1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
|
\def\jump#1{\left[\negthinspace\left[{#1}\right]\negthinspace\right]}
\section{Implementation of error estimators}%
\label{S:estimator}%
\idx{error estimators|(}
\subsection{Error estimator for elliptic problems}%
\label{S:ellipt_est}
\ALBERTA provides a residual type error estimator for non--linear
elliptic problems of the type
\begin{align*}
-\nabla \cdot A \nabla u(x) + f\Big(x,u(x),\nabla u(x)\Big) &= 0
&&x \in \Omega,\\
u(x) &= g_d &&x \in \Gamma_D,\\
\nu\cdot A\nabla u(x) &= g_n &&x \in \Gamma_N,
\end{align*}
where $A \in \R^{n\times n}$ is a positive definite matrix and
$\partial\Omega=\Gamma_D\cup\Gamma_N$.
%%
\ALBERTA implements for this kind of equations the $L^2$ and $H^1$
per-element estimators $\eta_{S,0}$ and $\eta_{S,1}$ ($S\in\tria$)
\[
\begin{split}
\eta_{S,0}^2&:=
C_0^2\, h_S^4\, \|-\nabla \cdot A \nabla \uh + f(.,\uh,\nabla\uh)\|_{L^2(S)}^2\\
&\qquad+ C_1^2\, \sum_{\Gamma\subset\partial S \cap\Omega}
h_S^3\, \|\jump{A\nabla \uh}\|_{L^2(\Gamma)}^2
+ C_1^2\, \sum_{\Gamma\subset\partial S \cap\Gamma_N}
h_S^3\, \|\nu\cdot A\nabla \uh-g_n\|_{L^2(\Gamma)}^2,
\\
\eta_{S,1}^2&:=
C_0^2\,h_S^2\, \|-\nabla \cdot A \nabla \uh + f(.,\uh,\nabla \uh)\|_{L^2(S)}^2
\\
&\qquad + C_1^2\, \sum_{\Gamma\subset\partial S \cap \Omega}
h_S\, \|\jump{A\nabla \uh}\|_{L^2(\Gamma)}^2
+ C_1^2\, \sum_{\Gamma\subset\partial S \cap \Gamma_N}
h_S\, \|\nu\cdot A\nabla \uh-g_n\|_{L^2(\Gamma)}^2,
\\
\end{split}
\]
where $\jump{.}$ denotes the jump of the normal component across an
interior co-dimension $1$ sub-simplex (vertex/edge/face) $\Gamma
\subset \partial S$.
Verf\"urth proved for $g_d\equiv 0$ and $g_n\equiv 0$ in
\cite{Verfuerth:94b} -- under suitable assumptions on $f$,
$u$ and $\uh$ in the non-linear case -- the estimate
\[
\|u - \uh\|_{H^1(\Omega)}^2\leq\sum_{S\in\tria} \eta_{S,1}^2,
\]
and B\"ansch and Siebert \cite{BaenschSiebert:95} proved a similar the
$L^2$-estimate for the semi--linear case $f = f(x,u)$ and $g_d\equiv
0$ and $\Gamma_N=\emptyset$:
\[
\|u - \uh\|_{L^2(\Omega)}^2\leq \sum_{S\in\tria}\eta_{S,0}^2.
\]
%%
The following functions implement above estimators for scalar and
vector-valued functions; the implementation works also for meshes with
non-zero co-dimension as well as for periodic meshes.
%%
\fdx{ellipt_est()@{\code{ellipt\_est()}}}%
\idx{error estimators!ellipt_est()@{\code{ellipt\_est()}}}%
\fdx{ellipt_est_dow()@{\code{ellipt\_est\_dow()}}}%
\idx{error estimators!ellipt_est_dow()@{\code{ellipt\_est\_dow()}}}%
\fdx{ellipt_est_d()@{\code{ellipt\_est\_d()}}}%
\idx{error estimators!ellipt_est_d()@{\code{ellipt\_est\_d()}}}%
\bv\begin{verbatim}
REAL ellipt_est(const DOF_REAL_VEC *uh, ADAPT_STAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int quad_deg,
NORM norm, REAL C[3], const REAL_DD A,
const BNDRY_FLAGS dirichlet_bndry,
REAL (*f)(const EL_INFO *el_info,
const QUAD *quad, int qp,
REAL uh_qp, const REAL_D grd_uh_gp),
FLAGS f_flags,
REAL (*gn)(const EL_INFO *el_info,
const QUAD *quad, int qp,
REAL uh_qp, const REAL_D normal),
FLAGS gn_flags);
REAL ellipt_est_dow(const DOF_REAL_VEC_D *uh, ADAPT_STAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int quad_deg,
NORM norm, REAL C[3],
const void *A, MATENT_TYPE A_type, MATENT_TYPE A_blocktype,
bool sym_grad,
const BNDRY_FLAGS dirichlet_bndry,
const REAL *(*f)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad, int qp,
const REAL_D uh_qp,
const REAL_DD grd_uh_gp),
FLAGS f_flags,
const REAL *(*gn)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad, int qp,
const REAL_D uh_qp,
const REAL_D normal),
FLAGS gn_flags);
REAL ellipt_est_d(const DOF_REAL_D_VEC *uh, ADAPT_STAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int quad_deg,
NORM norm, REAL C[3],
const void *A, MATENT_TYPE A_type, MATENT_TYPE A_blocktype,
bool sym_grad,
const BNDRY_FLAGS dirichlet_bndry,
const REAL *(*f)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad, int qp,
const REAL_D uh_qp,
const REAL_DD grd_uh_gp),
FLAGS f_flags,
const REAL *(*gn)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad, int qp,
const REAL_D uh_qp,
const REAL_D normal),
FLAGS gn_flags);
\end{verbatim}\ev
%%
Description:
\begin{descr}
\kitem{ellipt\_est(uh, adapt, rw\_est, rw\_estc, quad\_deg, norm, C,}
\kitem{~~~~~~~~~~~A, dirichlet\_bndry, f, f\_flags, gn, gn\_flags)}~\hfill
computes an error estimate of the above type for the
$H^1$ or $L^2$ norm; the return value is an
approximation of the estimate $\|u - \uh\|$ by quadrature.
\begin{descr}
\kitem{uh} is a vector storing the coefficients of the
discrete solution; if \code{uh} is a \nil pointer, nothing is
done, the return value is \code{.0}.
\kitem{adapt} is a pointer to an \code{ADAPT\_STAT} structure;
if not \nil, the entries \code{adapt->p=2}, \code{err\_sum},
and \code{err\_max} of \code{adapt} are set by
\code{ellipt\_est()} (compare
\secref{S:adapt_stat_in_ALBERTA}).
\kitem{rw\_el\_est} is a function for writing the local error
indicator for a single element (usually to some location
inside \code{leaf\_data}, compare \secref{S:leaf_data_info});
if this function is \nil, only the global estimate is
computed, no local indicators are stored.
\code{rw\_el\_est(el)} returns for each leaf element
\code{el} a pointer to a \code{REAL} for storing the square
of the element indicator, which can directly be used in the
adaptive method, compare the \code{get\_el\_est()} function
pointer in the \code{ADAPT\_STAT} structure (compare
\secref{S:adapt_stat_in_ALBERTA}).
\kitem{rw\_el\_estc} is a function for writing the local
coarsening error indicator for a single element (usually to
some location inside \code{leaf\_data}, compare
\secref{S:leaf_data_info}); if this function is \nil, no
coarsening error indicators are computed and stored;
\code{rw\_el\_estc(el)} returns for each leaf element
\code{el} a pointer to a \code{REAL} for storing the square
of the element coarsening error indicator.
\kitem{quad\_deg} is the degree of the quadrature that should
be used for the approximation of the norms on the elements
and edges/faces; if \code{degree} is less than zero a
quadrature which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree} is used.
\kitem{norm} can be either
\code{H1\_NORM}\cdx{H1_NORM@{\code{H1\_NORM}}} or
\code{L2\_NORM}\cdx{L2_NORM@{\code{L2\_NORM}}} (which are
defined as symbolic constants in \code{alberta.h}) to
indicate that the $H^1$ or $L^2$ error estimate has to be
calculated.
\kitem{C[0], C[1], C[2]} are the constants in
front of the element residual, wall residual, and coarsening
term respectively. If \code{C} is \nil, then all constants
are set to $1.0$.
\kitem{A} is the constant matrix of the second order term.
\kitem{dirichlet\_bndry} A bit-mask marking those parts of the
boundary which are subject to Dirichlet boundary conditions, see
\secref{S:boundary}.
\kitem{f} is a pointer to a function for the evaluation of the
lower order terms at all quadrature nodes, i.e.
$f(x(\lambda), u(\lambda), \nabla u(\lambda))$ ; if \code{f}
is a \nil pointer, $f\equiv0$ is assumed;
\code{f(el\_info, quad, qp, uh\_qp, grd\_uh\_qp)} returns the
value of the lower oder terms on element \code{el\_info->el}
at the quadrature node \code{quad->lambda[qp]}, where
\code{uh\_qp} is the value and \code{grd\_uh\_qp} the
gradient (with respect to the Cartesian coordinates) of the
discrete solution at that quadrature point. See also
\code{f\_flag} below:
\kitem{f\_flag} specifies whether the function \code{f()}
actually needs values of \code{uh\_qp} or \code{grd\_uh\_qp},
\code{f\_flag} may be $0$ or
\code{INIT\_UH}\cdx{INIT_UH@{\code{INIT\_UH}}} or
\code{INIT\_GRD\_UH}\cdx{INIT_GRD_UH@{\code{INIT\_GRD\_UH}}}
or their bitwise composition (\code{|}). The arguments
\code{uh\_qp} and \code{grd\_uh\_qp} of \code{f()} only hold
valid information if the flags \code{INIT\_UH} respectively
\code{INIT\_GRD\_UH} are set.
\kitem{gn(el\_info, quad, qp, uh\_qp, normal)} is a pointer to a
function for the evaluation of non-homogeneous Neumann boundary
data. \code{gn} may be \nil, in which case zero Neumann boundary
conditions are assumed. The argument \code{normal} always
contains the normal of the Neumann boundary facet. In the case of
non-vanishing co-dimension \code{normal} lies in the
lower-dimensional space which is spanned by the mesh simplex
defined by \code{el\_info}. \code{gn()} is evaluated on those
parts of the boundary which are \emph{not} flagged as
Dirichlet-boundaries by the argument \code{dirichlet\_bndry}.
\kitem{gn\_flag} controls whether the argument \code{uh\_qp}
of the function \code{gn()} actually contains the value of
\code{uh} at the quadrature point \code{qp}. Note that the
argument \code{normal} always contains valid data.
\end{descr}
The estimate is computed by traversing all leaf elements of
\code{uh->fe\_space->mesh}, using the quadrature for the
approximation of the residuals and storing the square of the
element indicators on the elements (if \code{rw\_el\_est} and
\code{rw\_el\_estc }are not \nil).
\kitem{ellipt\_est\_d(uh, adapt, rw\_est, rw\_estc, quad\_deg, norm, C,}
\kitem{~~~~~~~~~~~~~A, A\_type, A\_blocktype, sym\_grad,}
\kitem{~~~~~~~~~~~~~dirichlet\_bndry, f, f\_flags, gn, gn\_flags)}\hfill
\kitem{ellipt\_est\_dow(uh, adapt, rw\_est, rw\_estc, quad\_deg, norm, C,}
\kitem{~~~~~~~~~~~~~~~A, A\_type, A\_blocktype, sym\_grad,}
\kitem{~~~~~~~~~~~~~~~dirichlet\_bndry, f, f\_flags, gn, gn\_flags)}\hfill
Similar function for a (coupled) vector valued elliptic problem. We
document only the arguments which are different from the arguments of
\code{ellipt\_est()}:
\begin{descr}
\kitem{A}
now represents a tensor
$(A_{ij}^{\mu\nu}\in\R^{n\times n,n\times n}$,
$i,j,\mu,\nu=0,\dots,n-1$. The indexing is
\begin{equation*}
\code{A[i][j][mu][nu]} = A^{\code{mu},\code{nu}}_{\code{ij}},
\end{equation*}
with \code{i,j,mu,nu==0,\dots,\code{DIM\_OF\_WORLD-1}}, see
\secref{book:S:DisCoupled}. \code{A} describes the coefficients of the
principal part of a coupled system of elliptical equations:
\[
-\sum_{\nu,i,j=0}^{n-1}\partial_i A_{ij}^{\mu\nu}\partial_j u^\nu +\text{lower order terms} = f^\mu\quad(\mu = 0,\,\dots,\,n-1).
\]
The \code{quasi-stokes.c} demo-program contains an example.
\kitem{A\_blocktype} must be one of \code{MATENT\_REAL},
\code{MATENT\_REAL\_D} or \code{MATENT\_REAL\_DD}. It specifies the
symmetry type for coupling of the PDE system. Note that the storage
layout of \code{A} is determined by the argument
\code{A\_blocktype}:
\begin{descr}
\kitem{MATENT\_REAL:~~~} \code{REAL A[DIM\_OF\_WORLD][DIM\_OF\_WORLD];}
\kitem{MATENT\_REAL\_D:~} \code{REAL\_D A[DIM\_OF\_WORLD][DIM\_OF\_WORLD];}
\kitem{MATENT\_REAL\_DD:} \code{REAL\_DD A[DIM\_OF\_WORLD][DIM\_OF\_WORLD];}
\end{descr}
\code{A\_blocktype == MATENT\_REAL} or
\code{A\_blocktype == MATENT\_REAL\_D} means that the system is
actually decoupled.
\kitem{A\_type} must be one of \code{MATENT\_REAL},
\code{MATENT\_REAL\_D} or \code{MATENT\_REAL\_DD}. It specifies the
symmetry type of \code{A} with respect to the first two indices. For
a Laplacian, for example, one would use \code{DOWBM\_SCAL}. Note
that the value of \code{A\_type} does \emph{not} change the storage
layout of the array \code{A}.
\kitem{sym\_grad} If set to \code{true} then it is assumed that the
symmetric gradient has to be used for the computation of the jump-
and Neumann-residuals. The demo-program \code{quasi-stokes.c} uses
this feature to implement an error estimator for the Stokes equation
with stress boundary conditions.
\kitem{f} If the first argument of the function pointer
\code{f(result,\dots)} is not \nil then the result \emph{must} be
stored in the argument \code{result} and \code{f()} must return the
base address of the array \code{result}. If \code{result} is \nil,
then \code{f()} must store the result in a non-volatile storage area
and return the address of that area.
\kitem{dirichlet\_bndry} A bit-mask marking those parts of the
boundary which are subject to Dirichlet boundary conditions, see
\secref{S:boundary}.
\kitem{f} is a pointer to a function for the evaluation of the
lower order terms at all quadrature nodes, i.e.
$f(x(\lambda), u(\lambda), \nabla u(\lambda))$ ; if \code{f}
is a \nil pointer, $f\equiv0$ is assumed;
\code{f(el\_info, quad, qp, uh\_qp, grd\_uh\_qp)} returns the
value of the lower oder terms on element \code{el\_info->el}
at the quadrature node \code{quad->lambda[qp]}, where
\code{uh\_qp} is the value and \code{grd\_uh\_qp} the
gradient (with respect to the Cartesian coordinates) of the
discrete solution at that quadrature point. See also
\code{f\_flag} below:
\kitem{f\_flag} specifies whether the function \code{f()}
actually needs values of \code{uh\_qp} or \code{grd\_uh\_qp},
\code{f\_flag} may be $0$ or
\code{INIT\_UH}\cdx{INIT_UH@{\code{INIT\_UH}}} or
\code{INIT\_GRD\_UH}\cdx{INIT_GRD_UH@{\code{INIT\_GRD\_UH}}}
or their bitwise composition (\code{|}). The arguments
\code{uh\_qp} and \code{grd\_uh\_qp} of \code{f()} only hold
valid information if the flags \code{INIT\_UH} respectively
\code{INIT\_GRD\_UH} are set.
\kitem{gn(el\_info, quad, qp, uh\_qp, normal)} is a pointer to a
function for the evaluation of non-homogeneous Neumann boundary
data. \code{gn} may be \nil, in which case zero Neumann boundary
conditions are assumed. The argument \code{normal} always
contains the normal of the Neumann boundary facet. In the case of
non-vanishing co-dimension \code{normal} lies in the
lower-dimensional space which is spanned by the mesh simplex
defined by \code{el\_info}. \code{gn()} is evaluated on those
parts of the boundary which are \emph{not} flagged as
Dirichlet-boundaries by the argument \code{dirichlet\_bndry}.
\kitem{gn\_flag} controls whether the argument \code{uh\_qp}
of the function \code{gn()} actually contains the value of
\code{uh} at the quadrature point \code{qp}. Note that the
argument \code{normal} always contains valid data.
\end{descr}
\end{descr}
\begin{example}[Linear problem]\label{E:est-impl}
Consider the scalar linear model problem \mathref{book:E:strong} with constant
coefficients $A$, $b$, and $c$:
\begin{alignat*}{2}
-\nabla \cdot A \nabla u + b \cdot \nabla u + c\, u &= r \qquad &
&\mbox{in } \Omega,\\
u &= 0 & &\mbox{on } \partial\Omega.
\end{alignat*}
Let \code{A} be a \code{REAL\_DD} matrix storing $A$, which is then the
eighth argument of \code{ellipt\_est()}. Assume that
\code{const REAL *b(const REAL\_D)} is a function returning a pointer
to a vector storing $b$, \code{REAL c(REAL\_D)} returns the
value of $c$ and \code{REAL r(const REAL\_D)} returns the value of the
right hand side $r$ of \mathref{book:E:strong} at some point in world
coordinates. The implementation of the function \code{f} is:
\bv\begin{verbatim}
static REAL f(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,
const REAL_D grd_uh_iq)
{
FUNCNAME("f");
const REAL *bx, *x;
extern const REAL b(const REAL_D);
extern REAL c(const REAL_D), r(const REAL_D);
x = coord_to_world(el_info, quad->lambda[iq], nil);
bx = b(x);
return(SCP_DOW(bx, grd_uh_iq) + c(x)*uh_iq - r(x));
}
\end{verbatim}\ev
As both \code{uh\_iq} and \code{grd\_uh\_iq} are used, the estimator parameter
\code{f\_flag} must be given as \code{INIT\_UH|INIT\_GRD\_UH}.
\end{example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Error estimator for parabolic problems}\label{S:para_est}
Similar to the stationary case, the \ALBERTA library provides
an error estimator for the non--linear parabolic problem
\begin{align*}
\partial_t u -\nabla \cdot A \nabla u(x)
+ f\Big(x, t, u(x),\nabla u(x)\Big) &= 0 &&x \in \Omega, t>0,\\
u(x,t) &= g_d && x \in \Gamma_D, t>0,\\
\nu\cdot A\nabla u(x,t) &= g_n && x \in \Gamma_N, t>0,\\
u(x,0) &= u_0 && x \in \Omega,
\end{align*}
where $A \in \R^{d\times d}$ is a positive definite matrix and
$\partial\Omega=\Gamma_D\cup\Gamma_N$. The estimator is split in
several parts, where the initial error
\[
\eta_0 = \|u_0 - U_0\|_{L^2(\Omega)}
\]
can be approximated by the function \code{L2\_err()}, e.g. (compare
\secref{S:error_cal}).
For the estimation of the spatial discretization error, the coarsening
error, and the time discretization error, the \ALBERTA estimator
implements the following (local) indicators
\begin{align*}
\eta_S^2 &=
C_0^2\, h_S^4\, \left\| \frac{U_{n+1} - I_{n+1}U_{n}}{\tau_{n+1}}
-\nabla \cdot A \nabla U_{n+1} + f(.,t_{n+1},U_{n+1},\nabla U_{n+1})
\right\|_{L^2(S)}^2\\
&\qquad + C_1^2\, \sum_{\Gamma\subset\partial S \cap \Omega}
h_S^3\, \|\jump{A\nabla U_{n+1}}\|_{L^2(\Gamma)}^2
+ C_1^2\, \sum_{\Gamma\subset\partial S \cap \Gamma_N}
h_S^3\, \|\nu\cdot A\nabla U_{n+1}-g_n\|_{L^2(\Gamma)}^2,
\\[2mm]
\eta_{S,c}^2 &= C_2^2\,
h_S^3\, \|\jump{\nabla U_{n}}\|_{L^2(\Gamma_c)}^2
% \|U_{n} - I_{n+1}U_{n}\|_{L^2(S)}^2
\\[2mm]
\eta_\tau &= C_3 \|U_{n+1} - I_{n+1}U_{n}\|_{L^2(\Omega)}.
\end{align*}
The coarsening indicator is motivated by the fact that for piecewise
linear Lagrange finite element functions it holds $\|U_{n} -
I_{n+1}U_{n}\|_{L^2(S)}^2 = \eta_{S,c}^2$ with $C_2=C_2(d)$ and
$\Gamma_c$ the face that would be removed during a coarsening operation.
%%
The implementation is done by the functions
\fdx{heat_est()@{\code{heat\_est()}}}%
\fdx{heat_est_dow()@{\code{heat\_est\_dow()}}}%
\fdx{heat_est_d()@{\code{heat\_est\_d()}}}%
\idx{error estimators!heat_est()@{\code{heat\_est()}}}%
\idx{error estimators!heat_est_dow()@{\code{heat\_est\_dow()}}}%
\idx{error estimators!heat_est_d()@{\code{heat\_est\_d()}}}%
\bv\begin{verbatim}
REAL heat_est(const DOF_REAL_VEC *uh, ADAPT_INSTAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int quad_degree, REAL C[4], const DOF_REAL_VEC *uh_old,
const REAL_DD A, const BNDRY_FLAGS dirichlet_bndry,
REAL (*f)(const EL_INFO *el_info, const QUAD *quad, int qp,
REAL uh_qp, const REAL_D grd_uh_gp, REAL time),
FLAGS f_flags,
REAL (*gn)(const EL_INFO *el_info, const QUAD *quad, int qp,
REAL uh_qp, const REAL_D normal, REAL time),
FLAGS gn_flags);
REAL heat_est_dow(const DOF_REAL_D_VEC *uh, ADAPT_INSTAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int quad_degree, REAL C[4], const DOF_REAL_D_VEC *uh_old,
const void *A, MATENT_TYPE A_type, MATENT_TYPE A_blocktype,
bool sym_grad,
BNDRY_FLAGS dirichlet_bndry,
const REAL *(*f)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad, int qp,
const REAL_D uh_qp,
const REAL_DD grd_uh_gp,
REAL time),
FLAGS f_flags,
const REAL *(*gn)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad, int qp,
const REAL_D uh_qp,
const REAL_D normal,
REAL time),
FLAGS gn_flags);
REAL heat_est_d(const DOF_REAL_D_VEC *uh,
const DOF_REAL_D_VEC *uh_old,
ADAPT_INSTAT *adapt,
REAL *(*rw_est)(EL *),
REAL *(*rw_estc)(EL *),
int quad_degree,
REAL C[4],
const void *A,
MATENT_TYPE A_type,
MATENT_TYPE A_blocktype,
bool sym_grad,
const BNDRY_FLAGS dirichlet_bndry,
const REAL *(*f)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad,
int qp,
const REAL_D uh_qp,
const REAL_DD grd_uh_gp,
REAL time),
FLAGS f_flags,
const REAL *(*gn)(REAL_D result,
const EL_INFO *el_info,
const QUAD *quad,
int qp,
const REAL_D uh_qp,
const REAL_D normal,
REAL time),
FLAGS gn_flags);
\end{verbatim}\ev
Description:
\begin{descr}
\kitem{heat\_est(uh, adapt, rw\_el\_est, rw\_el\_estc, degree, C, uh\_old,}
\kitem{~~~~~~~~~A, dirichlet\_bndry, f, f\_flag, gn, gn\_flag)}\hfill
computes an error estimate of the above type, the local and
global space discretization estimators are stored in
\code{adapt->adapt\_space} and via the \code{rw\_...} pointers;
the return value is the time discretization indicator $\eta_\tau$.
\begin{descr}
\kitem{uh} is a vector storing the coefficients of the
discrete solution $U_{n+1}$; if \code{uh} is a \nil pointer,
nothing is done, the return value is \code{0.0}.
\kitem{adapt} is a pointer to an \code{ADAPT\_INSTAT}
structure; if it is not \nil, then the entries
\code{adapt\_space->p=2}, \code{adapt\_space->err\_sum} and
\code{adapt\_space->err\_max} of \code{adapt} are set by
\code{heat\_est()} (compare
\secref{S:adapt_stat_in_ALBERTA}).
\kitem{rw\_el\_est} is a function for writing the local error
indicator $\eta_S^2$ for a single element (usually to some
location inside \code{leaf\_data}, compare
\secref{S:leaf_data_info}); if this function is \nil, only
the global estimate is computed, no local indicators are
stored. \code{rw\_el\_est(el)} returns for each leaf element
\code{el} a pointer to a \code{REAL} for storing the square
of the element indicator, which can directly be used in the
adaptive method, compare the \code{get\_el\_est()} function
pointer in the \code{ADAPT\_STAT} structure (compare
\secref{S:adapt_stat_in_ALBERTA}).
\kitem{rw\_el\_estc} is a function for writing the local
coarsening error indicator $\eta_{S,c}^2$ for a single
element (usually to some location inside \code{leaf\_data},
compare \secref{S:leaf_data_info}); if this function is \nil,
no coarsening error indicators are computed and stored;
\code{rw\_el\_estc(el)} returns for each leaf element
\code{el} a pointer to a \code{REAL} for storing the square
of the element coarsening error indicator. The coarsening
indicator is not used at the moment.
\kitem{degree} is the degree of the quadrature that should be
used for the approximation of the norms on the elements and
edges/faces; if \code{degree} is less than zero a quadrature
which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree} is used.
\kitem{C[0]}, \code{C[1]}, \code{C[2]}, \code{C[3]} are the
constants in front of the element residual, wall residual,
coarsening term, and time residual, respectively. If \code{C}
is \nil, then all constants are set to $1.0$.
\kitem{uh\_old} is a vector storing the coefficients of the
discrete solution $U_{n}$ from previous time step; if
\code{uh\_old} is a \nil pointer, nothing is done, the return
value is \code{0.0}.
\kitem{A} is the constant matrix of the second order term.
\kitem{dirichlet\_bndry} A bit mask marking those parts of the
boundary which are subject to Dirichlet boundary conditions. See
\secref{S:boundary}.
\kitem{f} is a pointer to a function for the evaluation of the
lower order terms at all quadrature nodes, i.e.
$f(x(\lambda), t, u(\lambda), \nabla u(\lambda))$ ; if
\code{f} is a \nil pointer, $f\equiv0$ is assumed;
\code{f(el\_info, quad, iq, t, uh\_iq, grd\_uh\_iq)} returns
the value of the lower oder terms on element
\code{el\_info->el} at the quadrature node
\code{quad->lambda[iq]}, where \code{uh\_iq} is the value and
\code{grd\_uh\_iq} the gradient (with respect to the world
coordinates) of the discrete solution at that quadrature
node.
\kitem{f\_flag} specifies whether the function \code{f()}
actually needs values of \code{uh\_iq} or \code{grd\_uh\_iq}.
This flag may hold zero, the predefined values
\code{INIT\_UH} or \code{INIT\_GRD\_UH}, or their composition
\code{INIT\_UH|INIT\_GRD\_UH}; the arguments \code{uh\_iq}
and \code{grd\_uh\_iq} of \code{f()} only hold valid
information, if the flags \code{INIT\_UH} respectively
\code{INIT\_GRD\_UH} are set.
\kitem{gn(el\_info, quad, qp, uh\_qp, normal)} is a pointer to
a function for the evaluation of non-homogeneous Neumann
boundary data. \code{gn} may be \nil, in which case zero
Neumann boundary conditions are assumed. The argument
\code{normal} always contains the normal of the Neumann
boundary facet. In the case of non-vanishing co-dimension
\code{normal} lies in the lower-dimensional space which is
spanned by the mesh simplex defined by \code{el\_info}.
\kitem{gn\_flag} controls whether the argument \code{uh\_qp}
of the function \code{gn()} actually contains the value of
\code{uh} at the quadrature point \code{qp}. Note that the
argument \code{normal} always contains valid data.
\end{descr}
\smallskip
The estimate is computed by traversing all leaf elements of
\code{uh->fe\_space->mesh}, using the quadrature for the
approximation of the residuals and storing the square of the
element indicators on the elements (if \code{rw\_el\_est} and
\code{rw\_el\_estc }are not \nil).
\kitem{heat\_est\_d(uh, adapt, rw, rwc, deg, C, uh\_old,}
\kitem{~~~~~~~~~~A, A\_type, A\_blocktype, sym\_grad,}
\kitem{~~~~~~~~~~dirichlet\_bndry, f, f\_flag)}\hfill
\kitem{heat\_est\_dow(uh, adapt, rw, rwc, deg, C, uh\_old,}
\kitem{~~~~~~~~~~~~A, A\_type, A\_blocktype, sym\_grad,}
\kitem{~~~~~~~~~~~~dirichlet\_bndry, f, f\_flag)}\hfill
Coupled vector valued version. See \code{ellipt\_est\_dow()} above.
\end{descr}
There are also some less high-level support functions which allow for
custom contributions to the per-element error estimates. We will not
document this in detail, but rather refer the reader to the
\code{stokes.c} and \code{quasi-stokes.c} demo-programs.
%%
\fdx{ellipt_est_init()@{\code{ellipt\_est\_init()}}}
\fdx{heat_est_init()@{\code{heat\_est\_init()}}}
\fdx{element_est()@{\code{element\_est()}}}
\fdx{element_est_finish()@{\code{element\_est\_finish()}}}
\fdx{element_est_uh()@{\code{element\_est\_uh()}}}
\fdx{element_est_grd_uh()@{\code{element\_est\_grd\_uh()}}}
\fdx{ellipt_est_finish()@{\code{ellipt\_est\_finish()}}}
\fdx{heat_est_finish()@{\code{heat\_est\_finish()}}}
%%
\fdx{ellipt_est_dow_init()@{\code{ellipt\_est\_dow\_init()}}}
\fdx{heat_est_dow_init()@{\code{heat\_est\_dow\_init()}}}
\fdx{element_est_dow()@{\code{element\_est\_dow()}}}
\fdx{element_est_dow_finish()@{\code{element\_est\_dow\_finish()}}}
\fdx{element_est_uh_dow()@{\code{element\_est\_uh\_dow()}}}
\fdx{element_est_grd_uh_dow()@{\code{element\_est\_grd\_uh\_dow()}}}
\fdx{ellipt_est_dow_finish()@{\code{ellipt\_est\_dow\_finish()}}}
\fdx{heat_est_dow_finish()@{\code{heat\_est\_dow\_finish()}}}
%%
\bv\begin{lstlisting}
const void *ellipt_est_init(const DOF_REAL_VEC *uh,
ADAPT_STAT *adapt,
REAL *(*rw_est)(EL *),
REAL *(*rw_estc)(EL *),
const QUAD *quad,
const WALL_QUAD *wall_quad,
NORM norm,
REAL C[3],
const REAL_DD A,
const BNDRY_FLAGS dirichlet_bndry,
REAL (*f)(const EL_INFO *el_info,
const QUAD *quad,
int qp,
REAL uh_qp,
const REAL_D grd_uh_gp),
FLAGS f_flags,
REAL (*gn)(const EL_INFO *el_info,
const QUAD *quad,
int qp,
REAL uh_qp,
const REAL_D normal),
FLAGS gn_flags);
const void *heat_est_init(const DOF_REAL_VEC *uh,
const DOF_REAL_VEC *uh_old,
ADAPT_INSTAT *adapt,
REAL *(*rw_est)(EL *),
REAL *(*rw_estc)(EL *),
const QUAD *quad,
const WALL_QUAD *wall_quad,
REAL C[4],
const REAL_DD A,
const BNDRY_FLAGS dirichlet_bndry,
REAL (*f)(const EL_INFO *el_info,
const QUAD *quad,
int qp,
REAL uh_qp,
const REAL_D grd_uh_gp,
REAL time),
FLAGS f_flags,
REAL (*gn)(const EL_INFO *el_info,
const QUAD *quad,
int qp,
REAL uh_qp,
const REAL_D normal,
REAL time),
FLAGS gn_flags);
REAL element_est(const EL_INFO *el_info, const void *est_handle);
void element_est_finish(const EL_INFO *el_info,
REAL est_el, const void *est_handle);
const REAL *element_est_uh(const void *est_handle);
const REAL_D *element_est_grd_uh(const void *est_handle);
REAL ellipt_est_finish(ADAPT_STAT *adapt, const void *est_handle);
REAL heat_est_finish(ADAPT_INSTAT *adapt, const void *est_handle);
\end{lstlisting}\ev
%%
There are similar proto-types for the vector-valued case. Now, what
are these functions good for? The \code{stokes.c} program makes use of
this framework to add a contribution concerning the divergence
constraint. Of course, this is an ad-hoc error indicator, and only
meant to demonstrate the programming frame-work. The functions
\code{element\_est\_uh[\_dow]()} and
\code{element\_est\_grd\_uh[\_dow]()} give the application access to
the values of the discrete solution at the quadrature points
(respectively to its Jaocbians). Otherwise, the general layout is like
follows:
%%
\bv\begin{lstlisting}
void *est_handle = ellipt_est_init(...);
TRAVERSE_FIRST(mesh, -1, <suitable fill-flags>) {
REAL est_el = element_est(el_info, est_handle);
... /* add whatever you like to est_el */
element_est_finish(el_info, est_el, est_handle);
} TRAVERSE_NEXT();
REAL est = ellipt_est_finish(adapt, est_handle);
\end{lstlisting}\ev
%%
The relevant excerpt from \code{stokes.c} reads as follows:
%%
\bv\begin{lstlisting}
est_handle = ellipt_est_dow_init(u_h, adapt, rw_el_est, NULL /* rw_estc */,
quad, NULL /* wall_quad */,
H1_NORM, C,
A, MATENT_REAL, MATENT_REAL,
false /* !sym_grad */,
dirichlet_mask,
r, INIT_GRD_UH,
NULL /* inhomog. Neumann res. */, 0);
fill_flags = FILL_NEIGH|FILL_COORDS|FILL_OPP_COORDS|FILL_BOUND|CALL_LEAF_EL;
fill_flags |= u_fe_space->bas_fcts->fill_flags;
fill_flags |= p_fe_space->bas_fcts->fill_flags;
TRAVERSE_FIRST(mesh, -1, fill_flags) {
const EL_GEOM_CACHE *elgc;
const QUAD_EL_CACHE *qelc;
REAL est_el;
est_el = element_est_dow(el_info, est_handle);
if (C[3]) {
REAL div_uh_el, div_uh_qp;
const REAL_DD *grd_uh_qp;
int qp, i;
grd_uh_qp = element_est_grd_uh_d(est_handle);
div_uh_el = 0.0;
if (!(el_info->fill_flag & FILL_COORDS)) {
qelc = fill_quad_el_cache(el_info, quad, FILL_EL_QUAD_DET);
for (qp = 0; qp < quad->n_points; qp++) {
div_uh_qp = 0;
for (i = 0; i < DIM_OF_WORLD; i++) {
div_uh_qp += grd_uh_qp[qp][i][i];
}
div_uh_el += qelc->param.det[qp]*quad->w[qp]*SQR(div_uh_qp);
}
} else {
elgc = fill_el_geom_cache(el_info, FILL_EL_DET);
for (qp = 0; qp < quad->n_points; qp++) {
div_uh_qp = 0;
for (i = 0; i < DIM_OF_WORLD; i++) {
div_uh_qp += grd_uh_qp[qp][i][i];
}
div_uh_el += quad->w[qp]*SQR(div_uh_qp);
}
div_uh_el *= elgc->det;
}
est_el += C[3] * div_uh_el;
}
element_est_dow_finish(el_info, est_el, est_handle);
} TRAVERSE_NEXT();
est = ellipt_est_dow_finish(adapt, est_handle);
\end{lstlisting}\ev
\idx{error estimators|)}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End:
|