -1, CALL_LEAF_EL) {
int i;
get_dof_indices(dofs, fe_space, el_info->el);
for (i = 0; i < bas_fcts->n_bas_fcts; i++) {
MSG("dofs[%d] = %d\n", dofs->vec[i]);
}
} TRAVERSE_NEXT();
free_el_dof_vec(dofs);
\end{lstlisting}\ev
\end{samepage}
\begin{samepage}
Without pre-allocated \code{EL\_DOF\_VEC}:
\bv\begin{lstlisting}[caption={[Example for \code{get\_dof\_indices()}]},label=C:get_dof_indices_example2]
TRAVERSE_FIRST(mesh, -1, CALL_LEAF_EL) {
int i;
EL_DOF_VEC *dofs = get_dof_indices(NULL, fe_space, el_info->el);
for (i = 0; i < bas_fcts->n_bas_fcts; i++) {
MSG("dofs[%d] = %d\n", dofs->vec[i]);
}
} TRAVERSE_NEXT();
\end{lstlisting}\ev
\end{samepage}
%%\item[see also]
\end{description}
%%
\hrulefill
%%
\kitem{get\_bound(bndry, bas\_fcts, el\_info)}
\fdx{get_bound()@{\code{get\_bound()}}} Extract the boundary types of
the local DOFs of \code{bas\_fcts}. The boundary types are returned
in form of a bit-mask. If bit \code{j} in the bit-mask
\code{bndry[i]} is set, then the local DOF number \code{i} belongs to
the boundary segment which has been assigned the number \code{j} in
the macro-triangulation. Boundary types range from $1$ to $255$.
\begin{description}
\item[Parameters]~
\begin{description}
\item[\code{EL\_BNDRY\_VEC *bndry}] Storage for the result or
\code{NULL}. In the latter case the data is returned in a
statically allocated \code{EL\_BNDRY\_VEC}.
\item[\code{BAS\_FCTS *bas\_fcts}] The local basis functions.
\item[\code{const EL\_INFO *el\_info}] The current mesh element
info structure. (\emph{not} the current \code{EL\_INFO} pointer.
\end{description}
\item[return] Either again the argument \code{bndry} or -- if
\code{bndry == NULL} -- a pointer to a statically allocated
\code{EL\_BNDRY\_VEC}.
\item[examples]
\begin{samepage}
With pre-allocated \code{EL\_BNDRY\_VEC}:
\bv\begin{lstlisting}
EL_BNDRY_VEC *bndry = get_el_bndry_vec(bas_fcts);
TRAVERSE_FIRST(mesh, -1, CALL_LEAF_EL|FILL_BOUND) {
int i, j;
get_bound(bndry, bas_fcts, el_info);
for (i = 0; i < bas_fcts->n_bas_fcts; i++) {
for (j = 1; j < N_BNDRY_TYPES; j++) {
if (BNNDRY_FLAGS_IS_INTERIOR(bndry->vec[i])) {
MSG("Local dof %d is an interior DOF\n");
} else if (BNDRY_FLAGS_IS_AT_BNDRY(bndry->vec[i], j)) {
MSG("Local dof %d belongs to boundary segment %d\n", i, j);
}
}
}
} TRAVERSE_NEXT();
free_el_bndry_vec(bndry);
\end{lstlisting}\ev
\end{samepage}
\begin{samepage}
Without pre-allocated \code{EL\_BNDRY\_VEC}:
\bv\begin{lstlisting}
TRAVERSE_FIRST(mesh, -1, CALL_LEAF_EL) {
int i,j;
EL_BNDRY_VEC *bndry = get_bound(NULL, bas_fcts, el_info);
for (i = 0; i < bas_fcts->n_bas_fcts; i++) {
for (j = 1; j < N_BNDRY_TYPES; j++) {
if (BNNDRY_FLAGS_IS_INTERIOR(bndry->vec[i])) {
MSG("Local dof %d is an interior DOF\n");
} else if (BNDRY_FLAGS_IS_AT_BNDRY(bndry->vec[i], j)) {
MSG("Local dof %d belongs to boundary segment %d\n", i, j);
}
}
}
} TRAVERSE_NEXT();
\end{lstlisting}\ev
\end{samepage}
\end{description}
%%
\hrulefill
%%
\kitem{fill\_el\_int\_vec(el\_vec, el, dof\_vec)}
\kitem{fill\_el\_real\_vec(el\_vec, el, dof\_vec)}
\kitem{fill\_el\_real\_d\_vec(el\_vec, el, dof\_vec)}
\kitem{fill\_el\_real\_vec\_d(el\_vec, el, dof\_vec)}
\kitem{fill\_el\_uchar\_vec(el\_vec, el, dof\_vec)}
\kitem{fill\_el\_schar\_vec(el\_vec, el, dof\_vec)}
\fdx{fill_el_int_vec()@{\code{fill\_el\_int\_vec()}}}
\fdx{fill_el_real_vec()@{\code{fill\_el\_real\_vec()}}}
\fdx{fill_el_real_d_vec()@{\code{fill\_el\_real\_d\_vec()}}}
\fdx{fill_el_real_vec_d()@{\code{fill\_el\_real\_vec\_d()}}}
\fdx{fill_el_uchar_vec()@{\code{fill\_el\_uchar\_vec()}}}
\fdx{fill_el_schar_vec()@{\code{fill\_el\_schar\_vec()}}}~\hfill
%%
Fill the respective element vector with data. The description below
is for \code{fill\_el\_real\_vec()}, the other versions work similar.
\begin{description}
\item[Parameters]\hfill
\begin{description}
\item[\code{EL\_REAL\_VEC *el\_vec}] Storage for the result or
\code{NULL}. In the latter case the return value is
\hyperlink{DOF_REAL_VEC:vec_loc}{\code{DOF\_REAL\_VEC->vec\_loc}};
the data will be overwritten on the next call to
\code{fill\_el\_real\_vec()} with the same \code{dof\_vec}
argument. Calling \code{fill\_el\_real\_vec()} with \emph{other}
DOF-vectors will \emph{not} invalidate the data.
\item[\code{EL *el}] The current mesh element (\emph{not} the
current \code{EL\_INFO} pointer, use \code{EL\_INFO->el}).
\item[\code{DOF\_REAL\_VEC *dof\_vec}] The global \code{DOF}-vector
to extract the data from.
\end{description}
\item[return] Either again a the pointer \code{el\_vec} or --
if \code{el\_vec == NULL} a pointer to a statically allocated
result space which will be overwritten on the next call to
\code{fill\_el\_real\_vec()}. \emph{Warning:} see ``bugs'' below.
\end{description}
%%
\hrulefill
%%
\kitem{get\_el\_int\_vec(bas\_fcts)}
\kitem{get\_el\_dof\_vec(bas\_fcts)}
\kitem{get\_el\_uchar\_vec(bas\_fcts)}
\kitem{get\_el\_schar\_vec(bas\_fcts)}
\kitem{get\_el\_bndry\_vec(bas\_fcts)}
\kitem{get\_el\_ptr\_vec(bas\_fcts)}
\kitem{get\_el\_real\_vec(bas\_fcts)}
\kitem{get\_el\_real\_d\_vec(bas\_fcts)}
\kitem{get\_el\_real\_vec\_d(bas\_fcts)}\hfill
\fdx{get_el_int_vec()@{\code{get\_el\_int\_vec()}}}
\fdx{get_el_dof_vec()@{\code{get\_el\_dof\_vec()}}}
\fdx{get_el_uchar_vec()@{\code{get\_el\_uchar\_vec()}}}
\fdx{get_el_schar_vec()@{\code{get\_el\_schar\_vec()}}}
\fdx{get_el_bndry_vec()@{\code{get\_el\_bndry\_vec()}}}
\fdx{get_el_ptr_vec()@{\code{get\_el\_ptr\_vec()}}}
\fdx{get_el_real_vec()@{\code{get\_el\_real\_vec()}}}
\fdx{get_el_real_d_vec()@{\code{get\_el\_real\_d\_vec()}}}
\fdx{get_el_real_vec_d()@{\code{get\_el\_real\_vec\_d()}}}
The \code{get\_el\_*\_vec()} routines automatically allocates enough
memory for the element data vector \code{vec} as indicated by
\code{bas\_fcts->n\_bas\_fcts}.
\begin{description}
\item[Parameters]
\begin{description}
\item[\code{const BAS\_FCTS *bas\_fcts}]
\end{description}
\item[return] A pointer to a dynamically allocated element
vector of the respective type.
\item[examples] See the first example for the
\code{fill\_el\_real\_vec()} function.
\end{description}
%%
\hrulefill
%%
\kitem{free\_el\_int\_vec(el\_vec)}
\kitem{free\_el\_dof\_vec(el\_vec)}
\kitem{free\_el\_uchar\_vec(el\_vec)}
\kitem{free\_el\_schar\_vec(el\_vec)}
\kitem{free\_el\_bndry\_vec(el\_vec)}
\kitem{free\_el\_ptr\_vec(el\_fcts)}
\kitem{free\_el\_real\_vec(bas\_fcts)}
\kitem{free\_el\_real\_d\_vec(bas\_fcts)}
\kitem{free\_el\_real\_vec\_d(bas\_fcts)}
\fdx{free_el_int_vec()@{\code{free\_el\_int\_vec()}}}
\fdx{free_el_dof_vec()@{\code{free\_el\_dof\_vec()}}}
\fdx{free_el_uchar_vec()@{\code{free\_el\_uchar\_vec()}}}
\fdx{free_el_schar_vec()@{\code{free\_el\_schar\_vec()}}}
\fdx{free_el_bndry_vec()@{\code{free\_el\_bndry\_vec()}}}
\fdx{free_el_ptr_vec()@{\code{free\_el\_ptr\_vec()}}}
\fdx{free_el_real_vec()@{\code{free\_el\_real\_vec()}}}
\fdx{free_el_real_d_vec()@{\code{free\_el\_real\_d\_vec()}}}
\fdx{free_el_real_vec_d()@{\code{free\_el\_real\_vec\_d()}}}
\hfill
The \code{free\_el\_XXX\_vec()} routines free all previously allocated
storage for \code{el\_XXX\_vec} data.
\begin{description}
\item[Parameters]
\begin{description}
\item[\code{const BAS\_FCTS *bas\_fcts}]
\end{description}
\item[return] \code{void}
\item[examples] See the first example for the
\code{fill\_el\_real\_vec()} function.
\end{description}
%%
\hrulefill
%%
\kitem{DEF\_EL\_VEC\_VAR(VECNAME, name, size, size\_max, init)}
\fdx{DEF_EL_VEC_VAR()@{\code{DEF\_EL\_VEC\_VAR()}}}
\mdx{DEF_EL_VEC_VAR()@{\code{DEF\_EL\_VEC\_VAR()}}}\hfill
This is a macro which defines a (local) variable with id \code{name},
pointing to an \code{EL\_VECNAME\_VEC} of size \code{size}, holding a
maximal number of elements \code{max\_size}, which is initialised if
\code{init} is \code{true}. \code{size} and \code{size\_max} may be
variables.
\hrulefill
%%
\kitem{DEF\_EL\_VEC\_CONST(VECNAME, name, size, size\_max)}\hfill
\fdx{DEF_EL_VEC_CONST()@{\code{DEF\_EL\_VEC\_CONST()}}}
\mdx{DEF_EL_VEC_CONST()@{\code{DEF\_EL\_VEC\_CONST()}}}
This is a macro which defines a (local) variable with id \code{name},
pointing to an \code{EL\_VECNAME\_VEC} of size \code{size}, holding a
maximal number of elements \code{max\_size}. \code{size} and
\code{size\_max} must be constant values.
\hrulefill
%%
\kitem{ALLOC\_EL\_VEC(VECNAME, size, size\_max)}
\fdx{ALLOC_EL_VEC()@{\code{ALLOC\_EL\_VEC()}}}
\mdx{ALLOC_EL_VEC()@{\code{ALLOC\_EL\_VEC()}}}
This macro allocates a \code{EL\_VECNAME\_VEC} with enough storage to
hold \code{size\_max} elements; the \code{n\_components} component of
the element vector structure is set to \code{size}.
\hrulefill
%%
\kitem{el\_interpol(coeff, el\_info, wall, indices, f, ud, bas\_fcts)}
\fdx{el_interpol()@{\code{el\_interpol()}}}
%%
\kitem{el\_interpol\_dow(coeff, el\_info, wall, indices, f, f\_data, ud, bas\_fcts)}
\fdx{el_interpol_dow()@{\code{el\_interpol\_dow()}}}
%%
\kitem{dirichlet\_map(bound, bndry\_bits, mask)}
\fdx{dirichlet_map()@{\code{dirichlet\_map()}}}\hfill
\end{descr}
\subsubsection{BLAS-like Element-matrix and -vector operations}
\label{S:elementblas}
The source code listing below lists the proto-types, refer to
\tableref{tab:elementblas1} and \tableref{tab:elementblas2} for a
description of the respective operations. The routines in
\tableref{tab:elementblas2} take an argument
%%
\bv
\begin{lstlisting}
const EL_SCHAR_VEC *bound.
\end{lstlisting}\ev
%%
In this case the operations will act only on the rows $r$ which are
not masked-out by \code{bound->vec[r] >= DIRICHLET}. The \code{bound}
argument maybe \nil.
%%
\fdx{el_bi_mat_vec()@{\code{el\_bi\_mat\_vec()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec()@{\code{el\_bi\_mat\_vec()}}}
\fdx{el_bi_mat_vec_d()@{\code{el\_bi\_mat\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_d()@{\code{el\_bi\_mat\_vec\_d()}}}
\fdx{el_bi_mat_vec_dow()@{\code{el\_bi\_mat\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_dow()@{\code{el\_bi\_mat\_vec\_dow()}}}
\fdx{el_bi_mat_vec_rrd()@{\code{el\_bi\_mat\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_rrd()@{\code{el\_bi\_mat\_vec\_rrd()}}}
\fdx{el_bi_mat_vec_scl_dow()@{\code{el\_bi\_mat\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_scl_dow()@{\code{el\_bi\_mat\_vec\_scl\_dow()}}}
\fdx{el_bi_mat_vec_rdr()@{\code{el\_bi\_mat\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_rdr()@{\code{el\_bi\_mat\_vec\_rdr()}}}
\fdx{el_bi_mat_vec_dow_scl()@{\code{el\_bi\_mat\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_dow_scl()@{\code{el\_bi\_mat\_vec\_dow\_scl()}}}
%%
\fdx{el_gen_mat_vec()@{\code{el\_gen\_mat\_vec()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec()@{\code{el\_gen\_mat\_vec()}}}
\fdx{el_gen_mat_vec_d()@{\code{el\_gen\_mat\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_d()@{\code{el\_gen\_mat\_vec\_d()}}}
\fdx{el_gen_mat_vec_dow()@{\code{el\_gen\_mat\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_dow()@{\code{el\_gen\_mat\_vec\_dow()}}}
\fdx{el_gen_mat_vec_rrd()@{\code{el\_gen\_mat\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_rrd()@{\code{el\_gen\_mat\_vec\_rrd()}}}
\fdx{el_gen_mat_vec_scl_dow()@{\code{el\_gen\_mat\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_scl_dow()@{\code{el\_gen\_mat\_vec\_scl\_dow()}}}
\fdx{el_gen_mat_vec_rdr()@{\code{el\_gen\_mat\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_rdr()@{\code{el\_gen\_mat\_vec\_rdr()}}}
\fdx{el_gen_mat_vec_dow_scl()@{\code{el\_gen\_mat\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_dow_scl()@{\code{el\_gen\_mat\_vec\_dow\_scl()}}}
%%
\fdx{el_mat_vec()@{\code{el\_mat\_vec()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec()@{\code{el\_mat\_vec()}}}
\fdx{el_mat_vec_d()@{\code{el\_mat\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_d()@{\code{el\_mat\_vec\_d()}}}
\fdx{el_mat_vec_dow()@{\code{el\_mat\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_dow()@{\code{el\_mat\_vec\_dow()}}}
\fdx{el_mat_vec_rrd()@{\code{el\_mat\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_rrd()@{\code{el\_mat\_vec\_rrd()}}}
\fdx{el_mat_vec_scl_dow()@{\code{el\_mat\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_scl_dow()@{\code{el\_mat\_vec\_scl\_dow()}}}
\fdx{el_mat_vec_rdr()@{\code{el\_mat\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_rdr()@{\code{el\_mat\_vec\_rdr()}}}
\fdx{el_mat_vec_dow_scl()@{\code{el\_mat\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_dow_scl()@{\code{el\_mat\_vec\_dow\_scl()}}}
%%
\fdx{bi_mat_el_vec()@{\code{bi\_mat\_el\_vec()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec()@{\code{bi\_mat\_el\_vec()}}}
\fdx{bi_mat_el_vec_d()@{\code{bi\_mat\_el\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_d()@{\code{bi\_mat\_el\_vec\_d()}}}
\fdx{bi_mat_el_vec_dow()@{\code{bi\_mat\_el\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_dow()@{\code{bi\_mat\_el\_vec\_dow()}}}
\fdx{bi_mat_el_vec_rrd()@{\code{bi\_mat\_el\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_rrd()@{\code{bi\_mat\_el\_vec\_rrd()}}}
\fdx{bi_mat_el_vec_scl_dow()@{\code{bi\_mat\_el\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_scl_dow()@{\code{bi\_mat\_el\_vec\_scl\_dow()}}}
\fdx{bi_mat_el_vec_rdr()@{\code{bi\_mat\_el\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_rdr()@{\code{bi\_mat\_el\_vec\_rdr()}}}
\fdx{bi_mat_el_vec_dow_scl()@{\code{bi\_mat\_el\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_dow_scl()@{\code{bi\_mat\_el\_vec\_dow\_scl()}}}
%%
\fdx{gen_mat_el_vec()@{\code{gen\_mat\_el\_vec()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec()@{\code{gen\_mat\_el\_vec()}}}
\fdx{gen_mat_el_vec_d()@{\code{gen\_mat\_el\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_d()@{\code{gen\_mat\_el\_vec\_d()}}}
\fdx{gen_mat_el_vec_dow()@{\code{gen\_mat\_el\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_dow()@{\code{gen\_mat\_el\_vec\_dow()}}}
\fdx{gen_mat_el_vec_rrd()@{\code{gen\_mat\_el\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_rrd()@{\code{gen\_mat\_el\_vec\_rrd()}}}
\fdx{gen_mat_el_vec_scl_dow()@{\code{gen\_mat\_el\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_scl_dow()@{\code{gen\_mat\_el\_vec\_scl\_dow()}}}
\fdx{gen_mat_el_vec_rdr()@{\code{gen\_mat\_el\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_rdr()@{\code{gen\_mat\_el\_vec\_rdr()}}}
\fdx{gen_mat_el_vec_dow_scl()@{\code{gen\_mat\_el\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_dow_scl()@{\code{gen\_mat\_el\_vec\_dow\_scl()}}}
%%
\fdx{mat_el_vec()@{\code{mat\_el\_vec()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec()@{\code{mat\_el\_vec()}}}
\fdx{mat_el_vec_d()@{\code{mat\_el\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_d()@{\code{mat\_el\_vec\_d()}}}
\fdx{mat_el_vec_dow()@{\code{mat\_el\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_dow()@{\code{mat\_el\_vec\_dow()}}}
\fdx{mat_el_vec_rrd()@{\code{mat\_el\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_rrd()@{\code{mat\_el\_vec\_rrd()}}}
\fdx{mat_el_vec_scl_dow()@{\code{mat\_el\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_scl_dow()@{\code{mat\_el\_vec\_scl\_dow()}}}
\fdx{mat_el_vec_rdr()@{\code{mat\_el\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_rdr()@{\code{mat\_el\_vec\_rdr()}}}
\fdx{mat_el_vec_dow_scl()@{\code{mat\_el\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_dow_scl()@{\code{mat\_el\_vec\_dow\_scl()}}}
%%
\fdx{el_mat_set()@{\code{el\_mat\_set()}}}
\idx{BLAS for element vectors and matrices!el_mat_set()@{\code{el\_mat\_set()}}}
\fdx{el_mat_axey()@{\code{el\_mat\_axey()}}}
\idx{BLAS for element vectors and matrices!el_mat_axey()@{\code{el\_mat\_axey()}}}
\fdx{el_mat_axpy()@{\code{el\_mat\_axpy()}}}
\idx{BLAS for element vectors and matrices!el_mat_axpy()@{\code{el\_mat\_axpy()}}}
\fdx{el_mat_axpby()@{\code{el\_mat\_axpy()}}}
\idx{BLAS for element vectors and matrices!el_mat_axpby()@{\code{el\_mat\_axpby()}}}
\bv\begin{lstlisting}
EL_REAL_VEC *el_bi_mat_vec(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC *u_h,
REAL c, EL_REAL_VEC *f_h);
EL_REAL_D_VEC *el_bi_mat_vec_d(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_D_VEC *u_h,
REAL c, EL_REAL_D_VEC *f_h);
EL_REAL_VEC_D *el_bi_mat_vec_dow(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC_D *u_h,
REAL c, EL_REAL_VEC_D *f_h);
EL_REAL_VEC *el_bi_mat_vec_rrd(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_D_VEC *u_h,
REAL c, EL_REAL_VEC *f_h);
EL_REAL_VEC *el_bi_mat_vec_scl_dow(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC_D *u_h,
REAL c, EL_REAL_VEC *f_h);
EL_REAL_D_VEC *el_bi_mat_vec_rdr(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC *u_h,
REAL c, EL_REAL_D_VEC *f_h);
EL_REAL_VEC_D *el_bi_mat_vec_dow_scl(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC *u_h,
REAL c, EL_REAL_VEC_D *f_h);
EL_REAL_VEC *el_gen_mat_vec(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h,
REAL b, EL_REAL_VEC *f_h);
EL_REAL_D_VEC *el_gen_mat_vec_d(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h,
REAL b, EL_REAL_D_VEC *f_h);
EL_REAL_VEC_D *el_gen_mat_vec_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h,
REAL b, EL_REAL_VEC_D *f_h);
EL_REAL_VEC *el_gen_mat_vec_rrd(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h,
REAL b, EL_REAL_VEC *f_h);
EL_REAL_VEC *el_gen_mat_vec_scl_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h,
REAL b, EL_REAL_VEC *f_h);
EL_REAL_D_VEC *el_gen_mat_vec_rdr(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h,
REAL b, EL_REAL_D_VEC *f_h);
EL_REAL_VEC_D *el_gen_mat_vec_dow_scl(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h,
REAL b, EL_REAL_VEC_D *f_h);
EL_REAL_VEC *el_mat_vec(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, EL_REAL_VEC *f_h);
EL_REAL_D_VEC *el_mat_vec_d(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h, EL_REAL_D_VEC *f_h);
EL_REAL_VEC_D *el_mat_vec_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h, EL_REAL_VEC_D *f_h);
EL_REAL_VEC *el_mat_vec_rrd(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h, EL_REAL_VEC *f_h);
EL_REAL_VEC *el_mat_vec_scl_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h, EL_REAL_VEC *f_h);
EL_REAL_D_VEC *el_mat_vec_rdr(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, EL_REAL_D_VEC *f_h);
EL_REAL_VEC_D *el_mat_vec_dow_scl(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, EL_REAL_VEC_D *f_h);
void bi_mat_el_vec(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC *u_h, REAL c, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void bi_mat_el_vec_d(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_D_VEC *u_h, REAL c, DOF_REAL_D_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void bi_mat_el_vec_dow(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC_D *u_h, REAL c, DOF_REAL_VEC_D *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void bi_mat_el_vec_rrd(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_D_VEC *u_h, REAL c, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void bi_mat_el_vec_scl_dow(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC_D *u_h, REAL c, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void bi_mat_el_vec_rdr(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC *u_h, REAL c, DOF_REAL_D_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void bi_mat_el_vec_dow_scl(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B,
const EL_REAL_VEC *u_h, REAL c, DOF_REAL_VEC_D *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, REAL b, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec_d(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h, REAL b, DOF_REAL_D_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h, REAL b, DOF_REAL_VEC_D *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec_rrd(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h, REAL b, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec_scl_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h, REAL b, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec_rdr(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, REAL b, DOF_REAL_D_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void gen_mat_el_vec_dow_scl(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, REAL b, DOF_REAL_VEC_D *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec_d(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h, DOF_REAL_D_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h, DOF_REAL_VEC_D *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec_rrd(REAL a, const EL_MATRIX *A,
const EL_REAL_D_VEC *u_h, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec_scl_dow(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC_D *u_h, DOF_REAL_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec_rdr(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, DOF_REAL_D_VEC *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
void mat_el_vec_dow_scl(REAL a, const EL_MATRIX *A,
const EL_REAL_VEC *u_h, DOF_REAL_VEC_D *f_h,
const EL_DOF_VEC *dof, const EL_SCHAR_VEC *bound);
EL_MATRIX *el_mat_set(REAL a, EL_MATRIX *result);
EL_MATRIX *el_mat_axey(REAL a, const EL_MATRIX *A, EL_MATRIX *result);
EL_MATRIX *el_mat_axpy(REAL a, const EL_MATRIX *A, EL_MATRIX *result);
EL_MATRIX *el_mat_axpby(REAL a, const EL_MATRIX *A,
REAL b, const EL_MATRIX *B, EL_MATRIX *result);
\end{lstlisting}\ev
\begin{table}[htbp]
\idx{BLAS for element vectors and matrices}
\fdx{el_bi_mat_vec()@{\code{el\_bi\_mat\_vec()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec()@{\code{el\_bi\_mat\_vec()}}}
\fdx{el_bi_mat_vec_d()@{\code{el\_bi\_mat\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_d()@{\code{el\_bi\_mat\_vec\_d()}}}
\fdx{el_bi_mat_vec_dow()@{\code{el\_bi\_mat\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_dow()@{\code{el\_bi\_mat\_vec\_dow()}}}
\fdx{el_bi_mat_vec_rrd()@{\code{el\_bi\_mat\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_rrd()@{\code{el\_bi\_mat\_vec\_rrd()}}}
\fdx{el_bi_mat_vec_scl_dow()@{\code{el\_bi\_mat\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_scl_dow()@{\code{el\_bi\_mat\_vec\_scl\_dow()}}}
\fdx{el_bi_mat_vec_rdr()@{\code{el\_bi\_mat\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_rdr()@{\code{el\_bi\_mat\_vec\_rdr()}}}
\fdx{el_bi_mat_vec_dow_scl()@{\code{el\_bi\_mat\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!el_bi_mat_vec_dow_scl()@{\code{el\_bi\_mat\_vec\_dow\_scl()}}}
%%
\fdx{el_gen_mat_vec()@{\code{el\_gen\_mat\_vec()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec()@{\code{el\_gen\_mat\_vec()}}}
\fdx{el_gen_mat_vec_d()@{\code{el\_gen\_mat\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_d()@{\code{el\_gen\_mat\_vec\_d()}}}
\fdx{el_gen_mat_vec_dow()@{\code{el\_gen\_mat\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_dow()@{\code{el\_gen\_mat\_vec\_dow()}}}
\fdx{el_gen_mat_vec_rrd()@{\code{el\_gen\_mat\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_rrd()@{\code{el\_gen\_mat\_vec\_rrd()}}}
\fdx{el_gen_mat_vec_scl_dow()@{\code{el\_gen\_mat\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_scl_dow()@{\code{el\_gen\_mat\_vec\_scl\_dow()}}}
\fdx{el_gen_mat_vec_rdr()@{\code{el\_gen\_mat\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_rdr()@{\code{el\_gen\_mat\_vec\_rdr()}}}
\fdx{el_gen_mat_vec_dow_scl()@{\code{el\_gen\_mat\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!el_gen_mat_vec_dow_scl()@{\code{el\_gen\_mat\_vec\_dow\_scl()}}}
%%
\fdx{el_mat_vec()@{\code{el\_mat\_vec()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec()@{\code{el\_mat\_vec()}}}
\fdx{el_mat_vec_d()@{\code{el\_mat\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_d()@{\code{el\_mat\_vec\_d()}}}
\fdx{el_mat_vec_dow()@{\code{el\_mat\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_dow()@{\code{el\_mat\_vec\_dow()}}}
\fdx{el_mat_vec_rrd()@{\code{el\_mat\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_rrd()@{\code{el\_mat\_vec\_rrd()}}}
\fdx{el_mat_vec_scl_dow()@{\code{el\_mat\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_scl_dow()@{\code{el\_mat\_vec\_scl\_dow()}}}
\fdx{el_mat_vec_rdr()@{\code{el\_mat\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_rdr()@{\code{el\_mat\_vec\_rdr()}}}
\fdx{el_mat_vec_dow_scl()@{\code{el\_mat\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!el_mat_vec_dow_scl()@{\code{el\_mat\_vec\_dow\_scl()}}}
%%
\fdx{el_mat_set()@{\code{el\_mat\_set()}}}
\idx{BLAS for element vectors and matrices!el_mat_set()@{\code{el\_mat\_set()}}}
\fdx{el_mat_axey()@{\code{el\_mat\_axey()}}}
\idx{BLAS for element vectors and matrices!el_mat_axey()@{\code{el\_mat\_axey()}}}
\fdx{el_mat_axpy()@{\code{el\_mat\_axpy()}}}
\idx{BLAS for element vectors and matrices!el_mat_axpy()@{\code{el\_mat\_axpy()}}}
\fdx{el_mat_axpby()@{\code{el\_mat\_axpby()}}}
\idx{BLAS for element vectors and matrices!el_mat_axpby()@{\code{el\_mat\_axpby()}}}
\begin{center}{\small
\begin{tabular}{|l|l|}
\hline
\Strut\verb|f = el_mat_vec(a, A, u, f)| &
$f_i \leftarrow (a\,A\,u)_i$ \\
\Strut\verb|f = el_mat_vec_d(a, A, u, f)| & \\
\Strut\verb|f = el_mat_vec_dow(a, A, u, f)| & \\
\Strut\verb|f = el_mat_vec_rrd(a, A, u, f)| & \\
\Strut\verb|f = el_mat_vec_scl_dow(a, A, u, f)| &\\
\Strut\verb|f = el_mat_vec_rdr(a, A, u, f)| &\\
\Strut\verb|f = el_mat_vec_dow_scl(a, A, u, f)|&\\
\hline
\Strut\verb|f = el_gen_mat_vec(a, A, u, b, f)| &
$f_i \leftarrow (a\,A\,u + b\,f)_i$ \\
\Strut\verb|f = el_gen_mat_vec_d(a, A, u, b, f)| & \\
\Strut\verb|f = el_gen_mat_vec_dow(a, A, u, b, f)| & \\
\Strut\verb|f = el_gen_mat_vec_rrd(a, A, u, b, f)| & \\
\Strut\verb|f = el_gen_mat_vec_scl_dow(a, A, u, b, f)| &\\
\Strut\verb|f = el_gen_mat_vec_rdr(a, A, u, b, f)| &\\
\Strut\verb|f = el_gen_mat_vec_dow_scl(a, A, u, b, f)|&\\
\hline
\Strut\verb|f = el_bi_mat_vec(a, A, b, B, u, c, f)| &
$f_i \leftarrow ((a\,A + b\,B)\,u + c\,f)_i$ \\
\Strut\verb|f = el_bi_mat_vec_d(a, A, b, B, u, c, f)| & \\
\Strut\verb|f = el_bi_mat_vec_dow(a, A, b, B, u, c, f)| & \\
\Strut\verb|f = el_bi_mat_vec_rrd(a, A, b, B, u, c, f)| & \\
\Strut\verb|f = el_bi_mat_vec_scl_dow(a, A, b, B, u, c, f)| &\\
\Strut\verb|f = el_bi_mat_vec_rdr(a, A, b, B, u, c, f)| &\\
\Strut\verb|f = el_bi_mat_vec_dow_scl(a, A, b, B, u, c, f)|&\\
\hline
\Strut\verb|A = el_mat_set(a, A)| &
$A_{ij} \leftarrow a$\\
\Strut\verb|B = el_mat_axey(a, A, B)| &
$B_{ij} \leftarrow a\,A_{ij}$\\
\Strut\verb|B = el_mat_axpy(a, A, B)| &
$B_{ij} \leftarrow a\,A_{ij}+B_{ij}$\\
\Strut\verb|C = el_mat_axpby(a, A, b, B, C)| &
$C_{ij} \leftarrow a\,A_{ij}+b\,B_{ij}$\\
\hline
\end{tabular}}\end{center}
\caption[BLAS-operations for element-vectors and -matrices]
{BLAS-operations for element-vectors and -matrices. $A$ and $B$ denote element matrices, $u$ and $f$ element vectors, $a$, $b$, $c$ are numbers.}
\label{tab:elementblas1}
\end{table}
\begin{table}[htbp]
\idx{BLAS for element vectors and matrices}
\fdx{bi_mat_el_vec()@{\code{bi\_mat\_el\_vec()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec()@{\code{bi\_mat\_el\_vec()}}}
\fdx{bi_mat_el_vec_d()@{\code{bi\_mat\_el\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_d()@{\code{bi\_mat\_el\_vec\_d()}}}
\fdx{bi_mat_el_vec_dow()@{\code{bi\_mat\_el\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_dow()@{\code{bi\_mat\_el\_vec\_dow()}}}
\fdx{bi_mat_el_vec_rrd()@{\code{bi\_mat\_el\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_rrd()@{\code{bi\_mat\_el\_vec\_rrd()}}}
\fdx{bi_mat_el_vec_scl_dow()@{\code{bi\_mat\_el\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_scl_dow()@{\code{bi\_mat\_el\_vec\_scl\_dow()}}}
\fdx{bi_mat_el_vec_rdr()@{\code{bi\_mat\_el\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_rdr()@{\code{bi\_mat\_el\_vec\_rdr()}}}
\fdx{bi_mat_el_vec_dow_scl()@{\code{bi\_mat\_el\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!bi_mat_el_vec_dow_scl()@{\code{bi\_mat\_el\_vec\_dow\_scl()}}}
%%
\fdx{gen_mat_el_vec()@{\code{gen\_mat\_el\_vec()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec()@{\code{gen\_mat\_el\_vec()}}}
\fdx{gen_mat_el_vec_d()@{\code{gen\_mat\_el\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_d()@{\code{gen\_mat\_el\_vec\_d()}}}
\fdx{gen_mat_el_vec_dow()@{\code{gen\_mat\_el\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_dow()@{\code{gen\_mat\_el\_vec\_dow()}}}
\fdx{gen_mat_el_vec_rrd()@{\code{gen\_mat\_el\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_rrd()@{\code{gen\_mat\_el\_vec\_rrd()}}}
\fdx{gen_mat_el_vec_scl_dow()@{\code{gen\_mat\_el\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_scl_dow()@{\code{gen\_mat\_el\_vec\_scl\_dow()}}}
\fdx{gen_mat_el_vec_rdr()@{\code{gen\_mat\_el\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_rdr()@{\code{gen\_mat\_el\_vec\_rdr()}}}
\fdx{gen_mat_el_vec_dow_scl()@{\code{gen\_mat\_el\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!gen_mat_el_vec_dow_scl()@{\code{gen\_mat\_el\_vec\_dow\_scl()}}}
%%
\fdx{mat_el_vec()@{\code{mat\_el\_vec()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec()@{\code{mat\_el\_vec()}}}
\fdx{mat_el_vec_d()@{\code{mat\_el\_vec\_d()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_d()@{\code{mat\_el\_vec\_d()}}}
\fdx{mat_el_vec_dow()@{\code{mat\_el\_vec\_dow()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_dow()@{\code{mat\_el\_vec\_dow()}}}
\fdx{mat_el_vec_rrd()@{\code{mat\_el\_vec\_rrd()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_rrd()@{\code{mat\_el\_vec\_rrd()}}}
\fdx{mat_el_vec_scl_dow()@{\code{mat\_el\_vec\_scl\_dow()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_scl_dow()@{\code{mat\_el\_vec\_scl\_dow()}}}
\fdx{mat_el_vec_rdr()@{\code{mat\_el\_vec\_rdr()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_rdr()@{\code{mat\_el\_vec\_rdr()}}}
\fdx{mat_el_vec_dow_scl()@{\code{mat\_el\_vec\_dow\_scl()}}}
\idx{BLAS for element vectors and matrices!mat_el_vec_dow_scl()@{\code{mat\_el\_vec\_dow\_scl()}}}
\begin{center}{\small
\begin{tabular}{|l|l|}
\hline
\Strut\verb|f = mat_el_vec(a, A, u, f, dof, mask)| &
$f[dof[i]] \leftarrow (a\,A\,u)_i$ \\
\Strut\verb|mat_el_vec_d(a, A, u, f, dof, mask)| &
if \code{mask[i] != DIRICHLET}\\
\Strut\verb|mat_el_vec_dow(a, A, u, f, dof, mask)| &
or \code{mask == \nil}\\
\Strut\verb|mat_el_vec_rrd(a, A, u, f, dof, mask)| & \\
\Strut\verb|mat_el_vec_scl_dow(a, A, u, f, dof, mask)| &\\
\Strut\verb|mat_el_vec_rdr(a, A, u, f, dof, mask)| &\\
\Strut\verb|mat_el_vec_dow_scl(a, A, u, f, dof, mask)|&\\
\hline
\Strut\verb|gen_mat_el_vec(a, A, u, b, f, dof, mask)| &
$f[dof[i]] \leftarrow (a\,A\,u)_i + b\,f[dof[i]]$ \\
\Strut\verb|gen_mat_el_vec_d(a, A, u, b, f, dof, mask)| &
if \code{mask[i] != DIRICHLET}\\
\Strut\verb|gen_mat_el_vec_dow(a, A, u, b, f, dof, mask)| &
or \code{mask == \nil}\\
\Strut\verb|gen_mat_el_vec_rrd(a, A, u, b, f, dof, mask)| & \\
\Strut\verb|gen_mat_el_vec_scl_dow(a, A, u, b, f, dof, mask)| &\\
\Strut\verb|gen_mat_el_vec_rdr(a, A, u, b, f, dof, mask)| &\\
\Strut\verb|gen_mat_el_vec_dow_scl(a, A, u, b, f, dof, mask)|&\\
\hline
\Strut\verb|bi_mat_el_vec(a, A, b, B, u, c, f, dof, mask)| &
$f[dof[i]]$ \\
\Strut\verb|bi_mat_el_vec_d(a, A, b, B, u, c, f, dof, mask)| &
$\leftarrow ((a\,A + b\,B)\,u)_i + c\,f[dof[i]]$ \\
\Strut\verb|bi_mat_el_vec_dow(a, A, b, B, u, c, f, dof, mask)| &
if \code{mask[i] != DIRICHLET}\\
\Strut\verb|bi_mat_el_vec_rrd(a, A, b, B, u, c, f, dof, mask)| &
or \code{mask == \nil}\\
\Strut\verb|bi_mat_el_vec_scl_dow(a, A, b, B, u, c, f, dof, mask)| &\\
\Strut\verb|bi_mat_el_vec_rdr(a, A, b, B, u, c, f, dof, mask)| &\\
\Strut\verb|bi_mat_el_vec_dow_scl(a, A, b, B, u, c, f, dof, mask)|&\\
\hline
\end{tabular}}\end{center}
\caption[BLAS-operations for element-vectors and -matrices]
{BLAS-operations for element-vectors and -matrices. $A$ and $B$ denote element matrices, $u$ an element vector. $f$ is a global \code{DOF}-vector. \code{mask} is an \code{EL\_SCHAR\_VEC} masking out certain \emph{local} \code{DOF}s. \code{mask} may be \nil. \code{dof} is \code{EL\_DOF\_VEC} mapping local to global \code{DOF}s. $a$, $b$, $c$ are numbers.}
\label{tab:elementblas2}
\end{table}
\subsection{Data structures and functions for matrix assemblage}%
\label{S:matrix_assemblage}%
The following structure holds full information for the assembling
of scalar element matrices. This structure is used by the function
\code{update\_matrix()} described below.
\ddx{EL_MATRIX_INFO@{\code{EL\_MATRIX\_INFO}}}
\idx{assemblage tools!EL_MATRIX_INFO@{\code{EL\_MATRIX\_INFO}}}
%%
\newcommand{\ELMATRIXINFO}{\hyperref[T:EL_MATRIX_INFO]{\code{EL\_MATRIX\_INFO}}\xspace}
%%
\bv\begin{lstlisting}[label=T:EL_MATRIX_INFO,name=EL_MATRIX_INFO]
typedef struct el_matrix_info EL_MATRIX_INFO;
struct el_matrix_info
{
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
MATENT_TYPE krn_blk_type;
BNDRY_FLAGS dirichlet_bndry;
REAL factor;
EL_MATRIX_FCT el_matrix_fct;
void *fill_info;
const EL_MATRIX_FCT *neigh_el_mat_fcts;
void *neigh_fill_info;
FLAGS fill_flag;
};
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{row\_fe\_space} pointer to a finite element space connected
to the row DOFs of the resulting matrix.
%%
\kitem{col\_fe\_space} pointer to a finite element space connected
to the columns DOFs of the resulting matrix.
%%
\kitem{krn\_blk\_type} defines the block-matrix type of matrix entries
%%
\kitem{dirichlet\_boundary} bndry-type bit-mask for Dirichlet-boundary
conditions built into the matrix
%%
\kitem{factor} is a multiplier for the element contributions; usually
\code{factor} is \code{1} or \code{-1}.
%%
\kitem{el\_matrix\_fct}is a pointer to a function for the computation
of the element matrix; \code{el\_matrix\_fct(el\_info, fill\_info)}
returns a pointer to a matrix of size
$\code{n\_row}\times\code{n\_col}$ storing the element matrix
on element \code{el\_info->el}; \code{fill\_info} is a pointer
to data needed by \code{el\_matrix\_fct()}; the function has
to provide memory for storing the element matrix, which
can be overwritten on the next call.
%%
\kitem{fill\_info} pointer to data needed by \code{el\_matrix\_fct()};
will be given as second argument to this function.
%%
\kitem{neigh\_el\_mat\_fcts} If the \code{BNDRY\_OPERATOR\_INFO}
(code-listing \ref{T:BNDRY_OPERATOR_INFO}) structure passed to
\code{fill\_matrix\_info()} was flagged as discontinuous, then this
is the base-address of an array storing \code{N\_NEIGH(mesh->dim)}
many element-matrix functions which pair the local basis-function
set with the local basis function set on the neighbor.
Intentionally, this is meant to support assembling linear systems in
the context of DG-methods. The idea is that
%%
\code{EL\_MATRIX\_INFO.neigh\_el\_mat\_fcts[neigh\_nr](el\_info, EL\_MATRIX\_INFO.neigh\_fill\_info)}
%%
assembles a jump-term where the local basis functions on the element
described by \code{el\_info} are used as test-functions
(corresponding to the rows of the element matrix) and the local
basis function set on the neighbour element defines the local space
of ansatz-functions (column-space).
%%
\kitem{neigh\_fill\_info} Data pointer passed to the element-matrix
functions stored in \code{neigh\_el\_mat\_fcts}.
%%
\kitem{fill\_flag}the flag for the mesh traversal for assembling the
matrix.
\end{descr}
The following function updates a matrix by assembling element
contributions during mesh traversal; information for computing
the element matrices is provided in an \code{EL\_MATRIX\_INFO} structure:
\fdx{update_matrix()@{\code{update\_matrix()}}}
\idx{assemblage tools!update_matrix()@{\code{update\_matrix(}}}
\bv\begin{lstlisting}[name=update_matrix(),label=T:update_matrix_proto]
void update_matrix(DOF_MATRIX *dof_matrix, const EL_MATRIX_INFO *minfo,
MatrixTranspose transpose);;
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{update\_matrix(matrix, info, transpose)} updates the matrix
\code{matrix} by traversing the underlying mesh and assembling the
element contributions into the matrix; information about the
computation of element matrices and connection of local and global
DOFs is stored in \code{info}.
The flags for the mesh traversal of the mesh
\code{matrix->fe\_space->mesh} are stored at \code{info->fill\_flag}
which specifies the elements to be visited and information that
should be present on the elements for the calculation of the element
matrices and boundary information (if \code{info->get\_bound} is not
\nil).
On the elements, information about the row DOFs is accessed by
\code{info->get\_row\_dof} using \code{info->row\_admin}; this
vector is also used for the column DOFs if \code{info->n\_col} is
less or equal to zero, or \code{info->get\_col\_admin} or
\code{info->get\_col\_dof} is a \nil pointer; when row and column
DOFs are the same, the boundary type of the DOFs is accessed by
\code{info->get\_bound} if \code{info->get\_bound} is not a \nil
pointer; then the element matrix is computed by
\code{info->el\_matrix\_fct(el\_info, info->fill\_info)}; these
contributions, multiplied by \code{info->factor}, are eventually
added to \code{matrix} by a call of \code{add\_element\_matrix()}
with all information about row and column DOFs, the element matrix,
and boundary types, if available.
\code{update\_matrix()} acts \emph{additive}, the
element-contributions are added to the data already present in
\code{dof\_matrix}. This makes several calls for the assemblage of
one matrix possible. \code{clear\_dof\_matrix()} can be used to
erase the contents of \code{dof\_matrix} prior to calling
\code{update\_matrix()}.
\begin{description}
\item[Parameters]\hfill
\begin{descr}
\kitem{dof\_matrix} The global \code{DOF\_MATRIX} to add data to.
%%
\kitem{minfo} The element-matrix handle, as returned by
\code{fill\_matrix\_info()} or
%%
\kitem{transpose}
\end{descr}
\end{description}
\end{descr}
\subsection{Matrix assemblage for second order problems}%
\label{S:matrix_assemblage_scalar}%
Now we want to describe some tools which enable an easy assemblage of
the system matrix in the case of scalar elliptic problems. For this we
have to provide a function for the calculation of the element
matrix. For a general scalar problem the element matrix
$\vL_S = (L_S^{ij})_{i,j=1,\dots,m}$ is given by (recall
\mathref{book:E:L-phii-phij} on page
\pageref{book:E:L-phii-phij})
%in \secref{book:S:Dis2ndorder}
\begin{align*}
L_S^{ij} &=
\int_{\Shat}
\nablal \pbar^{i}(\lambda(\xhat)) \cdot \bar A(\lambda(\xhat))\,
\nablal \pbar^{j}(\lambda(\xhat))\,d\xhat
+
\int_{\Shat} \pbar^{i}(\lambda(\xhat))\;
\bar b(\lambda(\xhat)) \cdot
\nablal \pbar^{j}(\lambda(\xhat)) \,d\xhat\\
&\qquad +
\int_{\Shat} \bar c(\lambda(\xhat))\, \pbar^{i}(\lambda(\xhat)) \,
\pbar^{j}(\lambda(\xhat))\,d\xhat,
\end{align*}
where $\bar A$, $\bar b$, and $\bar c$ are functions depending
on given data and on the actual element, namely
\begin{align*}
\bar A(\lambda) &:=
\left(\bar a_{kl}(\lambda)\right)_{k,l = 0,\ldots,d}
:= |\det DF_S(\xhat(\lambda))| \,
\Lambda(x(\lambda)) \, A(x(\lambda)) \, \Lambda^t(x(\lambda)),\\
\bar b(\lambda) & :=
\left(\bar b_{l}(\lambda)\right)_{l = 0,\ldots,d}
:= |\det DF_S(\xhat(\lambda))| \,
\Lambda(x(\lambda)) \, b(x(\lambda)), \quad \mbox{and}\\
\bar c(\lambda) & := |\det DF_S(\xhat(\lambda))| \, c(x(\lambda)).
\end{align*}
Having access to functions for the evaluation of $\bar A$, $\bar b$,
and $\bar c$ at given quadrature nodes, the above integrals can be
computed by some general routine for any set of local basis functions
using quadrature. Additionally, if a coefficient is piecewise constant
on the mesh, only an integration of basis functions has to be done
(compare \mathref{book:E:quad_LS} on page \pageref{book:E:quad_LS})
for this term. Here we can use pre--computed integrals of the basis
functions on the standard element and transform th-em to the actual
element. Such a computation is usually much faster than using
quadrature on each single element. Data structures for storing such
pre--computed values are described in \secref{S:ass_info}.
For the assemblage routines which we will describe now, we use
the following slight generalization: In the discretization of
the first order term, sometimes integration by parts is used
too. For a divergence free vector field
$b$ and purely Dirichlet boundary values this leads for instance to
\[
\int_\Omega \varphi(x)\, b(x) \cdot \nabla u(x)\,dx =
\frac12 \left(\int_\Omega \varphi(x)\, b(x) \cdot \nabla u(x)\,dx
- \int_\Omega \nabla \varphi(x) \cdot b(x) \, u(x)\,dx\right)
\]
yielding a modified first order term for the element matrix
\[
\int_{\Shat} \pbar^{i}(\lambda(\xhat))\;
\frac12 \bar b(\lambda(\xhat)) \cdot
\nablal \pbar^{j}(\lambda(\xhat)) \,d\xhat
- \int_{\Shat} \nablal \pbar^{i}(\lambda(\xhat))\cdot
\frac12 \bar b(\lambda(\xhat)) \; \pbar^{j}(\lambda(\xhat)) \,d\xhat.
\]
Secondly, we allow that we have two finite element spaces with local
basis functions $\{\bar\psi_i\}_{i=1,\dots,n}$ and
$\{\bar\vphi_i\}_{i=1,\dots,m}$.
In general the following contributions of the element matrix
$\vL_S=(L_S^{ij})_{\substack{i=1,\dots,n\\j=1,\dots,m}}$ have to be
computed:
\begin{align*}
&\int_{\Shat}
\nablal \bar\psi^{i}(\lambda(\xhat)) \cdot \bar A(\lambda(\xhat))\,
\nablal \pbar^{j}(\lambda(\xhat))\,d\xhat & &\mbox{second order term,}\\
&\begin{array}{l}%
\ds \int_{\Shat} \bar\psi^{i}(\lambda(\xhat))\;
\bar b^0(\lambda(\xhat)) \cdot \nablal \pbar^{j}(\lambda(\xhat)) \,d\xhat
\\[3mm]
\ds \int_{\Shat}^{} \nablal \bar\psi^{i}(\lambda(\xhat)) \cdot\;
\bar b^1(\lambda(\xhat))\, \pbar^{j}(\lambda(\xhat)) \,d\xhat\\
\end{array}
& &\mbox{first order terms,}\\
&
\int_{\Shat} \bar c(\lambda(\xhat))\, \bar\psi^{i}(\lambda(\xhat)) \,
\pbar^{j}(\lambda(\xhat))\,d\xhat
& &\mbox{zero order term,}
\end{align*}
where for instance $\bar b^0 = \bar b$ and $\bar b^1 = 0$, or using
integration by parts $\bar b^0 = \frac12\bar b$ and
$\bar b^1=-\frac12\bar b$.
In order to store information about the finite element spaces, the
problem dependent functions $\bar A$, $\bar b^0$, $\bar b^1$, $\bar c$
and the quadrature that should be used for the numerical
integration of the element matrix, we define the following data
structure:
%%
\ddx{OPERATOR_INFO@{\code{OPERATOR\_INFO}}}
\idx{assemblage tools!OPERATOR_INFO@{\code{OPERATOR\_INFO}}}
%%
\newcommand{\OPERATORINFO}{\hyperref[T:OPERATOR_INFO]{\code{OPERATOR\_INFO}}\xspace}
%%
\bv\begin{lstlisting}[label=T:OPERATOR_INFO,name=OPERATOR_INFO]
typedef struct operator_info OPERATOR_INFO;
struct operator_info
{
const FE_SPACE *row_fe_space; /* range fe-space */
const FE_SPACE *col_fe_space; /* domain fe-space */
const QUAD *quad[3];
bool (*init_element)(const EL_INFO *el_info,
const QUAD *quad[3], void *apd);
union {
const REAL_B *(*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_BD *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_BDD *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} LALt;
MATENT_TYPE LALt_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
bool LALt_pw_const;
bool LALt_symmetric;
int LALt_degree;
union {
const REAL *(*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_D *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_DD *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} Lb0;
bool Lb0_pw_const;
union {
const REAL *(*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_D *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_DD *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} Lb1;
bool Lb1_pw_const;
MATENT_TYPE Lb_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
bool Lb0_Lb1_anti_symmetric;
int Lb_degree;
union {
REAL (*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_D *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} c;
bool c_pw_const;
MATENT_TYPE c_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
int c_degree;
BNDRY_FLAGS dirichlet_bndry; /* bndry-type bit-mask for
* Dirichlet-boundary conditions
* built into the matrix
*/
FLAGS fill_flag;
void *user_data; /* application data, passed to init_element */
};
\end{lstlisting}\ev
\begin{compatibility}
Former versions of the \ALBERTA toolkit had special
``\code{DOWB\_OPERATOR\_INFO}'' and \code{DOF\_DOWB\_MATRIX}''
definitions to model block-matrix structures with $\DOW\times\DOW$
blocks, $1\times\DOW$ and $\DOW\times 1$ blocks and $1\times 1$
blocks (i.e. not-blocked). Because those structures included
the scalar case as well, the ordinary scalar-only
\code{OPERATOR\_INFO} and \code{DOF\_MATRIX} structures have been
abandoned altogether, and the \code{\dots\_DOWB\_\dots} versions
were renamed, dropping the bizarre \code{DOWB} component of their
names.
\end{compatibility}
Description of the \code{OPERATOR\_INFO} structure:
\begin{descr}
\hyperitem{OPERATOR_INFO:row_fe_space}{row\_fe\_space} pointer to a
finite element space connected to the row DOFs of the resulting
matrix.
%%
\hyperitem{OPERATOR_INFO:col\_fe\_space}{col\_fe\_space} pointer to a
finite element space connected to the column DOFs of the resulting
matrix.
%%
\hyperitem{OPERATOR_INFO:quad}{quad} vector with pointers to
quadratures; \code{quad[0]} is used for the integration of the zero
order term, \code{quad[1]} for the first order term(s), and
\code{quad[2]} for the second order term.
%%
\idx{Per-element initializers!OPERATOR_INFO@{\code{OPERATOR\_INFO}}}
\idx{Per-element initializers!BNDRY_OPERATOR_INFO@{\code{BNDRY\_OPERATOR\_INFO}}}
\idx{init_element()@{\code{init\_element()}}!OPERATOR_INFO@{\code{OPERATOR\_INFO}}}
\idx{init_element()@{\code{init\_element()}}!BNDRY_OPERATOR_INFO@{\code{BNDRY\_OPERATOR\_INFO}}}
\hyperitem{OPERATOR_INFO:init_element}{init\_element}\idx{init_element()@{\code{init\_element()}}}
pointer to a function for doing an initialization step on each
element; \code{init\_element} may be a \nil pointer;
if \code{init\_element} is not \nil, \code{init\_element(el\_info,
quad, user\_data)} is the first statement executed on each element
\code{el\_info->el} and may initialize data which is used by the
functions \code{LALt()}, \code{Lb0()}, \code{Lb1()}, and/or
\code{c()} (calculate the Jacobian of the barycentric coordinates in
the 1st and 2nd order terms or the element volume for all order
terms, e.g.); \code{quad} is a pointer to a vector of quadratures
which is actually used for the integration of the various order
terms and \code{user\_data} may hold a pointer to user data, filled
by \code{init\_element()}, e.g.; the return value is of interest in
the case of parametric meshes and should be \true if the element is
a curved element and \false otherwise.
%%
\hyperitem{OPERATOR_INFO:LALt}{LALt, LALt.real, LALt.real\_d,
LALt.real\_dd}\idx{LALt()} is a pointer to a function for the
evaluation of $\bar A$ at quadrature nodes on the element;
\code{LALt} may be a \nil pointer, if no second order term has to be
integrated.
if \code{LALt} is not \nil, \code{LALt(el\_info, quad, iq,
user\_data)} returns a pointer to a matrix of size
${\code{N\_LAMBDA}}\times{\code{N\_LAMBDA}}$ storing the value of
$\bar A$ at \code{quad->lambda[iq]}; \code{quad} is the quadrature
for the second order term and \code{user\_data} is a pointer to user
data and \code{EL\_INFO} the current element descriptor.
The element-type of the returned matrix is determined by
\code{LALt\_type}, i.e. the actual return type is either
\code{REAL\_BB} for \code{MATENT\_REAL}, \code{REAL\_BBD} for
\code{MATENT\_REAL\_D} or \code{REAL\_BBDD} for
\code{MATENT\_REAL\_DD}. Note that one of the \code{B}'s is missing
in the structure definition above because the \code{LALt} is
supposed to return the address of the first element of the matrix.
%%
\hyperitem{OPERATOR_INFO:LALt_type}{LALt\_type} codes the
block-matrix type, see \code{MATENT\_TYPE} on page
\pageref{T:MATENT_TYPE}.
%%
\hyperitem{OPERATOR_INFO:LALt_pw_const}{LALt\_pw\_const} should be
\code{true} if $\bar A$ is piecewise constant on the mesh (constant
matrix $A$ on a non--parametric mesh, e.g.); thus integration of the
second order term can use pre--computed integrals of the basis
functions on the standard element; otherwise integration is done by
using quadrature on each element; this entry also influences the
assembly on parametric meshes with \code{strategy>0}, see
\secref{S:access_param_mesh}: \ALBERTA will assume a constant value
of $\bar A$ for non--curved elements on a parametric mesh and
optimize by only calling \code{LALt} once with \code{iq==0};
\hyperitem{OPERATOR_INFO:LALt_symmetric}{LALt\_symmetric} should be
\code{true} if $\bar A$ is a symmetric matrix; if the finite element
spaces for rows and columns are the same, only the diagonal and the
upper part of the element matrix for the second order term have to
be computed; elements of the lower part can then be set using the
symmetry; otherwise the complete element matrix has to be
calculated;
\hyperitem{OPERATOR_INFO:LALt_degree}{LALt\_degree} If
\code{LALt\_pw\_const == false}, the \code{LALt\_degree} gives a
hint about which quadrature rule should be used to integrate the
second order term. This has only an effect if
\hyperlink{OPERATOR_INFO:quad}{\code{quad[2]} == \nil}. In that
case, \ALBERTA takes \code{LALt\_degree} and the row- and column
finite element spaces into account to select a suitable quadrature
formula.
\hyperitem{OPERATOR_INFO:Lb0}{Lb0, Lb0.real, Lb0.real\_d,
Lb0.real\_dd} is a pointer to a function for the evaluation of
$\bar b^0$, at quadrature nodes on the element; \code{Lb0} may be a
\nil pointer, if this first order term has not to be integrated;
if \code{Lb0} is not \nil, \code{Lb0(el\_info, quad, iq,
user\_data)} returns a pointer to a vector of length
\code{N\_LAMBDA} storing the value of $\bar b^0$ at
\code{quad->lambda[iq]}; \code{quad} is the quadrature for the first
order term and \code{user\_data} is a pointer to user data;
\hyperitem{OPERATOR_INFO:Lb0_pw_const}{Lb0\_pw\_const} should be
\code{true} if $\bar b^0$ is piecewise constant on the mesh
(constant vector $b$ on a non--parametric mesh, e.g.); thus
integration of the first order term can use pre--computed integrals
of the basis functions on the standard element; otherwise
integration is done by using quadrature on each element; for
parametric meshes the same remarks as for \code{LALt\_symmetric}
above hold;
\hyperitem{OPERATOR_INFO:Lb1}{Lb1, Lb1.real, Lb1.real\_d,
Lb1.real\_dd} is a pointer to a function for the evaluation of
$\bar b^1$, at quadrature nodes on the element; \code{Lb1} may be a
\nil pointer, if this first order term has not to be integrated;
if \code{Lb1} is not \nil, \code{Lb1(el\_info, quad, iq,
user\_data)} returns a pointer to a vector of length
\code{N\_LAMBDA} storing the value of $\bar b^1$ at
\code{quad->lambda[iq]}; \code{quad} is the quadrature for the first
order term and \code{user\_data} is a pointer to user data;
\hyperitem{OPERATOR_INFO:Lb1_pw_const}{Lb1\_pw\_const} should be
\code{true} if $\bar b^1$ is piecewise constant on the mesh
(constant vector $b$ on a non--parametric mesh, e.g.); thus
integration of the first order term can use pre--computed integrals
of the basis functions on the standard element; otherwise
integration is done by using quadrature on each element;
\hyperitem{OPERATOR_INFO:Lb_type}{Lb\_type} see \code{LALt\_type}.
\hyperitem{OPERATOR_INFO:Lb0_Lb1_anti_symmetric}{Lb0\_Lb1\_anti\_symmetric}
should be \code{true} if the contributions of the complete first
order term to the \emph{local} element matrix are anti symmetric
(only possible if both \code{Lb0} and \code{Lb1} are not \nil, $\bar
b^0 = -\bar b^1$, e.g.); if the finite element spaces for rows and
columns are the same then only the upper part of the element matrix
for the first order term has to be computed; elements of the lower
part can then be set using the anti symmetry; otherwise the complete
element matrix has to be calculated;
\hyperitem{OPERATOR_INFO:Lb_degree} See the explanations for
\hyperlink{OPERATOR_INFO:LALt_degree}{\code{LALt\_degree}} above.
\hyperitem{OPERATOR_INFO:c}{c, c.real, c.real\_d, c.real\_dd} is a
pointer to a function for the evaluation of $\bar c$ at quadrature
nodes on the element; \code{c} may be a \nil pointer, if no zero
order term has to be integrated;
if \code{c} is not \nil, \code{c(el\_info, quad, iq, user\_data)}
returns the value of the function $\bar c$ at
\code{quad->lambda[iq]}; \code{quad} is the quadrature for the zero
order term and \code{user\_data} is a pointer to user data;
\hyperitem{OPERATOR_INFO:c_type}{c\_type} see \code{LALt\_type}.
\hyperitem{OPERATOR_INFO:c_pw_const}{c\_pw\_const} should be
\code{true} if the zero order term $\bar c$ is piecewise constant on
the mesh (constant function $c$ on a non--parametric mesh, e.g.);
thus integration of the zero order term can use pre--computed
integrals of the basis functions on the standard element; otherwise
integration is done by using quadrature on each element; the same
remarks about parametric meshes as for the other \code{*\_pw\_const}
entries hold;
\hyperitem{OPERATOR_INFO:c_degree} See the explanations for
\hyperlink{OPERATOR_INFO:LALt_degree}{\code{LALt\_degree}} above.
\hyperitem{OPERATOR_INFO:dirichlet_bndry}{dirichlet\_bndry} A bit
mask flagging those components of the boundary of the triangulation
which are subject to Dirichlet boundary conditions. See
\secref{S:boundary}.
\hyperitem{OPERATOR_INFO:user_data}{user\_data} optional pointer to
memory segment for ``user data'' used by \code{init\_element()},
\code{LALt()}, \code{Lb0()}, \code{Lb1()}, and/or \code{c()} and is
the last argument to these functions. A better name would maybe
``application data'', at any rate this is the channel were an
application program can communicate data -- like the determinant of
the transformation to the reference element -- from
\code{init\_element()} to the operator kernels \code{LALt} \&
friends, without using global variables. \emph{The data behind this
pointer must be persistent for the entire life time of the
application program. Especially, \code{user\_data} must not point
to the stack area of some sub-routine call.}
\hyperitem{OPERATOR_INFO:fill_flag}{fill\_flag} the flag for the mesh
traversal routine indicating which elements should be visited and
which information should be present in the \code{EL\_INFO} structure
for \code{init\_element()}, \code{LALt()}, \code{Lb0()},
\code{Lb1()}, and/or \code{c()} on the visited elements.
\end{descr}
\hrulefill
Sometimes it is necessary to add contributions of boundary integrals
to the system matrix. One example are ``Robin'' boundary conditions
(see \secref{S:robin_bound}), other important examples include
capillary boundary conditions in the context of free boundary
problems, or penalty terms to penalize tangential stresses. Another
context which requires integration over the boundaries of all mesh
elements is the implementation of discontinuous Galerkin (DG) methods.
To aid these tasks there is a \code{BNDRY\_OPERATOR\_INFO} structure,
which resembles in its layout the (bulk-) \code{OPERATOR\_INFO}
structure; it is defined as follows:
\ddx{BNDRY_OPERATOR_INFO@{\code{BNDRY\_OPERATOR\_INFO}}}
\idx{assemblage tools!BNDRY_OPERATOR_INFO@{\code{BNDRY\_OPERATOR\_INFO}}}
%%
\newcommand{\BNDRYOPERATORINFO}{\hyperref[T:BNDRY_OPERATOR_INFO]{\code{BNDRY\_OPERATOR\_INFO}}\xspace}
%%
\bv\begin{lstlisting}[label=T:BNDRY_OPERATOR_INFO,name=BNDRY_OPERATOR_INFO]
typedef struct bndry_operator_info BNDRY_OPERATOR_INFO;
struct bndry_operator_info
{
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
const WALL_QUAD *quad[3];
bool (*init_element)(const EL_INFO *el_info, int wall,
const WALL_QUAD *quad[3], void *ud);
union {
const REAL_B *(*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_BD *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_BDD *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} LALt;
MATENT_TYPE LALt_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
bool LALt_pw_const;
bool LALt_symmetric;
int LALt_degree;
union {
const REAL *(*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_D *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_DD *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} Lb0;
bool Lb0_pw_const;
union {
const REAL *(*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_D *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_DD *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} Lb1;
bool Lb1_pw_const;
MATENT_TYPE Lb_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
bool Lb0_Lb1_anti_symmetric;
int Lb_degree;
union {
REAL (*real)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL *(*real_d)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
const REAL_D *(*real_dd)(const EL_INFO *el_info,
const QUAD *quad, int iq, void *apd);
} c;
bool c_pw_const;
MATENT_TYPE c_type; /* MATENT_REAL, _REAL_D or _REAL_DD */
int c_degree;
/* boundary segment(s) we belong to; if
* BNDRY_FLAGS_IS_INTERIOR(bndry_type), then the operator is invoked
* on all interior faces, e.g. to implement a DG-method.
*/
BNDRY_FLAGS bndry_type;
bool discontinuous; /* assemble jumps w.r.t. the neighbour */
bool tangential; /* use tangential gradients */
FLAGS fill_flag;
void *user_data;
};
\end{lstlisting}\ev
Description: Because the general layout is the same as for the
bulk-\code{OPERATOR\_INFO} structure explained above we document only
the differences here. There are three additional components in the
structure:
\begin{descr}
\hyperitem{BNDRY_OPERATOR_INFO:bndry_type}{bndry\_type} This is
bit-mask and determines on which part of the boundary the operator
should be invoked. See also \secref{S:boundary}. If
\code{BNDRY\_FLAGS\_IS\_INTERIOR(bndry\_type)} evaluates to
\code{true} (i.e. if bit $0$ is set in \code{bndry\_type}, then the
operator is invoked on all walls of the triangulation, for instance
to implement a DG-method.
%%
\hyperitem{BNDRY_OPERATOR_INFO:discontinuous}{discontinuous} This is a
boolean flag. If set to \code{true}, then the operator is treated as
a DG-operator. This means, that it is invoked once for each wall of
each element with the set of local basis functions on the neighbor
element being used to define the column space (i.e. as
ansatz-functions) and the set of local basis function on the current
element defining the row-space (i.e. the test-functions).
One instance of \code{BNDRY\_OPERATOR\_INFO} can only be used to
either implement a jump term or a term living on a single element.
To have both, two instances have to be defined. To this aim
\code{fill\_matrix\_info\_ext()} accepts multiple
\code{BNDRY\_OPERATOR\_INFO} structures. The program-code
\code{src/Common/ellipt-dg.c} in the \code{alberta-demo}-package
implements a very simplistic DG-method as example: jumps over
element boundaries are penalized by zero-order term.
%%
\hyperitem{BNDRY_OPERATOR_INFO:tangential}{tangential} This is a
boolean flag. If set to \code{true}, then only the tangential
component of the gradients of the basis functions is used.
\end{descr}
\hrulefill
Information stored in \code{OPERATOR\_INFO} and
\code{BNDRY\_OPERATOR\_INFO} structures is used by the following
functions which return a pointer to a filled \code{EL\_MATRIX\_INFO}
structure; this structure can be used as an argument to the
\code{update\_matrix()} function which will then assemble the discrete
matrix corresponding to the operators defined by the
\code{OPERATOR\_INFO} and \code{BNDRY\_OPERATOR\_INFO} structures:
%%
\fdx{fill_matrix_info()@{\code{fill\_matrix\_info()}}}
\idx{assemblage tools!fill_matrix_info()@{\code{fill\_matrix\_info()}}}
\fdx{fill_matrix_info_ext()@{\code{fill\_matrix\_info\_ext()}}}
\idx{assemblage tools!fill_matrix_info_)ext()@{\code{fill\_matrix\_info\_ext()}}}
\bv\begin{lstlisting}
const EL_MATRIX_INFO *
fill_matrix_info(const OPERATOR_INFO *operator_info,
EL_MATRIX_INFO *matrix_info);
const EL_MATRIX_INFO *
fill_matrix_info_ext(EL_MATRIX_INFO *matrix_info,
const OPERATOR_INFO *operator_info,
const BNDRY_OPERATOR_INFO *bop_info,
... /* more bndry-ops */);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{fill\_matrix\_info(op\_info, mat\_info)}
\kitem{fill\_matrix\_info\_ext(op\_info, mat\_info, bop\_info, \dots)}
%%
~\hfill
Return a pointer to a filled \ELMATRIXINFO structure for the
assemblage of the system matrix for the operator defined in
\code{op\_info} and \code{bop\_info}. The difference between the two
functions is that the \code{\dots\_ext()}-variant (``extended'')
allows for additional arguments describing components of the
differential operator which have to be assembled by boundary
integrals. Multiple such boundary-operators can be passed to
\code{fill\_matrix\_info\_ext()}, the final boundary operator must
be followed by a \nil pointer. So
%%
\bv\begin{lstlisting}
fill_matrix_info_ext(mat_info, operator_info, NULL);
\end{lstlisting}\ev
is equivalent to
\bv\begin{lstlisting}
fill_matrix_info(operator_info, mat_info);
\end{lstlisting}\ev
There is the artificial restriction that at most 255 different
\BNDRYOPERATORINFO structures may be passed.
If the argument \code{mat\_info} is a \nil pointer, a new structure
\code{mat\_info} is allocated and filled; otherwise the structure
\code{mat\_info} is filled; all members are newly assigned.
If the underlying finite element spaces form a direct sum, then this
is taken care of automatically, and the return
\ELMATRIXINFO structure will assemble block-matrices,
where each block corresponds to the pairing of one component of the
direct sum forming the ansatz-space and one component of the direct
sum forming the space of test functions. See also
\secref{S:chain_impl} and \secref{S:bfcts_chains}
The remaining part of this section is rather a description what
happens ``back-stage'', when calling the
\code{fill\_matrix\_info[\_ext]()} functions. The components of
\ELMATRIXINFO are initialized like follows:
\begin{descr}
\kitem{row\_fe\_space, col\_fe\_space}
\code{op\_info->row\_fe\_space} and
\code{op\_info->col\_fe\_space} are pointers to the finite element
spaces (and by this to the basis functions and DOFs) connected to
the row DOFs and the column DOFs of the matrix to be assembled; if
both pointers are \nil pointers, an error message is given, and
the program stops; if one of these pointers is \nil, rows and
column DOFs are connected with the same finite element space (i.e.
\code{op\_info->row\_fe\_space = op\_info->col\_fe\_space}, or
\code{op\_info->col\_fe\_space = op\_info->row\_fe\_space} is
used).
\kitem{krn\_blk\_type} Based on the matrix block-type of the zero,
first and second order kernels
\hyperlink{OPERATOR_INFO:LALt_type}{\code{oinfo->c\_type}},
\hyperlink{OPERATOR_INFO:LALt_type}{\code{oinfo->Lb\_type}} and
\hyperlink{OPERATOR_INFO:LALt_type}{\code{oinfo->LALt\_type}} and
on the dimension of the range of the row- and column finite
element spaces \code{krn\_blk\_type} is set to either
\code{MATENT\_REAL}, \code{MATENT\_REAL\_D} or
\code{MATENT\_REAL\_DD} to reflect the block-matrix structure of
the element matrix.
\kitem{dirichlet\_bndry} is just a copy of
\hyperlink{OPERATOR_INFO:dirichlet_bndry}{\code{oinfo->dirichlet\_bndry}},
see also section \code{S:boundary}.
\kitem{factor} is initialized to \code{1.0}. Note that the structure
returned carries the \code{const} qualifier; the clean way to
obtain \ELMATRIXINFO structures with a modifiable \code{factor}
component is to pass storage to \code{fill\_matrix\_info[\_ext]()}
via the \code{matrix\_info} parameter.
\kitem{el\_matrix\_fct} The most important member in the structure,
namely \code{mat\_info->el\_matrix\_fct}, is adjusted to some
general routine for the integration of the element matrix for any
set of local basis functions; \code{fill\_matrix\_info()} tries to
use the fastest available function for the element integration for
the operator defined in
\hyperref[T:OPERATOR_INFO]{\code{op\_info}}, depending on
\hyperlink{OPERATOR_INFO:LALt_pw_const}{\code{op\_info->LALt\_pw\_const}}
and similar hints;
Denote by \code{row\_degree} and \code{col\_degree} the degree of
the basis functions connected to the rows and columns. Internally,
a three-element vector ``\code{quad}'' of quadratures rules is
used for the element integration, if not specified by
\code{op\_info->quad}. The quadratures are chosen according to the
following rules: pre-computed integrals of basis functions should
be evaluated exactly, and all terms calculated by quadrature on
the elements should use the same quadrature formula (this is more
efficient than to use different quadratures). To be more specific:
\begin{itemize}
\item If the 2nd order term has to be integrated and
\code{op\_info->quad[2]} is not \nil, \code{quad[2] =
op\_info->quad[2]} is used, otherwise \code{quad[2]} is a
quadrature which is exact of degree
\code{row\_degree+col\_degree-2+oinfo->LALt\_degree}. If the 2nd
order term is not integrated then \code{quad[2]} is set to \nil.
\item If the 1st order term has to be integrated and
\code{op\_info->quad[1]} is not \nil, \code{quad[1] =
op\_info->quad[1]} is used; otherwise: if
\code{op\_info->Lb\_pw\_const} is zero and \code{quad[2]} is not
\nil, \code{quad[1] = quad[2]} is used, otherwise \code{quad[1]}
is a quadrature which is exact of degree
\code{row\_degree+col\_degree-1+oinfo->Lb\_degree}. If the 1st
order term is not integrated then \code{quad[1]} is set to \nil.
\item If the zero order term has to be integrated and
\code{op\_info->quad[0]} is not \nil, \code{quad[0] =
op\_info->quad[0]} is used; otherwise: if
\code{op\_info->c\_pw\_const} is zero and \code{quad[2]} is not
\nil, \code{quad[0] = quad[2]} is used, if \code{quad[2]} is
\nil and \code{quad[1]} is not \nil, \code{quad[0] = quad[1]} is
used, or if both quadratures are \nil, \code{quad[0]} is a
quadrature which is exact of degree
\code{row\_degree+col\_degree+oinfo->c\_degree}. If the zero
order term is not integrated then \code{quad[0]} is set to \nil.
\end{itemize}
\noindent
\code{el\_matrix\_fct()} roughly works as follows:
\begin{itemize}
\item If \code{op\_info->init\_element} is not \nil then a call of
\code{op\_info->init\_element(el\_info, quad,
op\_info->user\_data)} is the first statement of
\code{mat\_info->el\_matrix\_fct()} on each element;
\code{el\_info} is a pointer to the \code{EL\_INFO} structure of
the actual element, \code{quad} is the quadrature vector
described above (now giving information about the actually used
quadratures), and the last argument is a pointer to the
application-data pointer
\hyperlink{OPERATOR_INFO:user_data}{\code{oinfo->user\_data}}.
\item If \code{op\_info->LALt} is not \nil, the 2nd order term is
integrated using the quadrature \code{quad[2]}; if
\code{op\_info->LALt\_pw\_const} is not zero, the integrals of
the product of gradients of the basis functions on the standard
simplex are initialized (using the quadrature \code{quad[2]} for
the integration) and used for the computation on the elements;
\code{op\_info->LALt()} is only called once with arguments
\code{op\_info->LALt(el\_info, quad[2], 0,
op\_info->user\_data)}, i.e. the matrix of the 2nd order term
is evaluated only at the first quadrature node; otherwise the
integrals are approximated by quadrature and
\code{op\_info->LALt()} is called for each quadrature node of
\code{quad[2]}; if \code{op\_info->LALt\_symmetric} is not zero,
the symmetry of the element matrix is used, if the finite
element spaces are the same and this term is not integrated by
the same quadrature as the first order term.
\item If \code{op\_info->Lb0} is not \nil, this 1st order term is
integrated using the quadrature \code{quad[1]}; if
\code{op\_info->Lb0\_pw\_const} is not zero, the integrals of
the product of basis functions with gradients of basis functions
on the standard simplex are initialized (using the quadrature
\code{quad[1]} for the integration) and used for the computation
on the elements; \code{op\_info->Lb0()} is only called once with
arguments \code{op\_info->Lb0(el\_info, quad[1], 0,
op\_info->user\_data)}, i.e. the vector of this 1st order term
is evaluated only at the first quadrature node; otherwise the
integrals are approximated by quadrature and
\code{op\_info->Lb0()} is called for each quadrature node of
\code{quad[1]};
\item If \code{op\_info->Lb1} is not \nil, this 1st order term is
integrated also using the quadrature \code{quad[1]}; if
\code{op\_info->Lb1\_pw\_const} is not zero, the integrals of
the product of gradients of basis functions with basis functions
on the standard simplex are initialized (using the quadrature
\code{quad[1]} for the integration) and used for the computation
on the elements; \code{op\_info->Lb1()} is only called once with
arguments \code{op\_info->Lb1(el\_info, quad[1], 0,
op\_info->user\_data)}, i.e. the vector of this 1st order term
is evaluated only at the first quadrature node; otherwise the
integrals are approximated by quadrature and
\code{op\_info->Lb1()} is called for each quadrature node of
\code{quad[1]}.
\item If both function pointers \code{op\_info->Lb0} and
\code{op\_info->Lb1} are not \nil, the finite element spaces for
rows and columns are the same and
\code{Lb0\_Lb1\_anti\_symmetric} is non--zero, then the
contributions of the 1st order term are computed using this anti
symmetry property.
\item If \code{op\_info->c} is not \nil, the zero order term is
integrated using the quadrature \code{quad[0]}; if
\code{op\_info->c\_pw\_const} is not zero, the integrals of the
product of basis functions on the standard simplex are
initialized (using the quadrature \code{quad[0]} for the
integration) and used for the computation on the elements;
\code{op\_info->c()} is only called once with arguments
\code{op\_info->c(el\_info, quad[0], 0, op\_info->user\_data)},
i.e. the zero order term is evaluated only at the first
quadrature node; otherwise the integrals are approximated by
quadrature and \code{op\_info->c()} is called for each
quadrature node of \code{quad[0]}.
\item The functions \code{LALt()}, \code{Lb0()}, \code{Lb1()}, and
\code{c()}, can be called in an arbitrary order on the elements,
if not \nil (this depends on the type of integration, using
pre--computed values, using same/different quadrature for the
second, first, and/or zero order term, e.g.) but commonly used
data for these functions is always initialized first by
\code{op\_info->init\_element()}, if this function pointer is
not \nil.
\item Using all information about the operator and quadrature, an
``optimal'' routine for the assemblage is chosen. Information
for this routine is stored at \code{mat\_info} which includes
the pointer to user data \code{op\_info->user\_data} (the last
argument to \code{init\_element()}, \code{LALt()}, \code{Lb0()},
\code{Lb1()}, and/or \code{c()}).
\end{itemize}
\kitem{neigh\_el\_mat\_fcts[]} See the documentation of the
\hyperlink{BNDRY_OPERATOR_INFO:discontinuous}{discontinuous}
component of the \BNDRYOPERATORINFO structure.
\kitem{fill\_flag} Finally, the flag for the mesh traversal used by
the function \code{update\_matrix()} is set in
\code{mat\_info->fill\_flag} to \code{op\_info->fill\_flag}; it
indicates which elements should be visited and which information
should be present in the \code{EL\_INFO} structure for
\code{init\_element()}, \code{LALt()}, \code{Lb0/1()}, and/or
\code{c()} on the visited elements.
If the boundary bit-mask \code{op\_info->dirichlet\_bndry} has
bits set (see also \secref{S:boundary}), then the
\code{FILL\_BOUND} flag is added to \code{mat\_info->fill\_flag}.
\end{descr}
\end{descr}
\begin{example}%
[Implementation of the differential operator {\boldmath$-\Delta$}]%
\label{Ex:LALt}
The following source fragment gives an example of the implementation
for the operator $-\Delta$ and the access to a \code{MATRIX\_INFO}
structure for the automatic assemblage of the system matrix for
this problem for any set of used basis functions.
The source fragment shown here is part of the implementation for a
Poisson equation, which is the first model problem described in detail
in \secref{S:poisson-impl}. However, we will generalize the code given in
\secref{S:poisson-impl} to include the case of parametric meshes.
The assemblage of the discrete system including the load vector and
Dirichlet boundary values is spelled out in \secref{S:ellipt_build}.
For the Poisson equation we only have to implement a constant second
order term. For passing information about the gradient of the
barycentric coordinates (at all quadrature points) from
\code{init\_element()} to the function
\code{LALt} we define the following structure
%
\bv\begin{lstlisting}
struct app_data
{
REAL_BD *Lambda;
REAL *det;
};
\end{lstlisting}\ev
%
The function \code{init\_element()} calculates the Jacobians $\Lambda$
and determinants \code{det} of the barycentric coordinates and stores these
in the above defined
structure. In the case of a parametric mesh we fill \code{Lambda} with
the Jacobians and \code{det} with the determinants at all quadrature
points of \code{quad[2]}. For a non--parametric mesh we only fill the
zeroth entry of \code{Lambda} and \code{det}. If
\code{init\_element()} returns
\false, then \code{LALt()} is only called once for the current simplex with
\code{iq==0}, otherwise it is called for each quadrature point in
\code{quad[2]}. Note that we need a higher order quadrature than usual
to calculate the integral exactly for a curved parametric element.
%
\idx{init_element()@{\code{init\_element()}}!Example}
\bv\begin{lstlisting}
static bool init_element(const EL_INFO *el_info, const QUAD *quad[3], void *ud)
{
struct app_data *data = (struct app_data *)ud;
PARAMETRIC *parametric = el_info->mesh->parametric;
if (parametric && parametric->init_element(el_info, parametric)) {
parametric->grd_lambda(el_info, quad[2], 0, NULL,
data->Lambda, NULL, data->det);
return true;
} else {
data->det[0] = el_grd_lambda(el_info, data->Lambda[0]);
return false;
}
}
\end{lstlisting}\ev
%%
The function \code{LALt} now has to calculate the scaled matrix
product $|\det D F_S| \Lambda \Lambda^t$. Note that \code{LALt()} is
invoked only for the first quadrature point (\code{iq == 0}), if the
\code{OPERATOR\_INFO}-structure claims that the second-order kernel is
piece-wise constant and \code{parametric->init\_element()} returns
\code{false}, so using the index \code{iq} into the fields \code{det}
and \code{Lambda} does not access invalid data, and the assembling
linear systems remains relatively efficient, even in the context of
iso-parametric boundary approximation.
%
\idx{LALt()!parametric example}
\bv\begin{lstlisting}
const REAL_B *LALt(const EL_INFO *el_info, const QUAD *quad,
int iq, void *ud)
{
struct app_data *data = (struct app_data *)ud;
int i, j;
static REAL_BB LALt; /* mind the "static" keyword! */
for (i = 0; i < N_VERTICES(MESH_DIM); i++) {
LALt[i][i] = SCP_DOW(data->Lambda[iq][i], data->Lambda[iq][i]);
LALt[i][i] *= data->det[iq];
for (j = i+1; j < N_VERTICES(MESH_DIM); j++) {
LALt[i][j] = SCP_DOW(data->Lambda[iq][i], data->Lambda[iq][j]);
LALt[i][j] *= data->det[iq];
LALt[j][i] = LALt[i][j];
}
}
return (const REAL_B *)LALt;
}
\end{lstlisting}\ev
Before assembling the system matrix for the operator $-\Delta$, we
first have to initialize an \code{EL\_MATRIX\_INFO} structure. A
pointer to this \code{EL\_MATRIX\_INFO} structure is the second
argument to the function \code{update\_matrix()}, which finally
assembles the system matrix (compare~\secref{S:matrix_assemblage}).
For the initialization we have to fill an \code{OPERATOR\_INFO}
structure collecting all information about the differential operator.
For $-\Delta$ we only need pointers to the functions
\code{init\_element()} and \code{LALt()} described above. The
differential operator is constant and symmetric, and information about
vertex coordinates is needed for computing the Jacobian of the
barycentric coordinates. Information about Dirichlet boundary values
should be assembled into the system matrix, hence the entry
\code{operator\_info->use\_get\_bound} is set \code{true}.
The functions \code{init\_element()} and \code{LALt()} do not
depend on the finite element space which is used. This functions
can be used for any conforming finite element discretization for the
Poisson equation; all information needed about the actually used
finite elements is a pointer to this finite element space; we assume
that this pointer is stored in the variable \code{fe\_space}.
%
\bv\begin{lstlisting}
const EL_MATRIX_INFO *matrix_info = NULL;
static struct app_data app_data; /* Must be static! */
OPERATOR_INFO o_info = { NULL, };
if(mesh->parametric)
quad = get_quadrature(2, 2*fe_space->bas_fcts->degree + 2);
else
quad = get_quadrature(2, 2*fe_space->bas_fcts->degree-2);
app_data.Lambda = MEM_ALLOC(quad->n_points, REAL_BD);
app_data.det = MEM_ALLOC(quad->n_points, REAL);
o_info.quad[2] = quad;
o_info.row_fe_space = o_info.col_fe_space = fe_space;
o_info.init_element = init_element;
o_info.LALt.real = LALt;
o_info.LALt_pw_const = true; /* pw const. assemblage is faster */
o_info.LALt_symmetric = true; /* symmetric assemblage is faster */
o_info.user_data = &app_data; /* application data */
/* Use, e.g., Dirichlet boundary conditions. */
BNDRY_FLAGS_CPY(o_info.dirichlet_bndry, dirichlet_mask);
o_info.fill_flag = CALL_LEAF_EL|FILL_COORDS;
matrix_info = fill_matrix_info(&o_info, NULL);
\end{lstlisting}\ev
%
Full information about the operator is now available via the
\code{matrix\_info} structure and the system matrix \code{matrix} can then
easily be assembled for the selected finite element space by
\bv\begin{lstlisting}
clear_dof_matrix(matrix);
update_matrix(matrix, matrix_info, NoTranspose);
\end{lstlisting}\ev
\end{example}
\subsection{Matrix assemblage for coupled second order problems}%
\label{S:matrix_assemblage_coupled}%
The corresponding mechanism for coupled vector valued problems is very
similar, except for the additional indices necessary to describe
coupling. We start by stating the form of the element matrix with the
generalized first order term and different finite element spaces (see
also \ref{book:S:Dis2ndorder}):
\begin{align*}
L_{S,\mu\nu}^{ij} &:= \int_{\Shat}\nablal
\bar\psi^{i}(\lambda(\xhat)) \cdot \bar A^{\mu\nu}(\lambda(\xhat))\,
\nablal \pbar^{j}(\lambda(\xhat))\,d\xhat \\
&+ \int_{\Shat} \bar\psi^{i}(\lambda(\xhat))\; \bar
b^{0,\mu\nu}(\lambda(\xhat)) \cdot \nablal \pbar^{j}(\lambda(\xhat))
\,d\xhat \\
&+ \int_{\Shat}^{} \nablal \bar\psi^{i}(\lambda(\xhat)) \cdot\; \bar
b^{1,\mu\nu}(\lambda(\xhat))\, \pbar^{j}(\lambda(\xhat)) \,d\xhat\\
&+ \int_{\Shat} \bar c^{\mu\nu}(\lambda(\xhat))\,
\bar\psi^{i}(\lambda(\xhat)) \, \pbar^{j}(\lambda(\xhat))\,d\xhat,
\end{align*}
with
\begin{align*}
\bar A^{\mu\nu}(\lambda) &:= \left(\bar
a_{kl}^{\mu\nu}(\lambda)\right)_{k,l = 0,\ldots,d} := |\det
DF_S(\xhat(\lambda))| \, \Lambda(x(\lambda)) \,
A^{\mu\nu}(x(\lambda)) \, \Lambda^t(x(\lambda)),\\
\bar b^{0,\mu\nu}(\lambda) & := \left(\bar
b_{l}^{0,\mu\nu}(\lambda)\right)_{l = 0,\ldots,d} := |\det
DF_S(\xhat(\lambda))| \, \Lambda(x(\lambda)) \, b^{0,\mu\nu}(x(\lambda)),\\
\bar b^{1,\mu\nu}(\lambda) & := \left(\bar
b_{l}^{1,\mu\nu}(\lambda)\right)_{l = 0,\ldots,d} := |\det
DF_S(\xhat(\lambda))| \, \Lambda(x(\lambda)) \, b^{1,\mu\nu}(x(\lambda)),
\quad\text{and}\\
\bar c^{\mu\nu}(\lambda) & := |\det
DF_S(\xhat(\lambda))| \, c^{\mu\nu}(x(\lambda))
\end{align*}
for $\mu,\nu=1,\dots,n$, $n=\code{DIM\_OF\_WORLD}$.
To store information about the coupled operator and finite element
spaces, we use the same \verb|OPERATOR_INFO| (see page
\pageref{T:OPERATOR_INFO}) structure as for the scalar problems, we
only have to adjust the respective \verb|MATENT_TYPE| structure
components to the correct block-matrix type. Also, the same
\verb|fill_matrix_info()| and \verb|add_element_matrix()| routines are
used for scalar and vector valued problems.
\subsection{Data structures for storing pre-computed integrals of
basis functions}\label{S:ass_info}%
\label{S:Q11_PSI_PHI}
\label{S:Q10_PSI_PHI}
\label{S:Q01_PSI_PHI}
\label{S:Q00_PSI_PHI}
Assume a non--parametric triangulation and constant coefficient
functions $A$, $b$, and $c$. Since the Jacobian of the barycentric
coordinates is constant on $S$, the functions $\bar A_S$, $\bar b^0_S$,
$\bar b^1_S$, and $\bar c_S$ are constant on $S$ also. Now, looking at the
element matrix approximated by some quadrature $\hat Q$, we observe
\begin{equation}\label{e:psiphiformula}
\begin{split}
\hat Q\Big(\sum_{k,l = 0}^d (\bar a_{S,kl} \bar\psi^i_{,\lambda_k} \,
\pbar^j_{,\lambda_l})\Big)
&=
\sum_{k,l = 0}^d \bar a_{S,kl}
\hat Q\Big(\bar\psi^i_{,\lambda_k} \, \pbar^j_{,\lambda_l}\Big),
\\
\hat Q\Big(\sum_{l = 0}^d (
\bar b^0_{S,l} \, \bar\psi^i \, \pbar^j_{,\lambda_l})\Big)
&=
\sum_{l = 0}^d \bar b^0_{S,l} \,
\hat Q\Big(\bar\psi^i \, \pbar^j_{,\lambda_l}\Big),
\\
\hat Q\Big(\sum_{k = 0}^d (
\bar b^1_{S,k} \, \bar\psi^i_{,\lambda_k} \, \pbar^j)\Big)
&=
\sum_{k = 0}^d \bar b^1_{S,k} \,
\hat Q\Big(\bar\psi^i_{,\lambda_k} \, \pbar^j)\Big),
\qquad\mbox{and}\\
\hat Q\Big(
(\bar c_S \, \bar\psi^i \,\pbar^j)\Big)
&=
\bar c_S\, \hat Q\Big(\bar\psi^i \,\pbar^j\Big).
\end{split}
\end{equation}
The values of the quadrature applied to the basis functions only
depend on the basis functions and the standard element but not on the
actual simplex $S$. All information about $S$ is given by $\bar A_S$,
$\bar b^0_S$, $\bar b^1_S$, and $\bar c_S$. Thus, these quadratures
have only to be calculated once, and can then be used on each element
during the assembling.
For this we have to store for the basis functions
$\{\bar\psi_i\}_{i=1,\dots,n}$ and $\{\bar\vphi_j\}_{j=1,\dots,m}$
the values
\begin{alignat*}{2}
\hat Q^{11}_{ij,kl} &:=
\hat Q\Big(\bar\psi^i_{,\lambda_k} \, \pbar^j_{,\lambda_l}\Big)
&\qquad &\mbox{for } 1\leq i \leq n,\; 1\leq j\leq m,\;
0 \leq k,l \leq d,
\intertext{if $A \neq 0$,}
\hat Q^{01}_{ij,l} &:=
\hat Q\Big(\bar\psi^i \, \pbar^j_{,\lambda_l}\Big)
&&\mbox{for } 1\leq i \leq n,\; 1\leq j\leq m,\;
0 \leq l \leq d,
\intertext{if $b^0 \neq 0$,}
\hat Q^{10}_{ij,k} &:=
\hat Q\Big(\bar\psi^i_{,\lambda_k} \, \pbar^j\Big)
&&\mbox{for } 1\leq i \leq n,\; 1\leq j\leq m,\;
0 \leq k \leq d
\intertext{if $b^1 \neq 0$, and}
\hat Q^{00}_{ij} &:=
\hat Q\Big(\bar\psi^i \,\pbar^j\Big)
&&\mbox{for } 1\leq i \leq n,\; 1\leq j\leq m,
\end{alignat*}
if $c \neq 0$. Many of these values are zero, especially for the
first and second order terms (if $\bar\psi^i$ and $\pbar^j$ are the
linear nodal basis functions $\hat Q^{11}_{ij,kl} = \delta_{ij}\delta_{kl}$).
Thus, we use special data structures
for a sparse storage of the non zero values for these terms.
These are described now.
In order to ``define'' zero entries we use
\bv\begin{lstlisting}
static const REAL TOO_SMALL = 10.0 * REAL_EPSILON;
\end{lstlisting}\ev
and all computed values \code{val} with
$|\code{val}|\leq\code{TOO\_SMALL}$ are treated as zeros. As we are
considering here integrals over the standard simplex, non-zero
integrals are usually of order one, such that the above constant is of
the order of roundoff errors for double precision.
The following data structure is used for storing values $\hat Q^{11}$
for two sets of basis functions integrated with a given quadrature.
Note that in the context of ``chained'' basis-functions (see
\secref{S:bfcts_chains} the cache-structure nevertheless hold data for
only a single component of such a multi-component chain.
\ddx{Q11_PSI_PHI@{\code{Q11\_PSI\_PHI}}}%
\idx{assemblage tools!Q11_PSI_PHI@{\code{Q11\_PSI\_PHI}}}%
\ddx{Q11_PSI_PHI_CACHE@{\code{Q11\_PSI\_PHI\_CACHE}}}%
\idx{assemblage tools!Q11_PSI_PHI_CHACHE@{\code{Q11\_PSI\_PHI\_CACHE}}}%
\bv\begin{lstlisting}[label=T:Q11_PSI_PHI]
typedef struct q11_psi_phi Q11_PSI_PHI;
struct q11_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const Q11_PSI_PHI_CACHE *cache;
INIT_ELEMENT_DECL;
};
typedef struct q11_psi_phi_cache
{
int n_psi;
int n_phi;
const int *const*n_entries;
const REAL *const*const*values;
const int *const*const*k;
const int *const*const*l;
} Q11_PSI_PHI_CACHE;
\end{lstlisting}\ev
Description:
\begin{descr}
%%
\kitem{struct q11\_psi\_phi}:\hfill
\begin{descr}
%%
\kitem{psi} Pointer to the first set of basis functions.
%%
\kitem{phi} Pointer to the second set of basis functions.
%%
\kitem{quad} Pointer to the quadrature which is used for the integration.
%%
\kitem{cache} Pointer to the actual data in the cache.
%%
\kitem{INIT\_ELEMENT\_DECL} Optional per-element initializer. This
entry is initialized when calling \code{get\_q11\_psi\_phi()} if
either the underlying basis functions or the underlying quadrature
rule has per-element initializers. See \secref{S:init_element}.
%%
\end{descr}
\kitem{struct q11\_psi\_phi\_cache}:\hfill\
\begin{descr}
\kitem{n\_psi} Dimension of the local space of test-functions (row
space), equals \code{Q11\_PSI\_PHI.psi->n\_bas\_fcts}.
%%
\kitem{n\_phi} Dimension of the local space of ansatz-functions
(column space), equals \code{Q11\_PSI\_PHI.phi->n\_bas\_fcts}.
%%
\kitem{n\_entries} matrix of size $\code{n\_psi}\times\code{n\_phi}$
storing the count of non zero integrals;
\code{n\_entries[i][j]} is the count of non zero values of $\hat
Q^{11}_{\code{ij,kl}}$ ($0\leq\code{k,l}\leq d$) for the pair
$(\code{psi[i]},\code{phi[j]})$,
$\code{0}\leq\code{i}<\code{n\_psi}$,
$\code{0}\leq\code{j}<\code{n\_phi}$.
%
\kitem{values} tensor storing the non zero integrals;
\code{values[i][j]} is a vector of length \code{n\_entries[i][j]}
storing the non zero values for the pair
$(\code{psi[i]},\code{phi[j]})$.
%%
\kitem{k, l} tensor storing the indices $k$, $l$ of the non zero
integrals;
\code{k[i][j]} and \code{l[i][j]} are vectors of length
\code{n\_entries[i][j]} storing at \code{k[i][j][r]} and
\code{l[i][j][r]} the indices \code{k} and \code{l} of the value
stored at \code{values[i][j][r]}, i.e.
\end{descr}
\end{descr}
The following formulas summarize the relationship between the cache
data-structure and the formulas \eqref{e:psiphiformula} at the
beginning of this section:
\[
\code{values[i][j][r]} =
\hat Q^{11}_{\code{ij},\code{k[i][j][r],l[i][j][r]}}
= \hat Q\Big(\bar\psi^{\code{i}}_{,\lambda_{\code{k[i][j][r]}}} \,
\pbar^{\code{j}}_{,\lambda_{\code{l[i][j][r]}}}\Big),
\]
for $\code{0}\leq\code{r}<\code{n\_entries[i][j]}$.
Using these pre--computed values we have for all elements $S$
\[
\sum_{k,l = 0}^d \bar a_{S,kl}
\hat Q\Big(\bar\psi^i_{,\lambda_k} \, \pbar^j_{,\lambda_l}\Big)
=
\sum_{\code{r}=\code{0}}^{\code{n\_entries[i][j]-1}}
\bar a_{S,\code{k[i][j][r],l[i][j][r]}}\,\code{*}
{\code{values[i][j][r]}}.
\]
The following function initializes a \code{Q11\_PSI\_PHI} structure:
\fdx{get_q11_psi_phi()@{\code{get\_q11\_psi\_phi())}}}%
\idx{assemblage tools!get_q11_psi_phi()@{\code{get\_q11\_psi\_phi()}}}%
\bv\begin{lstlisting}
const Q11_PSI_PHI *get_q11_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_q11\_psi\_phi(psi, phi, quad)} returns a pointer to a filled
\code{Q11\_PSI\_PHI} structure.
\code{psi} is a pointer to the first set of basis functions,
\code{phi} is a pointer to the second set of basis functions;
if both are \nil pointers, nothing is done and the return value
is \nil; if one of the pointers is a \nil pointer, the structure
is initialized using the same set of basis functions for the
first and second set, i.e. \code{phi = psi} or \code{psi = phi}
is used.
\code{quad} is a pointer to a quadrature for the approximation
of the integrals; if \code{quad} is \nil, then a quadrature which
is exact of degree \code{psi->degree+phi->degree-2} is used.
All used \code{Q11\_PSI\_PHI} structures are stored in a linked
list and are identified uniquely by the members \code{psi},
\code{phi}, and \code{quad}, and for such a combination only
one \code{Q11\_PSI\_PHI} structure is created during runtime;
First, \code{get\_q11\_psi\_phi()}
looks for a matching structure in the linked list; if such a
structure is found a pointer to this structure is returned;
the values are not computed a second time.
Otherwise a new structure is generated, linked to the list, and
the values are computed using the quadrature \code{quad}; all
values \code{val} with $|\code{val}|\leq\code{TOO\_SMALL}$ are
treated as zeros.
\end{descr}
\begin{example}
The following example shows how to use these pre--computed values
for the integration of the 2nd order term
\[
\int_{\Shat}
\nablal \bar\psi^{i}(\lambda(\xhat)) \cdot \bar A(\lambda(\xhat))\,
\nablal \pbar^{j}(\lambda(\xhat))\,d\xhat
\]
for all $i,j$. We only show the body of a function for the integration
and assume that \code{LALt\_fct} returns a matrix storing $\bar A$
(compare the member \code{LALt} in the \code{OPERATOR\_INFO} structure):
\bv\begin{lstlisting}
static Q11_PSI_PHI_CACHE *q11_psi_phi;
if (!q11_psi_phi) {
q11_psi_phi = get_q11_psi_phi(psi, phi, quad[2])->cache;
}
LALt = LALt_fct(el_info, quad, 0, user_data);
n_entries = q11_psi_phi->n_entries;
for (i = 0; i < q11_psi_phi->n_psi; i++)
{
for (j = 0; j < q11_psi_phi->n_phi; j++)
{
k = q11_psi_phi->k[i][j];
l = q11_psi_phi->l[i][j];
values = q11_psi_phi->values[i][j];
for (val = m = 0; m < n_entries[i][j]; m++)
val += values[m]*LALt[k[m]][l[m]];
mat[i][j] += val;
}
}
\end{lstlisting}\ev
\end{example}
The values $\hat Q^{01}$ for the set of basis functions \code{psi}
and \code{phi} are stored in
\ddx{Q01_PSI_PHI@{\code{Q01\_PSI\_PHI}}}%
\idx{assemblage tools!Q01_PSI_PHI@{\code{Q01\_PSI\_PHI}}}%
\ddx{Q01_PSI_PHI_CACHE@{\code{Q01\_PSI\_PHI\_CACHE}}}%
\idx{assemblage tools!Q01_PSI_PHI_CACHE@{\code{Q01\_PSI\_PHI\_CACHE}}}%
\bv\begin{lstlisting}[label=T:Q01_PSI_PHI]
typedef struct q01_psi_phi Q01_PSI_PHI;
typedef struct q01_psi_phi_cache
{
int n_psi;
int n_phi;
const int *const*n_entries;
const REAL *const*const*values;
const int *const*const*l;
} Q01_PSI_PHI_CACHE;
struct q01_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const Q01_PSI_PHI_CACHE *cache;
INIT_ELEMENT_DECL;
};
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{struct q01\_psi\_phi}:\hfill
\begin{descr}
%%
\kitem{psi} pointer to the first set of basis functions.
%%
\kitem{phi} pointer to the second set of basis functions.
%%
\kitem{quad} pointer to the quadrature which is used for the integration.
%%
\kitem{cache} Pointer to the actual data in the cache.
%%
\kitem{INIT\_ELEMENT\_DECL} Optional per-element initializer. This
entry is initialized when calling \code{get\_q11\_psi\_phi()} if
either the underlying basis functions or the underlying quadrature
rule has per-element initializers. See \secref{S:init_element}.
%%
\end{descr}
\kitem{struct q01\_psi\_phi\_cache}:\hfill
\begin{descr}
\kitem{n\_psi} Dimension of the local space of test-functions (row
space), equals \code{Q11\_PSI\_PHI.psi->n\_bas\_fcts}.
%%
\kitem{n\_phi} Dimension of the local space of ansatz-functions
(column space), equals \code{Q11\_PSI\_PHI.phi->n\_bas\_fcts}.
%%
\kitem{n\_entries} matrix of size
$\code{psi->n\_bas\_fcts}\times\code{phi->n\_bas\_fcts}$
storing the count of non zero integrals;
\code{n\_entries[i][j]} is the count of non zero values
of $\hat Q^{01}_{\code{ij,l}}$ ($0\leq\code{l}\leq d$)
for the pair $(\code{psi[i]},\code{phi[j]})$,
$\code{0}\leq\code{i}<\code{n\_psi}$,
$\code{0}\leq\code{j}<\code{n\_phi}$.
%%
\kitem{values} tensor storing the non zero integrals;
\code{values[i][j]} is a vector of length \code{n\_entries[i][j]}
storing the non zero values for the pair
$(\code{psi[i]},\code{phi[j]})$.
%%
\kitem{l} tensor storing the indices $l$ of the non zero integrals;
\code{l[i][j]} is a vector of length \code{n\_entries[i][j]}
storing at \code{l[i][j][r]} the index \code{l} of the
value stored at \code{values[i][j][r]}, i.e.
%%
\end{descr}
\end{descr}
The following formulas summarize the relationship between the cache
data-structure and the formulas \eqref{e:psiphiformula} at the
beginning of this section:
\[
\code{values[i][j][r]} =
\hat Q^{01}_{\code{ij},\code{l[i][j][r]}}
= \hat Q\Big(\bar\psi^{\code{i}} \,
\pbar^{\code{j}}_{,\lambda_{\code{l[i][j][r]}}}\Big),
\]
for $\code{0}\leq\code{r}<\code{n\_entries[i][j]}$.
Using these pre--computed values we have for all elements $S$
\[
\sum_{l = 0}^d \bar b^0_{S,l}
\hat Q\Big(\bar\psi^i \, \pbar^j_{,\lambda_l}\Big)
=
\sum_{\code{r}=\code{0}}^{\code{n\_entries[i][j]-1}}
\bar b^0_{S,\code{l[i][j][r]}}\,\code{*} {\code{values[i][j][r]}}.
\]
The following function initializes a \code{Q01\_PSI\_PHI} structure:
\fdx{get_q01_psi_phi()@{\code{get\_q01\_psi\_phi())}}}%
\idx{assemblage tools!get_q01_psi_phi()@{\code{get\_q01\_psi\_phi()}}}%
\bv\begin{lstlisting}
const Q01_PSI_PHI *get_q01_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_q01\_psi\_phi(psi, phi, quad)} returns a pointer to a filled
\code{Q01\_PSI\_PHI} structure.
\code{psi} is a pointer to the first set of basis functions
\code{phi} is a pointer to the second set of basis functions;
if both are \nil pointers, nothing is done and the return value
is \nil; if one of the pointers is a \nil pointer, the structure
is initialized using the same set of basis functions for the
first and second set, i.e. \code{phi = psi} or \code{psi = phi}
is used.
\code{quad} is a pointer to a quadrature for the approximation
of the integrals; is \code{quad} is \nil, a quadrature which
is exact of degree \code{psi->degree+phi->degree-1} is used.
All used \code{Q01\_PSI\_PHI} structures are stored in a linked
list and are identified uniquely by the members \code{psi},
\code{phi}, and \code{quad}, and for such a combination only
one \code{Q01\_PSI\_PHI} structure is created during runtime;
First, \code{get\_q01\_psi\_phi()}
looks for a matching structure in the linked list; if such a
structure is found a pointer to this structure is returned;
the values are not computed a second time.
Otherwise a new structure is generated, linked to the list, and
the values are computed using the quadrature \code{quad}; all
values \code{val} with $|\code{val}|\leq\code{TOO\_SMALL}$ are
treated as zeros.
\end{descr}
The values $\hat Q^{10}$ for the set of basis functions \code{psi}
and \code{phi} are stored in
\ddx{Q10_PSI_PHI@{\code{Q10\_PSI\_PHI}}}%
\idx{assemblage tools!Q10_PSI_PHI@{\code{Q10\_PSI\_PHI}}}%
\ddx{Q10_PSI_PHI_CACHE@{\code{Q10\_PSI\_PHI\_CACHE}}}%
\idx{assemblage tools!Q10_PSI_PHI_CACHE@{\code{Q10\_PSI\_PHI\_CACHE}}}%
\bv\begin{lstlisting}[label=T:Q10_PSI_PHI]
typedef struct q10_psi_phi Q10_PSI_PHI;
typedef struct q10_psi_phi_cache
{
int n_psi;
int n_phi;
const int *const*n_entries;
const REAL *const*const*values;
const int *const*const*k;
} Q10_PSI_PHI_CACHE;
struct q10_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const Q10_PSI_PHI_CACHE *cache;
INIT_ELEMENT_DECL;
};
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{struct q10\_psi\_phi}:\hfill
\begin{descr}
\kitem{psi} pointer to the first set of basis functions.
%%
\kitem{phi} pointer to the second set of basis functions.
%%
\kitem{quad} pointer to the quadrature which is used for the integration.
%%
%%
\kitem{cache} Pointer to the actual data in the cache.
%%
\kitem{INIT\_ELEMENT\_DECL} Optional per-element initializer. This
entry is initialized when calling \code{get\_q11\_psi\_phi()} if
either the underlying basis functions or the underlying quadrature
rule has per-element initializers. See \secref{S:init_element}.
%%
\end{descr}
\kitem{struct q10\_psi\_phi\_cache}:\hfill
\begin{descr}
\kitem{n\_psi} Dimension of the local space of test-functions (row
space), equals \code{Q11\_PSI\_PHI.psi->n\_bas\_fcts}.
%%
\kitem{n\_phi} Dimension of the local space of ansatz-functions
(column space), equals \code{Q11\_PSI\_PHI.phi->n\_bas\_fcts}.
%%
\kitem{n\_entries} matrix of size
$\code{psi->n\_bas\_fcts}\times\code{phi->n\_bas\_fcts}$
storing the count of non zero integrals;
\code{n\_entries[i][j]} is the count of non zero values
of $\hat Q^{10}_{\code{ij,k}}$ ($0\leq\code{k}\leq d$)
for the pair $(\code{psi[i]},\code{phi[j]})$,
$\code{0}\leq\code{i}<\code{n\_psi}$,
$\code{0}\leq\code{j}<\code{n\_phi}$.
%%
\kitem{values} tensor storing the non zero integrals;
\code{values[i][j]} is a vector of length \code{n\_entries[i][j]}
storing the non zero values for the pair
$(\code{psi[i]},\code{phi[j]})$.
%%
\kitem{k} tensor storing the indices $k$ of the non zero integrals;
\code{k[i][j]} is a vector of length \code{n\_entries[i][j]}
storing at \code{k[i][j][r]} the index \code{k} of the
value stored at \code{values[i][j][r]}, i.e.
%%
\end{descr}
\end{descr}
The following formulas summarize the relationship between the cache
data-structure and the formulas \eqref{e:psiphiformula} at the
beginning of this section:
\[
\code{values[i][j][r]} =
\hat Q^{10}_{\code{ij},\code{k[i][j][r]}}
= \hat Q\Big(\bar\psi^{\code{i}}_{,\lambda_{\code{k[i][j][r]}}} \,
\pbar^{\code{j}}\Big),
\]
for $\code{0}\leq\code{r}<\code{n\_entries[i][j]}$.
Using these pre--computed values we have for all elements $S$
\[
\sum_{k = 0}^d \bar b^1_{S,k}
\hat Q\Big(\bar\psi^i_{,\lambda_k} \, \pbar^j\Big)
=
\sum_{\code{r}=\code{0}}^{\code{n\_entries[i][j]-1}}
\bar b^1_{S,\code{k[i][j][r]}}\,\code{*} {\code{values[i][j][r]}}.
\]
The following function initializes a \code{Q10\_PSI\_PHI} structure:
\fdx{get_q10_psi_phi()@{\code{get\_q10\_psi\_phi())}}}%
\idx{assemblage tools!get_q10_psi_phi()@{\code{get\_q10\_psi\_phi()}}}%
\bv\begin{lstlisting}
const Q10_PSI_PHI *get_q10_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_q10\_psi\_phi(psi, phi, quad)} returns a pointer to a filled
\code{Q10\_PSI\_PHI} structure.
\code{psi} is a pointer to the first set of basis functions
\code{phi} is a pointer to the second set of basis functions;
if both are \nil pointers, nothing is done and the return value
is \nil; if one of the pointers is a \nil pointer, the structure
is initialized using the same set of basis functions for the
first and second set, i.e. \code{phi = psi} or \code{psi = phi}
is used.
\code{quad} is a pointer to a quadrature for the approximation
of the integrals; is \code{quad} is \nil, a quadrature which
is exact of degree \code{psi->degree+phi->degree-1} is used.
All used \code{Q10\_PSI\_PHI} structures are stored in a linked
list and are identified uniquely by the members \code{psi},
\code{phi}, and \code{quad}, and for such a combination only
one \code{Q10\_PSI\_PHI} structure is created during runtime;
First, \code{get\_q10\_psi\_phi()}
looks for a matching structure in the linked list; if such a
structure is found a pointer to this structure is returned;
the values are not computed a second time.
Otherwise a new structure is generated, linked to the list, and
the values are computed using the quadrature \code{quad}; all
values \code{val} with $|\code{val}|\leq\code{TOO\_SMALL}$ are
treated as zeros.
\end{descr}
Finally, the values $\hat Q^{00}$ for the set of basis functions \code{psi}
and \code{phi} are stored in
\ddx{Q00_PSI_PHI@{\code{Q00\_PSI\_PHI}}}%
\idx{assemblage tools!Q00_PSI_PHI@{\code{Q00\_PSI\_PHI}}}%
\ddx{Q00_PSI_PHI_CACHE@{\code{Q00\_PSI\_PHI\_CACHE}}}%
\idx{assemblage tools!Q00_PSI_PHI_CACHE@{\code{Q00\_PSI\_PHI\_CACHE}}}%
\bv\begin{lstlisting}[label=T:Q00_PSI_PHI]
typedef struct q00_psi_phi Q00_PSI_PHI;
typedef struct q00_psi_phi_cache
{
int n_psi;
int n_phi;
const REAL *const*values;
} Q00_PSI_PHI_CACHE;
struct q00_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const Q00_PSI_PHI_CACHE *cache;
INIT_ELEMENT_DECL;
};
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{struct q00\_psi\_phi}:\hfill
\begin{descr}
\kitem{psi} pointer to the first set of basis functions.
%%
\kitem{phi} pointer to the second set of basis functions.
%%
\kitem{quad} pointer to the quadrature which is used for the integration.
%%
%%
\kitem{cache} Pointer to the actual data in the cache.
%%
\kitem{INIT\_ELEMENT\_DECL} Optional per-element initializer. This
entry is initialized when calling \code{get\_q11\_psi\_phi()} if
either the underlying basis functions or the underlying quadrature
rule has per-element initializers. See \secref{S:init_element}.
%%
\end{descr}
\kitem{struct q00\_psi\_phi\_cache}:\hfill
\begin{descr}
\kitem{n\_psi} Dimension of the local space of test-functions (row
space), equals \code{Q11\_PSI\_PHI.psi->n\_bas\_fcts}.
%%
\kitem{n\_phi} Dimension of the local space of ansatz-functions
(column space), equals \code{Q11\_PSI\_PHI.phi->n\_bas\_fcts}.
%%
\kitem{values} matrix storing the integrals.
\end{descr}
\end{descr}
The following formulas summarize the relationship between the cache
data-structure and the formulas \eqref{e:psiphiformula} at the
beginning of this section:
\[
\code{values[i][j]} =
\hat Q^{00}_{\code{ij}}
= \hat Q\Big(\bar\psi^{\code{i}} \, \pbar^{\code{j}}\Big),
\]
for the pair $(\code{psi[i]},\code{phi[j]})$,
$\code{0}\leq\code{i}<\code{psi->n\_bas\_fcts}$,
$\code{0}\leq\code{j}<\code{phi->n\_bas\_fcts}$.
The following function initializes a \code{Q00\_PSI\_PHI} structure:
\fdx{get_q00_psi_phi()@{\code{get\_q00\_psi\_phi())}}}%
\idx{assemblage tools!get_q00_psi_phi()@{\code{get\_q00\_psi\_phi()}}}%
\bv\begin{lstlisting}
const Q00_PSI_PHI *get_q00_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_q00\_psi\_phi(psi, phi, quad)} returns a pointer to a filled
\code{Q00\_PSI\_PHI} structure.
\code{psi} is a pointer to the first set of basis functions
\code{phi} is a pointer to the second set of basis functions;
if both are \nil pointers, nothing is done and the return value
is \nil; if one of the pointers is a \nil pointer, the structure
is initialized using the same set of basis functions for the
first and second set, i.e. \code{phi = psi} or \code{psi = phi}
is used.
\code{quad} is a pointer to a quadrature for the approximation
of the integrals; is \code{quad} is \nil, a quadrature which
is exact of degree \code{psi->degree+phi->degree} is used.
All used \code{Q00\_PSI\_PHI} structures are stored in a linked
list and are identified uniquely by the members \code{psi},
\code{phi}, and \code{quad}, and for such a combination only
one \code{Q00\_PSI\_PHI} structure is created during runtime;
First, \code{get\_q00\_psi\_phi()}
looks for a matching structure in the linked list; if such a
structure is found a pointer to this structure is returned;
the values are not computed a second time.
Otherwise a new structure is generated, linked to the list, and
the values are computed using the quadrature \code{quad}.
\end{descr}
\subsection{Data structures and functions for updating coefficient vectors}%
\label{S:vector_update}%
\sloppypar Besides the general routines \code{update\_real\_vec()},
\code{update\_real\_d\_vec()} and \code{update\_real\_vec\_dow()},
this section presents also easy to use routines for calculation of
$L^2$ scalar products between a given function and all basis functions
of a finite element space, taken either over the interior of the mesh
or over boundary segments.
\medskip
The following structures hold full information for the assembling
of element vectors. They are used by the functions
\code{update\_real\_vec()} and \code{update\_real\_d\_vec()} described below.
\ddx{EL_VEC_INFO@{\code{EL\_VEC\_INFO}}}
\idx{assemblage tools!EL_VEC_INFO@{\code{EL\_VEC\_INFO}}}
\ddx{EL_VEC_D_INFO@{\code{EL\_VEC\_D\_INFO}}}
\idx{assemblage tools!EL_VEC_D_INFO@{\code{EL\_VEC\_D\_INFO}}}
\ddx{EL_VEC_INFO_D@{\code{EL\_VEC\_INFO\_D}}}
\idx{assemblage tools!EL_VEC_INFO_D@{\code{EL\_VEC\_INFO\_D}}}
\bv\begin{lstlisting}[name=EL_VEC_INFO,label=T:EL_VEC_INFO]
typedef struct el_vec_info EL_VEC_INFO;
typedef struct el_vec_d_info EL_VEC_D_INFO;
typedef struct el_vec_info_d EL_VEC_INFO_D;
typedef const EL_REAL_VEC *
(*EL_VEC_FCT)(const EL_INFO *el_info, void *fill_info);
typedef struct el_vec_info EL_VEC_INFO;
struct el_vec_info
{
const FE_SPACE *fe_space;
BNDRY_FLAGS dirichlet_bndry;
REAL factor;
EL_VEC_FCT el_vec_fct;
void *fill_info;
FLAGS fill_flag;
};
typedef const EL_REAL_D_VEC *
(*EL_VEC_D_FCT)(const EL_INFO *el_info, void *fill_info);
typedef struct el_vec_d_info EL_VEC_D_INFO;
struct el_vec_d_info
{
const FE_SPACE *fe_space;
BNDRY_FLAGS dirichlet_bndry;
REAL factor;
EL_VEC_D_FCT el_vec_fct;
void *fill_info;
FLAGS fill_flag;
};
typedef const EL_REAL_VEC_D *
(*EL_VEC_FCT_D)(const EL_INFO *el_info, void *fill_info);
typedef struct el_vec_info_d EL_VEC_INFO_D;
struct el_vec_info_d
{
const FE_SPACE *fe_space;
BNDRY_FLAGS dirichlet_bndry;
REAL factor;
EL_VEC_FCT_D el_vec_fct;
void *fill_info;
FLAGS fill_flag;
};
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{fe\_space} the underlying finite element space
%%
\kitem{dirichlet\_bndry} a bit mask marking the boundary segments
which are subject to Dirichlet boundary conditions, see also
\secref{S:boundary}.
%%
\kitem{factor} is a multiplier for the element contributions; usually
\code{factor} is \code{1} or \code{-1}.
%%
\kitem{el\_vec\_fct} is a pointer to a function for the computation of
the element vector; \code{el\_vec\_fct(el\_info, fill\_info)} returns
a pointer to an element vector of the respective data type, see e.g.
\verb|EL_REAL_VEC| on page \pageref{T:EL_REAL_VEC}. This vector stores
the computed values for the element described by \code{el\_info}.
\code{fill\_info} is a pointer to data needed by
\code{el\_vec\_fct()}; the function has to provide memory for storing
the element vector, which can be overwritten on the next call.
%%
\kitem{fill\_info} pointer to data needed by \code{el\_vec\_fct()}; is
the second argument of this function.
%%
\kitem{fill\_flag} the flag for the mesh traversal for assembling the
vector.
\end{descr}
The following function does the update of vectors by assembling element
contributions during mesh traversal; information for computing
the element vectors is held in a \code{EL\_VEC[\_D]\_INFO} structure:
\fdx{update_real_vec()@{\code{update\_real\_vec()}}}
\idx{assemblage tools!update_real_vec()@{\code{update\_real\_vec()}}}
\fdx{update_real_d_vec()@{\code{update\_real\_d\_vec()}}}
\idx{assemblage tools!update_real_d_vec()@{\code{update\_real\_d\_vec()}}}
\fdx{update_real_vec_dow()@{\code{update\_real\_vec\_dow()}}}
\idx{assemblage tools!update_real_vec_dow()@{\code{update\_real\_vec\_dow()}}}
\bv\begin{lstlisting}
void update_real_vec(DOF_REAL_VEC *dv, const EL_VEC_INFO *vec_info);
void update_real_d_vec(DOF_REAL_D_VEC *dv, const EL_VEC_D_INFO *vec_info);
void update_real_vec_dow(DOF_REAL_VEC_D *dv, const EL_VEC_INFO_D *vec_info)
\end{lstlisting}\ev
\begin{descr}
\kitem{update\_real[\_d]\_vec[\_dow](dv, info)} updates the vector
\code{dr} by traversing the underlying mesh and assembling the
element contributions into the vector; information about the
computation of element vectors and connection of local and global
DOFs is stored in \code{info}.
The flags for the mesh traversal of the mesh
\code{dv->fe\_space->mesh} are stored at \code{info->fill\_flags}
which specifies the elements to be visited and information that
should be present on the elements for the calculation of the element
vectors and boundary information (if \code{info->get\_bound} is not
\nil).
On the elements, information about the global DOFs is accessed by
\code{info->get\_dof} using \code{info->admin}; the boundary type of
the DOFs is accessed by \code{info->get\_bound} if
\code{info->get\_bound} is not a \nil pointer; then the element
vector is computed by \code{info->el\_vec\_fct(el\_info,
info->fill\_info)}; these contributions are finally added to
\code{dv} multiplied by \code{info->factor} by a call of
\code{add\_element[\_d]\_vec[\_dow]()} with all information about global
DOFs, the element vector, and boundary types, if available;
\code{update\_real[\_d]\_vec[\_dow]()} only adds element
contributions; this makes several calls for the assemblage of one
vector possible; before the first call, the vector should be set to
zero by a call of \code{dof\_set[\_d|\_dow](0.0, dv)}.
\end{descr}
\paragraph{$L^2$- and $H^1$-scalar- products over the bulk phase}
In many applications, the load vector is just the $L^2$- or
$H^1$-scalar-product of a given function with all basis functions of
the finite element space or this scalar product is a part of the right
hand side. Such a scalar product can be directly assembled by the
following functions.
\paragraph{Prototypes}
\fdx{L2scp_fct_bas()@{\code{L2scp\_fct\_bas()}}}
\idx{assemblage tools!L2scp_fct_bas()@{\code{L2scp\_fct\_bas()}}}
\fdx{L2scp_fct_bas_d()@{\code{L2scp\_fct\_bas\_d()}}}
\idx{assemblage tools!L2scp_fct_bas_d()@{\code{L2scp\_fct\_bas\_d()}}}
\fdx{L2scp_fct_bas_dow()@{\code{L2scp\_fct\_bas\_dow()}}}
\idx{assemblage tools!L2scp_fct_bas_dow()@{\code{L2scp\_fct\_bas\_dow()}}}
\fdx{L2scp_fct_bas_loc()@{\code{L2scp\_fct\_bas\_loc()}}}
\idx{assemblage tools!L2scp_fct_bas_loc()@{\code{L2scp\_fct\_bas\_loc()}}}
\fdx{L2scp_fct_bas_loc_dow()@{\code{L2scp\_fct\_bas\_loc\_dow()}}}
\idx{assemblage tools!L2scp_fct_bas_loc_dow()@{\code{L2scp\_fct\_bas\_loc\_dow()}}}
\fdx{H1scp_fct_bas()@{\code{H1scp\_fct\_bas()}}}
\idx{assemblage tools!H1scp_fct_bas()@{\code{H1scp\_fct\_bas()}}}
\fdx{H1scp_fct_bas_dow()@{\code{H1scp\_fct\_bas\_dow()}}}
\idx{assemblage tools!H1scp_fct_bas_dow()@{\code{H1scp\_fct\_bas\_dow()}}}
%%
\bv\begin{lstlisting}
void L2scp_fct_bas(FCT_AT_X f, const QUAD *quad, DOF_REAL_VEC *fh);
void L2scp_fct_bas_d(FCT_D_AT_X f, const QUAD *, DOF_REAL_D_VEC *fh);
void L2scp_fct_bas_dow(FCT_D_AT_X f, const QUAD *quad, DOF_REAL_VEC_D *fh);
void L2scp_fct_bas_loc(DOF_REAL_VEC *fh,
LOC_FCT_AT_QP f, void *f_data, FLAGS fill_flag,
const QUAD *quad);
void L2scp_fct_bas_loc_d(DOF_REAL_D_VEC *fh,
LOC_FCT_D_AT_QP f, void *fd, FLAGS fill_flag,
const QUAD *quad);
void L2scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
LOC_FCT_D_AT_QP f, void *fd, FLAGS fill_flag,
const QUAD *quad);
void H1scp_fct_bas(GRD_FCT_AT_X grd_f,
const QUAD *quad, DOF_REAL_VEC *fh);
void H1scp_fct_bas_d(GRD_FCT_D_AT_X grd_f,
const QUAD *quad, DOF_REAL_D_VEC *fh);
void H1scp_fct_bas_dow(GRD_FCT_D_AT_X grd_f,
const QUAD *quad, DOF_REAL_VEC_D *fh);
void H1scp_fct_bas_loc(DOF_REAL_VEC *fh,
GRD_LOC_FCT_AT_QP grd_f, void *fd,
FLAGS fill_flag, const QUAD *quad);
void H1scp_fct_bas_loc_d(DOF_REAL_VEC_D *fh,
GRD_LOC_FCT_D_AT_QP grd_f, void *fd,
FLAGS fill_flag, const QUAD *quad);
void H1scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
GRD_LOC_FCT_D_AT_QP grd_f, void *fd,
FLAGS fill_flag, const QUAD *quad);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{L2scp\_fct\_bas(f, quad, fh)}
\kitem{L2scp\_fct\_bas\_d(f, quad, fh)}
\kitem{L2scp\_fct\_bas\_dow(f, quad, fh)}
%%
Approximate the $L^2$ scalar products of a given function with all
basis functions by numerical quadrature and add the corresponding
values to a DOF vector
\code{f} is a pointer for the evaluation of the given
function in world coordinates $x$ and returns the
value of that function at $x$; if \code{f} is a \nil
pointer, nothing is done;
\code{fh} is the DOF vector where at the \code{i}--th entry
the approximation of the $L^2$ scalar product of the given
function with the \code{i}--th global basis function of
\code{fh->fe\_space} is added;
\code{quad} is the quadrature for the approximation of
the integral on each leaf element of \code{fh->fe\_space->mesh};
if \code{quad} is a \nil pointer, a default quadrature
which is exact of degree \code{2*fh->fe\_space->bas\_fcts->degree-2}
is used.
The integrals are approximated by looping over all
leaf elements, computing the approximations to the element
contributions and adding these values to the vector \code{fh}
by \code{add\_element\_vec()}.
The vector \code{fh} is \emph{not} initialized with \code{0.0};
only the new contributions are added.
%%
\kitem{L2scp\_fct\_bas\_d(fd, quad, fhd)} approximates the $L^2$ scalar
products of a given vector valued function with all scalar valued
basis functions by numerical quadrature and adds the
corresponding values to a vector valued DOF vector;
\code{fd} is a pointer for the evaluation of the given function
in world coordinates $x$; \code{fd(x, fx)} returns a pointer to
a vector storing the value at \code{x}; if \code{fx} is not
\nil, the value is stored at \code{fx} otherwise the function
has to provide memory for storing this vector, which can be
overwritten on the next call; if \code{fd} is a \nil pointer,
nothing is done;
\code{fhd} is the DOF vector where at the \code{i}--th entry (a
\code{REAL\_D} vector) the approximation of the $L^2$ scalar
product of the given vector valued function with the \code{i}--th
global (scalar valued) basis function of \code{fhd->fe\_space}
is added;
\code{quad} is the quadrature for the approximation of
the integral on each leaf element of \code{fhd->fe\_space->mesh};
if \code{quad} is a \nil pointer, a default quadrature
which is exact of degree \code{2*fhd->fe\_space->bas\_fcts->degree-2}
is used.
The integrals are approximated by looping over all
leaf elements, computing the approximations to the element
contributions and adding these values to the vector \code{fhd}
by \code{add\_element\_d\_vec()}.
The vector \code{fhd} is \emph{not} initialized with
$(\code{0.0},\ldots,\code{0.0})$; only the new contributions are
added.
\kitem{L2scp\_fct\_bas\_dow(fd, quad, fhd)}
\kitem{L2scp\_fct\_bas\_loc(fh, f\_at\_qp, fct\_data, fill\_flag, quad)}
\kitem{L2scp\_fct\_bas\_loc\_dow(fh, f\_at\_qp, ud, fill\_flag, quad)}
\kitem{H1scp\_fct\_bas(grd\_f, quad, fh)}
\kitem{H1scp\_fct\_bas\_dow(grd\_fd, quad, fhd)}
\end{descr}
\subsection{Boundary conditions}\label{S:boundary_conditions}
%%
The following six functions act as a front-end to the functions
explained further below, therefore we refer the reader to
\secref{S:dirichlet_bound}, \ref{S:neumann_bound} and
\ref{S:robin_bound} for a deeper discussion of the implementation of
Dirichlet, Neumann and Robin boundary conditions within \ALBERTA.
% aus l2scp.c
\fdx{boundary_conditions()@{\code{boundary\_conditions()}}}
\idx{assemblage tools!boundary_conditions()@{\code{boundary\_conditions()}}}
\fdx{boundary_conditions_loc()@{\code{boundary\_conditions\_loc()}}}
\idx{assemblage tools!boundary_conditions_loc()@{\code{boundary\_conditions\_loc()}}}
\fdx{boundary_conditions_dow()@{\code{boundary\_conditions\_dow()}}}
\idx{assemblage tools!boundary_conditions_dow()@{\code{boundary\_conditions\_dow()}}}
\fdx{boundary_conditions_loc_dow()@{\code{boundary\_conditions\_loc\_dow()}}}
\idx{assemblage tools!boundary_conditions_loc_dow()@{\code{boundary\_conditions\_loc\_dow()}}}
\bv\begin{lstlisting}
bool boundary_conditions(DOF_MATRIX *matrix, DOF_REAL_VEC *fh,
DOF_REAL_VEC *uh, DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segment,
REAL (*g)(const REAL_D x),
REAL (*gn)(const REAL_D x, const REAL_D normal),
REAL alpha_r, const WALL_QUAD *wall_quad);
bool boundary_conditions_loc(DOF_MATRIX *matrix, DOF_REAL_VEC *fh,
DOF_REAL_VEC *uh, DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segment,
LOC_FCT_AT_QP g_at_qp, LOC_FCT_AT_QP gn_at_qp,
void *app_data, FLAGS fill_flags,
REAL alpha_r, const WALL_QUAD *wall_quad);
bool boundary_conditions_d(DOF_MATRIX *matrix, DOF_REAL_D_VEC *fh,
DOF_REAL_D_VEC *uh, DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segment,
const REAL *(*g)(const REAL_D x, REAL_D res),
const REAL *(*gn)(const REAL_D x,
const REAL_D normal,
REAL_D res),
REAL alpha_r, const WALL_QUAD *wall_quad);
bool boundary_conditions_loc_d(DOF_MATRIX *matrix, DOF_REAL_D_VEC *fh,
DOF_REAL_D_VEC *uh, DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segment,
LOC_FCT_D_AT_QP g_at_qp,
LOC_FCT_D_AT_QP gn_at_qp,
void *app_data, FLAGS fill_flags,
REAL alpha_r, const WALL_QUAD *wall_quad);
bool boundary_conditions_dow(DOF_MATRIX *matrix, DOF_REAL_VEC_D *fh,
DOF_REAL_VEC_D *uh, DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segment,
const REAL *(*g)(const REAL_D x, REAL_D res),
const REAL *(*gn)(const REAL_D x,
const REAL_D normal,
REAL_D res),
REAL alpha_r, const WALL_QUAD *wall_quad);
bool boundary_conditions_loc_dow(DOF_MATRIX *matrix, DOF_REAL_VEC_D *fh,
DOF_REAL_VEC_D *uh, DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segment,
LOC_FCT_D_AT_QP g_at_qp,
LOC_FCT_D_AT_QP gn_at_qp,
void *app_data, FLAGS fill_flags,
REAL alpha_r, const WALL_QUAD *wall_quad);
\end{lstlisting}\ev
Description: These ``compound'' functions implement Dirichlet, Neumann
or Robin boundary conditions, and optionally perform a mean-value
correction of the ``right hand side'' in the context of pure Neumann
boundary conditions if $\code{alpha\_r}<0$ (in order to satisfy the
conditions for the ``right hand side'' which may be violated in the
discrete context because of quadrature errors).
For the differences between the code{\dots\_loc()} and
non-\code{\dots\_loc()} versions the reader is referred to the section
dealing with \code{dirichlet\_bound\_loc()} (see
\secref{S:dirichlet_bound}). A brief discussion of the calling
convention for the various functions pointers passed to the library
functions can also be found in \secref{S:user_fcts}.
\begin{description}
\item[Parameters]~\hfill
\begin{descr}
\kitem{matrix} As explained in \secref{S:robin_bound}, passed on
to \code{robin\_bound()}.
%%
\kitem{fh} As explained in \secref{S:dirichlet_bound},
\secref{S:neumann_bound} and \secref{S:robin_bound}. Passed on to
\code{dirichlet\_bound()} and \code{bndry\_L2scp\_fct\_bas()}.
%%
\kitem{uh} As explained in \secref{S:dirichlet_bound}. Passed on
to \code{dirichlet\_bound()}.
%%
\kitem{bound} As explained in \secref{S:dirichlet_bound}. Passed on
to \code{dirichlet\_bound()}.
%%
\kitem{dirichlet\_segment} As explained in
\secref{S:dirichlet_bound}. Passed on to
\code{dirichlet\_bound()}. The respective bit-masks passed to
\code{bndry\_L2scp\_fct\_bas()} and \code{robin\_bound()} are
computed as bit-wise complement of \code{dirichlet\_segment}. See
also \secref{S:boundary}.
%%
\kitem{g} As explained in \secref{S:dirichlet_bound}. Passed on
to \code{dirichlet\_bound()}.
%%
\kitem{gn} As explained in \secref{S:neumann_bound},
\secref{S:robin_bound}. Passed on to
\code{bndry\_L2scp\_fct\_bas()}.
%%
\kitem{app\_data} \code{\dots\_loc()}-variants only. As explained
in \secref{S:dirichlet_bound}, \secref{S:user_fcts}. Passed on as
application-data pointer to the application provided function
hooks.
%%
\kitem{fill\_flags} \code{\dots\_loc()}-variants only. Additional
fill-flags needed by \code{g()} or \code{gn}.
%%
\kitem{alpha\_r} As explained in \secref{S:robin_bound}. Passed on
to \code{robin\_bound()}. \code{alpha\_r} is also abused to
request an automatic mean-value correction of the load-vector: if
\code{alpha\_r} is negative, and Neumann boundary conditions were
imposed on all boundary segments, then
\code{boundary\_conditions()} will attempt such a mean-value
correction in order to keep fulfill the compatibility condition
for the load-vector in the discrete setting. Of course, if the
differential operator has lower order parts, then the load-vector
need not have mean-value $0$.
Robin boundary conditions will only be assembled if
\code{alpha\_r} is strictly larger than $0$.
%%
\kitem{wall\_quad} As explained in \secref{S:robin_bound} and
\secref{S:neumann_bound}. Passed on to \code{robin\_bound()} and
\code{bndry\_L2scp\_fct\_bas()}.
\end{descr}
\item[Return Value]~\hfill
\code{true} if any part of the boundary was subject to Dirichlet
boundary conditions.
\end{description}
\subsubsection{Dirichlet boundary conditions}
\label{S:dirichlet_bound}
For the solution of the discrete system \mathref{book:E:LuF} on page
\pageref{book:E:LuF} derived in \secref{book:S:Dis2ndorder}, we have
to set the Dirichlet boundary values for all Dirichlet DOFs. Usually,
we take for the approximation $g_h$ of $g$ the interpolant of $g$,
i.e. $g_h = I_h g$ and we have to copy the coefficients of $g_h$ at
the Dirichlet DOFs to the start value for an iterative solver. This
way the first matrix-vector operation performed by an iterative solver
will have the effect to transform an inhomogeneous Dirichlet boundary
problem to a homogeneous one by applying the differential operator to
the boundary values and subtracting the result from the ``right hand
side''. Whether or not it is also necessary to copy these
coefficients to the load vector depends on how the matrices act on the
coefficients:
\begin{itemize}
\item If the matrix-rows corresponding to Dirichlet-nodes
$k_1,\,\dots,\,k_M$ have been replaced by unit-vectors $e_{k_l}$
$(1\leq l\leq M)$, then it is also necessary to copy the Dirichlet
nodes to the load vector (compare \mathref{book:E:Fright} on page
\pageref{book:E:Fright}). Copying the coefficients of $g_h$ at the
Dirichlet DOFs to the initial guess will result in an initial
residual (and then for all subsequent residuals) which is zero at
all Dirichlet \code{DOF}s.
This is the case when Dirichlet bit-masks have been copied to
\code{OPERATOR\_INFO.dirichlet\_bndry} (compare \secref{S:boundary}
and \ref{T:OPERATOR_INFO}); the resulting \code{DOF\_MATRIX} will
then be assembled (\secref{S:matrix_assemblage}) in this way,
replacing any row corresponding to a Dirichlet-node by the
corresponding unit-vector.
\item If the matrix-rows corresponding to Dirichlet-nodes have not
been replaced by unit-vectors, then it is still possible to solve a
Dirichlet-problem by passing a \code{DOF\_SCHAR\_VEC} to the
matrix-vector routines (compare \secref{S:solver}, describing the
linear solvers available in \ALBERTA). However, in this case the
matrix-vector subroutines will clear all Dirichlet-nodes to zero,
see \secref{S:DOF_BLAS}. Therefore, in this case it is necessary to
clear the coefficients of the ``right hand side'' which correspond
to Dirichlet-nodes. See the \exampleref{E:CLEARING_DIRICHLET_NODES}
for simple examples how to perform this task.
\end{itemize}
Note that the matrices generated this way -- either by clearing
Dirichlet-rows or by masking out Dirichlet rows -- are not symmetric
(compare also \mathref{book:E:matrix} on page \pageref{book:E:matrix})
even if the underlying differential operator is symmetric. However,
the restriction of the matrix to the space spanned by the
non-Dirichlet \code{DOFs} \emph{is} symmetric, so any iterative solver
for symmetric matrices will work, provided one either sets the
Dirichlet-values also in the load-vector (if the matrix acts as
identity on the Dirichlet \code{DOF}s) or clears the Dirichlet-nodes
in the load-vector (if the matrix acts as zero-operator on the
Dirichlet \code{DOF}s).
The following functions will set Dirichlet boundary values
for all DOFs on the Dirichlet boundary, using an interpolation
of the boundary values $g$:
\fdx{dirichlet_bound()@{\code{dirichlet\_bound()}}}
\idx{assemblage tools!dirichlet_bound()@{\code{dirichlet\_bound()}}}
\fdx{dirichlet_bound_loc()@{\code{dirichlet\_bound\_loc()}}}
\idx{assemblage tools!dirichlet_bound_loc()@{\code{dirichlet\_bound\_loc()}}}
\fdx{dirichlet_bound_d()@{\code{dirichlet\_bound\_d()}}}
\idx{assemblage tools!dirichlet_bound_d()@{\code{dirichlet\_bound\_d()}}}
\fdx{dirichlet_bound_loc_d()@{\code{dirichlet\_bound\_loc\_d()}}}
\idx{assemblage tools!dirichlet_bound_loc_d()@{\code{dirichlet\_bound\_loc\_d()}}}
\fdx{dirichlet_bound_loc_dow()@{\code{dirichlet\_bound\_loc\_dow()}}}
\idx{assemblage tools!dirichlet_bound_loc_dow()@{\code{dirichlet\_bound\_loc\_dow()}}}
\bv\begin{lstlisting}
bool dirichlet_bound(DOF_REAL_VEC *fh, DOF_REAL_VEC *uh,
DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segments,
REAL (*g)(const REAL_D));
bool dirichlet_bound_d(DOF_REAL_VEC_D *fh, DOF_REAL_VEC_D *uh,
DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segments,
const REAL *(*g)(const REAL_D, REAL_D));
bool dirichlet_bound_dow(DOF_REAL_VEC_D *fh, DOF_REAL_VEC_D *uh,
DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segments,
const REAL *(*g)(const REAL_D, REAL_D));
bool dirichlet_bound_loc(DOF_REAL_VEC *fh, DOF_REAL_VEC *uh,
DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segments,
LOC_FCT_AT_QP g, void *ud, FLAGS fill_flags);
bool dirichlet_bound_loc_d(DOF_REAL_VEC_D *fh, DOF_REAL_VEC_D *uh,
DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segments,
LOC_FCT_D_AT_QP g, void *ud,
FLAGS fill_flags);
bool dirichlet_bound_loc_dow(DOF_REAL_VEC_D *fh, DOF_REAL_VEC_D *uh,
DOF_SCHAR_VEC *bound,
const BNDRY_FLAGS dirichlet_segments,
LOC_FCT_D_AT_QP g, void *ud,
FLAGS fill_flags);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{dirichlet\_bound(fh, uh, bound, dirichlet\_segments, g)} sets
Dirichlet boundary values for all DOFs on all leaf elements of
\code{fh->fe\_space->mesh} or \code{uh->fe\_space->mesh}; values at
DOFs not belonging to the Dirichlet boundary are not changed by this
function.
Boundary values are set element-wise on the leaf elements. The
boundary type of the walls of an element is accessed through the
function \code{wall\_bound(el\_info, wall)}. If the corresponding
bit is set in \code{dirichlet\_segments}, then the local
interpolation operator of the basis functions underlying
\code{fh/uh->fe\_space} is invoked to compute the coefficients of
the \code{DOF}s located on that wall.
This variant of the \code{dirichlet\_bound...()} is rather
simplistic; the \code{dirichlet\_bound\_loc..()} pass more
information to the function implementing the boundary values and
also allow for manipulating the amount of information available
while looping over the mesh.
%%
\begin{description}
\item[Parameters]~\hfill
\begin{description}
\item[\code{fh}, \code{uh}] are vectors where Dirichlet boundary
values should be set (usually, \code{fh} stores the load vector
and \code{uh} an initial guess for an iterative solver); one of
\code{fh} and \code{uh} may be a \nil pointer; if both arguments
are \nil pointers, nothing is done, except of filling the
\code{bound} argument, it that is non \nil; if both arguments are
not \nil, \code{fh->fe\_space} must equal \code{uh->fe\_space}.
\item[\code{bound}] is a vector for storing the boundary type for
each used DOF; \code{bound} may be \nil; if it is not \nil, the
\code{i}-th entry of the vector is filled with the boundary
type of the \code{i}-th DOF. \code{bound->fe\_space} must be
the same as \code{fh}'s or \code{uh}'s \code{fe\_space}.
\item[\code{dirichlet\_segments}] Bit-mask marking those parts of
the boundary which are subject to Dirichlet boundary
conditions. If bit number $k>0$ is set in
\code{dirichlet\_segments} then the part of the boundary with
boundary classification $k$ is marked as Dirichlet boundary.
Compare \secref{S:boundary}.
\item[\code{REAL (*g)(const REAL\_D arg)}] is a pointer to a
function for the evaluation of the boundary data; if \code{g}
is a \nil pointer, all coefficients at Dirichlet DOFs are set
to \code{0.0}. \code{arg} are the Cartesian co-ordinates where
the value of \code{g} should be computed.
\end{description}
\item[Return Value] \code{true} if any part of the boundary of the
mesh is subject to Dirichlet boundary conditions, as indicated by
the argument \code{dirichlet\_segments}, \code{false} otherwise.
\end{description}
%%
\hrulefill
%%
\kitem{dirichlet\_bound\_d(fh, uh, bound, dirichlet\_segments, g)}
does the same as \code{dirichlet\_bound()}, but \code{fh} and
\code{uh} are \code{DOF\_REAL\_D\_VEC} vectors.
The calling convention for \code{const REAL (*g)(const REAL\_D arg,
REAL\_D result)} is such that \code{g} must allow for
\code{result} being a \nil-pointer. If so, a pointer to a statically
allocated storage area must be returned, otherwise \code{result}
must be filled with the value of \code{g} at the evaluation point
\code{arg}, see \exampleref{E:user_fct_d} in \secref{S:user_fcts}.
%%
Otherwise everything works as for \code{dirichlet\_bound()}, see
above for the documentation.
%%
\hrulefill
%%
\kitem{dirichlet\_bound\_dow(fh, uh, bound, dirichlet\_segments, g)}
does the same as \code{dirichlet\_bound\_d()}, but \code{fh} and
\code{uh} are \code{DOF\_REAL\_VEC\_D} vectors, that is, \code{uh}
and \code{fh} may belong to a finite element space which is a direct
sum, composed of several finite element spaces (note the location of
the \code{\_D} suffix in the data-type names
\code{DOF\_REAL\_VEC\_D} and \code{DOF\_REAL\_D\_VEC}!). The calling
convention for \code{const REAL (*g)(const REAL\_D arg, REAL\_D
result)} is the same as explained above for
\code{dirichlet\_bound\_d()}.
\hrulefill
%%
\kitem{dirichlet\_bound\_loc(fh, uh, bound, dirichlet\_segments, g,
ud, fill\_flags)}
%%
This function differs from its counterpart without the
\code{\_loc}-suffix only in the calling convention for the function
implementing the Dirichlet boundary conditions. We document only the
differing or additional arguments here and refer the reader to the
documentation of \code{dirichlet\_bound()} above:
\begin{description}
\item[\code{REAL (*g)(const EL\_INFO *el\_info, const QUAD *quad,
int iq, void *ud)}] The function pointer to the function
implementing the Dirichlet boundary values. In contrast to the
corresponding function-pointer passed to \code{dirichlet\_bound()}
this function is invoked with a co-dimension $1$ quadrature rule
(compare the \code{interpol}-hooks in the \code{BAS\_FCTS}
structure, \ref{T:BAS_FCTS}, and the definition of the
\code{QUAD}-structure, \ref{T:QUAD}) and a quadrature point, and
first and not least with a filled \code{EL\_INFO}-structure.
This means that \code{g} has full-access to all the information
available through the \code{EL\_INFO} element descriptor. The
amount of data filled-in during mesh-traversal can additionally be
controlled by setting specific fill-flags through the argument
\code{fill\_flags}, which is passed as last argument to
\code{dirichlet\_bound\_loc()}. The last argument \code{ud} to
\code{g} is the same as the pointer \code{ud} passed as pre-last
argument to \code{dirichlet\_bound\_loc()} and may be used by an
application to reduce the amount of global variables and thus the
potential of bugs implied by the use of global variables. The
following simple example shows how to get hold of the Cartesian
co-ordinates of the quadrature point, and how to use, e.g., the
boundary classification available through the \code{EL\_INFO}
structure:
%%
\begin{example}
\label{E:loc_fct_at_qp}
\bv\begin{lstlisting}[name=DIRICHLET_BOUND_LOC_EXAMPLE,label=C:DIRICHLET_BOUND_LOC_EXAMPLRE]
struct g_data
{
BNDRY_TYPE special_wall_type; /* other stuff */
};
REAL g_impl(const EL_INFO *el_info, const QUAD *quad, int iq, void *ud)
{
struct g_data *data = (struct g_data *)ud;
BNDRY_TYPE btype = wall_bound(el_info, quad->sub_splx);
REAL result;
const QUAD_EL_CACHE *qelc =
fill_quad_el_cache(el_info, quad, FILL_EL_QUAD_WORLD);
if (btype == data->special_wall_type) {
... /* do special things */
return sin(qelc->world[iq][0];
} else {
... /* do "normal" things */
return sin(qelc->world[iq][1];
}
}
... /* 1.000.000 lines of code later ... */
struct g_data g_data_instance = { 42 };
dirichlet_bound_loc(fh, uh, bound, dirichlet_bits, g_impl, &g_data_instance, FILL_COORDS|FILL_MACRO_WALLS);
\end{lstlisting}\ev
\end{example}
%%
\item[\code{ud}] Application-data-pointer, forwarded as \code{ud}
argument to the application supplied \code{g} function-pointer.
%%
\item[\code{fill\_flags}] Additional fill-flags for the loop over
the mesh. The application must make sure that \code{fill\_flags}
contains all flags corresponding to information needed by the
function \code{g()}.
\end{description}
%%
\hrulefill
%%
\kitem{dirichlet\_bound\_loc\_dow(}
\kitem{~~~~~~~~~~~~fh, uh, bound, dirichlet\_segments, g, ud, fill\_flags)}
%%
\kitem{dirichlet\_bound\_loc(fh, uh, bound, dirichlet\_segments, g, ud, fill\_flags)}
%%
These two function differ from \code{dirichlet\_bound\_loc()} only
in the calling convention for
\bv\begin{lstlisting}
const REAL *(*g)(REAL_D result, const EL_INFO *el_info, const QUAD *quad, int iq, void *ud).
\end{lstlisting}\ev
As in the example \ref{C:FCT_D_AT_X_ABI} the implementation of
\code{g()} must allow for \code{result} being \nil, returning a
pointer to a static storage area in this case.
\end{descr}
\begin{example}
\label{E:CLEARING_DIRICHLET_NODES}
This example demonstrates how to clear the Dirichlet-nodes in the
load-vector if Dirichlet boundary conditions are implemented using a
\code{DOF\_SCHAR\_VEC} to mask-out Dirichlet nodes. Note that this
example applies \emph{only} if the \code{DOF\_SCHAR\_VEC} is also
passed to the linear solvers. Otherwise Dirichlet boundary
conditions have to be incorporated into the matrix
\begin{description}
\item[\emph{scalar problem}]
\bv\begin{lstlisting}[name=CLEARING_SCALAR_DIRICHLET_NODES,label=C:CLEARING_SCALAR_DIRICHLET_NODES]
extern REAL g(const REAL_D x); /* defined somewhere else, e.g. */
extern DOF_REAL_VEC *uh, *fh; /* defined somewhere else, e.g. */
DOF_SCHAR_VEC *bound =
get_dof_schar_vec("dirichlet mask vector", fh->fe_space);
BNDRY_FLAGS dirichlet_bits;
BNDRY_FLAGS_INIT(dirichlet_bits);
BNDRY_FLAGS_SET(dirichlet_bits, 3); /* e.g. */
... /* other stuff */
dirichlet_bound(NULL, uh, bound, dirichlet_bits, g);
FOR_ALL_DOFS(fh->fe_space->admin,
if (bound->vec[dof] >= DIRICHLET) {
fh->vec[dof] = 0.0;
});
... /* other stuff */
oem_solve_s(matrix, bound, fh, uh, ... /* other parameters */);
\end{lstlisting}\ev
\item[\emph{simple vector valued problem}]
\bv\begin{lstlisting}[name=CLEARING_VECTOR_DIRICHLET_NODES,label=C:CLEARING_VECTOR_DIRICHLET_NODES]
extern const REAL *g(const REAL_D x, REAL_D result); /* defined somewhere else, e.g. */
extern DOF_REAL_D_VEC *uh, *fh; /* defined somewhere else, e.g. */
extern DOF_SCHAR_VEC *bound;
extern BNDRY_FLAGS dirichlet_bits;
... /* other stuff */
dirichlet_bound_d(NULL, uh, bound, dirichlet_bits, g);
FOR_ALL_DOFS(fh->fe_space->admin,
if (bound->vec[dof] >= DIRICHLET) {
SET_DOW(0.0, fh->vec[dof]);
});
... /* other stuff */
oem_solve_d(matrix, bound, fh, uh, ... /* other parameters */);
\end{lstlisting}\ev
\item[\emph{vector valued problem, using an FE-space which is a direct sum}]
~\hfill
%%
Note the difference between a \code{DOF\_REAL\_D\_VEC} which
contains \code{DIM\_OF\_WORLD}-sized \code{REAL\_D} vectors and a
\code{DOF\_REAL\_VEC\_D} which contains scalars of type
\code{REAL} if the underlying basis function are themselves
vector-valued, or \code{REAL\_D}-vectors if the underlying basis
functions are scalar-valued. The first code-block of the
\code{FOREACH\_DOF\_DOW}-macro is for the case where the basis
functions are vector-valued (and hence the coefficients are
scalars) and the second code-block is for the case where the basis
functions are scalar-valued (and hence the coefficients are
vectors). The \code{FOREACH\_DOF\_DOW()} macro is further
explained in \secref{S:chain_loops}.
%%
\bv\begin{lstlisting}[name=CLEARING_CHAINED_DIRICHLET_NODES,label=C:CLEARING_CHAINED_DIRICHLET_NODES]
extern const REAL *g(const REAL_D x, REAL_D result); /* defined somewhere else, e.g. */
extern DOF_REAL_VEC_D *uh, *fh; /* defined somewhere else, e.g. */
extern DOF_SCHAR_VEC *bound;
extern BNDRY_FLAGS dirichlet_bits;
... /* other stuff */
dirichlet_bound_dow(NULL, uh, bound, dirichlet_bits, g);
FOREACH_DOF_DOW(fh->fe_space,
if (bound->vec[dof] >= DIRICHLET) {
fh->vec[dof] = 0.0;
},
if (bound->vec[dof] >= DIRICHLET) {
SET_DOW(0.0, ((DOF_REAL_D_VEC *)fh)->vec[dof]);
},
fh = CHAIN_NEXT(fh, DOF_REAL_VEC_D);
bound = CHAIN_NEXT(bound, DOF_SCHAR_VEC));
... /* other stuff */
oem_solve_dow(matrix, bound, fh, uh, ... /* other parameters */);
\end{lstlisting}\ev
\end{description}
\end{example}
\subsubsection{Neumann boundary conditions}
\label{S:neumann_bound}
For the implementation of inhomogeneous Neumann boundary conditions it
is necessary to compute $L^2$ scalar products between the
inhomogeneity and the basis functions on the Neumann boundary
segments. The following functions compute the $L^2$ scalar product
over the boundary of the domain. They return \code{true} if not all
boundary segments of the mesh belong to the segment specified by
\code{bndry\_seg}. If \code{bndry\_seg == NULL} then the scalar
product is computed over the entire boundary (i.e. over all walls
without neighbour).
%%
Besides computing the $L^2$-scalar product over boundary segments
there are also functions to compute the $L^2$-scalar-product over trace
meshes (or ``sub-meshes'', see \secref{S:submesh_implementation}).
%%
For the calling conventions for the application provided function
pointers the reader is referred to \secref{S:user_fcts}, and the
relevant part of the discussion of \code{dirichlet\_bound\_loc()} in
\secref{S:dirichlet_bound}.
All function work additive, the contributions of the per-element
integrals are added to any data already present in \code{fh}.
%%
\paragraph{Prototypes}
\fdx{bndry_L2scp_fct_bas()@{\code{bndry\_L2scp\_fct\_bas()}}}
\idx{assemblage tools!bndry_L2scp_fct_bas()@{\code{bndry\_L2scp\_fct\_bas()}}}
\fdx{bndry_L2scp_fct_bas_loc()@{\code{bndry\_L2scp\_fct\_bas\_loc()}}}
\idx{assemblage tools!bndry_L2scp_fct_bas_loc()@{\code{bndry\_L2scp\_fct\_bas\_loc()}}}
\fdx{bndry_L2scp_fct_bas_dow()@{\code{bndry\_L2scp\_fct\_bas\_dow()}}}
\idx{assemblage tools!bndry_L2scp_fct_bas_dow()@{\code{bndry\_L2scp\_fct\_bas\_dow()}}}
\fdx{bndry_L2scp_fct_bas_loc_dow()@{\code{bndry\_L2scp\_fct\_bas\_loc\_dow()}}}
\idx{assemblage tools!bndry_L2scp_fct_bas_loc_dow()@{\code{bndry\_L2scp\_fct\_bas\_loc\_dow()}}}
\fdx{trace_L2scp_fct_bas()@{\code{trace\_L2scp\_fct\_bas()}}}
\idx{evaluation tools!trace_L2scp_fct_bas()@{\code{trace\_L2scp\_fct\_bas()}}}
\fdx{trace_L2scp_fct_bas_loc()@{\code{trace\_L2scp\_fct\_bas\_loc()}}}
\idx{evaluation tools!trace_L2scp_fct_bas_loc()@{\code{trace\_L2scp\_fct\_bas\_loc()}}}
\fdx{trace_L2scp_fct_bas_dow()@{\code{trace\_L2scp\_fct\_bas\_dow()}}}
\idx{evaluation tools!trace_L2scp_fct_bas_dow()@{\code{trace\_L2scp\_fct\_bas\_dow()}}}
\fdx{trace_L2scp_fct_bas_loc_dow()@{\code{trace\_L2scp\_fct\_bas\_loc\_dow()}}}
\idx{evaluation tools!trace_L2scp_fct_bas_loc_dow()@{\code{trace\_L2scp\_fct\_bas\_loc\_dow()}}}
%%
\bv\begin{lstlisting}[label=F:BNDRY_L2SCP_PROTO]
bool bndry_L2scp_fct_bas_loc(DOF_REAL_VEC *fh,
LOC_FCT_AT_QP f_at_qp, void *ud, FLAGS fill_flag,
const BNDRY_FLAGS bndry_seg,
const WALL_QUAD *quad);
bool bndry_L2scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh, LOC_FCT_D_AT_QP f_at_qp,
void *ud, FLAGS fill_flag,
const BNDRY_FLAGS bndry_seg,
const WALL_QUAD *quad);
bool bndry_L2scp_fct_bas_dow(DOF_REAL_VEC_D *fh,
const REAL *(*f)(const REAL_D x,
const REAL_D normal,
REAL_D result),
const BNDRY_FLAGS bndry_seg,
const WALL_QUAD *quad);
bool bndry_L2scp_fct_bas(DOF_REAL_VEC *fh,
REAL (*f)(const REAL_D x, const REAL_D normal),
const BNDRY_FLAGS bndry_seg, const WALL_QUAD *quad);
void trace_L2scp_fct_bas(DOF_REAL_VEC *fh, FCT_AT_X f,
MESH *trace_mesh, const QUAD *quad);
void trace_L2scp_fct_bas_loc(DOF_REAL_VEC *fh,
LOC_FCT_AT_QP f, void *fd, FLAGS fill_flag,
MESH *trace_mesh,
const QUAD *quad);
void trace_L2scp_fct_bas_dow(DOF_REAL_VEC_D *fh, FCT_D_AT_X f,
MESH *trace_mesh,
const QUAD *quad);
void trace_L2scp_fct_bas_loc_dow(DOF_REAL_VEC_D *fh,
LOC_FCT_D_AT_QP f, void *fd, FLAGS fill_flag,
MESH *trace_mesh,
const QUAD *quad);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{bndry\_L2scp\_fct\_bas()}~\hfill
\begin{description}
\item[Parameters]~\hfill
\kitem{fh} The load-vector to add the boundary integrals to.
%%
\kitem{f} Application supplied ``right hand side''.
%%
\kitem{ud} Data pointer for \code{f} for the
\code{\dots\_loc()}-variants.
%%
\kitem{fill\_flags} Additional fill-flags needed by \code{f} for the
\code{\dots\_loc()}-variants.
%%
\kitem{bndry\_seg} A bit-mask specifying the part of the boundary
which is the domain of integration. See \secref{S:boundary}.
%%
\kitem{quad} Optional application supplied quadrature rule. Maybe
\nil, in which case a default quadrature rule is used. See
\secref{S:WALL_QUAD} for how to obtain such a structure, function
\code{get\_wall\_quad()}.
\item[Return Value]~\hfill
\code{true} if part of the boundary did
\emph{not} belong to the domain of integration.
\end{description}
\hrulefill
\kitem{trace\_L2scp\_fct\_bas()}~\hfill
\begin{description}
\item[Parameters]~\hfill
\begin{descr}
\kitem{fh} The load-vector.
%%
\kitem{f} The user-supplied inhomogeneity.
%%
\kitem{fd} The application data pointer passed on to \code{f}
for the \code{\dots\_loc()}-variants.
%%
\kitem{fill\_flags} Additional fill-flags for the
\code{\dots\_loc()}-variants.
%%
\kitem{trace\_mesh} The domain of integration.
%%
\kitem{quad} A user supplied quadrature rule. May be \nil in
which case a default quadrature rule will be used. The
quadrature rule must have the dimension of \code{trace\_mesh},
naturally.
%%
\end{descr}
\item[Return Value]~\hfill
\end{description}
\end{descr}
%Description:
%\begin{descr}
%\kitem{bndry\_L2scp\_fct\_bas\_loc(fh, f\_at\_qp, ud, fill\_flag, bndry\_seg, quad)}
%\fdx{bndry_L2scp_fct_bas_loc()@{\code{bndry\_L2scp\_fct\_bas\_loc()}}}
%\idx{assemblage tools!bndry_L2scp_fct_bas_loc()@{\code{bndry\_L2scp\_fct\_bas\_loc()}}}
%%%
%\kitem{bndry\_L2scp\_fct\_bas\_loc\_dow(fh, f\_at\_qp, ud, fill\_flag, bndry\_seg, quad)}
%\fdx{bndry_L2scp_fct_bas_loc_dow()@{\code{bndry\_L2scp\_fct\_bas\_loc\_dow()}}}
%\idx{assemblage tools!bndry_L2scp_fct_bas_loc_dow()@{\code{bndry\_L2scp\_fct\_bas\_loc\_dow()}}}
%\kitem{bndry\_L2scp\_fct\_bas\_dow(fh, f, bndry\_seg, quad)}
%\fdx{bndry_L2scp_fct_bas_dow()@{\code{bndry\_L2scp\_fct\_bas\_dow()}}}
%\idx{assemblage tools!bndry_L2scp_fct_bas_dow()@{\code{bndry\_L2scp\_fct\_bas\_dow()}}}
%%%
%\kitem{bndry\_L2scp\_fct\_bas(fh, f, bndry\_seg, quad)}
%\fdx{bndry_L2scp_fct_bas()@{\code{bndry\_L2scp\_fct\_bas()}}}
%\idx{assemblage tools!bndry_L2scp_fct_bas()@{\code{bndry\_L2scp\_fct\_bas()}}}
%\kitem{trace\_L2scp\_fct\_bas(fh, f, trace\_mesh, quad)}
%\fdx{trace_L2scp_fct_bas()@{\code{trace\_L2scp\_fct\_bas()}}}
%\idx{evaluation tools!trace_L2scp_fct_bas()@{\code{trace\_L2scp\_fct\_bas()}}}
%\kitem{trace\_L2scp\_fct\_bas\_loc(fh, f, fd, fill\_flag, trace\_mesh, quad)}
%\fdx{trace_L2scp_fct_bas_loc()@{\code{trace\_L2scp\_fct\_bas\_loc()}}}
%\idx{evaluation tools!trace_L2scp_fct_bas_loc()@{\code{trace\_L2scp\_fct\_bas\_loc()}}}
%\kitem{trace\_L2scp\_fct\_bas\_dow(fh, f, trace\_mesh, quad)}
%\fdx{trace_L2scp_fct_bas_dow()@{\code{trace\_L2scp\_fct\_bas\_dow()}}}
%\idx{evaluation tools!trace_L2scp_fct_bas_dow()@{\code{trace\_L2scp\_fct\_bas\_dow()}}}
%\kitem{trace\_L2scp\_fct\_bas\_loc\_dow(fh, f, fd, fill\_flag, trace\_mesh, quad)}
%\fdx{trace_L2scp_fct_bas_loc_dow()@{\code{trace\_L2scp\_fct\_bas\_loc\_dow()}}}
%\idx{evaluation tools!trace_L2scp_fct_bas_loc_dow()@{\code{trace\_L2scp\_fct\_bas\_loc\_dow()}}}
%\end{descr}
\subsubsection{Robin boundary conditions}
\label{S:robin_bound}
\fdx{robin_bound()@{\code{robin\_bound()}}}
\idx{assemblage tools!robin_bound()@{\code{robin\_bound()}}}
\bv\begin{lstlisting}
void robin_bound(DOF_MATRIX *matrix, const BNDRY_FLAGS robin_seg,
REAL alpha_r, const WALL_QUAD *wall_quad,
REAL exponent);
\end{lstlisting}\ev
Description: Incorporate so-called ``Robin boundary'' conditions into
the matrix, i.e. a boundary condition of the form
\[
\frac{\partial u}{\partial\nu}(x) + \alpha(x)\,u(x) = g(x)\quad\text{ on }\partial\Omega.
\]
In the context of weak formulations for elliptic second-order PDEs,
this results into two boundary integrals, one has to be added to the
linear form on the ``right hand side'', and the other one is a
contribution to bilinear-form on the ``left hand side'', namely
\[
\int_{\partial\Omega} \alpha\,u\,\phi\,do
\quad\text{ and }\quad
\int_{\partial\Omega}g\,\phi\,do
\]
The contribution to the right hand side can be assembled using one of
the \code{bndry\_L2scp\_fct\_bas()}-variants, the contribution the
left hand side should be added to the system matrix.
\code{robin\_bound()} implements this for the case where $\alpha$ is
actually just a constant coefficient.
\begin{descr}
\kitem{robin\_bound(matrix, robin\_seg, alpha\_r, wall\_quad, exponent)}~\hfill
\begin{description}
\item[Parameters]~\hfill
\begin{descr}
\kitem{matrix} The system matrix, the contributions from the Robin
boundary condition are added to \code{matrix}.
%%
\kitem{robin\_segment} A boundary bit-mask, marking all boundary
segments which are subject to the Robin boundary condition. The
position of the bits set in \code{robin\_segment} correspond to
the boundary numbers assigned to the mesh boundary in the macro
triangulation, compare \secref{S:macro_tria} and
\secref{S:boundary}.
%%
\kitem{alpha\_r} The constant coefficient from the Robin boundary
condition.
%%
\kitem{wall\_quad} Optional. A collection of co-dimension $1$
quadrature formulas for doing the integration. If \code{wall\_quad
== \nil}, then \code{robin\_bound()} chooses a default
quadrature formula, based on the polynomial degree of the
underlying basis-functions.
%%
\kitem{exponent} If \code{exponent > 0.0}, then the boundary
integral will be weighted by the factor $h(T)^{-\code{exponent}}$,
where $h(T)$ denotes the local mesh-width.
\end{descr}
\end{description}
\end{descr}
\subsection{Interpolation into finite element spaces}
\label{S:I_FES}
In time dependent problems, usually the ``solve'' step in the adaptive
method for the adaptation of the initial grid is an interpolation of
initial data to the finite element space, i.e. a DOF vector is filled
with the coefficient of the interpolant. The following functions are
implemented for this task:
%%
\fdx{interpol()@{\code{interpol()}}}
\idx{assemblage tools!interpol()@{\code{interpol()}}}
\fdx{interpol_d()@{\code{interpol\_d()}}}
\idx{assemblage tools!interpol_d()@{\code{interpol\_d()}}}
\fdx{interpol_dow()@{\code{interpol\_dow()}}}
\idx{assemblage tools!interpol_dow()@{\code{interpol\_dow()}}}
%%
\fdx{interpol_loc()@{\code{interpol\_loc()}}}
\idx{assemblage tools!interpol()@{\code{interpol\_loc()}}}
\fdx{interpol_loc_d()@{\code{interpol\_loc\_d()}}}
\idx{assemblage tools!interpol_loc_d()@{\code{interpol\_loc\_d()}}}
\fdx{interpol_loc_dow()@{\code{interpol\_loc\_dow()}}}
\idx{assemblage tools!interpol_loc_dow()@{\code{interpol\_loc\_dow()}}}
%%
\bv\begin{lstlisting}
void interpol(FCT_AT_X f, DOF_REAL_VEC *fh);
void interpol_d(const REAL *(*f)(const REAL_D, REAL_D), DOF_REAL_D_VEC *fh);
void interpol_dow(FCT_D_AT_X f, DOF_REAL_VEC_D *fh);
void interpol_loc(DOF_REAL_VEC *fh,
LOC_FCT_AT_QP f, void *f_data, FLAGS fill_flags);
void interpol_loc_d(DOF_REAL_D_VEC *fh,
LOC_FCT_D_AT_QP f, void *f_data, FLAGS fill_flags);
void interpol_loc_dow(DOF_REAL_VEC_D *fh,
LOC_FCT_D_AT_QP f, void *f_data, FLAGS fill_flags);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{interpol(f, fh)} computes the coefficients of the interpolant
of a function and stores these in a DOF vector;
Interpolation is done element--wise on the leaf elements of
\code{fh->fe\_space->mesh}; the element interpolation is done by the
function \code{fh->fe\_space->bas\_fcts->interpol()}; the
\code{fill\_flag} of the mesh traversal is
\code{CALL\_LEAF\_EL|FILL\_COORDS} and the function \code{f} must
fit to the needs of \code{fh->fe\_space->bas\_fcts->interpol()}; for
Lagrange elements, \code{(*f)()} is evaluated for all Lagrange nodes
on the element and has to return the value at these nodes (compare
\secref{S:basfct_data}).
\begin{description}
\item[Parameters]~\hfill
\begin{descr}
\kitem{f} is a pointer to a function for the
evaluation of the function to be interpolated; if \code{f} is a \nil
pointer, all coefficients are set to \code{0.0}.
%%
\kitem{fh} is a DOF vector for storing the coefficients; if
\code{fh} is a \nil pointer, nothing is done.
\end{descr}
\end{description}
%%
\kitem{interpol\_d(fd, fhd)} computes the coefficients of the
interpolant of a vector valued function and stores these in a DOF
vector. This version is for the case where the underlying
basis-functions are themselves scalars, consequently the coefficient
vector \code{fh} has the type \code{DOF\_REAL\_D\_VEC}. Otherwise
this function differs from the scalar counter-part only in the
calling convention for the application supplied function \code{f},
which is the same as for \code{dirichlet\_bound\_d()}, see also
\exampleref{E:user_fct_d}
%%
\kitem{interpol\_dow(fct, uh)} same as \code{interpol\_d()}, but for
the case where the underlying basis function are either scalar- or
\DOW-valued and the finite-element space may optionally be a direct
sum of finite element spaces.
%%
\kitem{interpol\_loc(vec, fct\_at\_qp, app\_data, fill\_flags)}
%%
\kitem{interpol\_loc\_d(vec, fct\_at\_qp, app\_data, fill\_flags)}
%%
\kitem{interpol\_loc\_dow(vec, fct\_at\_qp, app\_data, fill\_flags)}
%%
The \code{\dots\_loc\dots}-variants differ from the other
\code{interpol()}-flavours only in the calling convention for the
application supplied function and the additional \code{fill\_flags}
argument. This has already be explained above, see also
\exampleref{E:loc_fct_at_qp}.
\end{descr}
\idx{assemblage tools|)}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End:
|