File: bas-impl.tex

package info (click to toggle)
alberta 3.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,176 kB
  • sloc: ansic: 135,836; cpp: 6,601; makefile: 2,801; sh: 333; fortran: 180; lisp: 177; xml: 30
file content (2807 lines) | stat: -rw-r--r-- 118,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
\section{Implementation of basis functions}%
\label{S:basfct_impl}
\label{S:BAS_FCTS}

In order to construct a finite element space, we have to specify
a set of local basis functions. We follow the concept of finite
elements which are given on a single element $S$ in local coordinates:
Finite element functions on an element $S$ are defined by a finite
dimensional function space $\Pbar$ on a reference element $\Sbar$ and
the (one to one) mapping $\lambda^S: \Sbar \to S$ from the reference
element $\Sbar$ to the element $S$. In this situation the non
vanishing basis functions on an arbitrary element are given by the set
of basis functions of $\Pbar$ in local coordinates $\lambda^S$.  Also,
derivatives are given by the derivatives of basis functions on $\Pbar$
and derivatives of $\lambda^S$. 

Each local basis function on $S$ is uniquely connected to a global
degree of freedom, which can be accessed from $S$ via the DOF
administration. Together with this DOF administration and the
underlying mesh, the finite element space is given. In the following
section we describe the basic data structures for storing basis
function information.

At the moment the following finite elements are supported by \ALBERTA:
\begin{itemize}
\item standard Lagrange finite elements of order $n$, $n\in\{1,2,3,4\}$;
\item discontinuous polynomial elements of order $n$, $n\in\{0,1,2\}$; these 
are defined as arbitrary polynomials of maximal degree $n$ on each element
with no continuity restriction;
\item orthonormal discontinuous polynomial elements of order $1$ and
  $2$; these functions are normalized and orthogonal w.r.t. the
  $L^2$-scalar product on the reference element.
\end{itemize}
We present these elements in the subsequent sections.  A tselection of
more complicated basis functions is implemented in an add-on library
called \verb|libalbas|, with the focus on stable discretizations for
the Stokes-problem. This is not discussed here.

\subsection{Data structures for basis functions}%
\label{S:basfct_data}

For the handling of local basis functions, i.e. a basis of the
function space $\Pbar$ on the reference element (compare Section
\ref{book:S:FES}) we use functions of the following type. The structure
describing the set of local basis functions (\verb|BAS_FCTS|, see
page \pageref{T:BAS_FCTS}) contains arrays of such function-pointers:
%%
\idx{basis fucntions!BAS_FCT@{basis function hooks}}
\ddx{BAS_FCT@{\code{BAS\_FCT}}}%
\ddx{GRD_BAS_FCT@{\code{GRD\_BAS\_FCT}}}%
\ddx{D2_BAS_FCT@{\code{D2\_BAS\_FCT}}}%
\ddx{D3_BAS_FCT@{\code{D3\_BAS\_FCT}}}%
\ddx{D4_BAS_FCT@{\code{D4\_BAS\_FCT}}}%
\ddx{BAS_FCT_D@{\code{BAS\_FCT\_D}}}%
\ddx{GRD_BAS_FCT_D@{\code{GRD\_BAS\_FCT\_D}}}%
\ddx{D2_BAS_FCT_D@{\code{D2\_BAS\_FCT\_D}}}%
\bv
\begin{lstlisting} 
  typedef REAL
    (*BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
  typedef const REAL *
    (*GRD_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
  typedef const REAL_B *
    (*D2_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
  typedef const REAL_BB *
    (*D3_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);
  typedef const REAL_BBB *
    (*D4_BAS_FCT)(const REAL_B lambda, const BAS_FCTS *thisptr);

  typedef const REAL *
  (*BAS_FCT_D)(const REAL_B lambda, const BAS_FCTS *thisptr);
  typedef const REAL_B *
  (*GRD_BAS_FCT_D)(const REAL_B lambda, const BAS_FCTS *thisptr);
  typedef const REAL_BB *
  (*D2_BAS_FCT_D)(const REAL_B lambda, const BAS_FCTS *thisptr);
\end{lstlisting}\ev
Description:
\begin{descr}
%%
\kitem{BAS\_FCT} the data type for a local finite element function,
  i.e. a function $\pbar \in \Pbar$, evaluated at barycentric
  coordinates $\lambda \in \R^{d+1}$ and its return
  value $\pbar(\lambda)$ is of type \code{REAL}.
%%
\kitem{GRD\_BAS\_FCT} the data type for the gradient (with respect 
  to $\lambda$) of a local finite element function, i.e. a
  function returning a pointer to $\nablal \pbar$ for some function
  $\pbar \in \Pbar$:
  \[
  \nablal \pbar(\lambda) = \left(
    \frac{\partial\pbar(\lambda)}{\partial \lambda_0},
    \ldots,\frac{\partial\pbar(\lambda)}{\partial \lambda_d}
  \right);
  \]
  the arguments of such a function are barycentric coordinates and
  the return value is a pointer to a \code{const REAL} vector of
  length \code{N\_LAMBDA} storing $\nablal \pbar(\lambda)$; this
  vector will be overwritten during the next call of the function.
  %% 
\kitem{D2\_BAS\_FCT} the data type for the second derivatives (with
  respect to $\lambda$) of a local finite element function, i.e. a
  function returning a pointer to the matrix $D^2_\lambda \pbar$
  for some function $\pbar \in \Pbar$:
  \[
  D^2_\lambda \pbar =
  \begin{pmatrix}\ds
    \frac{\partial^2\pbar(\lambda)}{\partial \lambda_0 \partial \lambda_0} 
    & \cdots &\ds
    \frac{\partial^2\pbar(\lambda)}{\partial \lambda_0\partial\lambda_d} \\
    \vdots & & \vdots\\\ds
    \frac{\partial^2\pbar(\lambda)}{\partial \lambda_d\partial \lambda_0} 
    & \cdots &\ds
    \frac{\partial^2\pbar(\lambda)}
    {\partial\lambda_d\partial\lambda_d}
  \end{pmatrix};
  \]
  the arguments of such a function are barycentric coordinates and
  the return value is a pointer to a $\mathtt{N\_LAMBDA \times
    N\_LAMBDA}$ matrix storing $D^2_\lambda \pbar$; this matrix will be
  overwritten during the next call of the function.
  %% 
\kitem{D3\_BAS\_FCT, D4\_BAS\_FCT}
  serve primarily for debugging purposes and need not be present.
  The format is the similar to the second barycentric derivatives, the third
  derivatives are a tensor of rank $3$, and the fourth derivatives are a
  tensor of rank $4$.
  %% 
\kitem{BAS\_FCT\_D, GRD\_BAS\_FCT\_D, D2\_BAS\_FCT\_D} Basis functions
  may optionally be \REALD-valued.  In this case we factor the basis
  functions into a scalar part which is multiplied by a direction,
  with the obvious implications for the derivatives of such basis
  functions. This is further explained below where the corresponding
  components of the \code{BAS\_FCTS} structure are discussed.
\end{descr}

\mdx{PHI@{\code{PHI()}}}
\mdx{GRD_PHI@{\code{GRD\_PHI()}}}
\mdx{D2_PHI@{\code{D2\_PHI()}}}
\mdx{D3_PHI@{\code{D3\_PHI()}}}
\mdx{D4_PHI@{\code{D4\_PHI()}}}
\mdx{PHI_D@{\code{PHI\_D()}}}
\mdx{GRD_PHI_D@{\code{GRD\_PHI\_D()}}}
\mdx{D2_PHI_D@{\code{D2\_PHI\_D()}}}
\bv\begin{lstlisting}
#define PHI(bfcts, i, lambda)     (bfcts)->phi[i](lambda, bfcts)
#define GRD_PHI(bfcts, i, lambda) (bfcts)->grd_phi[i](lambda, bfcts)
#define D2_PHI(bfcts, i, lambda)  (bfcts)->D2_phi[i](lambda, bfcts)
#define D3_PHI(bfcts, i, lambda)  (bfcts)->D3_phi[i](lambda, bfcts)
#define D4_PHI(bfcts, i, lambda)  (bfcts)->D4_phi[i](lambda, bfcts)

#define PHI_D(bfcts, i, lambda)     (bfcts)->phi_d[i](lambda, bfcts)
#define GRD_PHI_D(bfcts, i, lambda) (bfcts)->grd_phi_d[i](lambda, bfcts)
#define D2_PHI_D(bfcts, i, lambda)  (bfcts)->D2_phi_d[i](lambda, bfcts) 
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{PHI(bfcts, i, lambda)} The individual basis function pointers
  expect that a pointer to the \verb|BAS_FCTS|-structure they belong
  to is passed as last argument. To decrease the potential for coding
  errors we advocate to use
  \bv\begin{lstlisting}
    value = PHI(bfcts, nr, lambda, nr);
  \end{lstlisting}\ev
  instead of using the equivalent construct
  \bv\begin{lstlisting}
    value = bfcts->phi[nr](lambda, bfcts);
  \end{lstlisting}\ev
  The other macro work analogously.
\end{descr}

For the implementation of a finite element space, we need a basis of
the function space $\Pbar$. For such a basis we need the connection of
\emph{local} and \emph{global} DOFs on each element (compare
\secref{book:S:eval_fe}), information about the interpolation of a given
function on an element, and information about
interpolation/restriction of finite element functions during
refinement/coarsening (compare \secref{book:S:inter_restrict}). Further
information includes the traces of the local finite element space on
the walls of reference element, which are needed to define
trace-meshes (AKA sub-meshes, see Section
\ref{S:tracemesh_implementation}). Also, finite element spaces may
form a direct sum, e.g. to implement stable discretisations of the
Stokes-problem (see Section \ref{S:chain_impl}); if this is the case
then the local basis-functions also reflect this fact. Finally,
basis-functions may need a per-element initializer, for example if
they depend on the geometry of the mesh-simplex.  Such information is
stored in the \code{BAS\_FCTS} data structure:
%%
\ddx{BAS_FCTS@{\code{BAS\_FCTS}}}
\idx{basis functions!BAS_FCTS@{\code{BAS\_FCTS} data type}}
%%
\bv\begin{lstlisting}[name=BAS_FCTS,label=T:BAS_FCTS]
typedef struct bas_fcts BAS_FCTS;

struct bas_fcts
{
  const char   *name;       /*  textual description */
  int          dim;         /*  dimension of the corresponding mesh. */
  int          rdim;        /*  dimension of the range, 1 or DIM_OF_WORLD */
  int          n_bas_fcts;  /*  nu_mber of basisfunctions on one el */
  int          n_bas_fcts_max;/*  max. number in presence of init_element()*/
  int          degree;      /*  maximal degree of the basis functions,
			     *	may vary on a per-element basis if
			     *	init_element() is != NULL.
			     */
  int          n_dof[N_NODE_TYPES];   /* dofs from these bas_fcts */
  int          trace_admin; /* If >= 0, then the basis function set
			     * needs a DOF_ADMIN living on a trace
			     * mesh with id TRACE_ADMIN.
			     */

  /************** link to next set of bfcts in a direct sum ***************/
  DBL_LIST_NODE  chain;

  /* A pointer to the unchained version. It simply points back to the
   * same structure if this is an unchained basis-function
   * structure.
   */
  const BAS_FCTS *unchained;

  /*************** per-element initializer (maybe NULL) *******************/

  INIT_ELEMENT_DECL;

  /*************** the basis functions themselves       *******************/
  const BAS_FCT     *phi;
  const GRD_BAS_FCT *grd_phi;
  const D2_BAS_FCT  *D2_phi;
  const D3_BAS_FCT  *D3_phi; /* Optional, implemented for Lagrange bfcts. */
  const D4_BAS_FCT  *D4_phi; /* Optional, implemented for Lagrange bfcts. */

  /* Vector valued basis functions are always factored as phi[i]() *
   * phi_d[i](). If phi_d[i]() is piece-wise constant, then
   * dir_pw_const should be true. The directions are never cached in
   * QUAD_FAST, only the scalar factor.
   */
  const BAS_FCT_D     *phi_d;
  const GRD_BAS_FCT_D *grd_phi_d;
  const D2_BAS_FCT_D  *D2_phi_d;

  bool dir_pw_const; /*Direction is p.w. constant on the reference element.*/

  /************* the trace space on the wall *****************************/
  const BAS_FCTS *trace_bas_fcts; /* The trace space */

  /* The local DOF mapping for the trace spaces,
   * < 3d:
   * [0][0][wall][slave local dof] == master local dof,
   * 3d:
   * [type > 0][orient < 0][wall][slave local dof] == master local dof.
   */
  const int      *trace_dof_map[2][2][N_WALLS_MAX];

  /* This obscure component can vary from wall to wall in the presence
   * of an INIT_ELEMENT() method. It is _always_ equal to
   * trace_bas_fcts->n_bas_fcts ... BUT ONLY after the respective
   * element initializer has been called for trace_bas_fcts on the
   * trace mesh. If an INIT_ELEMENT() method is present then it _MUST_
   * initialize trace_dof_map _AND_ n_trace_bas_fcts. Of course, in 3D
   * only the components corresponding to type and orientation of the
   * current EL_INFO object have to be taken care of by the
   * INIT_ELEMENT() method.
   */
  int            n_trace_bas_fcts[N_WALLS_MAX];

  /*************** interconnection to DOF_ADMIN and mesh   ****************/
  const EL_DOF_VEC *(*get_dof_indices)(DOF *result,
				       const EL *, const DOF_ADMIN *,
				       const BAS_FCTS *thisptr);
  const EL_BNDRY_VEC *(*get_bound)(BNDRY_FLAGS *bndry_bits,
				   const EL_INFO *eli,
				   const BAS_FCTS *thisptr);

  /*************** entries must be set for interpolation   ****************/

  void (*interpol)(EL_REAL_VEC *coeff,
		   const EL_INFO *el_info, int wall,
		   int n, const int *indices,
		   LOC_FCT_AT_QP f, void *ud,
		   const BAS_FCTS *thisptr);
  void (*interpol_d)(EL_REAL_D_VEC *coeff,
		     const EL_INFO *el_info, int wall,
		     int n, const int *indices,
		     LOC_FCT_D_AT_QP f, void *ud,
		     const BAS_FCTS *thisptr);
  void (*interpol_dow)(EL_REAL_VEC_D *coeff,
		       const EL_INFO *el_info, int wall,
		       int n, const int *indices,
		       LOC_FCT_D_AT_QP f, void *ud,
		       const BAS_FCTS *thisptr);

  /********************   optional entries  *******************************/

  const EL_INT_VEC    *(*get_int_vec)(int result[],
				      const EL *, const DOF_INT_VEC *);
  const EL_REAL_VEC   *(*get_real_vec)(REAL result[],
				       const EL *, const DOF_REAL_VEC *);
  const EL_REAL_D_VEC *(*get_real_d_vec)(REAL_D result[],
					 const EL *, const DOF_REAL_D_VEC *);
  const EL_REAL_VEC_D *(*get_real_vec_d)(REAL result[],
					 const EL *, const DOF_REAL_VEC_D *);
  const EL_UCHAR_VEC  *(*get_uchar_vec)(U_CHAR result[],
					const EL *, const DOF_UCHAR_VEC *);
  const EL_SCHAR_VEC  *(*get_schar_vec)(S_CHAR result[],
					const EL *, const DOF_SCHAR_VEC *);
  const EL_PTR_VEC    *(*get_ptr_vec)(void *result[],
				      const EL *, const DOF_PTR_VEC *);

  void  (*real_refine_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
  void  (*real_coarse_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
  void  (*real_coarse_restr)(DOF_REAL_VEC *, RC_LIST_EL *, int);

  void  (*real_d_refine_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
  void  (*real_d_coarse_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
  void  (*real_d_coarse_restr)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);

  void  (*real_refine_inter_d)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);
  void  (*real_coarse_inter_d)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);
  void  (*real_coarse_restr_d)(DOF_REAL_VEC_D *, RC_LIST_EL *, int);
  
  void  *ext_data; /* Implementation dependent extra data */
};

/* Barycentric coordinates of Lagrange nodes. */
#define LAGRANGE_NODES(bfcts)				\
  ((const REAL_B *)(*(void **)(bfcts)->ext_data))
\end{lstlisting}\ev

The entries yield following information:
\begin{descr}
\kitem{name} string containing a textual description or \nil.
  %% 
\kitem{dim} dimension $d$ of the mesh triangulation.
  %%
\kitem{rdim} dimension of the range space. This is either $1$ or \DOW
  for vector valued basis functions like edge and face bubbles.
  %%
\kitem{n\_bas\_fcts} number of local basis functions.
  %%
\kitem{n\_bas\_fcts\_max} maximum number of local basis functions. The
  number of basis functions on a given element may vary if the
  \verb|init_element|-hook is non-\nil. In this case
  \verb|n_bas_fcts_max| gives the upper limit and can be used to
  lay-out array dimensions, e.g. In the standard case this component
  does not differ from \verb|n_bas_fcts|. See \secref{S:chain_impl}.
  %%
\kitem{degree} maximal polynomial degree of the basis functions; this
  entry is used by routines using numerical quadrature where no
  \code{QUAD} structure is provided; in such a case via \code{degree}
  some default numerical quadrature is chosen (see Section
  \ref{S:QUAD}); additionally, \code{degree} is used by some graphics
  routines (see \secref{S:graph_2d}).
  %%
\kitem{n\_dof} vector with the count of DOFs for this set of basis
  functions; \code{n\_dof[VERTEX,CENTER,EDGE,FACE]} is the number of
  DOFs tied to the vertices, center, edges (only 2d and 3d), faces
  (only 3d), of an element; the corresponding DOF administration of
  the finite element space uses such information.
  %%
  \kitem{trace\_admin} is used for the purpose of defining basis
  functions with DOFs attached to a
  \hyperref[S:submesh_implementation]{trace-mesh}, e.g. to define
  face-bubbles attached to part of the boundary of the mesh. In this
  case \code{trace\_admin} is the unique ID of a trace-mesh which
  carries the \hyperref[S:DOF_ADMIN]{\code{DOF\_ADMIN}} for this
  basis-function set. In this situation the basis functions ``live''
  on the bulk mesh (i.e. extend in to to bulk-phase of the element
  containing the face belonging to the trace-mesh), but the degrees of
  freedom are maintained on the trace mesh.
  %%
\kitem{chain} contains the link to the other parts if this instance
  forms part of a chain of basis functions. This is implemented as
  doubly linked list. In the standard case the list-node just points
  back to itself. Compare \secref{S:bfcts_chains} and
  \secref{S:chain_impl}.
  %%
\kitem{unchained} points to a copy of the basis function structure
  which is unaware of being part of a direct sum. In the standard case
  \code{unchained} just points back to the same basis function
  structure it is part of.
  %%
\kitem{INIT\_ELEMENT\_DECL} is used for the initialization of element
  dependent local finite element spaces; this is needed, e.g. to
  define basis functions which depend on the element geometry like
  discretizations of the $H(\text{div})$, or for some more complicated
  discretizations for the Stokes-problem which, e.g., make use of
  edge- and face-bubbles. See \secref{S:init_element}.
  %%
\kitem{phi} vector of function pointers for the evaluation of local
  basis functions in barycentric coordinates;
  \begin{center}
    \code{(*bfcts->phi[i])(lambda, bfcts)}
  \end{center}
  returns the value $\pbar^\code{i}(\lambda)$ of the \code{i}-th basis
  function at \code{lambda} for $0 \le \code{i} <
  \code{n\_bas\_fcts}$.
  We advocate the use of the \code{PHI()}-macro instead:
  \begin{center}
    \code{PHI(bfcts, i, lambda)}
  \end{center}
  %%
\kitem{grd\_phi} vector of function pointers for the evaluation of
  gradients of the basis functions in barycentric coordinates;
  \begin{center}
    \code{(*bfcts->grd\_phi[i])(lambda)}
  \end{center}
  returns a pointer to a vector of length \code{N\_LAMBDA}
  containing all first derivatives (with respect to the
  barycentric coordinates) of the \code{i}--th basis function at
  \code{lambda}, i.e.
  \code{(*grd\_phi[i])(lambda)[k]}$ =
  \pbar^\code{i}_{,\lambda_{\code{k}}} (\lambda)$
  for $0 \le \code{k} \le d$,
  $0 \le \code{i} < \code{n\_bas\_fcts}$; this vector is
  overwritten on the next call of \code{(*grd\_phi[i])()}.
  We advocate the use of the \code{GRD\_PHI()}-macro instead:
  \begin{center}
    \code{GRD\_PHI(bfcts, i, lambda)}
  \end{center}
  %%
\kitem{D2\_phi} vector of function pointers for the evaluation of
  second derivatives of the basis functions in barycentric
  coordinates;
  \begin{center}
    \code{(*bfcts->D2\_phi[i])(lambda, bfcts)}
  \end{center}
  returns a pointer to a $\code{N\_LAMBDA}\times\code{N\_LAMBDA}$
  matrix containing all second derivatives (with respect to the
  barycentric coordinates) of the \code{i}--th basis function at
  \code{lambda}, i.e.
  \code{(*D2\_phi[i])(lambda)[k][l]}$ =
  \pbar^\code{i}_{,\lambda_{\code{k}} \lambda_{\code{l}}} (\lambda)$
  $0 \le \code{k},\code{l} \le d$,
  $0 \le \code{i} < \code{n\_bas\_fcts}$; this matrix is overwritten
  on the next call of \code{(*D2\_phi[i])()}.
  We advocate the use of the \code{D2\_PHI()}-macro instead:
  \begin{center}
    \code{D2\_PHI(bfcts, i, lambda)}
  \end{center}
  %%
\kitem{D3\_PHI(), D4\_PHI()} These do similar things as the other
  hooks, however, they need not be present in a specific
  \verb|BAS_FCTS| implementation.
  %%
\kitem{PHI\_D()} the directional part of the basis functions if
  \code{rdim == }\DOW. \ALBERTA always factors vector-valued basis
  functions into a scalar factor times a directional part, so the
  actual value of the \code{i}-th basis functions has to be calculated
  as
  \begin{lstlisting}
    REAL_D value;
    AXEY_DOW(PHI(bfcts, i, lambda), PHI_D(bfcts, i, lambda), value);
  \end{lstlisting}
  Expanding all the macros and inline functions, the above is
  equivalent to
  \begin{lstlisting}
    REAL_D value;
    const REAL *vector = bfcts->phi_d[i](lambda, bfcts);
    REAL scalar = bfctgs->phi[i](lambda, bfcts);
    int k;

    for (k = 0; k < DIM_OF_WORLD; k++) {
      value][k] = scalar * vector[k];
    }
  \end{lstlisting}
  Note that \ALBERTA never caches the directional part of
  vector-valued basis functions in its \verb|QUAD_FAST| or other
  quadrature caches; it is assumed that it changes on an
  element-to-element basis. Vector-valued basis functions and the
  associated support functions are discussed in further detail below
  in Section \ref{S:vector_bfcts}.
  %%
\kitem{GRD\_PHI\_D()} The gradient of the directional part of a
  vector-valued basis-function instance. Note that \verb|GRD_PHI_D|
  may be empty if \verb|dir_pw_const == true|.
  %%
\kitem{D2\_PHI\_D()} The second derivative of the directional part of
  a vector-valued basis function instance. Note that \verb|D2_PHI_D|
  may be empty if \verb|dir_pw_const == true|.
  %%

  \hrulefill
  %%
\kitem{dir\_pw\_const} if this is set to \code{true} then the
  directional part of the vector valued \verb|BAS_FCTS|-instance (i.e.
  \code{rdim == }\DOW) is constant on each mesh element (e.g. the
  normal to a face on affine linear elements). If this is the case
  then the computation of the derivatives of the basis functions is
  drastically simplified. See below in Section \ref{S:vector_bfcts}.
  %%
\hyperitem{BAS_FCTS:trace_bas_fcts}{trace\_bas\_fcts} A pointer to a
  basis function structure describing the trace of the current
  basis-function set on the boundaries of the reference element. In
  the case of Lagrange elements, this is again a Lagrange space of the
  same degree, but one dimension lower. The trace-spaces form a chain,
  which finally is terminated by a dimensions-$0$ ``dummy'' basis
  function set.

  The trace space may, of course, be of other nature than the bulk
  basis function set. An element bubble, for instance, already has
  zero trace on the boundary. The trace-space of face-bubbles will be
  a \DOW-valued element bubble, pointing in direction of the normal on
  the lower-dimensional element and so on.

  The trace spaces play a role when boundary integrals involving basis
  functions are computed (see, for instance,
  \hyperref[T:BNDRY_OPERATOR_INFO]{\code{BNDRY\_OPERATOR\_INFO}}
  structure -- \secref{S:matrix_assemblage_scalar} -- or
  \hyperref[S:neumann_bound]{\code{bndry\_L2\_scp\_fct\_bas()}}).
  They are also used to define global traces of finite element
  function in the context of
  \hyperref[S:tracemesh_implementation]{trace meshes}, see
  \secref{S:tracemesh_implementation} and \secref{book:S:tracemeshes}
  on page \pageref{book:S:tracemeshes}.
  %% 
  \exampleref{Ex:int1_2d} shows the use of the trace-space in the
  context of an interpolation routine for linear basis functions.
  %%
\hyperitem{BAS_FCTS:trace_dof_map}{trace\_dof\_map[][][][]} The
  mapping of the local degrees of freedom from the trace-set to the
  bulk-set of local basis functions, for each co-dimension $1$
  face-simplex (``wall''). To be more concrete:
  \begin{itemize}
  \item $\code{dim} < 3$:
    \bv\begin{lstlisting}
   trace_dof_map[0][0][wall][trace_dof] == bulk_dof
\end{lstlisting}\ev
  \item $\code{dim} = 3$:
    \bv\begin{lstlisting}
   trace_dof_map[type > 0][orient < 0][wall][trace_dof] == bulk_dof
\end{lstlisting}\ev
    In this context, \code{type} and \code{orient} denote the
    respective components of the \hyperref[T:EL_INFO]{\code{EL\_INFO}}
    structure, compare also the conceptual discussion of trace-meshes
    in \secref{book:S:tracemeshes} on page
    \pageref{book:S:tracemeshes}.
  \end{itemize}
  %%
\hyperitem{BAS_FCTS:n_trace_bas_fcts}{n\_trace\_bas\_fcts[]} The
  dimension of the local trace-space, for each co-dimension $1$
  face-simplex. In the standard case, the trace-space has the same
  dimension on each wall, but in the context of
  \hyperref[S:init_element]{per-element initializers} (see
  \secref{S:init_element}) the dimension may vary from wall to wall.
  %%
\kitem{get\_dof\_indices(result, el, admin, self)}
  \idx{get_dof_indices()@{\code{get\_dof\_indices()}!entry in
      \code{BAS\_FCTS} structure}}
  pointer to a function which connects the set of local basis
  functions with its global DOFs (an implementation of the function
  $j_S$ in Section \ref{book:S:eval_fe});  \begin{description}
  \item[Parameters]~\hfill 

   \begin{descr}
    \kitem{DOF *result} Storage for the result; \code{result} must be
      the base-address of an array to \DOFs with at least
      \code{n\_bas\_fcts} elements, or \nil, in which case the result
      is returned in a statically allocated storage area which is
      overwritten on the next call to \verb|get_dof_indices()|.  On
      return \verb|result[i]| stores the global \DOF associated to the
      \code{i}--th basis function.
    \kitem{const EL *el} the current mesh-element;
    \kitem{const DOF\_ADMIN *admin} the \DOF-admin for the
      corresponding finite element space;
    \kitem{const BAS\_FCTS *self} a pointer to the current basis
      function instance; might be used if the set of local basis
      functions depends on the mesh element.
    \end{descr}
  \item[Return Value] A pointer to a \verb|const EL_DOF_VEC| element
    vector (see page \pageref{T:EL_DOF_VEC}) if
    \code{(result == NULL)} or \nil if \code{(result != NULL)}. The
    \code{vec} component of the \verb|EL_DOF_VEC| contains the data
    which otherwise would have been stored in \code{result}. The
    contents of the return value is overwritten on the next call to
    \verb|get_dof_indices()|. If the \verb|BAS_FCTGS|-instance forms
    part of a chain of basis functions (see \secref{S:bfcts_chains}),
    then only the \DOFs associated to this instance are computed. To
    get the \DOFs for all parts of the direct sum the global function
    \verb|get_dof_indices()| has to be called, see Sections
    \ref{S:fillgetelvec} and \ref{S:chain_impl}.
  \end{description}
  To reduce the potential of coding errors we advocate the use of the
  \verb|GET_DOF_INDICES()| macro:
  \begin{center}
    \verb|GET_DOF_INDICES(bfcts, result, el, admin)|
  \end{center}
  instead of calling
  \begin{center}
    \verb|bfcts->get_dof_indices(result, el, admin, bfcts)|
  \end{center}
  directly.
  %%

  \hrulefill
  %%
\kitem{get\_bound(bndry\_bits, el\_info, self)}
  \idx{get_bound()@{\code{get\_bound()}!entry in \code{BAS\_FCTS}
      structure}}
  pointer to a function which fills a vector with the boundary types
  of the basis functions.
  \begin{compatibility}
    In contrast to all previous versions of \ALBERTA the boundary-type
    of a given basis function is a bit-mask, and not a mere number.
    Each bit corresponds to the number that has been assigned to a
    given boundary segment in the macro-triangulation. Basis-functions
    tied to vertex-\DOFs, e.g., may belong to different boundary
    segments in which case the bit-mask may contain more than one bit
    set. This is further discussed in Section \ref{S:boundary}.
  \end{compatibility}
  Otherwise the calling conventions are similar to the conventions for
  \verb|get_dof_indices()| (see above), there also exists a macro
  \verb|GET_BOUND(self, bndry_bits, el_info)|.  This function
  needs boundary information; thus, all routines using this function
  on the elements need the \code{FILL\_BOUND} flag during mesh
  traversal.
  \begin{description}
  \item[Parameters]~\hfill

    \begin{descr}
      \kitem{BNDRY\_BITS *bndry\_bits} storage for the reuslt;
      \kitem{const EL\_INFO *el\_info} the current elements's
        \verb|EL_INFO| descriptor;
      \kitem{const BAS\_FCTS *self} a pointer to the current basis
        function instance.
    \end{descr}
  \item[Return Value] a pointer to a statically allocated storage area
    of type \verb|const EL_BNDRY_VEC|, see page
    \pageref{T:EL_BNDRY_VEC}.  If the \verb|BAS_FCTS|-instance forms
    part of a direct sum, then only the boundary bit-masks associated
    with this instance are computed. To get the information for all
    parts of the direct sum the global function \verb|get_bound()| has
    to be called, see Sections \ref{S:fillgetelvec} and
    \ref{S:chain_impl}.
  \end{description}

  \hrulefill

  \kitem{interpol[\_d|\_dow](coeff, el\_info, wall, n, indices, f, ud, thisptr)}
  %% 
  \idx{interpol@{\code{interpol[\_d|\_dow]}! entry in \code{BAS\_FCTS} structure}}
  %% 
  When using \ALBERTA routines for the interpolation of
  \code{REAL[\_D]} valued functions the \code{interpol[\_d]} function
  pointer must be set (for example the calculation of Dirichlet
  boundary values by \code{dirichlet\_bound()} described in Section
  \ref{S:dirichlet_bound}):

  The \code{interpol}-hooks are function-pointers to functionws which
  performs the local interpolation of a \code{REAL[\_D]} valued
  function on an element. If this instance of a local basis function
  set forms part of a chain of basis functions (see
  \secref{S:bfcts_chains}, then it is possible to call the functions
  \verb|el_interpol()| -- respectively their \code{...\_d} and
  \code{...\_dow} variants -- to interpolate \code{f} onto the local
  functions space defined by the entire chain, see
  \secref{S:fillgetelvec}. The \verb|BAS_FCTS.interpol|-hook will only
  perform the interpolation for a single member of such a chain.

  \begin{description}
  \item[Parameters]~\hfill

    \begin{descr}
    \kitem{EL\_REAL\_VEC *coeff} Mandatory, storage for the result. The vector
      valued version need an \verb|EL_REAL_D_VEC| respetively an
      \verb|EL_REAL_VEC_D|.
      %% 
    \kitem{const EL\_INFO *el\_info} Element descriptor.
      %% 
    \kitem{wall} If the interpolation is to be performed over the
      boundary of the mesh, then this is the number of the wall in
      \verb|EL_INFO| to integrate over, in this case only the
      coefficients for the basis functions with non-zero trace on the
      respective wall will be computed.
      %% 
    \kitem{n} number of items in \code{indices}. If the interpolation
      is to be performed for all local \code{DOF}s, then $-1$ should
      be passed for \code{n}.
      %%
    \kitem{indices} for selective interpolation of only some of the
      local \code{DOF}s, indices may contain as many entries as
      indicated by \code{n}. The components of \code{indices} are then
      the local \code{DOF} number for which the coefficients should be
      computed. If \code{indices == NULL}, then the coefficients for
      all local basis functions will be computed.
      %%
    \kitem{REAL (*f)(const EL\_INFO *el\_info, const QUAD *quad, int
        iq, void *ud)}
      The application provided function to interpolate onto the local
      function space defined by this local basis function set. For
      simple Lagrange elements \code{QUAD} will just be a ``lumping''
      quadrature rule, with ``quadrature'' nodes on the Lagrange nodes
      of the basis function set. But interpolation may in fact require
      larger efforts, in which case \code{QUAD} may be a ``real''
      quadrature rule. If the interpolation is to be taken over a
      boundary segment, then \code{QUAD} will be a co-dimension $1$
      quadrature rule, see also \secref{S:QUAD}.
      %%

      For interpolation of \DOW-valued basis functions \code{f} must
      be a function pointer of the format
      \bv\begin{lstlisting}
        const REAL *(*f)(REAL_D result, const EL_INFO *el_info, const QUAD *quad, int iq, void *ud);
      \end{lstlisting}\ev
      %%
    \kitem{ud} Application data-pointer, forwarded to \code{f} as last
      argument.
      %%
    \kitem{thisptr} A pointer to the local basis function set.
      To reduce the potential of coding errors we advocate the use of the
      \verb|INTERPOL()| macro:
      \begin{center}
        \verb|INTERPOL(bfcts, coeff, el_info, wall, n, indices, f, ud)|
      \end{center}
      instead of calling
      \begin{center}
        \verb|bfcts->interpol(coeff, el_info, wall, n, indices, f, ud, bfcts)|
      \end{center}
      directly. Likewise for \verb|INTERPOL_D()| and \verb|INTERPOL_DOW|.
    \end{descr}
  \item[Return Value] \code{void}.
  \end{description}

  \hrulefill

  \kitem{const EL\_INT\_VEC *}
  \kitem{(*get\_int\_vec)(int res[], const EL *el, const DOF\_INT\_VEC *dv)}
  \kitem{const EL\_REAL\_VEC *}
  \kitem{(*get\_real\_vec)(REAL res[], const EL *el, const DOF\_REAL\_VEC *dv)}
  \kitem{const EL\_REAL\_D\_VEC *}
  \kitem{(*get\_real\_d\_vec)(REAL\_D res[], const EL *el, const DOF\_REAL\_D\_VEC *dv)}
  \kitem{const EL\_REAL\_VEC\_D *}
  \kitem{(*get\_real\_vec\_d)(REAL res[], const EL *el, const DOF\_REAL\_VEC\_D *dv)}
  \kitem{const EL\_UCHAR\_VEC *}
  \kitem{(*get\_uchar\_vec)(U\_CHAR res[], const EL *el, const DOF\_UCHAR\_VEC *dv)}
  \kitem{const EL\_SCHAR\_VEC *}
  \kitem{(*get\_schar\_vec)(S\_CHAR res[], const EL *el, const DOF\_SCHAR\_VEC *dv)}
  \kitem{const EL\_PTR\_VEC *}
  \kitem{(*get\_ptr\_vec)(void *res[], const EL *el, const DOF\_PTR\_VEC *dv)}

  These are pointers to functions which fills a local per-element
  coefficient vector with values of a \code{DOF\_*\_VEC} at the DOFs
  of the basis functions. The calling convention is much the same as
  for the \code{get\_dof\_indices()}- and \code{get\_bound()}-hooks.
  Also, in the context of chains of basis functions (see
  \secref{S:bfcts_chains} below) it should be noted that these
  function hooks only work on a single component of that chain.
  However, each of the hooks has global function as counter-part which
  does the job for the entire chain, see \secref{S:fillgetelvec}.
  \begin{compatibility}
    The calling convention has changed with respect to previous
    versions of \ALBERTA. In particular, there are now dedicated
    structures for storing local per-element coefficient vectors.
  \end{compatibility}
  Note that the \code{get\_real\_vec\_d}-hook accepts a \emph{scalar}
  \code{res}-argument of type \code{REAL} and returns a
  \code{EL\_REAL\_VEC\_D} because in the context of vector-valued
  basis functions the coefficient vector are scalars, see bewlow
  \secref{S:vector_bfcts}.

  A detailed description of the parameters is only given for the
  \code{get\_real\_vec()}-hook. The others work similar.
  \begin{description}
  \item[Parameters] ~\hfill

    \begin{descr}
      \kitem{res} An optional argument to store the coefficients in.
      \code{res} maybe \nil, in which case the return value if a
      pointer to \code{dv->vec\_loc}. If \code{res} is non-\nil, then
      the return value of this function is \nil.
      \begin{compatibility}
        This implies that it is safe to call
        \code{get\_real\_vec(NULL, \dots)} repeatedly with
        \emph{different} \code{DOF\_REAL\_VEC} instances, since the
        storage area for the return value is now tied to the
        argument \code{dv}, reducing the potential for coding errors.

        On the other hand, previous versions were returning a pointer
        to the argument \code{res}, if that was non-\nil. Of course,
        that can no longer work, because the return value is now a
        fully-fledged element vector, while the \code{res}-argument is
        just a flat \code{C}-array.
      \end{compatibility}
      %%
      \kitem{el} The element to compute the local coefficients for.
      %%
      \kitem{dv} The global coefficient vector to fetch the
      data-values from.
    \end{descr}
  \item[Return Value] \nil if (\code{res != \nil}), and
    \code{dv->vec\_loc} otherwise.
  \end{description}

  \hrulefill

  \kitem{void  (*real\_refine\_inter)(DOF\_REAL\_VEC *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_coarse\_inter)(DOF\_REAL\_VEC *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_coarse\_restr)(DOF\_REAL\_VEC *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_d\_refine\_inter)(DOF\_REAL\_D\_VEC *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_d\_coarse\_inter)(DOF\_REAL\_D\_VEC *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_d\_coarse\_restr)(DOF\_REAL\_D\_VEC *, RC\_LIST\_EL *rcl, int n)}
  %%  
  \kitem{void  (*real\_refine\_inter\_d)(DOF\_REAL\_VEC\_D *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_coarse\_inter\_d)(DOF\_REAL\_VEC\_D *, RC\_LIST\_EL *rcl, int n)}
  %%
  \kitem{void  (*real\_coarse\_restr\_d)(DOF\_REAL\_VEC\_D *, RC\_LIST\_EL *rcl, int n)}
  %%
  ~\hfill
  Since the interpolation of finite element functions during
  refinement and coarsening, as well as the restriction of functionals
  during coarsening, strongly depend on the basis functions and its
  DOFs (compare Section \ref{book:S:inter_restrict}), pointers for
  functions which perform those operations can be stored at above
  function pointers. Not all basis-function implementations may come
  with a full set of interpolation respectively restriction routines.
  
  \emph{Note also that these function-pointers are not used
    automatically; it is the responsibility of the application program
    to hook them into the global \code{DOF\_REAL\_[\_D]\_VEC[\_D]}
    coefficient vectors, only then \ALBERTA will make use of these
    function during mesh adaptation.}
  
  To give some aid in performing this job in the context of the
  more-complicated direct-sums of finite element spaces, there are
  global functions
  %%
  \code{set\_refine\_inter[\_d|\_dow]()},
  \code{set\_coarse\_inter[\_d|\_dow]()},
  \code{set\_coarse\_resrt[\_d|\_dow]()}
  %%
  which do this job for an entire chain of coefficient vectors (i.e.
  hook the corresponding function from the relevant
  \code{BAS\_FCTS}-component into the hook in the hook of the
  \code{DOF}-vector instance). See also \secref{S:chain_impl}.

  In Section \ref{S:linear-fe} and \ref{S:quadratic-fe} examples for
  the implementation of those functions are given.

  Functionally, the three different flavours have the following meaning:
  \begin{descr}
    \kitem{real[\_d]\_refine\_inter[\_d]} pointer to a function for
    interpolating a \code{REAL[\_D]} valued function during
    refinement; i.e. for interpolating the
    \code{DOF\_REAL[\_D]\_VEC[\_D]} vector \code{vec} on the
    refinement patch \code{rcl} onto the finer grid; information about
    all parents of the refinement patch is accessible in the vector
    \code{rcl} of length \code{n}.
    %%
    \kitem{real[\_d]\_coarse\_inter[\_d]} pointer to a function for
    interpolating a \code{REAL[\_D]} valued function during
    coarsening; i.e. for interpolating the \code{DOF\_REAL[\_D]\_VEC}
    vector \code{vec} on the coarsening patch \code{rcl} onto the
    coarser grid; information about all parents of the refinement
    patch is accessible in the vector \code{rcl} of length \code{n}.
    %%
    \kitem{real[\_d]\_coarse\_restr[\_d]} pointer to a function for
    restriction of \code{REAL[\_D]} valued linear functionals during
    coarsening; i.e. for restricting the \code{DOF\_REAL[\_D]\_VEC}
    vector \code{vec} on the coarsening patch \code{rcl} onto the
    coarser grid; information about all parents of the refinement
    patch is accessible in the vector \code{rcl} of length \code{n}.    
  \end{descr}
  
  \hrulefill

  \kitem{ext\_data} A \code{void}-pointer to implementation dependent
  data tied to a specific basis-functions implementation. For standard
  Lagrange basis-functions, this pointer gives access to the local
  Lagrange nodes (``local'' meaning their barycentric coordinates) via the macro
  \bv\begin{lstlisting}
    const REAL_B *nodes = LAGRANGE_NODES(bfcts);
  \end{lstlisting}\ev
  Although this is defined as a macro in \code{alberta.h}, an
  application program must not assume that this macro will not change
  in future versions of the tool-box. The ordering of data behind the
  \code{ext\_data} pointer is opaque, nothing should be assumed about it.

  \hrulefill

\end{descr}

\begin{remark}\label{R:get_int_vec}
 The access to local element vectors via the 
\code{get\_*\_vec()} routines can also be done in a standard way by using the
\code{get\_dof\_indices()} function which must be supplied; if
some of the \code{get\_*\_vec()} are pointer to \nil, \ALBERTA fills in
pointers to some standard functions using \code{get\_dof\_indices()}. But a
specialized function may be faster. An example of such a standard routine
is:
\bv\begin{lstlisting}[name=default_get_int_vec,label=C:default_get_int_vec]
  const EL_INT_VEC *
  default_get_int_vec(int *vec, const EL *el, const DOF_INT_VEC *dof_vec)
  {
    FUNCNAME("get_int_vec");
    int *rvec = vec == NULL ? dof_vec->vec_loc->vec : vec;
    const BAS_FCTS *bas_fcts = dof_vec->fe_space->bas_fcts;
    int n_bas_fcts = bas_fcts->n_bas_fcts;
    DOF index[n_bas_fcts];
    int  i;

    GET_DOF_INDICES(dof_vec->fe_space->bas_fcts,
		    el, dof_vec->fe_space->admin, index);

    for (i = 0; i < n_bas_fcts; i++) {
      rvec[i] = dof_vec->vec[index[i]];
    }

    return vec ? NULL : dof_vec->vec_loc;
  }
\end{lstlisting}\ev
A specialized implementation for linear finite elements e.g. is more
efficient:
\idx{get_int_vec()@{\code{get\_int\_vec()}}!for linear elements}
\bv\begin{lstlisting}
const EL_INT_VEC *
get_int_vec(int *ivec, const EL *el, const DOF_INT_VEC *vec)
{
  FUNCNAME("get_int_vec");
  int            i, n0;
  int            *v = vec->vec;
  int            *rvec = ivec ? ivec : vec->vec_loc->vec;
  DOF            **dof = el->dof;

  n0 = vec->fe_space->admin->n0_dof[VERTEX];

  for (i = 0; i < N_VERTICES; i++) {
    rvec[i] = v[dof[i][n0]];
  }

  return vec ? rvec : vec->vec_loc;
}
\end{lstlisting}\ev
\end{remark}

Any kind of basis functions can be implemented by filling the
above described structure for basis functions. All non-optional
entries have to be defined. Since in the functions for 
reading and writing of meshes, the basis functions are identified
by their names, all used basis functions have to be registered
before using these functions. All Lagrange
finite elements described below are already registered, with
names \code{"lagrange1\_1d"} to \code{"lagrange4\_3d"}. The discontinuous 
polynomial finite elements are registered with \code{"disc\_lagrange0\_1d"} to 
\code{"disc\_lagrange2\_3d"}. Newly defined 
basis functions must use different names.
%
\fdx{new_bas_fcts@{\code{new\_bas\_fcts}}}
\bv\begin{lstlisting}
int new_bas_fcts(const BAS_FCTS *bas_fcts);
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{new\_bas\_fcts(bas\_fcts)} puts the new set of basis
  functions \code{bas\_fcts} to an internal list of all used basis
  functions; different sets of basis functions are identified by their
  \code{name}; thus, the member \code{name} of \code{bas\_fcts} must
  be a string with positive length holding a description; if an
  existing set of basis functions with the same name is found, the
  program stops with an error; if the entries \code{phi},
  \code{grd\_phi}, \code{get\_dof\_indices}, and \code{get\_bound} are
  not set, this also result in an error and the program stops.
\end{descr}
%
Basis functions can be accessed from that list by
\fdx{get_bas_fcts@{\code{get\_bas\_fcts}}}
\bv\begin{lstlisting}[label=F:get_bas_fcts_fct]
const BAS_FCTS *get_bas_fcts(const char *name)
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_bas\_fcts(name)} looks for a set of basis functions
       with name \code{name} in the internal list of all registered
       basis functions; if such a set is found, the return value
       is a pointer to the corresponding \code{BAS\_FCTS} structure,
       otherwise the return value is \nil.
\end{descr}
%
Lagrange elements can be accessed by
a call of \code{get\_lagrange()}, see Section \ref{S:get_lagrange},
discontinuous polynomial elements by \code{get\_discontinuous\_lagrange()}, 
see Section \ref{S:get_disc_lagrange}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Vector-valued basis functions}
\label{S:vector_bfcts}

As a new feature, the current version of this finite element toolbox
contains support for vector-valued basis functions like edge- or
face-bubbles, or Raviart-Thomas elements. The actual implementation of
those basis functions has been moved to an add-on module
\verb|libalbas|, see \secref{S:fancy_bas_fcts} below.  An example for
the implementation of face-bubbles can be found in
%%
\bv\begin{verbatim}
albertadist/add_ons/lib_albas/src/wall_bubbles.c
\end{verbatim}\ev

The current implementation assumes that it is efficient to factor
vector-valued basis functions into a scalar part which does \emph{not}
depend on the element geometry and a vector-valued part -- actually:
\DOW-valued -- which depends on the element geometry. This is
reflected by the \verb|BAS_FTCS| data-structure: the
\verb|BAS_FCTS.phi| jump-tables correspond to the scalar factor, while
the vector-valued part is stored in the jump-table
\verb|BAS_FCTS.phi_d|, and analogously for the jump-tables for the
derivatives.

\idx{Per-element initializers!vector-valued basis functions}
\idx{init_element()@{\code{init\_element()}}!vector-valued basis functions}
%%
Often vector-valued basis functions will carry a per-element
initializer, a function pointer
\verb|BAS_FCTS.init_element(el_info, self)|, which is invoked with the
current \verb|EL_INFO|-descriptor and the basis-function instance
itself. This function-hook can be used to update geometry information
like coordinates or wall-normals. In this context, the component
\verb|BAS_FCTS.fill_flags| is also of particular importance, it
contains the collection of mesh-traversal flags (see
\secref{S:traverse}) which are needed in order for the
\verb|init_element()|-hook to do its job properly. See also
\secref{S:init_element}.

If the evaluation of basis functions is computationally costly, then
it is of special importance to cache values of basis functions (and
their derivatives) at quadrature points (see \secref{S:QUAD_FAST}).
For vector-valued basis-functions, these caches are only maintained
for the scalar factor, as the vector-valued factor is assumed to vary
from element to element anyway. In order to simplify the
``recombination'' of the scalar- and the vector-factor, the library
provides three functions to perform this task (arguably this part of
the documentation would belong to \secref{S:QUAD_FAST}):

\bv\begin{lstlisting}
const REAL_D *const*get_quad_fast_phi_dow(const QUAD_FAST *cache);
const REAL_DB *const*get_quad_fast_grd_phi_dow(const QUAD_FAST *cache);
const REAL_DBB *const*get_quad_fast_D2_phi_dow(const QUAD_FAST *cache);
\end{lstlisting}\ev

These three function take a pointer to a properly initialized
\verb|QUAD_FAST|-structure as returned by \verb|get_quad_fast()| and
return arrays containing the values of the products of the scalar- and
vector-part of the basis-functions. This way an application can call
those functions, and then use the returned arrays in the same way it
used the components of the \verb|QUAD_FAST|-structure. The ordering of
indices is also the same, e.g.
\begin{example}
\bv\begin{lstlisting}
  const REAL_D *const*phi_d = get_quad_fast_phi_dow(qfast);

  for (iq = 0; iq < qfast->n_points; iq++) {
    for (b = 0; b < qfast->n_bas_fcts; b++) {
      do_something_fct(phi_d[iq][b]);
    }
  }
\end{lstlisting}\ev
\end{example}

It is also worth noting that the coefficient-vectors for
finite-element functions based on vector-valued basis-functions
contain scalars (the vector-nature of the finite element space is
induced by the vector-nature of the values of the basis functions,
thus the coefficients for the basis functions are scalars). \ALBERTA's
assemble infra-structure (see \secref{S:ass_tools}) has full support
for assembling linear systems based on vector-valued basis functions,
and to freely pair scalar- and \DOW-valued finite element spaces.
Actually, the support-functions for the assembling of the discrete
systems use up most of the compilation time during the installation of
the \ALBERTA-package.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Chains of basis function sets}
\label{S:bfcts_chains}

The current version of this finite element toolbox has support for
direct sums of finite-element spaces. Each component of such a sum is
defined by a set of local basis functions which is part of a chain of
basis functions. The chain-connectivity is implemented as a doubly
linked cyclic list, the corresponding list-link can be found in the
\verb|BAS_FCTS.chain| component. In order to chain single basis
function implementations together the support function
\verb|chain_bas_fcts()| has to be called:

\fdx{chain_bas_fcts@{\code{chain\_bas\_fcts}}}%
\bv\begin{lstlisting}
BAS_FCTS *chain_bas_fcts(const BAS_FCTS *head, BAS_FCTS *tail);
\end{lstlisting}\ev

\begin{descr}
  \kitem{chain\_bas\_fcts(head, tail)} Clone the set of
  basis-functions specified as \code{head}, if \code{tail != NULL},
  then add the copy of \code{head} as head to the list specified by
  \code{tail}.  The original instance of \code{head} is hooked into
  the copy using the \verb|BAS_FCTS.unchained| pointer; it remains a
  single, un-chained \verb|BAS_FCTS|-instance.  The chain-connectivity
  is implemented using the doubly-linked list-node \verb|BAS_FCTS.chain|.
  
  The chained basis functions will be given the name
  \begin{center}
    \verb|"HEAD_NAME#TAIL_NAME"|
  \end{center}
  
  During the construction of the name any \verb|"_Xd"|-suffixes are
  discarded in order not to make the name too complicated. At the
  end of the name-chain an appropriate \verb|_Xd|-suffix is added.
  The \verb|_Xd|-suffixes are used only for debugging, they are
  ignored everywhere else.
  
  A basis-function chain is cyclic. The trace-spaces of the given sets
  of basis functions are chained together accordingly.
  %%
  \idx{Per-element initializers!basis function chains}
  \idx{init_element()@{\code{init\_element()}}!basis function chains}
  \idx{Per-element initializers!direct sums of functions spaces}
  \idx{init_element()@{\code{init\_element()}}!direct sums of function spaces}
  %% 
  If any part of
  the chain needs a per-element initialization (see
  \secref{S:init_element}), then \code{chain\_bas\_fcts()} assigns the
  resulting chain a special \code{init\_element()} hook which follows
  the convention described in \secref{S:init_element} and which calls
  the per-element initializers of each member of the chain in turn.
  
  Note: this function does \emph{not} call \verb|new_bas_fcts()|; the
  caller has to do so after constructing the desired chain.

  More about direct sums of finite-element spaces should be found in
  \secref{S:chain_impl}. It is generally a bad idea to chain sets of
  basis functions together which are not linearly independent from
  each other \dots.

  \begin{example}
    Forming the velocity-part of the ``Mini''-element, and looping
    over the generated two-element chain, printing the name of the
    unchained instances. Note that the \verb|CHAIN_DO()|-macro rolls
    over the entire list, which is cyclic. So inside the loop
    \verb|bas_fcts| points to different components of the chain, after
    the loop \verb|bas_fcts| again points to the first instance of the
    chain.

    \emph{This is a certain potential for bugs when jumping out of the
      loop, using, e.g., a \code{break} statement. This should be
      avoided. \code{continue} statements should also be avoided
      because the trailing \code{CHAIN\_WHILE()}-part increments the
      list-pointer.}

    \bv\begin{lstlisting}
      lagrange = get_lagrange(dim, degree);
      bubble   = get_bas_fcts(dim, "Bubble");
      bas_fcts = chain_bas_fcts(lagrange, chain_bas_fcts(bubble, NULL));
      old_fcts = new_bas_fcts(bas_fcts);
      
      if (old_fcts != NULL) {
        MSG("Overriding old definition for \"%s\"\n", old_fcts->name);
      }

      MSG("New name: \"%s\"\n", bas_fcts->name);
      CHAIN_DO(bas_fcts, BAS_FCTS) {
        MSG("Rolling component name: \"%s\"\n", bas_fcts->name);
        MSG("Component name: \"%s\"\n", bas_fcts->unchained->name);
      } CHAIN_WHILE(bas_fcts, BAS_FCTS);
      MSG("Again, the name of the entire chain: \"%s\"\n", bas_fcts->name);
    \end{lstlisting}\ev
  \end{example}
\end{descr}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Lagrange finite elements}
\label{S:Lagrange_elements}

\ALBERTA provides Lagrange finite elements up to order four
which are described in the following sections. Lagrange finite
elements are given by $\Pbar = \P_p(\Sbar)$ (polynomials of degree $p
\in \N$ on $\Sbar$) and they are globally continuous.  They are
uniquely determined by the values at the associated Lagrange nodes
$\big\{x_i\big\}$.  The Lagrange basis functions $\big\{\phi_i\big\}$
satisfy
\[
\phi_i(x_j) = \delta_{ij} \qquad \mbox{for } i,j = 1,\ldots, N = \dim\ X_h.
\]
Now, consider the basis functions $\{\pbar^i\}_{i = 1}^m$ of $\Pbar$
with the associated Lagrange nodes $\{\lambda_i\}_{i = 1}^m$ given
in barycentric coordinates:
\[
\pbar^i(\lambda_j) = \delta_{ij} \qquad \mbox{for } i,j = 1,\ldots, m.
\]
Basis functions are located at the vertices, center, edges, or faces
of an element. The corresponding DOF is a vertex, center, edge,
or face DOF, respectively. The boundary type of a basis
function is the boundary type of the associated vertex (or edge or face).
Basis functions at the center are always \code{INTERIOR}.
Such boundary information is filled by the \code{get\_bound()} function
in the \code{BAS\_FCTS} structure and is straight forward.

The interpolation coefficient for a function $f$ for basis function $\pbar^i$
on element $S$ is the value of $f$ at the Lagrange node: $f(x(\lambda_i))$.
These coefficients are calculated by the \code{interpol[\_d]()} function
in the \code{BAS\_FCTS} structure. Examples for both functions
are given below for linear finite elements.

\subsubsection{Piecewise linear finite elements}\label{S:linear-fe}

Piecewise linear, continuous finite elements are uniquely defined by
their values at the vertices of the triangulation. On each element we
have \code{N\_VERTICES(dim)} basis functions which are the barycentric
coordinates of the element.  Thus, in 1d we have two, in 2d we have
three, and in 3d four basis functions for Lagrange elements of first
order; the basis functions and the corresponding Lagrange nodes in
barycentric coordinates are shown in Tables \ref{T:P1_1d},
\ref{T:P1_2d} and \ref{T:P1_3d}. The calculation of derivatives is
straight forward.
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|c}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{c|}{\text{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
\pbar^\code{0}(\lambda) & = & \lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0)\\
\pbar^\code{1}(\lambda) & = & \lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1)\\
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for linear finite elements in 1d.}
\label{T:P1_1d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
\pbar^\code{0}(\lambda) & = & \lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0,0)\\
\pbar^\code{1}(\lambda) & = & \lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1,0)\\
\pbar^\code{2}(\lambda) & = & \lambda_\code{2} &
\mbox{vertex \code{2}} & \lambda^\code{2} & = & (0,0,1)\\
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for linear finite elements in 2d.}
\label{T:P1_2d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}%\displaystyle
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
\pbar^\code{0}(\lambda) & = & \lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0,0,0)\\
\pbar^\code{1}(\lambda) & = & \lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1,0,0)\\
\pbar^\code{2}(\lambda) & = & \lambda_\code{2} &
\mbox{vertex \code{2}} & \lambda^\code{2} & = & (0,0,1,0)\\
\pbar^\code{3}(\lambda) & = & \lambda_\code{3} &
\mbox{vertex \code{3}} & \lambda^\code{3} & = & (0,0,0,1)\\
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for linear finite elements in 3d.}
\label{T:P1_3d}
\end{table}
The global DOF index of the \code{i}--th basis functions on element
\code{el} is stored for linear finite elements at
\bv\begin{lstlisting}
el->dof[i][admin->n0_dof[VERTEX]]
\end{lstlisting}\ev
Setting \code{nv = admin->n0\_dof[VERTEX]} the associated DOFs are shown
in Figure~\ref{F:linear_dof}.

For linear finite elements we want to give examples
for the implementation of some routines in the corresponding 
\code{BAS\_FCTS} structure. 

\begin{example}[Accessing DOFs for piecewise linear finite elements]
The implementation of \code{get\_dof\_indices()} can be done in
as in the following 2d example code, compare Figure~\ref{F:linear_dof} and 
Remark~\ref{R:get_int_vec} with the implementation of 
the function \code{get\_int\_vec()}
for accessing a local element vector from a global \code{DOF\_INT\_VEC}
for piecewise linear finite elements.
%%
\idx{get_dof_indices()@{\code{get\_dof\_indices()}}!for linear elements}
\bv\begin{lstlisting}[name=get_dof_indices1_2d,label=get_dof_indices1_2d]
  static const EL_DOFVEC *
  get_dof_indices1_2d(DOF *vec, const EL *el, const DOF_ADMIN *admin,
                      const BAS_FCTS *thisptr)
  {
    static DEF_EL_VEC_CONST(DOF, rvec_space, N_BAS_LAG_1_2d, N_BAS_LAG_1_2d);
    DOF *rvec = vec ? vec : rvec_space->vec;
    int n0, /* node, */ ibas;
    DOF **dofptr = el->dof, dof;

    /* node = admin->mesh->node[VERTEX]; */
    n0   = admin->n0_dof[VERTEX];
    for (ibas = 0; ibas < N_BAS_LAG_1_2D; ibas++) {
      dof = dofptr[/* node+ */ibas][n0];
      body;
    }

    return vec ? NULL : rvec_space;
  }
\end{lstlisting}\ev
\begin{figure}[hbpt]
\centerline{\includegraphics[scale=1.0]{EPS/linear_dof}}
\vspace{-2mm}
\caption[DOFs and local numbering of the basis functions for linear
elements]{DOFs and local numbering of the basis functions for linear
  elements in 2d and 3d.}
\label{F:linear_dof}
\end{figure}
\end{example}

\begin{example}[Accessing the boundary types of DOFs for piecewise linear 
                finite elements in 2d]
The \code{get\_bound()} function fills the \code{bound}
vector with the boundary type of the vertices, shown here for 2d:
%%
\begin{samepage}
\idx{get_bound()@{\code{get\_bound()}}!for linear elements}
\bv\begin{lstlisting}
static const EL_BNDRY_VEC *
get_bound1_2d(BNDRY_FLAGS *vec, const EL_INFO *el_info, const BAS_FCTS *thisptr)
{
  FUNCNAME("get_bound1_2d");
  static DEF_EL_VEC_CONST(BNDRY, rvec_space, N_BAS_LAG_1_2d, N_BAS_LAG_1_2d););
  BNDRY_FLAGS *rvec = vec ? vec : rvec_space->vec;
  int            i;

  DEBUG_TEST_FLAG(FILL_BOUND, el_info);

  for (i = 0; i < N_VERTICES_2D; i++) {
    BNDRY_FLAGS_CPY(rvec[i], el_info->vertex_bound[i]);
  }

  return vec ? NULL : rvec_space;
}
\end{lstlisting}\ev
\end{samepage}
\end{example}

\begin{example}[Interpolation for piecewise linear finite elements in 2d]%
\label{Ex:int1_2d}
For the interpolation \code{interpol()} routine we have to evaluate
the given function at the vertices. Assuming a 2d mesh, the
interpolation can be implemented as follows. Note the use of a
``lumping'' quadrature rule; the application supplied function
\code{f()} has the task to return its value at the quadrature point
\code{iq}.
%%
\idx{interpol() for linear elements}
\bv\begin{lstlisting}
static void interpol1_2d(EL_REAL_VEC *el_vec,
                         const EL_INFO *el_info, int wall,
                         int no, const int *b_no,
                         REAL (*f)(const EL_INFO *el_info,
                                   const QUAD *quad, int iq,
                                   void *ud),
                         void *f_data,
                         const BAS_FCTS *thisptr)
{
  FUNCNAME("interpol1_2d");
  LAGRANGE_DATA *ld = &lag_1_2d_data;
  REAL *rvec = el_vec->vec;
  const QUAD *lq;
  const int *trace_map;
  int i;

  DEBUG_TEST_EXIT(ld->lumping_quad != NULL,
                  "called for uninitialized Lagrange basis functions\n");

  if (wall < 0) {
    lq = ld->lumping_quad;
    trace_map = NULL;
  } else {
    int type = el_info->el_type > 0;
    int orient = el_info->orientation < 0;
    lq = &ld->trace_lumping_quad[type][orient][wall];
    trace_map = thisptr->trace_dof_map[type][orient][wall];
  }

  DEBUG_TEST_EXIT(!b_no || (no >= 0 && no <= lq->n_points),
                  "not for %d points\n", no);

  el_vec->n_components = thisptr->n_bas_fcts;

  if (b_no) {
    for (i = 0; i < no; i++) {
      int ib = wall < 0 ? b_no[i] : trace_map[b_no[i]];
      rvec[ib] = f(el_info, lq, b_no[i], f_data);
    }
  } else {
    for (i = 0; i < lq->n_points; i++) {
      int ib = wall < 0 ? i : trace_map[i];
      rvec[ib] = f(el_info, lq, i, f_data);
    }
  }
}
\end{lstlisting}\ev
\end{example}

\begin{example}[Interpolation and restriction routines
                for piecewise linear finite elements in 2d]
The implementation of functions for interpolation during refinement and
restriction of linear functionals during coarsening is very simple for
linear elements; we do not have to loop over the refinement patch since
only the vertices at the refinement/coarsening edge and the new DOF at
the midpoint are involved in this process. No interpolation during
coarsening has to be done since all values at the remaining
vertices stay the same; no function has to be defined.
\idx{real_refine_inter()@{\code{real\_refine\_inter()}}!for linear elements}
\bv\begin{lstlisting}
static void real_refine_inter1_2d(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
  FUNCNAME("real_refine_inter1_2d");
  EL      *el;
  REAL    *vec = nil;
  DOF     dof_new, dof0, dof1;
  int     n0;

  if (n < 1) return;
  GET_DOF_VEC(vec, drv);
  n0 = drv->fe_space->admin->n0_dof[VERTEX];
  el = list->el_info.el;
  dof0 = el->dof[0][n0];           /* 1st endpoint of refinement edge */
  dof1 = el->dof[1][n0];           /* 2nd endpoint of refinement edge */
  dof_new = el->child[0]->dof[2][n0];  /*     newest vertex is dim==2 */
  vec[dof_new] = 0.5*(vec[dof0] + vec[dof1]);

  return;
}
\end{lstlisting}\ev
\idx{real_coarse_restr()@{\code{real\_coarse\_restr()}}!for linear elements}
\bv\begin{lstlisting}
static void real_coarse_restr1_2d(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
  FUNCNAME("real_coarse_restr1_2d");
  EL      *el;
  REAL    *vec = nil;
  DOF     dof_new, dof0, dof1;
  int     n0;

  if (n < 1) return;
  GET_DOF_VEC(vec, drv);
  n0 = drv->fe_space->admin->n0_dof[VERTEX];
  el = list->el_info.el;
  dof0 = el->dof[0][n0];           /* 1st endpoint of refinement edge */
  dof1 = el->dof[1][n0];           /* 2nd endpoint of refinement edge */
  dof_new = el->child[0]->dof[2][n0];    /*   newest vertex is dim==2 */
  vec[dof0] += 0.5*vec[dof_new];
  vec[dof1] += 0.5*vec[dof_new];

  return;
}
\end{lstlisting}\ev
\end{example}

\subsubsection{Piecewise quadratic finite elements}\label{S:quadratic-fe}

Piecewise quadratic, continuous finite elements are uniquely defined by
their values at the vertices and the edges' midpoints (center in 1d)
of the triangulation.  In 1d we have three, in 2d we have six, and in
3d we have ten basis functions for Lagrange elements of second order;
the basis functions and the corresponding Lagrange nodes in
barycentric coordinates are shown in Tables \ref{T:P2_1d},
\ref{T:P2_2d}, and \ref{T:P2_3d}.
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}%\displaystyle
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
\pbar^\code{0}(\lambda) & = & \lambda_\code{0} (2 \lambda_\code{0} - 1) &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0)\\[1mm]
\pbar^\code{1}(\lambda) & = & \lambda_\code{1} (2 \lambda_\code{1} - 1) &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1)\\[1mm]
\pbar^\code{2}(\lambda) & = & 4 \lambda_\code{0}\,\lambda_\code{1} &
\mbox{center}& \lambda^\code{2} & = & (\half,\half)\\[1mm]
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for quadratic finite elements in 1d.}
\label{T:P2_1d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}%\displaystyle
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
\pbar^\code{0}(\lambda) & = & \lambda_\code{0} (2 \lambda_\code{0} - 1) &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0,0)\\[1mm]
\pbar^\code{1}(\lambda) & = & \lambda_\code{1} (2 \lambda_\code{1} - 1) &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1,0)\\[1mm]
\pbar^\code{2}(\lambda) & = & \lambda_\code{2} (2 \lambda_\code{2} - 1) &
\mbox{vertex \code{2}} & \lambda^\code{2} & = & (0,0,1)\\[1mm]
\pbar^\code{3}(\lambda) & = & 4 \lambda_\code{1}\,\lambda_\code{2} &
\mbox{edge \code{0}}& \lambda^\code{3} & = & (0,\half,\half)\\[1mm]
\pbar^\code{4}(\lambda) & = & 4 \lambda_\code{2}\,\lambda_\code{0} &
\mbox{edge \code{1}} & \lambda^\code{4} & = & (\half,0,\half)\\[1mm]
\pbar^\code{5}(\lambda) & = & 4 \lambda_\code{0}\,\lambda_\code{1} &
\mbox{edge \code{2}}& \lambda^\code{5} & = & (\half,\half,0)\\[1mm]
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for quadratic finite elements in 2d.}
\label{T:P2_2d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}%\displaystyle
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
\pbar^\code{0}(\lambda) & = & \lambda_\code{0} (2 \lambda_\code{0} - 1)&
\mbox{vertex \code{0}}& \lambda^\code{0} & = & (1,0,0,0)\\[1mm]
\pbar^\code{1}(\lambda) & = & \lambda_\code{1} (2 \lambda_\code{1} - 1)&
\mbox{vertex \code{1}}& \lambda^\code{1} & = & (0,1,0,0)\\[1mm]
\pbar^\code{2}(\lambda) & = & \lambda_\code{2} (2 \lambda_\code{2} - 1)&
\mbox{vertex \code{2}}& \lambda^\code{2} & = & (0,0,1,0)\\[1mm]
\pbar^\code{3}(\lambda) & = & \lambda_\code{3} (2 \lambda_\code{3} - 1)&
\mbox{vertex \code{3}}& \lambda^\code{3} & = & (0,0,0,1)\\[1mm]
\pbar^\code{4}(\lambda) & = & 4 \lambda_\code{0}\,\lambda_\code{1} &
\mbox{edge \code{0}}& \lambda^\code{4} & = & (\half,\half,0,0)\\[1mm]
\pbar^\code{5}(\lambda) & = & 4 \lambda_\code{0}\,\lambda_\code{2} &
\mbox{edge \code{1}}& \lambda^\code{5} & = & (\half,0,\half,0)\\[1mm]
\pbar^\code{6}(\lambda) & = & 4  \lambda_\code{0}\,\lambda_\code{3} &
\mbox{edge \code{2}}& \lambda^\code{6} & = & (\half,0,0,\half)\\[1mm]
\pbar^\code{7}(\lambda) & = & 4 \lambda_\code{1}\,\lambda_\code{2} &
\mbox{edge \code{3}}& \lambda^\code{7} & = & (0,\half,\half,0)\\[1mm]
\pbar^\code{8}(\lambda) & = & 4  \lambda_\code{1}\,\lambda_\code{3} &
\mbox{edge \code{4}}& \lambda^\code{8} & = & (0,\half,0,\half)\\[1mm]
\pbar^\code{9}(\lambda) & = & 4  \lambda_\code{2}\,\lambda_\code{3} &
\mbox{edge \code{5}} & \lambda^\code{9} & = & (0,0,\half,\half)\\[1mm]
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for quadratic finite elements in 3d.}
\label{T:P2_3d}
\end{table}
\begin{figure}[htbp]
\centerline{\includegraphics[scale=1.0]{EPS/quadratic_dof}}
\vspace{-2mm}
\caption[DOFs and local numbering of the basis functions for quadratic
elements]{DOFs and local numbering of the basis functions for
  quadratic elements in 2d and 3d.}
\label{F:quadratic_dof}
\end{figure}

The associated DOFs for basis functions at vertices/edges are located at
the vertices/edges of the element; the entry in the vector of DOF
indices at the vertices/edges is determined by the vertex/edge offset
in the corresponding \code{admin} of the finite element space: 
the DOF index of the \code{i}--th basis functions on element \code{el} is
\bv\begin{lstlisting}
el->dof[i][admin->n0_dof[VERTEX]]
\end{lstlisting}\ev
for $\code{i = 0,\ldots,N\_VERTICES-1}$ and
\bv\begin{lstlisting}
el->dof[i][admin->n0_dof[EDGE]]
\end{lstlisting}\ev
for $\code{i = N\_VERTICES,\ldots,N\_VERTICES+N\_EDGES-1}$. Here we
used the fact, that for quadratic elements DOFs are located at the
vertices and the edges on the mesh. Thus, regardless of any other
set of  DOFs, the offset \code{mesh->node[VERTEX]} is zero and
\code{mesh->node[EDGE]} is \code{N\_VERTICES}.

Setting \code{nv = admin->n0\_dof[VERTEX]} and 
\code{ne = admin->n0\_dof[EDGE]}, the associated DOFs are shown in
Figure~\ref{F:quadratic_dof}.

\begin{example}[Accessing DOFs for piecewise quadratic finite elements]
The function \code{get\_dof\_indices()} for quadratic finite elements
can be implemented in 2d by (compare Figure~\ref{F:quadratic_dof}):
%%
\idx{get_dof_indices()@{\code{get\_dof\_indices()}}!for quadratic elements}
\bv\begin{lstlisting}
static const EL_DOF_VEC *
get_dof_indices2_2d(DOF *vec, const EL *el, const DOF_ADMIN *admin,
		    const BAS_FCTS *thisptr)
{
  static DEF_EL_VEC_CONST(DOF, rvec_space, N_BAS_LAG_2_2D, N_BAS_LAG_2_2D);
  DOF_VEC_DOF *rvec = vec ? vec : rvec_space->vec;
  int n0, ibas, inode;
  DOF **dofptr = el->dof, dof;

  n0 = (admin)->n0_dof[VERTEX];
  for (ibas = inode = 0; ibas < N_VERTICES_2D; inode++, ibas++) {
    dof = dofptr[inode][n0];
    body;
  }
  n0 = (admin)->n0_dof[EDGE];
  for (inode = 0; inode < N_EDGES_2D; inode++, ibas++) {
    dof = dofptr[N_VERTICES_2D+inode][n0];
    body;
  }

  return vec ? NULL : rvec_space;
}
\end{lstlisting}\ev
\end{example}

The boundary type of a basis functions at a vertex is the the boundary
type of the vertex, and the boundary type of a basis function at an
edge is the boundary type of the edge. The \code{i}--th interpolation
coefficient of a function $f$ on element $S$ is just
$f(x(\lambda_\code{i}))$. The implementation is similar to that for
linear finite elements and is not shown here.

The implementation of functions for interpolation during refinement
and coarsening and the restriction during coarsening becomes more
complicated and differs between the dimensions. Here we have to set
values for all elements of the refinement patch. The interpolation
during coarsening in not trivial anymore. As an example of such
implementations we present the interpolation during refinement for 2d
and 3d.

\begin{example}[Interpolation during refinement for piecewise quadratic
                finite elements in 2d]
We have to set values for the new vertex in the refinement edge,
and for the two midpoints of the bisected edge. Then we have to set
the value for the midpoint of the common edge of the two children of
the bisected triangle and we have to set the corresponding value on
the neighbor in the case that the refinement edge is not a boundary
edge:
%%
\idx{real_refine_inter()@{\code{real\_refine\_inter()}}!for quadratic elements}
\bv\begin{lstlisting}[name=real_refine_inter2_3d,label=C:real_refine_inter2_3d]
static void real_refine_inter2_3d(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
  FUNCNAME("real_refine_inter2_3d");
  DOF pdof[N_BAS_LAG_2_3D];
  DOF cdof[N_BAS_LAG_2_3D];
  EL        *el;
  REAL      *v = NULL;
  DOF       cdofi;
  int       i, lr_set;
  int       node0, n0;
  const DOF_ADMIN *admin;
  const BAS_FCTS *bas_fcts;

  if (n < 1) return;
  el = list->el_info.el;

  GET_DOF_VEC(v, drv);
  if (!drv->fe_space)
  {
    ERROR("no fe_space in dof_real_vec %s\n", NAME(drv));
    return;
  }
  else if (!drv->fe_space->bas_fcts)
  {
    ERROR("no basis functions in fe_space %s\n", NAME(drv->fe_space));
    return;
  }
  GET_STRUCT(admin, drv->fe_space);
  GET_STRUCT(bas_fcts, drv->fe_space);

  get_dof_indices2_3d(pdof, el, admin, bas_fcts);

  node0 = drv->fe_space->mesh->node[EDGE];
  n0 = admin->n0_dof[EDGE];

/*--------------------------------------------------------------------------*/
/*  values on child[0]                                                      */
/*--------------------------------------------------------------------------*/

  get_dof_indices2_3d(cdof, el->child[0], admin, bas_fcts);

  v[cdof[3]] = (v[pdof[4]]);
  v[cdof[6]] = (0.375*v[pdof[0]] - 0.125*v[pdof[1]]
		+ 0.75*v[pdof[4]]);
  v[cdof[8]] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
		+ 0.5*(v[pdof[5]] + v[pdof[7]]));
  v[cdof[9]] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
		+ 0.5*(v[pdof[6]] + v[pdof[8]]));

/*--------------------------------------------------------------------------*/
/*  values on child[1]                                                      */
/*--------------------------------------------------------------------------*/

  cdofi = el->child[1]->dof[node0+2][n0];
  v[cdofi] = (-0.125*v[pdof[0]] + 0.375*v[pdof[1]]
	      + 0.75*v[pdof[4]]);

/*--------------------------------------------------------------------------*/
/*   adjust neighbour values                                                */
/*--------------------------------------------------------------------------*/

  for (i = 1; i < n; i++)
  {
    el = list[i].el_info.el;
    get_dof_indices2_3d(pdof, el, admin, bas_fcts);

    lr_set = 0;
    if (list[i].neigh[0]  &&  list[i].neigh[0]->no < i)
      lr_set = 1;

    if (list[i].neigh[1]  &&  list[i].neigh[1]->no < i)
      lr_set += 2;

    DEBUG_TEST_EXIT(lr_set, "no values set on both neighbours\n");

/*--------------------------------------------------------------------------*/
/*  values on child[0]                                                      */
/*--------------------------------------------------------------------------*/

    switch (lr_set)
    {
    case 1:
      cdofi = el->child[0]->dof[node0+4][n0];
      v[cdofi] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
		  + 0.5*(v[pdof[5]] + v[pdof[7]]));
      break;
    case 2:
      cdofi = el->child[0]->dof[node0+5][n0];
      v[cdofi] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
		  + 0.5*(v[pdof[6]] + v[pdof[8]]));
    }
  }
  return;
}
\end{lstlisting}\ev
\end{example}

\begin{example}[Interpolation during refinement for piecewise quadratic
                finite elements in 3d]
Here, we first have to set values for all DOFs that belong to the
first element of the refinement patch. Then we have to loop over the
refinement patch and set all DOFs that have not previously been set on
another patch element. In order to set values only once, by the
variable \code{lr\_set} we check, if a common DOFs with a left or
right neighbor is set by the neighbor. Such values are already set
if the neighbor is a prior element in the list. Since all values
are set on the first element for all subsequent elements there
must be DOFs which have been set by another element.
\idx{real_refine_inter@{\code{real\_refine\_inter()}}!for quadratic elements}
\bv\begin{lstlisting}
static void real_refine_inter2_3d(DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
  FUNCNAME("real_refine_inter2_3d");
  EL        *el;
  REAL      *v = nil;
  const DOF *cdof;
  DOF       pdof[N_BAS2_3D], cdofi;
  int       i, lr_set;
  int       node0, n0;
  const DOF       *(*get_dof_indices)(const EL *, const DOF_ADMIN *, DOF *);
  const DOF_ADMIN *admin;

  if (n < 1) return;
  el = list->el_info.el;

  GET_DOF_VEC(v, drv);
  if (!drv->fe_space)
  {
    ERROR("no fe_space in dof_real_vec %s\n", NAME(drv));
    return;
  }
  else if (!drv->fe_space->bas_fcts)
  {
    ERROR("no basis functions in fe_space %s\n", NAME(drv->fe_space));
    return;
  }
  get_dof_indices = drv->fe_space->bas_fcts->get_dof_indices;
  GET_STRUCT(admin,drv->fe_space);

  get_dof_indices(el, admin, pdof);

  node0 = drv->fe_space->mesh->node[EDGE];
  n0 = admin->n0_dof[EDGE];

/*--------------------------------------------------------------------------*/
/*  values on child[0]                                                      */
/*--------------------------------------------------------------------------*/

  cdof = get_dof_indices(el->child[0], admin, nil);

  v[cdof[3]] = (v[pdof[4]]);
  v[cdof[6]] = (0.375*v[pdof[0]] - 0.125*v[pdof[1]] 
                + 0.75*v[pdof[4]]);
  v[cdof[8]] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
                + 0.5*(v[pdof[5]] + v[pdof[7]]));
  v[cdof[9]] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
                + 0.5*(v[pdof[6]] + v[pdof[8]]));

/*--------------------------------------------------------------------------*/
/*  values on child[1]                                                      */
/*--------------------------------------------------------------------------*/
  
  cdofi = el->child[1]->dof[node0+2][n0];
  v[cdofi] = (-0.125*v[pdof[0]] + 0.375*v[pdof[1]] 
              + 0.75*v[pdof[4]]);

/*--------------------------------------------------------------------------*/
/*   adjust neighbour values                                                */
/*--------------------------------------------------------------------------*/
  
  for (i = 1; i < n; i++)
  {
    el = list[i].el_info.el;
    get_dof_indices(el, admin, pdof);

    lr_set = 0;
    if (list[i].neigh[0]  &&  list[i].neigh[0]->no < i)
      lr_set = 1;

    if (list[i].neigh[1]  &&  list[i].neigh[1]->no < i)
      lr_set += 2;

    DEBUG_TEST_EXIT(lr_set, "no values set on both neighbours\n");

/*--------------------------------------------------------------------------*/
/*  values on child[0]                                                      */
/*--------------------------------------------------------------------------*/

    switch (lr_set)
    {
    case 1:
      cdofi = el->child[0]->dof[node0+4][n0];      
      v[cdofi] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
                  + 0.5*(v[pdof[5]] + v[pdof[7]]));
      break;
    case 2:
      cdofi = el->child[0]->dof[node0+5][n0];      
      v[cdofi] = (0.125*(-v[pdof[0]] - v[pdof[1]]) + 0.25*v[pdof[4]]
                  + 0.5*(v[pdof[6]] + v[pdof[8]]));
    }
  }
  return;
}
\end{lstlisting}\ev
\end{example}

\subsubsection{Piecewise cubic finite elements}\label{S:cubic-fe}

For Lagrange elements of third order we have four basis functions in
1d, ten basis functions in 2d, and 20 in 3d; the basis functions and
the corresponding Lagrange nodes in barycentric coordinates are shown
in Tables \ref{T:P3_1d}, \ref{T:P3_2d}, and \ref{T:P3_3d}.
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
%
\pbar^\code{0}(\lambda) & = & 
\half (3 \lambda_\code{0} - 1)(3 \lambda_\code{0} - 2)\lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0)\\[1mm]
%
\pbar^\code{1}(\lambda) & = &
\half (3 \lambda_\code{1} - 1)(3 \lambda_\code{1} - 2)\lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1)\\[1mm]
%
\pbar^\code{2}(\lambda) & = & 
\frac92 (3 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{1}&
\mbox{center}& \lambda^\code{2} & = & (\frac23,\frac13)\\[1mm]
\pbar^\code{3}(\lambda) & = & 
\frac92 (3 \lambda_\code{1} - 1)\lambda_\code{1}\lambda_\code{0}&
\mbox{center}& \lambda^\code{3} & = & (\frac13,\frac23)\\[1mm]
%
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for cubic finite elements in 1d.}
\label{T:P3_1d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
%
\pbar^\code{0}(\lambda) & = & 
\half (3 \lambda_\code{0} - 1)(3 \lambda_\code{0} - 2)\lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0,0)\\[1mm]
%
\pbar^\code{1}(\lambda) & = &
\half (3 \lambda_\code{1} - 1)(3 \lambda_\code{1} - 2)\lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1,0)\\[1mm]
%
\pbar^\code{2}(\lambda) & = &
\half (3 \lambda_\code{2} - 1)(3 \lambda_\code{2} - 2)\lambda_\code{2} &
\mbox{vertex \code{2}} & \lambda^\code{2} & = & (0,0,1)\\[1mm]
%
\pbar^\code{3}(\lambda) & = & 
\frac92 (3 \lambda_\code{1} - 1)\lambda_\code{1}\lambda_\code{2}&
\mbox{edge \code{0}}& \lambda^\code{3} & = & (0,\frac23,\frac13)\\[1mm]
\pbar^\code{4}(\lambda) & = & 
\frac92 (3 \lambda_\code{2} - 1)\lambda_\code{2}\lambda_\code{1}&
\mbox{edge \code{0}}& \lambda^\code{4} & = & (0,\frac13,\frac23)\\[1mm]
%
\pbar^\code{5}(\lambda) & = & 
\frac92 (3 \lambda_\code{2} - 1)\lambda_\code{2}\lambda_\code{0}&
\mbox{edge \code{1}}& \lambda^\code{5} & = & (\frac13,0,\frac23)\\[1mm]
\pbar^\code{6}(\lambda) & = & 
\frac92 (3 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{2}&
\mbox{edge \code{1}}& \lambda^\code{6} & = & (\frac23,0,\frac13)\\[1mm]
%
\pbar^\code{7}(\lambda) & = & 
\frac92 (3 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{1}&
\mbox{edge \code{2}}& \lambda^\code{7} & = & (\frac23,\frac13,0)\\[1mm]
\pbar^\code{8}(\lambda) & = & 
\frac92 (3 \lambda_\code{1} - 1)\lambda_\code{1}\lambda_\code{0}&
\mbox{edge \code{2}}& \lambda^\code{8} & = & (\frac13,\frac23,0)\\[1mm]
%
\pbar^\code{9}(\lambda) & = & 
27 \lambda_\code{0}\lambda_\code{1}\lambda_\code{2}&
\mbox{center}& \lambda^\code{9} & = & (\frac13,\frac13,\frac13)\\[1mm]
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for cubic finite elements in 2d.}
\label{T:P3_2d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
%
\pbar^\code{0}(\lambda) & = & \half (3 \lc{0} - 1)(3 \lc{0} - 2)\lc{0} 
& \mbox{vertex \code{0}} & \lambda^\code{0} & = &  (1,0,0,0)\\[1mm]
%
\pbar^\code{1}(\lambda) & = & \half (3 \lc{1} - 1)(3 \lc{1} - 2)\lc{1}  
& \mbox{vertex \code{1}} & \lambda^\code{1} & = &  (0,1,0,0)\\[1mm]
%
\pbar^\code{2}(\lambda) & = &  \half (3 \lc{2} - 1)(3 \lc{2} - 2)\lc{2} 
& \mbox{vertex \code{2}} & \lambda^\code{2} & = &  (0,0,1,0)\\[1mm]
%
\pbar^\code{3}(\lambda) & = &  \half (3 \lc{3} - 1)(3 \lc{3} - 2)\lc{3} 
& \mbox{vertex \code{3}} & \lambda^\code{3} & = &  (0,0,0,1)\\[1mm]
%
\pbar^\code{4}(\lambda) & = &  \frac92 (3 \lc{0} - 1)\lc{0}\lc{1}
& \mbox{edge \code{0}} & \lambda^\code{4} & = & (\frac23,\frac13,0,0)\\[1mm]
%
\pbar^\code{5}(\lambda) & = &  \frac92 (3 \lc{1} - 1)\lc{1}\lc{0}
& \mbox{edge \code{0}} & \lambda^\code{5} & = & (\frac13,\frac23,0,0)\\[1mm]
%
\pbar^\code{6}(\lambda) & = &  \frac92 (3 \lc{0} - 1)\lc{0}\lc{2}
& \mbox{edge \code{1}} & \lambda^\code{6} & = & (\frac23,0,\frac13,0)\\[1mm]
%
\pbar^\code{7}(\lambda) & = &  \frac92 (3 \lc{2} - 1)\lc{2}\lc{0}
& \mbox{edge \code{1}} & \lambda^\code{7} & = &  (\frac13,0,\frac23,0)\\[1mm]
%
\pbar^\code{8}(\lambda) & = &  \frac92 (3 \lc{0} - 1)\lc{0}\lc{3}
& \mbox{edge \code{2}} & \lambda^\code{8} & = &  (\frac23,0,0,\frac13)\\[1mm]
%
\pbar^\code{9}(\lambda) & = &  \frac92 (3 \lc{3} - 1)\lc{3}\lc{0}
& \mbox{edge \code{2}} & \lambda^\code{9} & = &  (\frac13,0,0,\frac23)\\[1mm]
%
\pbar^\code{10}(\lambda) & = &  \frac92 (3 \lc{1} - 1)\lc{1}\lc{2}
& \mbox{edge \code{3}} & \lambda^\code{10} & = & (0,\frac23,\frac13,0)\\[1mm]
%
\pbar^\code{11}(\lambda) & = &  \frac92 (3 \lc{2} - 1)\lc{2}\lc{1}
& \mbox{edge \code{3}} & \lambda^\code{11} & = & (0,\frac13,\frac23,0)\\[1mm]
%
\pbar^\code{12}(\lambda) & = &  \frac92 (3 \lc{1} - 1)\lc{1}\lc{3}
& \mbox{edge \code{4}} & \lambda^\code{12} & = & (0,\frac23,0,\frac13)\\[1mm]
%
\pbar^\code{13}(\lambda) & = &  \frac92 (3 \lc{3} - 1)\lc{3}\lc{1}
& \mbox{edge \code{4}} & \lambda^\code{13} & = & (0,\frac13,0,\frac23)\\[1mm]
%
\pbar^\code{14}(\lambda) & = &  \frac92 (3 \lc{2} - 1)\lc{2}\lc{3}
& \mbox{edge \code{5}} & \lambda^\code{14} & = & (0,0,\frac23,\frac13)\\[1mm]
%
\pbar^\code{15}(\lambda) & = &  \frac92 (3 \lc{3} - 1)\lc{3}\lc{2}
& \mbox{edge \code{5}} & \lambda^\code{15} & = & (0,0,\frac13,\frac23)\\[1mm]
%
\pbar^\code{16}(\lambda) & = &  27 \lc{1}\lc{2}\lc{3}
& \mbox{face \code{0}} & \lambda^\code{16} & = & (0,\frac13,\frac13,\frac13)
\\[1mm]
%
\pbar^\code{17}(\lambda) & = &  27 \lc{2}\lc{3}\lc{0}
& \mbox{face \code{1}} & \lambda^\code{17} & = & (\frac13,0,\frac13,\frac13)
\\[1mm]
%
\pbar^\code{18}(\lambda) & = &  27 \lc{3}\lc{0}\lc{1}
& \mbox{face \code{2}} & \lambda^\code{18} & = & (\frac13,\frac13,0,\frac13)
\\[1mm]
%
\pbar^\code{19}(\lambda) & = &  27 \lc{0}\lc{1}\lc{2}
& \mbox{face \code{3}} & \lambda^\code{19} & = & (\frac13,\frac13,\frac13,0)
\\[1mm]\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for cubic finite elements in 3d.}
\label{T:P3_3d}
\end{table}

For cubic elements we have to face a further difficulty. At each edge
two basis functions are located. The two DOFs of the \code{i}--th edge
are subsequent entries in the vector \code{el->dof[i]}. 
For two neighboring triangles the common edge has a different
orientation with respect to the local numbering of vertices
on the two triangles. In Figure~\ref{F:cubic_orient} the 3rd local 
basis function on the left and the 4th on the right triangle
built up the global basis function, e.g.; thus, both local basis function
must have access to the same global DOF.

\begin{figure}[htbp]
\centerline{\includegraphics[scale=0.5]{EPS/cubic_orient}}
\vspace{-2mm}
\caption{Cubic DOFs on a patch of two triangles.}\label{F:cubic_orient}
\end{figure}
%
In order to combine the global DOF with the local basis function in
the implementation of the \code{get\_dof\_indices()} function, we have
to give every edge a \emph{global orientation}, i.e, every edge has a
unique beginning and end point. Using the orientation of an edge we
are able to order the DOFs stored at this edge. Let for example the
common edge in Figure \ref{F:cubic_orient} be oriented from bottom to
top.  The global DOF corresponding to 3rd local DOF on the left and
the 4th local DOF on the right is then
\bv\begin{lstlisting}
el->dof[N_VERTICES+0][admin->n0_dof[EDGE]]
\end{lstlisting}\ev
and for the 4th local DOF on the left and 3rd local DOF on the right
\bv\begin{lstlisting}
el->dof[N_VERTICES+0][admin->n0_dof[EDGE]+1]
\end{lstlisting}\ev
The global orientation gives a unique access to local DOFs from global ones.

\begin{example}[Accessing DOFs for piecewise cubic finite elements]
For the implementation, we use in 2d as well as in 3d an
orientation defined by the DOF indices at the edges' vertices. The vertex
with the smaller (global) DOF index is the beginning point, the vertex
with the higher index the end point. For cubics the implementation
differs between 2d and 3d. In 2d we have one degree of freedom
at the center and in 3d one degree of freedom at each face and
none at the center. The DOFs at an edge are accessed according
to the orientation of the edge. We present the implementation in 2d:
\bv\begin{lstlisting}
#define N_BAS_LAG_3_2D (N_VERTICES_2D+2*N_EDGES_2D+1)

static const EL_DOF_VEC *
get_dof_indices3_2d(DOF *vec, const EL *el, const DOF_ADMIN *admin,
			const BAS_FCTS *thisptr)
{
  static DEF_EL_VEC_CONST(type, rvec_space, N_BAS_LAG_3_2D, N_BAS_LAG_3_2D);
  DOF *rvec = vec ? vec : rvec_space->vec;
  int n0, ibas, inode;
  DOF **dofptr = el->dof, dof;

  n0 = admin->n0_dof[VERTEX];
  for (ibas = 0; ibas < N_VERTICES_2D; ibas++) {
    dof = dofptr[ibas][n0];
    body;
  }
  n0 = admin->n0_dof[EDGE];
  for (inode = 0, ibas = N_VERTICES_2D; inode < N_EDGES_2D; inode++) {
    if (dofptr[vertex_of_edge_2d[inode][0]][0]
	< dofptr[vertex_of_edge_2d[inode][1]][0]) {
      dof = dofptr[N_VERTICES_2D+inode][n0];
      body;
      ibas++;
      dof = dofptr[N_VERTICES_2D+inode][n0+1];
      body;
      ibas++;
    } else {
      dof = dofptr[N_VERTICES_2D+inode][n0+1];
      body;
      ibas++;
      dof  = dofptr[N_VERTICES_2D+inode][n0];
      body;
      ibas++;
    }
  }
  n0 = admin->n0_dof[CENTER];
  dof = dofptr[6][n0];
  body;

  return vec ? NULL : rvec_space;
}
\end{lstlisting}\ev
\end{example}

\subsubsection{Piecewise quartic finite elements}\label{S:quartic-fe}

For Lagrange elements of fourth order we have 5 basis functions
in 1d, 15 in 2d, and 35 in 3d; the basis functions and the corresponding
Lagrange nodes in barycentric coordinates are shown in
Tables \ref{T:P4_1d}, \ref{T:P4_2d}, and \ref{T:P4_3d}.
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
%
\pbar^\code{0}(\lambda) & = & 
\frac13 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
(4 \lambda_\code{0} - 3)\lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0)\\[1mm]
%
\pbar^\code{1}(\lambda) & = & 
\frac13 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
(4 \lambda_\code{1} - 3)\lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1)\\[1mm]
%
\pbar^\code{2}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{center} & \lambda^\code{2} & = & (\frac34,\frac14)\\[1mm]
%
\pbar^\code{3}(\lambda) & = & 
4 (4 \lambda_\code{0} - 1)(4 \lambda_\code{1} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{center} & \lambda^\code{3} & = & (\frac12,\frac12)\\[1mm]
%
\pbar^\code{4}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{center} & \lambda^\code{4} & = & (\frac14,\frac34)\\[1mm]
%
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for quartic finite elements in 1d.}
\label{T:P4_1d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
%
\pbar^\code{0}(\lambda) & = & 
\frac13 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
(4 \lambda_\code{0} - 3)\lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0,0)\\[1mm]
%
\pbar^\code{1}(\lambda) & = & 
\frac13 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
(4 \lambda_\code{1} - 3)\lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1,0)\\[1mm]
%
\pbar^\code{2}(\lambda) & = & 
\frac13 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
(4 \lambda_\code{2} - 3)\lambda_\code{2} &
\mbox{vertex \code{2}} & \lambda^\code{2} & = & (0,0,1)\\[1mm]
%
\pbar^\code{3}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
\lambda_\code{1}\lambda_\code{2} &
\mbox{edge \code{0}} & \lambda^\code{3} & = & (0,\frac34,\frac14)\\[1mm]
%
\pbar^\code{4}(\lambda) & = & 
4 (4 \lambda_\code{1} - 1)(4 \lambda_\code{2} - 1)
\lambda_\code{1}\lambda_\code{2} &
\mbox{edge \code{0}} & \lambda^\code{4} & = & (0,\frac12,\frac12)\\[1mm]
%
\pbar^\code{5}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
\lambda_\code{1}\lambda_\code{2} &
\mbox{edge \code{0}} & \lambda^\code{5} & = & (0,\frac14,\frac34)\\[1mm]
%
\pbar^\code{6}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
\lambda_\code{0}\lambda_\code{2} &
\mbox{edge \code{1}} & \lambda^\code{6} & = & (\frac14,0,\frac34)\\[1mm]
%
\pbar^\code{7}(\lambda) & = & 
4 (4 \lambda_\code{2} - 1)(4 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{2} &
\mbox{edge \code{1}} & \lambda^\code{7} & = & (\frac12,0,\frac12)\\[1mm]
%
\pbar^\code{8}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{2} &
\mbox{edge \code{1}} & \lambda^\code{8} & = & (\frac34,0,\frac14)\\[1mm]
%
\pbar^\code{9}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{edge \code{2}} & \lambda^\code{9} & = & (\frac34,\frac14,0)\\[1mm]
%
\pbar^\code{10}(\lambda) & = & 
4 (4 \lambda_\code{0} - 1)(4 \lambda_\code{1} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{edge \code{2}} & \lambda^\code{10} & = & (\frac12,\frac12,0)\\[1mm]
%
\pbar^\code{11}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{edge \code{2}} & \lambda^\code{11} & = & (\frac14,\frac34,0)\\[1mm]
%
\pbar^\code{12}(\lambda) & = & 
32 (4 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{2} &
\mbox{center} & \lambda^\code{12} & = & (\frac12,\frac14,\frac14)\\[1mm]
%
\pbar^\code{13}(\lambda) & = & 
32 (4 \lambda_\code{1} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{2} &
\mbox{center} & \lambda^\code{13} & = & (\frac14,\frac12,\frac14)\\[1mm]
%
\pbar^\code{14}(\lambda) & = & 
32 (4 \lambda_\code{2} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{2} &
\mbox{center} & \lambda^\code{14} & = & (\frac14,\frac14,\frac12)\\[1mm]
\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for quartic finite elements in 2d.}
\label{T:P4_2d}
\end{table}
\begin{table}[htbp]
\begin{center}\begin{small}\begin{math}%\displaystyle
\begin{array}{|rcl@{\qquad}|@{\qquad}l@{\qquad}|@{\qquad}rcl|}\hline
\multicolumn{2}{|l}{\mbox{function}} & & \mbox{position} &
\multicolumn{3}{l|}{\mbox{Lagrange node}}
 \\\hline\vphantom{\pbar^{\int}}
%
\pbar^\code{0}(\lambda) & = & 
\frac13 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
(4 \lambda_\code{0} - 3)\lambda_\code{0} &
\mbox{vertex \code{0}} & \lambda^\code{0} & = & (1,0,0,0)\\[1mm]
%
\pbar^\code{1}(\lambda) & = & 
\frac13 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
(4 \lambda_\code{1} - 3)\lambda_\code{1} &
\mbox{vertex \code{1}} & \lambda^\code{1} & = & (0,1,0,0)\\[1mm]
%
\pbar^\code{2}(\lambda) & = & 
\frac13 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
(4 \lambda_\code{2} - 3)\lambda_\code{2} &
\mbox{vertex \code{2}} & \lambda^\code{2} & = & (0,0,1,0)\\[1mm]
%
\pbar^\code{3}(\lambda) & = & 
\frac13 (4 \lambda_\code{3} - 1)(2 \lambda_\code{3} - 1)
(4 \lambda_\code{3} - 3)\lambda_\code{3} &
\mbox{vertex \code{3}} & \lambda^\code{3} & = & (0,0,0,1)\\[1mm]
%
\pbar^\code{4}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{edge \code{0}} & \lambda^\code{4} & = & (\frac34,\frac14,0,0)\\[1mm]
%
\pbar^\code{5}(\lambda) & = & 
4 (4 \lambda_\code{0} - 1)(4 \lambda_\code{1} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{edge \code{0}} & \lambda^\code{5} & = & (\frac12,\frac12,0,0)\\[1mm]
%
\pbar^\code{6}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
\lambda_\code{0}\lambda_\code{1} &
\mbox{edge \code{0}} & \lambda^\code{6} & = & (\frac14,\frac34,0,0)\\[1mm]
%
\pbar^\code{7}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{2} &
\mbox{edge \code{1}} & \lambda^\code{7} & = & (\frac34,0,\frac14,0)\\[1mm]
%
\pbar^\code{8}(\lambda) & = & 
4 (4 \lambda_\code{0} - 1)(4 \lambda_\code{2} - 1)
\lambda_\code{0}\lambda_\code{2} &
\mbox{edge \code{1}} & \lambda^\code{8} & = & (\frac12,0,\frac12,0)\\[1mm]
%
\pbar^\code{9}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
\lambda_\code{0}\lambda_\code{2} &
\mbox{edge \code{1}} & \lambda^\code{9} & = & (\frac14,0,\frac34,0)\\[1mm]
%
\pbar^\code{10}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{0} - 1)(2 \lambda_\code{0} - 1)
\lambda_\code{0}\lambda_\code{3} &
\mbox{edge \code{2}} & \lambda^\code{10} & = & (\frac34,0,0,\frac14)\\[1mm]
%
\pbar^\code{11}(\lambda) & = & 
4 (4 \lambda_\code{0} - 1)(4 \lambda_\code{3} - 1)
\lambda_\code{0}\lambda_\code{3} &
\mbox{edge \code{2}} & \lambda^\code{11} & = & (\frac12,0,0,\frac12)\\[1mm]
%
\pbar^\code{12}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{3} - 1)(2 \lambda_\code{3} - 1)
\lambda_\code{0}\lambda_\code{3} &
\mbox{edge \code{2}} & \lambda^\code{12} & = & (\frac14,0,0,\frac34)\\[1mm]
%
\pbar^\code{13}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
\lambda_\code{1}\lambda_\code{2} &
\mbox{edge \code{3}} & \lambda^\code{13} & = & (0,\frac34,\frac14,0)\\[1mm]
%
\pbar^\code{14}(\lambda) & = & 
4 (4 \lambda_\code{1} - 1)(4 \lambda_\code{2} - 1)
\lambda_\code{1}\lambda_\code{2} &
\mbox{edge \code{3}} & \lambda^\code{14} & = & (0,\frac12,\frac12,0)\\[1mm]
%
\pbar^\code{15}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
\lambda_\code{1}\lambda_\code{2} &
\mbox{edge \code{3}} & \lambda^\code{15} & = & (0,\frac14,\frac34,0)\\[1mm]
%
\pbar^\code{16}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{1} - 1)(2 \lambda_\code{1} - 1)
\lambda_\code{1}\lambda_\code{3} &
\mbox{edge \code{4}} & \lambda^\code{16} & = & (0,\frac34,0,\frac14)\\[1mm]
%
\pbar^\code{17}(\lambda) & = & 
4 (4 \lambda_\code{1} - 1)(4 \lambda_\code{3} - 1)
\lambda_\code{1}\lambda_\code{3} &
\mbox{edge \code{4}} & \lambda^\code{17} & = & (0,\frac12,0,\frac12)\\[1mm]
%
\pbar^\code{18}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{3} - 1)(2 \lambda_\code{3} - 1)
\lambda_\code{1}\lambda_\code{3} &
\mbox{edge \code{4}} & \lambda^\code{18} & = & (0,\frac14,0,\frac34)\\[1mm]
%
\pbar^\code{19}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{2} - 1)(2 \lambda_\code{2} - 1)
\lambda_\code{2}\lambda_\code{3} &
\mbox{edge \code{5}} & \lambda^\code{19} & = & (0,0,\frac34,\frac14)\\[1mm]
%
\pbar^\code{20}(\lambda) & = & 
4 (4 \lambda_\code{2} - 1)(4 \lambda_\code{3} - 1)
\lambda_\code{2}\lambda_\code{3} &
\mbox{edge \code{5}} & \lambda^\code{20} & = & (0,0,\frac12,\frac12)\\[1mm]
%
\pbar^\code{21}(\lambda) & = & 
\frac{16}3 (4 \lambda_\code{3} - 1)(2 \lambda_\code{3} - 1)
\lambda_\code{2}\lambda_\code{3} &
\mbox{edge \code{5}} & \lambda^\code{21} & = & (0,0,\frac14,\frac34)\\[1mm]
%
\pbar^\code{22}(\lambda) & = & 
32 (4 \lambda_\code{1} - 1)\lambda_\code{1}\lambda_\code{2}\lambda_\code{3} &
\mbox{face \code{0}} & \lambda^\code{22} & = & (0,\frac12,\frac14,\frac14)
\\[1mm]
%
\pbar^\code{23}(\lambda) & = & 
32 (4 \lambda_\code{2} - 1)\lambda_\code{1}\lambda_\code{2}\lambda_\code{3} &
\mbox{face \code{0}} & \lambda^\code{23} & = & (0,\frac14,\frac12,\frac14)
\\[1mm]
%
\pbar^\code{24}(\lambda) & = & 
32 (4 \lambda_\code{3} - 1)\lambda_\code{1}\lambda_\code{2}\lambda_\code{3} &
\mbox{face \code{0}} & \lambda^\code{24} & = & (0,\frac14,\frac14,\frac12)
\\[1mm]
%
\pbar^\code{25}(\lambda) & = & 
32 (4 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{2}\lambda_\code{3} &
\mbox{face \code{1}} & \lambda^\code{25} & = & (\frac12,0,\frac14,\frac14)
\\[1mm]
%
\pbar^\code{26}(\lambda) & = & 
32 (4 \lambda_\code{2} - 1)\lambda_\code{0}\lambda_\code{2}\lambda_\code{3} &
\mbox{face \code{1}} & \lambda^\code{26} & = & (\frac14,0,\frac12,\frac14)
\\[1mm]
%
\pbar^\code{27}(\lambda) & = & 
32 (4 \lambda_\code{3} - 1)\lambda_\code{0}\lambda_\code{2}\lambda_\code{3} &
\mbox{face \code{1}} & \lambda^\code{27} & = & (\frac14,0,\frac14,\frac12)
\\[1mm]
%
\pbar^\code{28}(\lambda) & = & 
32 (4 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{3} &
\mbox{face \code{2}} & \lambda^\code{28} & = & (\frac12,\frac14,0,\frac14)
\\[1mm]
%
\pbar^\code{29}(\lambda) & = & 
32 (4 \lambda_\code{1} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{3} &
\mbox{face \code{2}} & \lambda^\code{29} & = & (\frac14,\frac12,0,\frac14)
\\[1mm]
%
\pbar^\code{30}(\lambda) & = & 
32 (4 \lambda_\code{3} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{3} &
\mbox{face \code{2}} & \lambda^\code{30} & = & (\frac14,\frac14,0,\frac12)
\\[1mm]
%
\pbar^\code{31}(\lambda) & = & 
32 (4 \lambda_\code{0} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{2} &
\mbox{face \code{3}} & \lambda^\code{31} & = & (\frac12,\frac14,\frac14,0)
\\[1mm]
%
\pbar^\code{32}(\lambda) & = & 
32 (4 \lambda_\code{1} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{2} &
\mbox{face \code{3}} & \lambda^\code{32} & = & (\frac14,\frac12,\frac14,0)
\\[1mm]
%
\pbar^\code{33}(\lambda) & = & 
32 (4 \lambda_\code{2} - 1)\lambda_\code{0}\lambda_\code{1}\lambda_\code{2} &
\mbox{face \code{3}} & \lambda^\code{33} & = & (\frac14,\frac14,\frac12,0)
\\[1mm]
%
\pbar^\code{34}(\lambda) & = & 
256 \lambda_\code{0}\lambda_\code{1}\lambda_\code{2}\lambda_\code{3} &
\mbox{center} & \lambda^\code{34} & = & (\frac14,\frac14,\frac14,\frac14)
\\[1mm]\hline\end{array}
\end{math}\end{small}\end{center}
\vskip -5mm
\caption{Local basis functions for quartic finite elements in 3d.}
\label{T:P4_3d}
\end{table}

For the implementation of \code{get\_dof\_indices()} for quartics, we
again need a global orientation of the edges on the mesh. At every
edge three DOFs are located, which can then be ordered with respect
to the orientation of the corresponding edge. In 3d, we also need
a global orientation of faces for a one to one mapping of global DOFs located
at a face to local DOFs on an element at that face. Such an orientation
can again be defined by DOF indices at the face's vertices.

\subsubsection{Access to Lagrange elements}
\label{S:get_lagrange}

The Lagrange elements described above are already implemented in \ALBERTA;
access to Lagrange elements is given by the function
\fdx{get_lagrange@{\code{get\_lagrange}}}%
\bv\begin{lstlisting}
const BAS_FCTS  *get_lagrange(int,int);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_lagrange(dim, degree)} returns a pointer to 
a filled \code{BAS\_FCTS} structure for Lagrange elements of order
\code{degree}, where $1 \leq \code{degree} \leq 4$, for dimension \code{dim};
no additional call of \code{new\_bas\_fcts()} is needed.
\end{descr}

\subsection{Discontinuous Lagrange finite elements}%
\label{S:get_disc_lagrange}

Similar to the standard Lagrange elements described above, discontinuous 
polynomial finite elements are piecewise polynomial functions. However, 
the functions are not globally continuous. This is implemented in \ALBERTA 
by assigning all DOFs to be of type \code{CENTER}, implying that they will not 
be shared among elements. At the moment these elements are available for 
polynomial degree 0 (piecewise constants), degree 1 (piecewise linears), and 
degree 2 (piecewise quadratics). Much of the implementation is similiar to 
the case of standard Lagrange elements, hence we will not provide a detailed
description.

Access to discontinuous elements is provided by the function
\fdx{get_discontinuous_lagrange@{\code{get\_discontinuous\_lagrange}}}%
\bv\begin{lstlisting}
const BAS_FCTS  *get_discontinuous_lagrange(int dim, int degree);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_discontinuous\_lagrange(dim, degree)} returns a pointer to 
a filled \code{BAS\_FCTS} structure for discontinuous polynomial elements of 
order \code{degree}, where $0 \leq \code{degree} \leq 2$ for dimension 
\code{dim}; no additional call of \code{new\_bas\_fcts()} is needed.
\end{descr}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Discontinuous orthogonal finite elements}
\label{S:get_disc_ortho_poly}

In the context of discontinuous Galerkin methods it is often easier to
use basis-functions which are orthogonal w.r.t. the $L^2$ scalar
product, especially in the context of explicit time discretization
schemes where the use of orthogonal basis functions eliminates the
need for the inversion of the mass-matrix. \ALBERTA implements
discontinuous $L^2$-orthogonal basis functions of degree $1$ and $2$
in all supported mesh-dimensions.

Access to discontinuous elements is provided by the function
\fdx{get_disc_ortho_poly@{\code{get\_disc\_ortho\_poly}}}%
\bv\begin{lstlisting}
const BAS_FCTS *get_disc_ortho_poly(int dim, int degree);
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{get\_disc\_ortho\_poly(dim, degree)} returns a pointer to a
  filled \code{BAS\_FCTS} structure for discontinuous polynomial
  elements of order \code{degree}, where $1 \leq \code{degree} \leq 2$
  for dimension \code{dim}; no additional call of
  \code{new\_bas\_fcts()} is needed.
\end{descr}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Basis-function plug-in module}
\label{S:fancy_bas_fcts}

\ALBERTA also supports a rudimentary plug-in scheme, if
\code{get\_bas\_fcts(dim, name)} cannot find an instance of basis
functions requested by the parameter \code{name}, then it looks for
the environment variable \verb|ALBERTA_BAS_FCTS_LIB_XD| respectively
\verb|ALBERTA_BAS_FCTS_LIB_XD_DEBUG|, where the \code{X} has to be
replaced by the value of \DOW. The environment variable is supposed to
contain the full path to a shared library containing additional
basis-function implementations. The module must define (and export) a
function in \code{C}-calling convention named
\verb|const BAS_FCTS *bas_fcts_init(int dim, dim dow, const char *name)|,
which is called to resolve the request of the application program.  By
pointing to a basis-function plug-in module via that environment
variable it is, e.g., possible to post-process finite element data
using ``fancy'' basis function implementations with the GRAPE or
Paraview interface tools (see \secref{S:gfx}), without having to
recompile and relink the converter-tools (like
\verb|alberta2paraview_Xd|).

Additionally, the function
%%
\fdx{add_bas_fcts_plugin()@{\code{add\_bas\_fcts\_plugin()}}}
\bv\begin{lstlisting}
typedef const BAS_FCTS *
(*BAS_FCTS_INIT_FCT)(int dim, int dow, const char *name);

void add_bas_fcts_plugin(BAS_FCTS_INIT_FCT init_fct);
\end{lstlisting}\ev
%%
can be used to supply additional plug-in functions defining even more
basis-functions.
%%
During the installation of the \ALBERTA package the basis-function
add-on module in \verb|add_ons/libalbas/| is compiled and installed
under the name \bv\begin{lstlisting}
  PREFIX/lib/libalbas_Xd[_debug].DYNEXT,
\end{lstlisting}\ev
where the \code{X} again has to be replaced by the value of \DOW and
\code{DYNEXT} stands for the architecture dependent extension attached
to dynamic libraries.

\verb|libalbas| currently implements wall-bubbles (i.e. face-bubbles
and edge-bubbles), element bubbles and the corresponding trace-spaces.
There is also a very rudimentary and untested version of the lowest
order Raviart-Thomas element. Additionally, the function
\verb|stokes_pair()| implements some of the known stable mixed
discretizations for the Stokes-problem.

\fdx{stokes_pair()@{\code{stokes\_pair()}}}
\bv\begin{lstlisting}
typedef struct stokes_pair STOKES_PAIR;
struct stokes_pair 
{
  const BAS_FCTS *velocity;
  const BAS_FCTS *pressure;
  /* const BAS_FCTS *slip_stress; */
};

STOKES_PAIR stokes_pair(const char *name, unsigned dim, unsigned degree);
\end{lstlisting}\ev

The application must be linked against \verb|libalbas| and include the
header file \verb|albas.h| to use it.  \verb|stokes_pair()| can be
invoked with the symbolic names \code{"Mini"},
\code{"BernardiRaugel"}, \code{"CrouzeixRaviar"} and
\code{"TaylorHood"} and returns the requested Stokes-discretization,
which in all cases except for Taylor-Hood consists of a chain of local
basis functions where the first part of the chain contains the
Lagrange-component and the other parts the "bubbly" add-ons used to
stabilize the resulting Stokes-pair. See also 
\secref{S:bfcts_chains} and \secref{S:chain_impl}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Implementation of finite element spaces}
\label{S:FES-impl}

\subsection{The finite element space data structure}
\label{S:FES-data}

All information about the underlying mesh, the local basis functions,
and the DOFs are collected in the following data structure which defines
one single finite element space:
\ddx{FE_SPACE@{\code{FE\_SPACE}}}
\bv\begin{lstlisting}[name=FE_SPACE,label=T:FE_SPACE]
typedef struct fe_space         FE_SPACE;

struct fe_space
{
  const char      *name;
  const DOF_ADMIN *admin;
  const BAS_FCTS  *bas_fcts;
  MESH            *mesh;
  int             rdim;
  DBL_LIST_NODE   chain;
  const FE_SPACE  *unchained;
};
\end{lstlisting}\ev
Description:
\begin{descr}
  %% 
\kitem{name} holds a textual description of the finite element space.
  Note that \code{name} is duplicated by calling \code{strdup(3)}
  %% 
\kitem{admin} pointer to the DOF administration for the DOFs of this
  finite element space, see Section \ref{S:DOF_ADMIN}.
  %% 
\kitem{bas\_fcts} pointer to the local basis functions, see Section
  \ref{S:basfct_data}.
  %% 
\kitem{mesh} pointer to the underlying mesh, see Section
  \ref{S:mesh_data_structure}.
  %% 
\kitem{rdim} The dimension of the range of the elements of this finite
  element space, as \ALBERTA nowadays supports vector-valued basis
  functions it becomes now important whether a given finite element
  space is actually meant for scalar functions or for vector fields. See
  also \secref{S:vector_bfcts}.
  %% 
\kitem{chain} List pointer to a chain of finite element spaces which
  form a direct sum, see \secref{S:chain_impl}. Such a direct sum is
  based on a chain of local basis functions as described by
  \secref{S:bfcts_chains}.
  %% 
\kitem{unchained} If the finite element space is part of a direct sum
  of finite element spaces (and thus \code{chain} is the link to the
  other elements of this direct sum) then \code{unchained} is a copy
  of the \code{FE\_SPACE} which is unaware of this fact, i.e.
  \code{FE\_SPACE.unchained.chain} points back to itself. If the
  finite element space does not form part of a direct sum, then
  \code{unchained} simply points back to the same \verb|FE_SPACE|. See
  also \secref{S:chain_impl} and \secref{S:basfct_impl}.
\end{descr}

\noindent
Some remarks:
\begin{itemize}
\item Several finite element spaces can be handled on the same mesh.
  Different finite element spaces can use the same DOF administration,
  if they share exactly the same DOFs.
\item Using direct sums of finite element spaces which are chained
  together using the \verb|FE_SPACE.chain|-component has the effect
  that all derived structures are also chains of objects, coefficient
  vectors become chains of coefficient vectors, matrices become block
  matrices, where the blocks are chained together using chains for
  rows and columns. The same holds for the per-element vectors and
  matrices.
\item \ALBERTA provides full support for these chains in its
  infra-structure for the assembling of the discrete systems, as well
  as in the solver infra-structure and in the support functions for
  the computation of errors and error estimates.
\end{itemize}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Access to finite element spaces}%
\label{S:access_fe_space}

A finite element space can only be accessed by the function
\fdx{get_fe_space()@{\code{get\_fe\_space()}}}
\bv\begin{lstlisting}
const FE_SPACE  *get_fe_space(MESH *mesh, const char *name,
                              const BAS_FCTS *bas_fcts, int rdim,
                              FLAGS adm_flags);
const FE_SPACE  *get_dof_space(MESH *mesh, const char *name,
                               const int ndof[N_NODE_TYPES],
                               FLAGS adm_flags);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{get\_fe\_space(mesh, name, bas\_fcts, rdim, adm\_flags)} defines a new
  finite element space on \code{mesh}; it looks for an existing
  \code{dof\_admin} defined on \code{mesh}, which manages DOFs
  uniquely defined by \code{bas\_fcts->dof\_admin->n\_dof}
  (compare Section \ref{S:DOF_ADMIN});
  if such a \code{dof\_admin} is not found, a new \code{dof\_admin} is
  created. 
  \begin{description}
  \item[Parameters]~\hfill

    \begin{descr}
    \kitem{mesh}
      A pointer to the underlying triangulation.
      %% 
    \kitem{name}
      A fancy name, used for pretty-printing and debugging.
      %% 
    \kitem{bas\_fcts} The underlying basis functions. If
      \code{bas\_fcts} is a disjoint union, or ``chain'', of local
      basis functions sets, then the resulting finite element space
      will be the direct sum of the finite element spaces defined by
      the respective components of the disjoint union of local basis
      function sets, see \secref{S:chain_impl} and
      \secref{S:basfct_impl}. The component \code{unchained} of the
      \code{FE\_SPACE} structure will -- for each component of the
      direct sum -- point to an \code{FE\_SPACE} instance which is
      ignorant of the fact that it forms part of a direct sum of
      finite element spaces.
      %% 
    \kitem{rdim} The dimension of the range of the elements of the
      finite element space. Now that \ALBERTA also support \DOW-valued
      basis functions, this parameter plays an important role; without
      attaching a ``range-dimension'' to a finite element space it
      would be hardly possible to assemble discrete systems in a
      consistent manner. Of course, if the underlying basis functions
      are vector-valued for themselves, then \code{rdim} has to equal
      \DOW as well. If the underlying local basis functions are
      scalar-valued, then \code{rdim} may be either $1$ to generate a
      finite element space consisting of scalar functions, or \DOW to
      generate a finite element space consisting of \DOW-valued
      functions. Other values for \code{rdim} are not supported.
      %% 
    \kitem{adm\_flags} Currently \verb|adm\_flags| is the bit-wise
      or of \verb|ADM_PRESERVE_COARSE_DOFS| and/or
      \verb|ADM_PERIODIC|. If the flag \verb|ADM_PRESERVE_COARSE_DOFS|
      is set, then it requests that \DOFs normally be deleted during
      refinement should be preserved instead. This is necessary for
      higher order multi-grid implementations as well as for the
      internal maintenance of submeshes, see
      \secref{S:submesh_implementation}. For a detailed description of
      which DOFs would normally be deleted, see \secref{S:DOFs2}.

      \verb|ADM_PERIODIC| requests a periodic finite element space
      where \DOFs across periodic walls are identified. See
      \secref{S:periodic}.
    \end{descr}
  \item{return value} The return value is a newly created
    \code{FE\_SPACE} structure, where \code{name} is duplicated, and
    the members \code{mesh}, \code{bas\_fcts} and \code{admin} are
    adjusted correctly.
  \end{description}
  %% 
\kitem{get\_dof\_space(mesh, name, n\_dof, adm\_flags)}
  %% 
  performs a similar task as \verb|get_fe_space()|, however, the
  resulting ``space'' is not bound to a \verb|BAS_FCTS| instance.
  Instead, the argument \verb|n_dof| determines the distribution of
  the \DOFs across the sub-simplices. The elements of \code{n\_dof}
  determine how many degrees of freedom are tied to each sub-simplex
  on each element, the mapping is defined by the \code{NODE\_TYPE}
  enumeration type, see the source code listing on page
  \pageref{T:NODE_TYPES}, i.e. \code{VERTEX == 0}, \code{CENTER == 1},
  \code{EDGE == 2}, \code{FACE == 3}. The following code-snippet
  defines an ``\code{FE\_SPACE}'' with $42$ \code{DOF}s on each face:
\bv\begin{lstlisting}
   int n_dof[N_NODE_TYPES] = {0, 0, 0, 42};
   const FE_SPACE *face_dof_space;

   face_dof_space =
     get_dof_space(mesh, "face dofs", n_dof, ADM_FLAGS_DFLT);
\end{lstlisting}\ev
\end{descr}

The selection of finite element spaces defines the DOFs that must
be present on the mesh elements. For each finite element space
there must be a corresponding DOF administration, having information
about the used DOFs. Each call of \code{get\_fe\_space()} requires the
internal adjustment of the \code{el->dof} pointer arrays which is 
potentially expensive, since information about which elements share 
a vertex/edge/face must be calculated for the current triangulation. It is 
therefore advisable (but not necessary) to allocate all finite element 
spaces before refining the mesh.

Since a mesh only gives access to the \code{DOF\_ADMIN}s
defined on it, the user has to store pointers to the
\code{FE\_SPACE} structures in some global variable; no access to
\code{FE\_SPACE}s is possible via the underlying mesh.

\begin{example}[Initializing DOFs for Stokes and Navier--Stokes]
Now, as an example we look at a possible \code{main} function.
In the example we want to define two 
finite element spaces on the mesh, for a mixed finite element
formulation of the Stokes or Navier--Stokes equations with the Taylor--Hood
element, e.g. we want to use Lagrange finite elements of
order \code{degree} (for the velocity) and $\code{degree} - 1$
(for the pressure). Pointers to the corresponding \code{FE\_SPACE} 
structures are stored in the global variables \code{u\_fe} and \code{p\_fe}.
\bv\begin{lstlisting}
static FE_SPACE *u_fe, *p_fe;
static int       degree, dim;

int main()
{
  const MESH      *mesh;
  const BAS_FCTS  *lagrange;
  MACRO_DATA      *data;

  TEST_EXIT(degree > 1)("degree must be greater than 1\n");

  ...

  data = read_macro(filename);
  mesh = GET_MESH(dim, "ALBERTA mesh", data, NULL, NULL);
  free_macro_data(data);

  lagrange = get_lagrange(mesh->dim, degree);
  u_fe = get_fe_space(
    mesh, "Velocity space", lagrange, DIM_OF_WORLD, ADM_FLAGS_DFLT);

  lagrange = get_lagrange(mesh->dim, degree-1);
  p_fe = get_fe_space(mesh, "Pressure space", lagrange, 1, ADM_FLAGS_DFLT);

  ...

  return;
}
\end{lstlisting}\ev
This will provide all DOFs for the two finite element spaces on
the elements and the corresponding \code{DOF\_ADMIN}s will have
information about the access to local DOFs for both finite element
spaces.

It is also possible to define only one or even more finite element spaces;
the use of special user defined basis functions is possible too.
These should be added to the list of all used basis functions
by a call of \code{new\_bas\_fcts()} before allocating finite element 
spaces.
\end{example}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End: