1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
\section{Direct sums of finite element spaces}%
\label{S:chain_impl}
Sometimes it is necessary to use finite element spaces which are
direct sums of a standard space plus a more or less bizarre add-on.
The velocity space for several stable mixed discretizations of the
Stokes problem, for instance, has this structure: it consists of
piece-wise linear elements plus an element bubble for the so-called
``Mini''-element, piece-wise linear elements plus face-bubbles for the
``Bernardi-Raugel''-element, for the ``Crouzeix-Raviart'' element it
consists of piece-wise quadratic elements plus an element-bubble in
2d, and forms a direct sum with three components in 3d, where
face-bubble have to be added in addition to the element-bubble, which
was already present in 2d.
\subsection{Data structures for disjoint unions and direct sums }
\ALBERTA support such direct sums of finite element spaces. The
fundaments for such direct sums are formed by ``chains'' of
\code{BAS\_FCTS}-structures, modeling the disjoint union of local
basis-function sets, see \secref{S:bfcts_chains}. A disjoint union of
basis functions sets is implemented using a cyclic, doubly linked
list. This affects all structures which are functionally based on the
structure of the local set of basis functions: the
\code{FE\_SPACE}-structure, the \code{DOF\_XXX\_VEC} coefficient
vectors, and their local counter parts name \code{EL\_XXX\_VEC}
(\code{XXX} being used as a place holder for the type, e.g. \code{XXX}
$\equiv$ \code{REAL}), the matrix structure \code{DOF\_MATRIX} (and
its local count-part), the frame-work used for assembling the discrete
systems and -- of course -- the quadrature caches defined by the
\code{QUAD\_FAST} structure. Basically, all structures which are
directly of indirectly derived from such a disjoint union of local
basis function sets inherit this ``disjoint union'' layout and come
with a list-node component which implements this connectivity within
\ALBERTA. The list node itself is a simple doubly-linked list node,
namely
%%
\bv\begin{lstlisting}
typedef struct dbl_list_node DBL_LIST_NODE;
struct dbl_list_node
{
struct dbl_list_node *next;
struct dbl_list_node *prev;
};
\end{lstlisting}\ev
%
In all the structures needing such a list-node, there are components
named \code{\dots chain}, compare for instance the source code listing
for the \code{BAS\_FCTS} structure on page \pageref{T:BAS_FCTS}:
%%
\bv\begin{lstlisting}
struct bas_fcts
{
... /* other stuff */
DBL_LIST_NODE chain;
... /* more stuff */
};
\end{lstlisting}\ev
%%
This becomes even more complicated in the context of
matrix-structures, the \code{EL\_MATRIX} structure (compare the
source-code listing on page \pageref{T:EL_MATRIX}), for instance,
needs two list-node components, namely
%%
\bv\begin{lstlisting}
struct el_matrix
{
... /* other stuff */
DBL_LIST_NODE row_chain;
DBL_LIST_NODE col_chain;
... /* more stuff */
};
\end{lstlisting}\ev
%%
because the local row-space as well as the local column-space may be
direct sums of local finite element spaces. So matrices carry a
block-matrix structure if the underlying spaces are direct sums, and
the \code{col\_chain} and \code{row\_chain} give the link between the
different blocks, each block being a single \code{EL\_MATRIX}
structure (or whatever other matrix-structure).
Conceptionally, all these lists are \emph{cyclic}, and there is no
dedicated list-head. This may bear the risk for certain kinds of
programming errors, but is, on the other hand, quite nice for the
implementation, because in this setting an ordinary \code{BAS\_FCTS}
structure which is not a disjoint union of several basis function sets
is at the same time a disjoint union with one component, so the code
does not need to differentiate between direct sums and
single-component objects, thus eliminating the need to introduce new
data-types to model direct sums of function spaces.
\subsection{List-management and looping constructs}
\label{S:chain_loops}
This section describes some basic support macro and functions for
list-management like adding to direct sum or deleting from them, as
well as some loop-constructs. Generally, all the macros come in three
flavours: with a \code{CHAIN\_\dots}-, \code{ROW\_CHAIN\_\dots} and a
\code{COL\_CHAIN\_\dots} prefix, acting on the \code{chain},
\code{row\_chain} and \code{col\_chain} list-nodes in the respective
data-structures. This is the only difference between the three
flavours of macros, so we describe only the variant with the
\code{CHAIN}-prefix.
\mdx{CHAIN_INIT()@{\code{CHAIN\_INIT()}}}%
\mdx{CHAIN_INITIALIZER()@{\code{CHAIN\_INITIALIZER()}}}%
\mdx{CHAIN_LENGTH()@{\code{CHAIN\_LENGTH()}}}%
\mdx{CHAIN_SINGLE()@{\code{CHAIN\_SINGLE()}}}%
\mdx{CHAIN_NEXT()@{\code{CHAIN\_NEXT()}}}%
\mdx{CHAIN_PREV()@{\code{CHAIN\_PREV()}}}%
\mdx{CHAIN_ADD_HEAD()@{\code{CHAIN\_ADD\_HEAD()}}}%
\mdx{CHAIN_ADD_TAIL()@{\code{CHAIN\_ADD\_TAIL()}}}%
\mdx{CHAIN_DEL()@{\code{CHAIN\_DEL()}}}%
\mdx{CHAIN_FOREACH()@{\code{CHAIN\_FOREACH()}}}%
\mdx{CHAIN_FOREACH_SAVE()@{\code{CHAIN\_FOREACH\_SAVE()}}}%
\mdx{CHAIN_FOREACH_REV()@{\code{CHAIN\_FOREACH\_REV()}}}%
\mdx{CHAIN_FOREACH_REV_SAVE()@{\code{CHAIN\_FOREACH\_REV\_SAVE()}}}%
\mdx{CHAIN_DO()@{\code{CHAIN\_DO()}}}%
\mdx{CHAIN_WHILE()@{\code{CHAIN\_WHILE()}}}%
\mdx{CHAIN_DO_REV()@{\code{CHAIN\_DO\_REV()}}}%
\mdx{CHAIN_WHILE_REV()@{\code{CHAIN\_WHILE\_REV()}}}%
\mdx{FOREACH_DOF()@{\code{FOREACH\_DOF()}}}%
\mdx{FOREACH_DOF_DOW()@{\code{FOREACH\_DOF\_DOW()}}}%
\mdx{FOREACH_FREE_DOF()@{\code{FOREACH\_FREE\_DOF()}}}%
\mdx{FOREACH_FREE_DOF_DOW()@{\code{FOREACH\_FREE\_DOF\_DOW()}}}%
\begin{descr}
\kitem{CHAIN\_INIT(elem)} Initialize \code{elem->chain}; that is
make \code{elem->chain.next} and \code{elem->chain.prev} to
\code{\&elem->chain}. This defines the empty, respectively
one-component list.
%%
\kitem{CHAIN\_INITIALIZER(name)} Perform the same task as
\code{CHAIN\_INIT(elem)}, but in the context of a static
initialization, e.g.
\bv\begin{lstlisting}
static BAS\_FCTS bfcts = {
... /* other stuf */,
CHAIN_INITIALIZER(bfcts),
... /* more stuff */
};
\end{lstlisting}\ev
%%
\kitem{CHAIN\_LENGTH(head)} Compute the number of list elements in
the cyclic list \code{head->chain}.
%%
\kitem{CHAIN\_SINGLE(var)} Evaluate to \code{true} if
\code{var->chain} is the one-element list.
%%
\kitem{CHAIN\_NEXT(var, type)} \kitem{CHAIN\_PREV(var, type)} Return
a pointer to the element following, respectively preceding
\code{var}. The argument \code{type} must denote the data-type of
\code{var}, e.g.
%%
\bv\begin{lstlisting}
const BAS_FCTS *next_bfcts = CHAIN_NEXT(bfcts, const BAS_FCTS);
const BAS_FCTS *prev_bfcts = CHAIN_PREV(bfcts, const BAS_FCTS);
\end{lstlisting}\ev
%%
\kitem{CHAIN\_ADD\_HEAD(head, elem)} \kitem{CHAIN\_ADD\_TAIL(head,
elem)} Add \code{elem} to the head, respectively to the tail of
\code{head->chain}. Adding to the head means that \code{elem} will
become the element \emph{following} \code{head}, and adding to the
tail means that \code{elem} will become the list element preceding
\code{head}. In particular, adding to either the end or tail of an
one-element list will produce the same results.
%%
\kitem{CHAIN\_DEL(elem)} Delete \code{elem->chain} from any list it
may belong to, and call \code{CHAIN\_INIT(elem)} afterwards. The
result will be that \code{elem} becomes a one-element list.
%%
\kitem{CHAIN\_FOREACH(ptr, head, type)} Loop over all element of
\code{head->chain} which follow \code{head->chain}, excluding the
element pointed to by \code{head} itself. Something similar to
\code{CHAIN\_LENGTH(head)} mentioned above could for instance be
implemented as
%%
\bv\begin{lstlisting}
int bfcts_chain_length(const BAS_FCTS *head)
{
const BAS_FCTS *pos;
int len = 1;
CHAIN_FOREACH(pos, head, const BAS_FCTS) {
++len;
}
return len;
}
\end{lstlisting}\ev
%%
\kitem{CHAIN\_FOREACH\_SAVE(ptr, next, head, type)} Similar to
\code{CHAIN\_FOREACH()}, but allow for deletion of list-elements
during the loop. For this to work an additional pointer has to be
provided which is points to the element following the current
element. This way, the current element -- \code{pos} -- maybe
safely removed from the list and deleted during the loop:
%%
\bv
\begin{lstlisting}
typedef struct my_chained_object
{
... /* stuff */
DBL_LIST_NODE chain;
... /* other suff */
};
int delete_my_chained_object(MY_CHAINED_OBJECT *list)
{
MY_CHAINED_OBJECT *pos, *next;
CHAIN_FOREACH_SAFE(pos, next, list, MY_CHAINED_OBJECT) {
CHAIN_DEL(pos);
MEM_FREE(pos, 1, MY_CHAINED_OBJECT);
}
MEM_FREE(head, 1, MY_CHAINED_OBJECT);
}
\end{lstlisting}
\ev
%%
\kitem{CHAIN\_FOREACH\_REV(ptr, head, type)}
\kitem{CHAIN\_FOREACH\_REV\_SAVE(ptr, next, head, type)} Same as
the non-\code{REV}-counterparts explained above, but the loop is
perform in the reverse direction, following
\code{head->chain.prev} instead of \code{head->chain.next}.
%%
\kitem{CHAIN\_DO(list, type)} \kitem{CHAIN\_WHILE(list, type)}
Perform a loop over the list, include the first element (in
contrast to \code{CHAIN\_FOREACH()} which always skips the first
element:
\bv\begin{lstlisting}
int bfcts_chain_length(const BAS_FCTS *pos)
{
int len = 0;
CHAIN_DO(pos, const BAS_FCTS) {
++len;
} CHAIN_WHILE(pos, const_BAS_FCTS);
return len;
}
\end{lstlisting}\ev
%%
\kitem{CHAIN\_DO\_REV(list, type)} \kitem{CHAIN\_WHILE\_REV(list,
type)} Same as the \code{CHAIN\_DO()}-\code{CHAIN\_WHILE()}
pair, but loop in reverse direction, following
\code{list->head.prev} instead of \code{list->head.next}.
%%
\kitem{FOREACH\_DOF(fe\_space, todo, next)} A replacement for
\code{FOR\_ALL\_DOFS()}, which implements an outer loop over the
components of the chain, calling \code{FOR\_ALL\_DOFS()} for each
component in turn. In this setting \code{todo} is a code-block
which is executed for each \code{DOF} and \code{next} is a code
block which is executed at the end of the inner
\code{FOR\_ALL\_DOFS()} call and should be used to roll data to
the next chain-component. The first argument is moved on to
Compare also \secref{S:FOR_ALL_DOFS}. Example:
\bv\begin{lstlisting}
void print_all_values(const DOF_REAL_VEC *dof_vec)
{
FOREACH_DOF(dof_vec->fe_space,
/* todo-block*/
MSG("value: %e\n", dof_vec->vec[dof]),
/* next-block */
dof_vec = CHAIN_NEXT(dof_vec, const DOF_REAL_VEC));
}
\end{lstlisting}\ev
%%
\kitem{FOREACH\_DOF\_DOW(fe\_space, todo, todo\_cart, next)} A
special version of \code{FOREACH\_DOF()} for chains mixing
vector-valued finite element functions based on either scalar- or
\DOW-valued basis functions: in this context the coefficient
vectors for scalar basis functions consist of vector valued
coefficients, while the coefficient vectors for scalar
basis-functions consist of scalars, e.g.
\bv\begin{lstlisting}
void print_all_values_dow(const DOF_REAL_VEC_D *dof_vec)
{
FOREACH_DOF_DOW(dof_vec->fe_space,
/* todo-block*/
MSG("value: %e\n", dof_vec->vec[dof]),
/* todo_cart-block */
MSG("value: "FORMAT_DOW"\n",
EXPAND_DOW(((const DOF_REAL_D_VEC *)dof_vec)->vec[dof])),
/* next-block */
dof_vec = CHAIN_NEXT(dof_vec, const DOF_REAL_VEC_D));
}
\end{lstlisting}\ev
Note the difference between a \code{DOF\_REAL\_VEC\_D} coding a
vector valued finite-element function, and a
\code{DOF\_REAL\_D\_VEC}, coding for a vector storing
\code{REAL\_D}-valued coefficients. The name \code{todo\_cart}
stems from the fact that the parts of the direct sum belonging to
scalar-valued basis functions is in fact a Cartesian product space
of scalar finite element spaces.
%%
\kitem{FOREACH\_FREE\_DOF(fe\_space, todo, next)}
%%
\kitem{FOREACH\_FREE\_DOF\_DOW(fe\_space, todo, todo\_cart, next)}
%%
Similar to the other two loop-macros, but in the inner loop the
\code{FOR\_ALL\_FREE\_DOFS)}-macro is called, see
\secref{S:FOR_ALL_DOFS}.
\end{descr}
\subsection{Managing temporary coefficient vectors}
\label{S:dof_vec_skel}
Sometimes it is useful to hook a contiguous, flat array of values into
a ``dummy'' \code{DOF\_XXX\_VEC} structure. Most iterative solver
available from third party sources, for instance, as well as the
``OEM''-library functions (Orthogonal Error Methods, see
\secref{S:solver}) expect matrix-vector routines which accept pointers
to such arrays, but the matrix-vector routines implementing the
operation of \code{DOF\_MATRIX}es on finite element coefficient
vectors only accept arguments of type
\code{DOF\_REAL[\_D]\_VEC[\_D]}-type (see \secref{S:DOF_BLAS}).
\begin{compatibility}
\label{compat:dof_skeletons}
Prior to the introduction of the support for direct sums of finite
element spaces, this task was quite easy, have a look at the
following code-excerpt, implementing a matrix-vector routine for an
\emph{older} version of \ALBERTA:
%%
\bv\begin{lstlisting}
void mat_vec_s(void *ud, int dim, const REAL *x, REAL *y)
{
DOF_REAL_VEC dof_x = {nil, nil, "x", 0, nil, nil, nil};
DOF_REAL_VEC dof_y = {nil, nil, "y", 0, nil, nil, nil};
struct mv_data *data = (struct mv_data *)ud;
const DOF_ADMIN *admin = data->matrix->row_fe_space->admin;
dof_x.fe_space = data->matrix->col_fe_space;
dof_y.fe_space = data->matrix->row_fe_space;
dof_x.size = dof_y.size = dim;
dof_x.vec = (REAL *) x;
dof_y.vec = y;
dof_mv(data->transpose, data->matrix, &dof_x, &dof_y);
}
\end{lstlisting}\ev
However, this will no longer work, because the \code{dof\_mv()}
routine expects its argument to model direct sums of finite element
spaces, and even for the standard case it expects the
\code{dof\_x.chain} and \code{dof\_y.chain} list-nodes to be
initialized properly, defining ``direct sums'' consisting of a
single summand.
\end{compatibility}
To aid the task of defining such ``dummy''-vectors, there are some
support functions which take care of transferring the
direct-sum-structure of the finite element space in question to the
temporaries which are needed to interface, e.g., to the matrix-vector
routines pairing \code{DOF\_MATRIX}es with \code{DOF}-vectors. To
improve the readability of the code, it is maybe advisable to use the
new routines anyway. The example given above in
\compatref{compat:dof_skeletons} collapses to the following, using the
routines explained further below:
%%
\bv\begin{lstlisting}
void mat_vec_s(void *ud, int dim, const REAL *x, REAL *y)
struct mv_data *data = (struct mv_data *)ud;
DOF_REAL_VEC *dof_x = data->x_skel;
DOF_REAL_VEC *dof_y = data->y_skel;
distribute_to_dof_real_vec_skel(data->x_skel, x);
distribute_to_dof_real_vec_skel(data->y_skel, y);
dof_mv(data->transpose, data->matrix, data->mask, dof_x, dof_y);
}
\end{lstlisting}\ev
Well, it spares only a few lines. But on the other hand, prescribing
an API for tasks like this increases portability between different
versions of \ALBERTA, because only with such an API it is possible to
hide the more ``dirty'' details, or future extensions, from
application programs. We continue with the description of the
available functions. The example program for the non-linear reaction
diffusion program contained in the demo-package (and described in
\secref{S:nonlin-impl} also makes use of these support functions.
\pagebreak[2]
\begin{samepage}
The available functions are as follows:
%%
\fdx{dof_real_vec_length()@{\code{dof\_real\_vec\_length()}}}%
\fdx{dof_real_d_vec_length()@{\code{dof\_real\_d\_vec\_length()}}}%
\fdx{dof_real_vec_d_length()@{\code{dof\_real\_vec\_d\_length()}}}%
%%
\fdx{init_dof_real_vec_skel()@{\code{init\_dof\_real\_vec\_skel()}}}%
\fdx{init_dof_real_d_vec_skel()@{\code{init\_dof\_real\_d\_vec\_skel()}}}%
\fdx{init_dof_real_vec_d_skel()@{\code{init\_dof\_real\_vec\_d\_skel()}}}%
\fdx{init_dof_schar_vec_skel()@{\code{init\_dof\_schar\_vec\_skel()}}}%
%%
\fdx{get_dof_real_vec_skel()@{\code{get\_dof\_real\_vec\_skel()}}}%
\fdx{get_dof_real_d_vec_skel()@{\code{get\_dof\_real\_d\_vec\_skel()}}}%
\fdx{get_dof_real_vec_d_skel()@{\code{get\_dof\_real\_vec\_d\_skel()}}}%
\fdx{get_dof_schar_vec_skel()@{\code{get\_dof\_schar\_vec\_skel()}}}%
%%
\fdx{distribute_to_dof_real_vec_skel()@{\code{distribute\_to\_dof\_real\_vec\_skel()}}}%
\fdx{distribute_to_dof_real_d_vec_skel()@{\code{distribute\_to\_dof\_real\_d\_vec\_skel()}}}%
\fdx{distribute_to_dof_real_vec_d_skel()@{\code{distribute\_to\_dof\_real\_vec\_d\_skel()}}}%
\fdx{distribute_to_dof_schar_vec_skel()@{\code{distribute\_to\_dof\_schar\_vec\_skel()}}}%
%%
\fdx{copy_to_dof_real_vec()@{\code{copy\_to\_dof\_real\_vec()}}}%
\fdx{copy_to_dof_real_d_vec()@{\code{copy\_to\_dof\_real\_d\_vec()}}}%
\fdx{copy_to_dof_real_vec_d()@{\code{copy\_to\_dof\_real\_vec\_d()}}}%
\fdx{copy_to_dof_schar_vec()@{\code{copy\_to\_dof\_schar\_vec()}}}%
%%
\fdx{copy_from_dof_real_vec()@{\code{copy\_from\_dof\_real\_vec()}}}%
\fdx{copy_from_dof_real_d_vec()@{\code{copy\_from\_dof\_real\_d\_vec()}}}%
\fdx{copy_from_dof_real_vec_d()@{\code{copy\_from\_dof\_real\_vec\_d()}}}%
\fdx{copy_from_dof_schar_vec()@{\code{copy\_from\_dof\_schar\_vec()}}}%
\begin{lstlisting}
size_t dof_real_vec_d_length(const FE_SPACE *fe_space);
size_t dof_real_d_vec_length(const FE_SPACE *fe_space);
size_t dof_real_vec_length(const FE_SPACE *fe_space);
DOF_REAL_VEC *init_dof_real_vec_skel(DOF_REAL_VEC vecs[],
const char *name,
const FE_SPACE *fe_space);
DOF_REAL_D_VEC *init_dof_real_d_vec_skel(DOF_REAL_D_VEC vecs[],
const char *name,
const FE_SPACE *fe_space);
DOF_REAL_VEC_D *init_dof_real_vec_d_skel(DOF_REAL_VEC_D vecs[],
const char *name,
const FE_SPACE *fe_space);
DOF_SCHAR_VEC *init_dof_schar_vec_skel(DOF_SCHAR_VEC vecs[],
const char *name,
const FE_SPACE *fe_space);
DOF_REAL_VEC *get_dof_real_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr);
DOF_REAL_D_VEC *get_dof_real_d_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr);
DOF_REAL_VEC_D *get_dof_real_vec_d_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr);
DOF_SCHAR_VEC *get_dof_schar_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr);
void distribute_to_dof_real_vec_skel(DOF_REAL_VEC *skel, const REAL *data);
void distribute_to_dof_real_d_vec_skel(DOF_REAL_D_VEC *skel, const REAL *_data);
void distribute_to_dof_real_vec_d_skel(DOF_REAL_VEC_D *skel, const REAL *data);
void distribute_to_dof_schar_vec_skel(DOF_SCHAR_VEC *skel, const S_CHAR *data);
void copy_to_dof_real_vec(DOF_REAL_VEC *vecs, const REAL *data);
void copy_to_dof_real_d_vec(DOF_REAL_D_VEC *vecs, const REAL *_data);
void copy_to_dof_real_vec_d(DOF_REAL_VEC_D *vecs, const REAL *data);
void copy_to_dof_schar_vec(DOF_SCHAR_VEC *vecs, const S_CHAR *data);
void copy_from_dof_real_vec(REAL *data, const DOF_REAL_VEC *vecs);
void copy_from_dof_real_d_vec(REAL_D *data, const DOF_REAL_D_VEC *vecs);
void copy_from_dof_real_vec_d(REAL *data, const DOF_REAL_VEC_D *vecs);
void copy_from_dof_schar_vec(S_CHAR *data, const DOF_SCHAR_VEC *vecs);
\end{lstlisting}
\end{samepage}
Descriptions for each of the functions listed above:
\begin{description}
\label{desc:dof_real_vec_length}
%%
\fdx{dof_real_vec_length()@{\code{dof\_real\_vec\_length()}}}%
\fdx{dof_real_d_vec_length()@{\code{dof\_real\_d\_vec\_length()}}}%
\fdx{dof_real_vec_d_length()@{\code{dof\_real\_vec\_d\_length()}}}%
%%
\item[Synopsis]~\hfill
\begin{lstlisting}
length = dof_real_vec_d_length(fe_space);
length = dof_real_d_vec_length(fe_space);
length dof_real_vec_length(fe_space);
\end{lstlisting}
\item[Description]~\hfill
Compute the total dimension of \code{fe\_space}.
\item[Parameters]~\hfill
\begin{descr}
\kitem{fe\_space} The finite element space to compute the
dimension of.
\end{descr}
\item[Return Value]~\hfill
The total dimension of the direct sum of finite element spaces. Note
that vector-valued coefficients are counted with their
\DOW-multiplicity. The return value is of type \code{size\_t}.
\end{description}
\hrulefill
\begin{description}
\label{desc:init_dof_real_vec_skel}
%%
\fdx{init_dof_real_vec_skel()@{\code{init\_dof\_real\_vec\_skel()}}}%
\fdx{init_dof_real_d_vec_skel()@{\code{init\_dof\_real\_d\_vec\_skel()}}}%
\fdx{init_dof_real_vec_d_skel()@{\code{init\_dof\_real\_vec\_d\_skel()}}}%
\fdx{init_dof_schar_vec_skel()@{\code{init\_dof\_schar\_vec\_skel()}}}%
%%
\item[Synopsis]~\hfill
\begin{lstlisting}
head_vec = init_dof_real_vec_skel(&dof_vec_storage[0], name, fe_space);
head_vec = init_dof_real_d_vec_skel(&dof_vec_storage[0], name, fe_space);
head_vec = init_dof_real_vec_d_skel(&dof_vec_storage[0], name, fe_space);
head_vec = init_dof_schar_vec_skel(&dof_vec_storage[0], name, fe_space);
\end{lstlisting}
\item[Description]~\hfill
Turn an uninitialized storage area consisting of sufficiently many
\code{DOF\_REAL[\_D]\_VEC[\_D]} or \code{DOF\_SCHAR\_VEC} objects
and turn it into a concatenated list, describing a coefficient
vector for the finite element space specified by \code{fe\_space}.
The resulting dof-vectors are, of course, not hooked into the lists
of \code{fe\_space->admin}, and are not subject to automatic
resizing during mesh adaptation. Further, they do not carry storage
for data, i.e. their \code{vec} component does not point to a valid
storage area (but see \code{distribute\_to\_dof\_XXX\_vec\_skel()}
below). Therefore we call the resulting object a ``skeleton'',
which also explains the name of this function.
\item[Arguments]~\hfill
\begin{descr}
\kitem{dof\_vec\_storage} Pointer to a storage area, pointing to
sufficiently many DOF-vectors, stored consecutively in memory
(i.e. \code{dof\_vec\_storage} is a flat array of sufficient
size). The number of the objects needed can be determined by
calling \code{CHAIN\_LENGTH(fe\_space)}.
%%
\kitem{name} A descriptive name for the skeleton. It is hooked
into the \code{name} component of each of the individual DOF-vectors.
%%
\kitem{fe\_space} The underlying finite element space.
\code{fe\_space} determines the layout of the resulting chained
coefficient vector.
\end{descr}
\item[Return Value]~\hfill
The first component of the multi-component coefficient vector.
\end{description}
\hrulefill
\begin{description}
\label{desc:get_dof_real_vec_skel}
%%
\fdx{get_dof_real_vec_skel()@{\code{get\_dof\_real\_vec\_skel()}}}%
\fdx{get_dof_real_d_vec_skel()@{\code{get\_dof\_real\_d\_vec\_skel()}}}%
\fdx{get_dof_real_vec_d_skel()@{\code{get\_dof\_real\_vec\_d\_skel()}}}%
\fdx{get_dof_schar_vec_skel()@{\code{get\_dof\_schar\_vec\_skel()}}}%
%%
\item[Synopsis]~\hfill
\begin{lstlisting}
head_vec = get_dof_real_vec_skel(name, fe_space, scr);
head_vec = get_dof_real_d_vec_skel(name, fe_space, scr);
head_vec = get_dof_real_vec_d_skel(name, fe_space, scr);
head_vec = get_dof_schar_vec_skel(name, fe_space, scr);
\end{lstlisting}
\item[Description]~\hfill
Allocate and initialize a temporary DOF-vector from a scratch-memory pool, see
\secref{S:scratch_memory}. This functionally equivalent to
\begin{lstlisting}
DOF_REAL_VEC *get_dof_real_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr)
{
DOF_REAL_VEC *vecs;
vecs = SCRATCH_MEM_ALLOC(scr, CHAIN_LENGTH(fe_space), DOF_REAL_VEC);
return init_dof_real_vec_skel(vecs, name, fe_space);
}
\end{lstlisting}
Likewise for the other types of DOF-vectors.
\item[Arguments]~\hfill
\begin{descr}
\kitem{name} Symbolic name.
%%
\kitem{fe\_space} The underlying finite element space.
%%
\kitem{scr} Pointer to a scratch-memory pool, see
\secref{S:scratch_memory}. Consequently, the objects generated here
can and will be destroyed when the scratch-memory pool is deleted
by calling \code{SCRATCH\_MEM\_ZAP(scr)}.
\end{descr}
\item[Return Value]~\hfill
A pointer to the head of the chain.
\end{description}
\hrulefill
\begin{description}
\label{desc:distribute_to_dof_real_vec_skel}
%%
\fdx{distribute_to_dof_real_vec_skel()@{\code{distribute\_to\_dof\_real\_vec\_skel()}}}%
\fdx{distribute_to_dof_real_d_vec_skel()@{\code{distribute\_to\_dof\_real\_d\_vec\_skel()}}}%
\fdx{distribute_to_dof_real_vec_d_skel()@{\code{distribute\_to\_dof\_real\_vec\_d\_skel()}}}%
\fdx{distribute_to_dof_schar_vec_skel()@{\code{distribute\_to\_dof\_schar\_vec\_skel()}}}%
%%
\item[Synopsis]~\hfill
\begin{lstlisting}
distribute_to_dof_real_vec_skel(dof_vec_skel, contiguous_data);
distribute_to_dof_real_d_vec_skel(dof_vec_skel, contiguous_data);
distribute_to_dof_real_vec_d_skel(dof_vec_skel, contiguous_data);
distribute_to_dof_schar_vec_skel(dof_vec_skel, contiguous_data);
\end{lstlisting}
\item[Description]~\hfill
Distribute a contiguous piece of data specified by
\code{contiguous\_data} to a DOF-vector skeleton as generated by a
call to \code{get\_dof\_XXX\_vec\_skel()} or
\code{init\_dof\_XXX\_vec\_skel()} described above. ``Distribute''
in this context means to initialize the \code{vec} component of each
part of the DOF-vector chain with the proper location into
\code{contiguous\_data}. The data will be distributed to the
individual components according to the dimension of the component of
the finite element space they belong to.
This function must be called prior to passing a DOF-vector skeleton
to any function expecting a ``real'' DOF-vector.
To only copy data between contiguous arrays and DOF-vectors, see
\code{copy\_to|from\_dof\_XXX\_vec()} below.
\item[Arguments]~\hfill
\begin{descr}
\kitem{dof\_vec\_skel} The DOF-vector skeleton.
%%
\kitem{contiguous\_data} A piece of contiguous data with
\code{dof\_XXX\_vec\_length(fe\_space)} many items.
\end{descr}
\end{description}
\hrulefill
\begin{description}
\label{desc:copy_to_dof_real_vec}
%%
\fdx{copy_to_dof_real_vec()@{\code{copy\_to\_dof\_real\_vec()}}}%
\fdx{copy_to_dof_real_d_vec()@{\code{copy\_to\_dof\_real\_d\_vec()}}}%
\fdx{copy_to_dof_real_vec_d()@{\code{copy\_to\_dof\_real\_vec\_d()}}}%
\fdx{copy_to_dof_schar_vec()@{\code{copy\_to\_dof\_schar\_vec()}}}%
%%
\item[Synopsis]~\hfill
\begin{lstlisting}
copy_to_dof_real_vec(dof_vec, contiguous_data);
copy_to_dof_real_d_vec(dof_vec, contiguous_data);
copy_to_dof_real_vec_d(dof_vec, contiguous_data);
copy_to_dof_schar_vec(dof_vec, contiguous_data);
\end{lstlisting}
\item[Description]~\hfill
Copy data from a flat array containing at least
\code{dof\_XXX\_vec\_length()} many items to a DOF-vector object,
taking care of the chained structure of coefficient vectors
belonging to direct sums of finite element spaces.
This function will overwrite all the data stored in \code{dof\_vec}.
\item[Arguments]~\hfill
\begin{descr}
\kitem{dof\_vec} The destination of the copy operation.
\kitem{contiguous\_data} The source of the copy operation.
\end{descr}
\item[Return Value]~\hfill
\end{description}
\hrulefill
\begin{description}
\label{desc:copy_from_dof_real_vec}
%%
\fdx{copy_from_dof_real_vec()@{\code{copy\_from\_dof\_real\_vec()}}}%
\fdx{copy_from_dof_real_d_vec()@{\code{copy\_from\_dof\_real\_d\_vec()}}}%
\fdx{copy_from_dof_real_vec_d()@{\code{copy\_from\_dof\_real\_vec\_d()}}}%
\fdx{copy_from_dof_schar_vec()@{\code{copy\_from\_dof\_schar\_vec()}}}%
\item[Synopsis]~\hfill
\begin{lstlisting}
copy_from_dof_real_vec(contiguous_data, dof_vec);
copy_from_dof_real_d_vec(contiguous_data, dof_vec);
copy_from_dof_real_vec_d(contiguous_data, dof_vec);
copy_from_dof_schar_vec(contiguous_data, dof_vec);
\end{lstlisting}
\item[Description]~\hfill
Copy data from a DOF-vector to a flat array containing at least
\code{dof\_XXX\_vec\_length()} many items, taking care of the
chained structure of coefficient vectors belonging to direct sums of
finite element spaces.
This function will overwrite all the data stored in \code{contiguous\_data}.
\item[Arguments]~\hfill
\begin{descr}
\kitem{contiguous\_data} Destination of the copy operation.
\kitem{dof\_vec} Source of the copy operation.
\end{descr}
\item[Return Value]~\hfill
\end{description}
\subsection{Data transfer during mesh adaptation}
\label{S:chained_coarse_refine_inter}
If the underlying finite element space is indeed a direct sum, then it
is an inconvenient task to install the default refinement and
coarsening functions into each component of the chain. For a
single-component sum, the following suffices:
%%
\begin{lstlisting}
extern DOF_REAL_VEC_D *vector;
vector->refine_inter = vector->fe_space->bas_fcts->real_refine_inter_d;
\end{lstlisting}
%%
However, if \code{vector} is only the first part of a chain, then the
following elements of the chain are not touched by this operation, one
would have to do something similar to the following:
%%
\begin{lstlisting}
extern DOF_REAL_VEC_D *vector;
CHAIN_DO(uh,DOF_REAL_VEC_D) {
uh->refine_interpol = uh->fe_space->bas_fcts->real_refine_inter_d;
} CHAIN_WHILE(uh, DOF_REAL_VEC_D);
\end{lstlisting}
%%
There are small inline functions defined through the inclusion which
perform just this, above code, e.g., is wrapped into the following
function:
%%
\begin{lstlisting}
static inline void set_refine_inter_dow(DOF_REAL_VEC_D *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC_D) {
uh->refine_interpol = uh->fe_space->bas_fcts->real_refine_inter_d;
} CHAIN_WHILE(uh, DOF_REAL_VEC_D);
}
\end{lstlisting}
%%
As the code is self-explaining (at least after reading
\secref{S:chain_loops} and \secref{S:DOF_INTERPOL}), we only list the
proto-types here:
%%
\fdx{set_refine_inter@{\code{set\_refine\_inter()}}}
\fdx{set_refine_inter_d@{\code{set\_refine\_inter\_d()}}}
\fdx{set_refine_inter_dow@{\code{set\_refine\_inter\_dow()}}}
%%
\fdx{set_coarse_inter@{\code{set\_coarse\_inter()}}}
\fdx{set_coarse_inter_d@{\code{set\_coarse\_inter\_d()}}}
\fdx{set_coarse_inter_dow@{\code{set\_coarse\_inter\_dow()}}}
%%
\fdx{set_coarse_restrict@{\code{set\_coarse\_restrict()}}}
\fdx{set_coarse_restrict_d@{\code{set\_coarse\_restrict\_d()}}}
\fdx{set_coarse_restrict_dow@{\code{set\_coarse\_restrict\_dow()}}}
%%
\begin{lstlisting}
static inline void set_refine_inter(DOF_REAL_VEC *uh);
static inline void set_refine_inter_d(DOF_REAL_D_VEC *uh);
static inline void set_refine_inter_dow(DOF_REAL_VEC_D *uh);
static inline void set_coarse_inter(DOF_REAL_VEC *uh);
static inline void set_coarse_inter_d(DOF_REAL_D_VEC *uh);
static inline void set_coarse_inter_dow(DOF_REAL_VEC_D *uh);
static inline void set_coarse_restrict(DOF_REAL_VEC *uh);
static inline void set_coarse_restrict_d(DOF_REAL_D_VEC *uh);
static inline void set_coarse_restrict_dow(DOF_REAL_VEC_D *uh);
\end{lstlisting}
\subsection{Forming direct sub-sums}
\label{S:sub_chains}
Sometimes it is handy to refer only to selected components of a chain
of objects. The following routines perform this task by forming
sub-chains of objects, which then belong to a direct sub-sum, so to
say:
\fdx{bas_fcts_sub_chain()@{\code{bas\_fcts\_sub\_chain()}}}%
\fdx{fe_space_sub_chain()@{\code{fe\_space\_sub\_chain()}}}%
%%
\fdx{dof_real_vec_sub_chain()@{\code{dof\_real\_vec\_sub\_chain()}}}%
\fdx{dof_real_d_vec_sub_chain()@{\code{dof\_real\_d\_vec\_sub\_chain()}}}%
\fdx{dof_real_vec_d_sub_chain()@{\code{dof\_real\_vec\_d\_sub\_chain()}}}%
\fdx{dof_dof_vec_sub_chain()@{\code{dof\_dof\_vec\_sub\_chain()}}}%
\fdx{dof_int_vec_sub_chain()@{\code{dof\_int\_vec\_sub\_chain()}}}%
\fdx{dof_uchar_vec_sub_chain()@{\code{dof\_uchar\_vec\_sub\_chain()}}}%
\fdx{dof_schar_vec_sub_chain()@{\code{dof\_schar\_vec\_sub\_chain()}}}%
\fdx{dof_ptr_vec_sub_chain()@{\code{dof\_ptr\_vec\_sub\_chain()}}}%
%%
\fdx{dof_matrix_sub_chain()@{\code{dof\_matrix\_sub\_chain()}}}%
%%
\fdx{update_dof_real_vec_sub_chain()@{\code{update\_dof\_real\_vec\_sub\_chain()}}}%
\fdx{update_dof_real_d_vec_sub_chain()@{\code{update\_dof\_real\_d\_vec\_sub\_chain()}}}%
\fdx{update_dof_real_vec_d_sub_chain()@{\code{update\_dof\_real\_vec\_d\_sub\_chain()}}}%
\fdx{update_dof_dof_vec_sub_chain()@{\code{update\_dof\_dof\_vec\_sub\_chain()}}}%
\fdx{update_dof_int_vec_sub_chain()@{\code{update\_dof\_int\_vec\_sub\_chain()}}}%
\fdx{update_dof_uchar_vec_sub_chain()@{\code{update\_dof\_uchar\_vec\_sub\_chain()}}}%
\fdx{update_dof_schar_vec_sub_chain()@{\code{update\_dof\_schar\_vec\_sub\_chain()}}}%
\fdx{update_dof_ptr_vec_sub_chain()@{\code{update\_dof\_ptr\_vec\_sub\_chain()}}}%
%%
\fdx{update_dof_matrix_sub_chain()@{\code{update\_dof\_matrix\_sub\_chain()}}}%
\fdx{update_bas_fcts_sub_chain()@{\code{update\_bas\_fcts\_sub\_chain()}}}%
\fdx{update_fe_space_sub_chain()@{\code{update\_fe\_space\_sub\_chain()}}}%
\begin{lstlisting}
BAS_FCTS *bas_fcts_sub_chain(SCRATCH_MEM scr, const BAS_FCTS *bas_fcts,
FLAGS which);
void update_bas_fcts_sub_chain(BAS_FCTS *bas_fcts);
FE_SPACE *fe_space_sub_chain(SCRATCH_MEM scr, const FE_SPACE *fe_space,
FLAGS which);
void update_fe_space_sub_chain(FE_SPACE *fe_space);
DOF_REAL_VEC *dof_real_vec_sub_chain(SCRATCH_MEM scr,
const DOF_REAL_VEC *vec,
FLAGS which);
DOF_REALD_VEC *dof_real_d_vec_sub_chain(SCRATCH_MEM scr,
const DOF_REAL_D_VEC *vec,
FLAGS which);
DOF_REAL_VEC_D *dof_real_vec_d_sub_chain(SCRATCH_MEM scr,
const DOF_REAL_VEC_D *vec,
FLAGS which);
DOF_DOF_VEC *dof_dof_vec_sub_chain(SCRATCH_MEM scr,
const DOF_DOF_VEC *vec,
FLAGS which);
DOF_INT_VEC *dof_int_vec_sub_chain(SCRATCH_MEM scr,
const DOF_INT_VEC *vec,
FLAGS which);
DOF_UCHAR_VEC *dof_uchar_vec_sub_chain(SCRATCH_MEM scr,
const DOF_UCHAR_VEC *vec,
FLAGS which);
DOF_SCHAR_VEC *dof_schar_vec_sub_chain(SCRATCH_MEM scr,
const DOF_SCHAR_VEC *vec,
FLAGS which);
DOF_PTR_VEC *dof_ptr_vec_sub_chain(SCRATCH_MEM scr,
const DOF_PTR_VEC *vec,
FLAGS which);
void update_dof_real_vec_sub_chain(const DOF_REAL_VEC *sub_vec);
void update_dof_real_d_vec_sub_chain(const DOF_REAL_D_VEC *sub_vec);
void update_dof_real_vec_d_sub_chain(const DOF_REAL_VEC_D *sub_vec);
void update_dof_dof_vec_sub_chain(const DOF_DOF_VEC *sub_vec);
void update_dof_int_vec_sub_chain(const DOF_INT_VEC *sub_vec);
void update_dof_uchar_vec_sub_chain(const DOF_UCHAR_VEC *sub_vec);
void update_dof_schar_vec_sub_chain(const DOF_SCHAR_VEC *sub_vec);
void update_dof_ptr_vec_sub_chain(const DOF_PTR_VEC *sub_vec);
DOF_MATRIX *dof_matrix_sub_chain(SCRATCH_MEM scr, const DOF_MATRIX *A,
FLAGS row_which, FLAGS col_which);
void update_dof_matrix_sub_chain(DOF_MATRIX *sub_M);
\end{lstlisting}
The general idea is to make shallow copies of selected components of
the original chain, shallow in the sense that the copies share the
underlying data (e.g. such a shallow copy of a \code{DOF\_REAL\_VEC}
would share the \code{vec} component with the original instance).
Those copies are then chained-together, forming sub-chains. The
selection of the components is performed by means of a bit-mask,
called \code{which} in the proto-types listed above. If bit $n$ in the
\code{which}-mask is set, then the component number $n$ takes part in
forming the sub-chain. Analogously for matrices where we need a two
masks, one for the rows, and another one for the columns of the
block-matrix.
Descriptions for the individual groups of functions:
\begin{description}
\fdx{bas_fcts_sub_chain()@{\code{bas\_fcts\_sub\_chain()}}}%
\fdx{fe_space_sub_chain()@{\code{fe\_space\_sub\_chain()}}}%
%%
\fdx{dof_real_vec_sub_chain()@{\code{dof\_real\_vec\_sub\_chain()}}}%
\fdx{dof_real_d_vec_sub_chain()@{\code{dof\_real\_d\_vec\_sub\_chain()}}}%
\fdx{dof_real_vec_d_sub_chain()@{\code{dof\_real\_vec\_d\_sub\_chain()}}}%
\fdx{dof_dof_vec_sub_chain()@{\code{dof\_dof\_vec\_sub\_chain()}}}%
\fdx{dof_int_vec_sub_chain()@{\code{dof\_int\_vec\_sub\_chain()}}}%
\fdx{dof_uchar_vec_sub_chain()@{\code{dof\_uchar\_vec\_sub\_chain()}}}%
\fdx{dof_schar_vec_sub_chain()@{\code{dof\_schar\_vec\_sub\_chain()}}}%
\fdx{dof_ptr_vec_sub_chain()@{\code{dof\_ptr\_vec\_sub\_chain()}}}%
%%
\fdx{dof_matrix_sub_chain()@{\code{dof\_matrix\_sub\_chain()}}}%
%%
\item[Synopsis]~\hfill
\begin{lstlisting}
sub_chain = bas_fcts_sub_chain(scratch_mem, master_chain, which);
sub_chain = fe_space_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_real_vec_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_real_vec_d_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_real_d_vec_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_dof_vec_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_int_vec_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_uchar_vec_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_schar_vec_sub_chain(scratch_mem, master_chain, which);
sub_chain = dof_ptr_vec_sub_chain(scratch_mem, master_chain, which);
sub_matrix =
dof_matrix_sub_chain(scratch_mem, matrix, row_which, col_which)
\end{lstlisting}
\item[Description]~\hfill
Form a sub-chain of the specified ``master''-chain, using the number
of bits set in \code{which} to select the components to copy.
Sub-chains are chains consisting of shallow copies of the members of
the master-chain, which share the underlying coefficient data which
the members of the master chain. A sub-chain is up-to-date after
generating it, however, if the size of the master objects changed,
prominently because of mesh adaptation, the corresponding update
routine has to be called to update the sub-chain accordingly, see
below. Note that for DOF-vectors and -matrices the
structure-component \code{unchained} of the sub-chain objects will
point to the original objects. Note also that this does \emph{not}
hold for sub-chains of \code{BAS\_FCTS} and \code{FE\_SPACE}
objects: here the component \code{unchained} will always point to an
instance of those objects which is not concatenated which any other
object, i.e. is indeed an unchained copy.
Note that the sub-chain will be destroyed when the scratch-memory
handle \code{scratch\_mem} is deleted by calling
\code{SCRATCH\_MEM\_ZAP(scratch\_mem)}.
\item[Arguments]~\hfill
\begin{descr}
\kitem{scratch\_mem} A pointer to a scratch-memory area, see
\secref{S:scratch_memory}.
%%
\kitem{master\_chain} The master-chain.
%%
\kitem{which} A bit mask which determines which parts of
\code{master\_chain} take part in forming the sub-chain: if bit
$n$ is set in the \code{which}-mask, then component number $n$ of
the master-chain will make its way into the sub-chain.
\end{descr}
\item[Return Value]~\hfill
A pointer to the first element of the sub-chain.
\end{description}
\hrulefill
\begin{description}
\fdx{update_dof_real_vec_sub_chain()@{\code{update\_dof\_real\_vec\_sub\_chain()}}}%
\fdx{update_dof_real_d_vec_sub_chain()@{\code{update\_dof\_real\_d\_vec\_sub\_chain()}}}%
\fdx{update_dof_real_vec_d_sub_chain()@{\code{update\_dof\_real\_vec\_d\_sub\_chain()}}}%
\fdx{update_dof_dof_vec_sub_chain()@{\code{update\_dof\_dof\_vec\_sub\_chain()}}}%
\fdx{update_dof_int_vec_sub_chain()@{\code{update\_dof\_int\_vec\_sub\_chain()}}}%
\fdx{update_dof_uchar_vec_sub_chain()@{\code{update\_dof\_uchar\_vec\_sub\_chain()}}}%
\fdx{update_dof_schar_vec_sub_chain()@{\code{update\_dof\_schar\_vec\_sub\_chain()}}}%
\fdx{update_dof_ptr_vec_sub_chain()@{\code{update\_dof\_ptr\_vec\_sub\_chain()}}}%
%%
\fdx{update_dof_matrix_sub_chain()@{\code{update\_dof\_matrix\_sub\_chain()}}}%
\fdx{update_bas_fcts_sub_chain()@{\code{update\_bas\_fcts\_sub\_chain()}}}%
\fdx{update_fe_space_sub_chain()@{\code{update\_fe\_space\_sub\_chain()}}}%
\item[Synopsis]~\hfill
\begin{lstlisting}
update_dof_real_vec_sub_chain(sub_chain);
update_dof_real_d_vec_sub_chain(sub_chain);
update_dof_real_vec_d_sub_chain(sub_chain);
update_dof_dof_vec_sub_chain(sub_chain);
update_dof_int_vec_sub_chain(sub_chain);
update_dof_uchar_vec_sub_chain(sub_chain);
update_dof_schar_vec_sub_chain(sub_chain);
update_dof_ptr_vec_sub_chain(sub_chain);
update_dof_matrix_sub_chain(sub_chain);
\end{lstlisting}
\item[Description]~\hfill
Update a sub-chain after mesh-adaptation. Note that there are no
``updaters'' for sub-chains of \code{BAS\_FCTS} and \code{FE\_SPACE}
objects, simply because the sub-chains need not be updated in this
case.
Otherwise, the application must call
\code{update\_XXX\_sub\_chain()} after adapting the mesh. Otherwise
the meta-data stored in the elements forming the sub-chain will be
inconsistent with the state of the mesh.
\item[Arguments]~\hfill
\begin{descr}
\kitem{sub\_chain} The head of the sub-chain. The master chain is
not needed, because it can be accessed via
\code{sub\_chain->unchained}.
\end{descr}
\end{description}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End:
|