File: eval-tools.tex

package info (click to toggle)
alberta 3.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,176 kB
  • sloc: ansic: 135,836; cpp: 6,601; makefile: 2,801; sh: 333; fortran: 180; lisp: 177; xml: 30
file content (2442 lines) | stat: -rw-r--r-- 109,547 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
\section{Routines for barycentric coordinates}%
\label{S:bary_routines}

Operations on single elements are performed using barycentric
coordinates. In many applications, the world coordinates $x$ of the
local barycentric coordinates $\lambda$ have to be calculated (see
\secref{S:ass_tools}, e.g.). Some other applications will need
the calculation of barycentric coordinates for given world coordinates
(see \secref{S:traverse}, e.g.). Finally, derivatives of finite
element functions on elements involve the Jacobian of the barycentric
coordinates (see \secref{S:eval}, e.g.).

In case of a grid with parametric elements, these operations strongly
depend on the element parameterization and no general routines can be
supplied. For non-parametric simplices, \ALBERTA supplies
functions to perform these basic tasks:
%
\fdx{coord_to_world()@{\code{coord\_to\_world()}}}%
\idx{barycentric coordinates!coord_to_world()@{\code{coord\_to\_world()}}}%
\fdx{world_to_coord()@{\code{world\_to\_coord()}}}%
\idx{barycentric coordinates!world_to_coord()@{\code{world\_to\_coord()}}}%
\fdx{el_grd_lambda()@{\code{el\_grd\_lambda()}}}%
\idx{barycentric coordinates!el_grd_lambda()@{\code{el\_grd\_lambda()}}}%
\fdx{el_det()@{\code{el\_det()}}}%
\fdx{el_volume()@{\code{el\_volume()}}}%
\fdx{get_wall_normal()@{\code{get\_wall\_normal()}}}%
\bv\begin{lstlisting}
const REAL *coord_to_world(const EL_INFO *, const REAL *, REAL_D);
int world_to_coord(const EL_INFO *, const REAL *, REAL_B);
REAL el_grd_lambda(const EL_INFO *, REAL [N_LAMBDA][DIM_OF_WORLD]);
REAL el_det(const EL_INFO *);
REAL el_volume(const EL_INFO *);
REAL get_wall_normal(const EL_INFO *el_info, int i0, REAL *normal);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{coord\_to\_world(el\_info, lambda, world)} returns a pointer
  to a vector, which contains the world coordinates of a point in
  barycentric coordinates \code{lambda} with respect to the element
  \code{el\_info->el};

  if \code{world} is not \nil the world coordinates are stored in this
  vector; otherwise the function itself provides memory for this
  vector; in this case the vector is overwritten during the next call
  of \code{coord\_to\_world()};

  \code{coord\_to\_world()} needs vertex coordinates information; the
  flag \code{FILL\_COORDS} has to be set during mesh traversal when
  calling this routine on elements.

\kitem{world\_to\_coord(el\_info, world, lambda)} calculates the
  barycentric coordinates with respect to the element
  \code{el\_info->el} of a point with world coordinates \code{world}
  and stores them in the vector given by \code{lambda}. The return
  value is \code{-1} when the point is inside the simplex (or on its
  boundary), otherwise the index of the barycentric coordinate with
  largest negative value (between 0 and $d$);

  \code{world\_to\_coord()} needs vertex coordinates information; the
  flag \code{FILL\_COORDS} has to be set during mesh traversal when
  calling this routine on elements.

  Note that -- with the exception of the 1d code -- this function is
  only implemented for the co-dimension $0$ case, i.e.
  \code{mesh->dim} and \DOW have to be equal, otherwise a call to this
  function will terminate the application with a corresponding
  error-message.

\kitem{el\_grd\_lambda(el\_info, Lambda)} calculates the Jacobian of
  the barycentric coordinates on \code{el\_info->el} and stores the
  matrix in \code{Lambda}; the return value of the function is the
  absolute value of the determinant of the affine linear
  parameterization's Jacobian. For $d<n$ the tangential gradient and
  the value of Gram's determinant are calculated.

  \code{el\_grd\_lambda()} needs vertex coordinates information; the
  flag \code{FILL\_COORDS} has to be set during mesh traversal when
  calling this routine on elements.

\kitem{el\_det(el\_info)} returns the the absolute value of the
  determinant of the affine linear parameterization's Jacobian, or
  Gram's determinant for $d<n$.

  \code{el\_det()} needs vertex coordinates information; the flag
  \code{FILL\_COORDS} has to be set during mesh traversal when calling
  this routine on elements.

\kitem{el\_volume(el\_info)} returns the the volume of the simplex;
  \code{el\_volume()} needs vertex coordinates information; the flag
  \code{FILL\_COORDS} has to be set during mesh traversal when calling
  this routine on elements.

\kitem{get\_wall\_normal(el\_info, wall, normal)} compute the outer
  unit normal of the face opposite to vertex \code{wall}. The result
  is stored in \code{normal}. The return value is the ``surface
  element'' of the given face, i.e. Gram's determinant of the
  transformation to the respective face of the reference element.
  \code{normal} may be \nil. In the case of non-zero co-dimension
  \code{normal} is contained in the sub-space spanned by the edges of
  the given simplex.
\end{descr}

\medskip

All functions described above also come with a \code{\dots\_Xd}
variant, e.g. \code{coord\_to\_world\_2d()}. For the case of $0$
co-dimension there are also wrapper functions \code{\dots\_0cd} which
call the appropriate \code{\dots\_Xd} variant with \code{X ==
  DIM\_OF\_WORLD}. The \code{\dots\_Xd} and \code{\dots\_0cd} variants
are very slightly faster because otherwise the dimension of the
underlying mesh has to be read out of the mesh structure -- e.g. via
\code{el\_info->mesh\_dim} -- and only then the functions branch to
the appropriate \code{\dots\_Xd} variant.

\section{Data structures for numerical quadrature}%
\label{S:quad_data}

For the numerical calculation of general integrals 
\[
\int_S f(x)\, dx
\]
we use quadrature formulas described in \ref{book:S:quadrature}.
\ALBERTA supports numerical integration in zero, one, two, and three dimensions
on the standard simplex $\Shat$ in barycentric coordinates.

\subsection{The \code{QUAD} data structure}%
\label{S:QUAD}

A quadrature formula is described by the following structure, which
is defined both as type \code{QUAD} and \code{QUADRATURE}:
\ddx{QUAD@{\code{QUAD}}}
\idx{numerical quadrature!QUAD@{\code{QUAD}}}
\ddx{QUADRATURE@{\code{QUADRATURE}}}
\idx{numerical quadrature!QUADRATURE@{\code{QUADRATURE}}}
\bv\begin{lstlisting}[name=QUAD,label=T:QUAD]
extern n_quad_points_max[DIM_MAX+1];
typedef struct quadrature   QUAD;
typedef struct quadrature   QUADRATURE;

struct quadrature
{
  char          *name;
  int           degree;

  int           dim;
  int           codim;
  int           subsplx;
  
  int           n_points;
  int           n_points_max;
  const REAL_B  *lambda;
  const REAL    *w;

  void          *metadata;

  INIT_ELEMENT_DECL;
};
\end{lstlisting}\ev
\label{T:QUADRATURE}
Description:
\begin{descr}
  \kitem{name} Textual description of the quadrature.
  %% 
  \kitem{degree} Quadrature is exact of degree \code{degree}.
  %% 
  \kitem{dim} Quadrature for dimension \code{dim}. The barycentric
  co-cordinates of the quadrature points always have \code{dim+1} valid
  components.
  %% 
  \kitem{codim} Co-dimension; \code{codim} is always \code{0} for
  quadratures returned by \code{get\_quadrature()}, and \code{1} for
  quadratures returned by \code{get\_wall\_quad()} and
  \code{get\_bndry\_quad()}.
  %%
  \kitem{subsplx} For \code{codim == 1} the number of the wall-simplex
  this quadrature can be used for; this implies that
  \code{lambda[iq][subsplx]} zero.
  %% 
  \kitem{n\_points} The number of quadrature points.
  %% 
  \kitem{n\_points\_max} The maximal number of quadrature points. The
  number of quadrature points can vary from simplex to simplex if
  \code{INIT\_ELEMENT\_METHOD(quad)} is not \nil.
  %% 
  \kitem{lambda} Vector
  $\mbox{\code{lambda[0]}},\dots,\mbox{\code{lambda[n\_points-1]}}$
  of quadrature points given in bary\-centric coordinates
  (thus having \code{N\_LAMBDA\_MAX} components).
  %% 
  \kitem{w} vector
  $\mbox{\code{w[0]}},\dots,\mbox{\code{w[n\_points-1]}}$ of
  quadrature weights.
  %%
  \kitem{metadata} Pointer to an internal data structure for
  per-element quadrature caches and the like, see e.g.
  \secref{S:fill_quad_el_cache}
  %%
  \kitem{INIT\_ELEMENT\_DECL} Function pointer to a per-element
  initializer. This pointer is always \nil for quadratures returned by
  \code{get\_quadrature()}, \code{get\_wall\_quad()} and
  \code{get\_bndry\_quad()}. External extension modules make use of it.
  See \secref{S:init_element}.
\end{descr}
Currently, numerical quadrature formulas exact up to degree 19 in one
(Gauss formulas), up to degree 17 in two, up to degree 7 in three
dimensions are implemented. We only use stable formulas; this results
in more quadrature points for some formulas (for example in 3d the
formula which is exact of degree 3). A compilation of quadrature
formulas on triangles and tetrahedra is given in
\cite{CoolsRabinowitz:93}. The implemented quadrature formulas are
taken from \cite{Dunavant:85,Gatermann:88,Kardestuncer:87,Stroud:71}.

Using a conical product rule it is possible to construct new
(non-symmetric) quadrature formulas from the existing ones, if that is
really needed.

Functions for numerical quadrature are
\fdx{get_quadrature()@{\code{get\_quadrature()}}}
\idx{numerical quadrature!get_quadrature()@{\code{get\_quadrature()}}}
\fdx{integrate_std_simp()@{\code{integrate\_std\_simp()}}}
\idx{numerical quadrature!integrate_std_simp()@{\code{integrate\_std\_simp()}}}
\fdx{get_product_quad()@{\code{get\_product\_quad()}}}
\idx{numerical quadrature!get_product_quad()@{\code{get\_product\_quad()}}}
\fdx{get_lumping_quadrature()@{\code{get\_lumping\_quadrature()}}}
\idx{numerical quadrature!get_lumping_quadrature()@{\code{get\_lumping\_quadrature()}}}
\fdx{register_quadrature()@{\code{register\_quadrature()}}}
\idx{numerical quadrature!register_quadrature()@{\code{register\_quadrature()}}}
\fdx{new_quadrature()@{\code{new\_quadrature()}}}
\idx{numerical quadrature!new_quadrature()@{\code{new\_quadrature()}}}
\bv\begin{lstlisting}
const QUAD *get_quadrature(int dim, int degree);
REAL  integrate_std_simp(const QUAD *quad, REAL (*f)(const REAL *));
const QUAD *get_product_quad(const QUAD *oq);
const QUAD *get_lumping_quadrature(int dim);
void register_quadrature(QUAD *quad);
bool new_quadrature(const QUAD *quad);
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{get\_quadrature(dim, degree)} returns a pointer to a 
  \code{QUAD} structure for numerical integration in \code{dim}
  dimensions which is exact of degree 
  $\min(19,\code{degree})$ for \code{dim==1}, 
  $\min(17,\code{degree})$ for \code{dim==2},
  and $\min(7,\code{degree})$ for \code{dim==3}.

  It is possible to extend the maximal degrees by installing an
  application-defined quadrature rule via \code{new\_quadrature()}.
  %%
  \kitem{register\_quadrature(quad)} Equip an application-defined
  quadrature with internal used meta-data for quadrature caches; this
  function also updates \code{n\_quad\_points\_max[quad->dim]}. To
  install \code{quad} as a default quadrature which will returned on
  request by \code{get\_quadrature()} the functions
  \code{new\_quadrature()} has to be called additionally.
  \kitem{new\_quadrature(quad)} Install the given quadrature as new
  default quadrature for its dimension and polynomial degree; this
  means that \code{get\_quadrature()} will return a pointer to
  \code{quad} when called with \code{quad->dim} and \code{quad->degree}.
  %%
  \kitem{get\_product\_quad(quad)} Return a conical product quadrature
  rule. The returned quadrature formula is non-symmetric and works for
  one dimension higher than \code{quad} and is exact of the same
  degree as \code{quad}.  The 3D formula for degree $7$ found in
  \cite{Stroud:71} is of this type, for example.

  Note that \code{get\_product\_quad()} installs the new formula
  calling \code{new\_quadrature()}, so the formula will be available
  through \code{get\_quadrature()}.
  %%
  \kitem{get\_lumping\_quadrature(dim)} Returns a lumping quadrature
  with quadrature nodes at the vertices of the reference simplex.
  %%
  \kitem{integrate\_std\_simp(quad, f)} approximates an integral
  by the numerical quadrature described by \code{quad};

  \code{f} is a pointer to a function to be integrated, evaluated
  in barycentric coordinates; the return value is
  \[
  \sum_{\code{k = 0}}^{\mbox{\tiny\code{quad->n\_points-1}}} 
  \mbox{\code{quad->w[k] * (*f)(quad->lambda[k])}};
  \]
  for the approximation of $\int_S f$ we have to multiply this value
  with $d! |S|$ for a simplex $S$; for a parametric simplex,
  \code{f} should be a pointer to a function which calculates
  $f(\lambda) |\det DF_S(\hat x(\lambda))|$.
\end{descr}


The following functions initialize values and gradients of functions
at the quadrature nodes:
\fdx{f_at_qp()@{\code{f\_at\_qp()}}}%
\fdx{f_d_at_qp()@{\code{f\_d\_at\_qp()}}}%
\fdx{grd_f_at_qp()@{\code{grd\_f\_at\_qp()}}}%
\fdx{grd_f_d_at_qp()@{\code{grd\_f\_d\_at\_qp()}}}%
\fdx{f_loc_at_qp()@{\code{f\_loc\_at\_qp()}}}%
\fdx{f_loc_d_at_qp()@{\code{f\_loc\_d\_at\_qp()}}}%
\fdx{grd_f_loc_at_qp()@{\code{grd\_f\_loc\_at\_qp()}}}%
\fdx{param_grd_f_loc_at_qp()@{\code{param\_grd\_f\_loc\_at\_qp()}}}%
\fdx{grd_f_loc_d_at_qp()@{\code{grd\_f\_loc\_d\_at\_qp()}}}%
\fdx{param_grd_f_loc_d_at_qp()@{\code{param\_grd\_f\_loc\_d\_at\_qp()}}}%
\fdx{fx_at_qp()@{\code{fx\_at\_qp()}}}%
\fdx{fx_d_at_qp()@{\code{fx\_d\_at\_qp()}}}%
\fdx{grd_fx_at_qp()@{\code{grd\_fx\_at\_qp()}}}%
\fdx{grd_fx_d_at_qp()@{\code{grd\_fx\_d\_at\_qp()}}}%
\bv\begin{lstlisting}
REAL *f_at_qp(REAL vec[], const QUAD *quad, REAL (*f)(const REAL_B lambda));
REAL_D *grd_f_at_qp(REAL_D vec[], const QUAD *quad,
                    const REAL *(*f)(const REAL_B));
REAL_D *f_d_at_qp(REAL_D vec[], const QUAD *quad,
                  const REAL *(*f)(const REAL_B lambda));
REAL_DD *grd_f_d_at_qp(REAL_DD vec[], const QUAD *quad,
                       const REAL_D *(*f)(const REAL_B lambda));

REAL *f_loc_at_qp(REAL vec[], const EL_INFO *el_info, const QUAD *quad,
                  REAL (*f)(const EL_INFO *el_info, 
                            const QUAD *quad, int iq, void *ud),
                  void *ud);
REAL_D *grd_f_loc_at_qp(REAL_D vec[], const EL_INFO *el_info,
                        const QUAD *quad, const REAL_BD Lambda,
                        GRD_LOC_FCT_AT_QP grd_f, void *ud);
REAL_D *param_grd_f_loc_at_qp(REAL_D vec[], const EL_INFO *el_info,
                              const QUAD *quad, const REAL_BD Lambda[],
                              GRD_LOC_FCT_AT_QP grd_f, void *ud);
REAL_D *f_loc_d_at_qp(REAL_D vec[], const EL_INFO *el_info, const QUAD *quad,
                      const REAL *(*f)(REAL_D result, const EL_INFO *el_info,
                                       const QUAD *quad, int iq, void *ud),
                      void *ud);
REAL_DD *grd_f_loc_d_at_qp(REAL_DD vec[], const EL_INFO *el_info,
                           const QUAD *quad, const REAL_BD Lambda,
                           GRD_LOC_FCT_D_AT_QP grd_f, void *ud);
REAL_DD *param_grd_f_loc_d_at_qp(REAL_DD vec[], const EL_INFO *el_info,
                                 const QUAD *quad, const REAL_BD Lambda[],
                                 GRD_LOC_FCT_D_AT_QP grd_f, void *ud);

REAL *fx_at_qp(REAL vec[], const EL_INFO *el_info, const QUAD *quad,
               FCT_AT_X f);
REAL_D *grd_fx_at_qp(REAL_D vec[], const EL_INFO *el_info, const QUAD *quad,
                     GRD_FCT_AT_X grd_f);
REAL_D *fx_d_at_qp(REAL_D vec[], const EL_INFO *el_info, const QUAD *quad,
                   FCT_D_AT_X f);
REAL_DD *grd_fx_d_at_qp(REAL_DD vec[], const EL_INFO *el_info,
                        const QUAD *quad, GRD_FCT_D_AT_X grd_f);


\end{lstlisting}\ev
Description:
\def\DOW{\code{DIM\_OF\_WORLD}\xspace}
\def\div{\mathrm{div\,}}
\begin{descr}
\kitem{f\_at\_qp(vec, quad, f)} returns a pointer \code{ptr} to a
       vector \code{quad->n\_points} storing the values of a \code{REAL}
       valued function at all quadrature points of \code{quad};
       \code{f} is a pointer to that function, evaluated in
       barycentric coordinates; if \code{vec} is not \nil, the values
       are stored in this vector, otherwise the values are stored in
       some static local vector, which is overwritten on the next call;

       \code{ptr[i]}$ = $\code{(*f)(quad->lambda[i])} for
       $0\leq\code{i}<\mbox{\code{quad->n\_points}}$.
\kitem{grd\_f\_at\_qp(vec, quad, grd\_f)} returns a pointer \code{ptr} to a
       vector \code{quad->n\_points} storing the gradient (with
       respect to world coordinates) of a \code{REAL} valued function
       at all quadrature points of \code{quad};

       \code{grd\_f} is a pointer to a function, evaluated in
       barycentric coordinates and returning a pointer to a vector of
       length \DOW storing the gradient;

       if \code{vec} is not \nil, the values are stored in this
       vector, otherwise the values are stored in some local static
       vector, which is overwritten on the next call;

       \code{ptr[i][j]}$ = $\code{(*grd\_f)(quad->lambda[i])[j]}, for 
       $0\leq\code{j}<\mbox{\DOW}$ and
       $0\leq\code{i}<\mbox{\code{quad->n\_points}}$,
\kitem{f\_d\_at\_qp(vec, quad, fd)} returns a pointer \code{ptr} to a
       vector \code{quad->n\_points} storing the values of a
       \code{REAL\_D} valued function at all quadrature points of
       \code{quad}; 

       \code{fd} is a pointer to that function, evaluated
       in barycentric coordinates and returning a pointer to a vector
       of length \DOW storing all components; if the second argument
       \code{val} of \code{(*fd)(lambda, val)} is not \nil, the values
       have to be stored at \code{val}, otherwise \code{fd} has to
       provide memory for the vector which may be overwritten on the
       next call; 

       if \code{vec} is not \nil, the values are stored in
       this vector, otherwise the values are stored in some static
       local vector, which is overwritten on the next call;

       \code{ptr[i][j]}$ = $\code{(*fd)(quad->lambda[i],val)[j]}, for 
       $0\leq\code{j}<\mbox{\DOW}$ and
       $0\leq\code{i}<\mbox{\code{quad->n\_points}}$.
\kitem{grd\_f\_d\_at\_qp(vec, quad, grd\_fd)} returns a pointer 
       \code{ptr} to a vector \code{quad->n\_points} storing the
       Jacobian (with respect to world coordinates) of a
       \code{REAL\_D} valued function at all quadrature points of
       \code{quad}; 

       \code{grd\_fd} is a pointer to a function, evaluated in
       barycentric coordinates and returning a pointer to a matrix of
       size \DOW$\times$\DOW storing the Jacobian; if the second
       argument \code{val} of \code{(*grd\_fd)(x, val)} is not \nil, the
       Jacobian has to be stored at \code{val}, otherwise \code{grd\_fd} has
       to provide memory for the matrix which may be overwritten on
       the next call;

       if \code{vec} is not \nil, the values are stored in this
       vector, otherwise the values are stored in some static local
       vector, which is overwritten on the next call;

       \code{ptr[i][j][k]}$ = $\code{(*grd\_fd)(quad->lambda[i],val)[j][k]},
       for $0\leq\code{j},\code{k}<\mbox{\DOW}$ and
       $0\leq\code{i}<\mbox{\code{quad->n\_points}}$, 

\kitem{f\_loc\_at\_qp(vec, el\_info, quad, f, ud)}
\kitem{grd\_f\_loc\_at\_qp(vec, el\_info, quad, Lambda, grd\_f, ud)}
\kitem{param\_grd\_f\_loc\_at\_qp(vec, el\_info, quad, Lambda, grd\_f, ud)}
\kitem{f\_loc\_d\_at\_qp(vec, el\_info, quad, fd, ud)}
\kitem{grd\_f\_loc\_d\_at\_qp(vec, el\_info, quad, Lambda, grd\_fd, ud)}
\kitem{param\_grd\_f\_loc\_d\_at\_qp(vec, el\_info, quad, Lambda, grd\_fd, ud)}

\kitem{fx\_at\_qp(vec, el\_info, quad, f)}
\kitem{grd\_fx\_at\_qp(vec, el\_info, quad, grd\_f)}
\kitem{fx\_d\_at\_qp(vec, el\_info, quad, fd)}
\kitem{grd\_fx\_d\_at\_qp(vec, el\_info, quad, grd\_fd)}
\end{descr}

\subsection{The \code{QUAD\_FAST} data structure}
\label{S:QUAD_FAST}

Often numerical integration involves basis functions, such as the
assembling of the system matrix and right hand side, or the
integration of finite element functions.  Since numerical quadrature
involves only the values at the quadrature points and the values of
basis functions and its derivatives (with respect to barycentric
coordinates) are the same at these points for
all elements of the grid, such routines can be much more efficient, if
they can use pre--computed values of the basis functions at the
quadrature points. In this case the basis functions do not have to be
evaluated for each quadrature point newly on every element.

Information that should be pre--computed can be specified by the
following symbolic constants:
\cdx{INIT_PHI@{\code{INIT\_PHI}}}%
\idx{numerical quadrature!INIT_PHI@{\code{INIT\_PHI}}}%
\cdx{INIT_GRD_PHI@{\code{INIT\_GRD\_PHI}}}%
\idx{numerical quadrature!INIT_GRD_PHI@{\code{INIT\_GRD\_PHI}}}%
\cdx{INIT_D2_PHI@{\code{INIT\_D2\_PHI}}}%
\idx{numerical quadrature!INIT_D2_PHI@{\code{INIT\_D2\_PHI}}}%
\bv\begin{lstlisting}[label=M:QFAST_FLAGS]
#define INIT_PHI        0x01
#define INIT_GRD_PHI    0x02
#define INIT_D2_PHI     0x04
#define INIT_D3_PHI     0x08
#define INIT_D4_PHI     0x10
#define INIT_TANGENTIAL 0x80
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{INIT\_PHI} pre--compute the values of all basis functions at
       all quadrature nodes;
\kitem{INIT\_GRD\_PHI} pre--compute the gradients (with respect to
       the barycentric coordinates) of all basis functions at
       all quadrature nodes;
\kitem{INIT\_D2\_PHI}pre--compute all 2nd derivatives (with respect to
       the barycentric coordinates) of all basis functions at
       all quadrature nodes.
\end{descr}
In order to store such information for one set of basis functions
we define the data structure
\ddx{QUAD_FAST@{\code{QUAD\_FAST}}}%
\idx{numerical quadrature!QUAD_FAST@{\code{QUAD\_FAST}}}%
\bv\begin{lstlisting}[name=QUAD_FAST,label=T:QUAD_FAST]
typedef struct quad_fast QUAD_FAST;

struct quad_fast
{
  const QUAD      *quad;
  const BAS_FCTS  *bas_fcts;

  FLAGS           init_flag;

  int             dim;
  int             n_points;
  int             n_bas_fcts;
  int             n_points_max;
  int             n_bas_fcts_max;
  const REAL      *w;               /* shallow copy of quad->w */
  const REAL      (*const*phi);     /* [qp][bf] */
  const REAL_B    (*const*grd_phi);
  const REAL_BB   (*const*D2_phi);
  const REAL_BBB  (*const*D3_phi);
  const REAL_BBBB (*const*D4_phi);

  /* For vector valued basis functions with a p.w. constant
   * directional derivative we cache that direction and make it
   * available for applications. The component is initialized by the
   * INIT_ELEMENT() method.
   *
   * So: phi_d[i] gives the value of the directional factor for the
   * i-th basis function. If (!bas_fcts->dir_pw_const), then phi_d is
   * NULL.
   */
  const REAL_D *phi_d;

  /* chain to next structure, if bas_fcts->chain is non-empty */
  DBL_LIST_NODE  chain;

  /* a clone of this structure, but as single item. */
  const QUAD_FAST *unchained;

  INIT_ELEMENT_DECL;

  void *internal;
};
\end{lstlisting}\ev
The entries yield following information:
\begin{descr}
  \kitem{quad} Values stored for numerical quadrature \code{quad}.
  %% 
  \kitem{bas\_fcts} Values stored for basis functions \code{bas\_fcts}.
  %% 
  \kitem{dim} Clone of \code{quad->dim}.
  %% 
  \kitem{init\_flag} Indicates which information is initialized; may be
  one of, or a bitwise \textsf{OR} of several of \code{INIT\_PHI},
  \code{INIT\_GRD\_PHI}, \code{INIT\_D2\_PHI}, \code{INIT\_D3\_PHI} or
  \code{INIT\_D4\_PHI}. Not all basis functions have support for higher
  derivatives. There is one additional fill-flag,
  \code{INIT\_TANGENTIAL} with the meaning that only the tangential
  derivatives of the basis functions will be computed if \code{quad} is
  a co-dimension $1$ quadrature rule.
  %% 
  \kitem{n\_points} The number of quadrature points; equals
  \code{quad->n\_points}.
  %% 
  \kitem{n\_bas\_fcts} number of basis functions; equals
  \code{bas\_fcts->n\_bas\_fcts}.
  %% 
  \kitem{n\_points\_max} The maximum number of quadrature points. If
  \code{quad->init\_element()} is non-\nil, then the number of basis
  functions can vary on a per-element basis.
  %% 
  \kitem{n\_bas\_fcts\_max} The maximum
  number of basis functions. If \code{bas\_fcts->init\_element} is
  non-\nil, then the number of basis functions can vary on a per-element
  basis.
  %% 
  \kitem{w} Vector of quadrature weights; \code{w = quad->w}.
  %% 
  \kitem{phi} Matrix storing function values if the flag 
  \code{INIT\_PHI} is set.

  \code{phi[i][j]} stores the value
  \code{bas\_fcts->phi[j](quad->lambda[i])},
  $0\leq\code{j}<\mbox{\code{n\_bas\_fcts}}$ and
  $0\leq\code{i}<\mbox{\code{n\_points}}$;
  %%
  \kitem{grd\_phi} Matrix storing all gradients (with respect to the
  barycentric coordinates) if the flag
  \code{INIT\_GRD\_PHI} is set;
  
  \code{grd\_phi[i][j][k]} Stores the value 
  \code{bas\_fcts->grd\_phi[j](quad->lambda[i])[k]} for
  $0\leq\code{j}<\mbox{\code{n\_bas\_fcts}}$,
  $0\leq\code{i}<\mbox{\code{n\_points}}$, and
  $0\leq\code{k}\leq d$;
  %% 
  \kitem{D2\_phi} Matrix storing all second derivatives (with respect to the
  barycentric coordinates) if the flag
  \code{INIT\_D2\_PHI} is set; 

  \code{D2\_phi[i][j][k][l]}  Stores the value 
  \code{bas\_fcts->D2\_phi[j](quad->lambda[i])[k][l]} for
  $0\leq\code{j}<\mbox{\code{n\_bas\_fcts}}$,
  $0\leq\code{i}<\mbox{\code{n\_points}}$, and
  $0\leq\code{k,l}\leq d$.
  %%
  \kitem{D3\_phi} Matrix storing all third derivatives (with respect
  to the barycentric coordinates) if the flag \code{INIT\_D3\_PHI} is
  set;

  \code{D3\_phi[i][j][k][l]}  Stores the value 
  \code{bas\_fcts->D3\_phi[j](quad->lambda[i])[k][l][m]} for
  $0\leq\code{j}<\mbox{\code{n\_bas\_fcts}}$,
  $0\leq\code{i}<\mbox{\code{n\_points}}$, and
  $0\leq\code{k,l,m}\leq d$.
  %%
  %%
  \kitem{D4\_phi} Matrix storing all fourth derivatives (with respect
  to the barycentric coordinates) if the flag \code{INIT\_D4\_PHI} is
  set;

  \code{D4\_phi[i][j][k][l]}  Stores the value 
  \code{bas\_fcts->D4\_phi[j](quad->lambda[i])[k][l][m][n]} for
  $0\leq\code{j}<\mbox{\code{n\_bas\_fcts}}$,
  $0\leq\code{i}<\mbox{\code{n\_points}}$, and
  $0\leq\code{k,l,m,n}\leq d$.
  %%
  \kitem{phi\_d} The directional part of vector-valued basis
  functions, if that is constant on each element. This means, if
  \code{bas\_fcts->rdim == \DOW} and \code{bas\_fcts->dir\_pw\_const},
  then \code{phi\_d} contains valid data, probably after calling
  \code{QUAD\_FAST.init\_element()} with the current element and the
  instance of the \code{QUAD\_FAST} structure in question. See also
  \secref{S:vector_bfcts}.
  %%
  \kitem{chain} If \code{bas\_fcts} forms part of a chain of basis
  functions because the corresponding finite element space is a direct
  sum, then this code{get\_quad\_fast()} will also generate a chain of
  \code{QUAD\_FAST}-structures, one for each component. The chain
  forms a doubly linked list, and the \code{chain}-component is the
  list node. See also \secref{S:bfcts_chains} and
  \secref{S:chain_impl}.
  %%
  \kitem{unchained} A clone of the current structure, but as single
  element. Points back to the structure itself if the underlying basis
  functions do not form part of chain of basis function sets.  See
  \secref{S:bfcts_chains} and \secref{S:chain_impl}.
  %%
  \kitem{INIT\_ELEMENT\_DECL} Per element initializer, see
  \secref{S:init_element}.
  %%
  \kitem{internal} Pointer to internal meta-data stuff.
\end{descr}
%
A filled structure can be accessed by a call of 
\fdx{get_quad_fast()@{\code{get\_quad\_fast()}}}%
\idx{numerical quadrature!get_quad_fast()@{\code{get\_quad\_fast()}}}%
\bv\begin{lstlisting}
const QUAD_FAST *get_quad_fast(const BAS_FCTS *, const QUAD *, U_CHAR);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{get\_quad\_fast(bas\_fcts, quad, init\_flag)} \code{bas\_fcts}
       is a pointer to a filled \code{BAS\_FCTS} structure,
       \code{quad} a pointer to some quadrature (accessed by
       \code{get\_quadrature()}, e.g.)  and \code{init\_flag}
       indicates which information should be filled into the
       \code{QUAD\_FAST} structure; it may be one of, or a bitwise
       \textsf{OR} of several of \code{INIT\_PHI}, \code{INIT\_GRD\_PHI},
       \code{INIT\_D2\_PHI}; the function returns a pointer to a
       filled \code{QUAD\_FAST} structure where all demanded information
       is computed and stored.

       All used \code{QUAD\_FAST} structures are stored in a linked
       list and are identified uniquely by the members \code{quad} and
       \code{bas\_fcts}; first, \code{get\_quad\_fast()} looks for a
       matching structure in the linked list; if no structure is
       found, a new structure is generated and linked to the list;
       thus for one combination \code{bas\_fcts} and \code{quad} only
       one \code{QUAD\_FAST} structure is created.

       Then \code{get\_quad\_fast()} allocates memory for all
       information demanded by \code{init\_flag} and which is not yet
       initialized for this structure; only such information
       is then computed and stored; on the first call for 
       \code{bas\_fcts} and \code{quad}, all information demanded
       \code{init\_flag} is generated, on a subsequent call only
       missing information is generated.

       \code{get\_quad\_fast()} will return a \nil pointer, if
       \code{INIT\_PHI} flag is set and \code{bas\_fcts->phi} is \nil,
       \code{INIT\_GRD\_PHI} flag is set and
       \code{bas\_fcts->grd\_phi} is \nil, and \code{INIT\_D2\_PHI}
       flag is set and \code{bas\_fcts->D2\_phi} is \nil.

       There may be several \code{QUAD\_FAST} structures in the list for
       the same set of basis functions for different quadratures,
       and there may be several \code{QUAD\_FAST} structures for one 
       quadrature for different sets of basis functions.

       The function \code{get\_quad\_fast()} should not be called on
       each element during mesh traversal, because it has to look in a
       list for an existing entry for a set of basis functions and a
       quadrature; a pointer to the \code{QUAD\_FAST} structure should
       be accessed before mesh traversal and passed to the 
       element routine.
\end{descr}
Many functions using the \code{QUAD\_FAST} structure need vectors
for storing values at all quadrature points; for these functions
it can be of interest to get the count of the maximal number of
quadrature nodes used by the all initialized \code{quad\_fast}
structures in order to avoid several memory reallocations. This
count can be accessed by the function
\fdx{max_quad_points()@{\code{max\_quad\_points()}}}%
\idx{numerical quadrature!max_quad_points()@{\code{max\_quad\_points()}}}%
\bv\begin{lstlisting}
int max_quad_points(void);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{max\_quad\_points()} returns the maximal number of quadrature
       points for all yet initialized \code{quad\_fast} structures;
       this value may change after a new initialization of a 
       \code{quad\_fast} structures;

       this count is \emph{not} the maximal number of quadrature
       points of all used \code{QUAD} structures, since new quadratures
       can be used at any time without an initialization.
\end{descr}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Integration over subsimplices (walls)}%
\label{S:subsimplices}

The weak formulation of non-homogeneous Neumann or Robin boundary
values needs integration over $d-1$ dimensional boundary
simplices of $d$ dimensional mesh elements (compare \secref{book:S:Submeshes}), 
and the evaluation of jump residuals for error estimators (compare Sections
\ref{book:S:adaptive_methods}, \ref{S:estimator}) needs integration over
all interior $d-1$ dimensional sub--simplices.  The quadrature
formulas and data structures described above are available for any $d$
dimensional simplex, $d=0,1,2,3$.  The above task can therefore be
accomplished by using a $d-1$ dimensional quadrature formula
and augmenting the corresponding $d$ dimensional barycentric
coordinates of quadrature points on edges/faces to $d+1$
dimensional coordinates on adjacent mesh elements.

When an integral over an edge/face involves values from both adjacent
elements (in the computation of jump residuals e.\,g.)  it is
necessary to have a common orientation of the edge/face from both
elements. Only a common orientation of the edges/faces ensures that
augmenting $d$ dimensional barycentric coordinates of
quadrature points on the edge/face to $d+1$ dimensional
barycentric coordinates on the adjacent mesh elements results in the
same points from both sides.

This augmentation process, taking the relative orientation of
neighboring simplices into account, is taken care of by dedicated
co-dimension $1$ quadrature rules, see \secref{S:WALL_QUAD} and
\ref{S:WALL_QUAD_FAST}. Additionally, the calculation of Gram's
determinant for the $d-1$ dimensional transformation as well as
vertex/edge/face normals is needed. See \secref{S:bary_routines}
above.

Low-level access to the relative orientation of neighboring simplices
is provided through the routines and look-up tables
%%
\fdx{wall_orientation()@{\code{wall\_orientation()}}}%
\fdx{wall_rel_orientation()@{\code{wall\_rel\_orientation()}}}%
\ddx{sorted_wall_vertices_1d@{\code{sorted\_wall\_vertices\_1d}}}
\ddx{sorted_wall_vertices_2d@{\code{sorted\_wall\_vertices\_2d}}}
\ddx{sorted_wall_vertices_3d@{\code{sorted\_wall\_vertices\_3d}}}
\bv\begin{lstlisting}
int wall_orientation(int dim, const EL *el, int wall, int **vec);
int wall_rel_orientation(
  int dim, const EL *el, const EL *neigh, int wall, int oppv);

const int sorted_wall_vertices_1d[N_WALLS_1D][DIM_FAC_1D][2*N_VERTICES_0D-1];
const int sorted_wall_vertices_2d[N_WALLS_2D][DIM_FAC_2D][2*N_VERTICES_1D-1];
const int sorted_wall_vertices_3d[N_WALLS_3D][DIM_FAC_3D][2*N_VERTICES_2D-1];
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{wall\_orientation(dim, el, wall, vec)} can be used to match
  the local enumeration of the vertices of faces separating
  neighbouring simplexes. The return value is a unique number between
  \code{1} and \code{dim!}. On return \code{vec} -- if non-\nil --
  contains a permutation of the local numbering of the vertices of
  face number \code{wall} on \code{el}. If \code{neigh\_vec} is the
  corresponding permutation for the neighbour element, then
  \code{(*vec)[i]} and \code{(*neigh\_vec)[i]} refer to the same
  vertex, e.g.  \code{el\_info->coord[(*vec)[i]]} is the same as
  \code{neigh\_info->coord[(*neigh\_vec)[i]]}.

  Actually, the return value of \code{wall\_orientation()} is just the
  index into the look-up tables
  \code{sorted\_wall\_vertices\_Xd[][][]}, such that \code{vec}, if
  non-\nil point upon return to
  \code{sorted\_wall\_vertices\_Xd[wall][retval]}.

  The principal purpose of this function is to match quadrature points
  during the numerical integration of jumps of derivatives of finite
  element function across the faces of the triangulation, see
  \secref{S:subsimplices}.

  \kitem{wall\_rel\_orientation(dim, el, neigh, wall, oppv)} can be
  used to compute a relative orientation of a given wall separating
  two elements with respect to both elements. The return value
  \bv\begin{lstlisting}
    perm = wall_rel_orientation(dim, el, neigh, wall, oppv);
  \end{lstlisting}\ev
  can be used as an offset into \code{sorted\_wall\_vertices\_Xd} in
  the sense that
  %% 
  \bv\begin{lstlisting}
    nv = sorted_wall_vertices_Xd[oppv][perm][i];
  \end{lstlisting}\ev
  %% 
  matches
  %% 
  \bv\begin{lstlisting}
    v = vertex_of_wall_Xd[wall][i];
  \end{lstlisting}\ev
  %% 
  So it holds \code{el->dof[v][0] == neigh->dof[nv][0]}.
  %% 
\end{descr}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The \code{WALL\_QUAD} data structure}%
\label{S:WALL_QUAD}

A collection of quadrature rules for the integration over walls (3d:
faces, 2d: edges) of a simplex. The quadrature points of these rules
are given in barycentric coordinates with \code{dim+1} valid
components; the component corresponding to the respective wall will be
set to zero.

Each of the quadrature rules \code{WALL\_QUAD\:\:quad[wall]} may have
its own \code{INIT\_ELEMENT} method.  \code{INIT\_ELEMENT(el\_info,
  WALL\_QUAD)} may or may not be called: it is legal to only call
\code{INIT\_ELEMENT(el\_info, WALL\_QUAD\:\:quad[wall])} individually.
If \code{INIT\_ELEMENT(el\_info, WALL\_QUAD)} is called, then it has
to initialize all quadrature rules for all walls, so the sub-ordinate
initializers need not be called in this case.
%%%
\ddx{WALL_QUAD@{\code{WALL\_QUAD}}}%
\idx{numerical quadrature!WALL_QUAD@{\code{WALL\_QUAD}}}
\bv\begin{lstlisting}[name=WALL_QUAD,label=T:WALL_QUAD]
typedef struct wall_quadrature   WALL_QUAD;

struct wall_quadrature
{
  const char *name;
  int  degree;
  int  dim;
  int  n_points_max;
  QUAD quad[N_WALLS_MAX];

  INIT_ELEMENT_DECL;

  void *metadata;
};
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{name} Textual description of the quadrature.
  %% 
  \kitem{degree} Quadrature is exact of degree \code{degree}.
  %% 
  \kitem{dim} Quadrature for dimension \code{dim}; the barycentric
  coordinates of the quadrature points have \code{dim+1} valid
  components.
  %% 
  \kitem{n\_points\_max} The maximal number of quadrature points.
  %% 
  \kitem{quad} Quadrature rules for each wall. These are co-dimension
  $1$ rules.
  %%
  \kitem{INIT\_ELEMENT\_DECL} Function pointer to a per-element
  initializer. This pointer is always \nil for quadratures returned by
  \code{get\_wall\_quad()}. External extension modules may make use of
  it. See \secref{S:init_element}.
  %% 
  \kitem{metadata} Pointer to an internal data structure for
  per-element quadrature caches and the like.
\end{descr}
Functions for numerical quadrature are:
\fdx{get_wall_quad()@{\code{get\_wall\_quad()}}}%
\idx{numerical quadrature!get_wall_quad()@{\code{get\_wall\_quad()}}}%
\fdx{register_wall_quadrature()@{\code{register\_wall\_quadrature()}}}%
\idx{numerical quadrature!register_wall_quadrature()@{\code{register\_wall\_quadrature()}}}%
\bv\begin{lstlisting}
const WALL_QUAD *get_wall_quad(int dim, int degree);
void register_wall_quadrature(WALL_QUAD *wall_quad);
const QUAD *get_neigh_quad(const EL_INFO *el_info, const WALL_QUAD *wall_quad, int neigh);
\end{lstlisting}\ev

Description:
\begin{descr}
  \kitem{get\_wall\_quad(dim, degree)} returns a pointer to a 
  \code{WALL\_QUAD} structure for numerical integration in \code{dim}
  dimensions.
%%
  \kitem{register\_wall\_quadrature(wall\_quad)} initializes the meta-data
  for the given \code{WALL\_QUAD}, no need to call this if the
  \code{WALL\_QUAD} has been acquired by \code{get\_wall\_quad()},
  only needed for externally defined extension quadrature rules.
\end{descr}

\subsection{The \code{WALL\_QUAD\_FAST} data structure}
\label{S:WALL_QUAD_FAST}

Convenience structure for \code{WALL\_QUAD}: its is legal to call
\code{get\_quad\_fast(bas\_fcts, WALL\_QUAD::quad[wall], ...)}
(see \secref{S:QUAD_FAST} ``The \code{QUAD\_FAST} data structure'')
individually, however \code{get\_wall\_quad\_fast()} does this
in a single run. If \code{INIT\_ELEMENT(el\_info, WALL\_QUAD\_FAST)}
is called, then the sub-ordinate initializers
\code{INIT\_ELEMENT(el\_info,WALL\_QUAD\_FAST::quad\_fast[wall])}
need not be called.

\ddx{WALL_QUAD_FAST@{\code{WALL\_QUAD\_FAST}}}
\idx{numerical quadrature!WALL_QUAD_FAST@{\code{WALL\_QUAD\_FAST}}}
%%
\bv\begin{lstlisting}[label=T:WALL_QUAD_FAST]
typedef struct wall_quad_fast  WALL_QUAD_FAST;

struct wall_quad_fast
{
  const WALL_QUAD *wall_quad;
  const BAS_FCTS  *bas_fcts;

  FLAGS           init_flag;
  const QUAD_FAST *quad_fast[N_WALLS_MAX];

  INIT_ELEMENT_DECL;
};
\end{lstlisting}\ev
The entries yield following information:
\begin{descr}
\kitem{wall\_quad} values stored for numerical quadrature \code{quad};
\kitem{bas\_fcts} values stored for basis functions \code{bas\_fcts};
\kitem{init\_flag} indicates which information is initialized; may be
  one of, or a bitwise \textsf{OR} of several of \code{INIT\_PHI},
  \code{INIT\_GRD\_PHI}, \code{INIT\_D2\_PHI};
\kitem{\*quad\_fast[N\_WALLS\_MAX]} Pointer to \code{N\_WALLS\_MAX}
  \code{quad\_fast} structures.
\kitem{INIT\_ELEMENT\_DECL} Function pointer to for a per-element
  initialiser. This pointer is always \nil for quadratures returned by
  \code{get\_quadrature()}, \code{get\_wall\_quad()} and
  \code{get\_bndry\_quad()}. External extension modules make use of it.
  See \secref{S:init_element}.
\end{descr}

\fdx{get_wall_quad_fast()@{\code{get\_wall\_quad\_fast()}}}%
\idx{numerical quadrature!get_wall_quad_fast()@{\code{get\_wall\_quad\_fast()}}}%
\fdx{get_neigh_quad()@{\code{get\_neigh\_quad()}}}%
\idx{numerical quadrature!get_neigh_quad()@{\code{get\_neigh\_quad()}}}%
\fdx{get_neigh_quad_fast()@{\code{get\_neigh\_quad\_fast()}}}%
\idx{numerical quadrature!get_neigh_quad_fast()@{\code{get\_neigh\_quad\_fast()}}}%

\bv\begin{lstlisting}
const WALL_QUAD *get_wall_quad_fast(const BAS_FCTS *, const WALL_QUAD *, FLAGS init_flag);
QUAD_FAST *get_neigh_quad_fast(const EL_INFO *el_info,
				     const WALL_QUAD_FAST *wqfast,
				     int neigh);
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{get\_wall\_quad\_fast(bas\_fcts, wall\_quad, init\_flag)}
  \code{bas\_fcts}
  is a pointer to a filled \code{BAS\_FCTS} structure,
  \code{wall\_quad} a pointer to some quadrature (accessed by
  \code{get\_wall\_quad()}, e.g.)  and \code{init\_flag}
  indicates which information should be filled into the
  \code{QUAD\_FAST} structure. The function returns a pointer to a
  filled \code{QUAD\_FAST} structure where all demanded information
  is computed and stored.
  %% 
  \kitem{get\_neigh\_quad(el\_info, wall\_quad, neigh)} returns a
  suitable quadrature for integrating over the given wall (neigh number),
  but the barycentric co-ordinates of \code{QUAD->lambda} are relative
  to the neighbour element. 

  \kitem{get\_neigh\_quad\_fast(el\_info, wall\_quad, neigh)} returns a
  suitable \code{QUAD\_FAST} structure for integrating over the given
  wall, but relative to the neighbour element. If the returned
  \code{QUAD\_FAST} object has a per-element initializer, then it must be
  called with an \code{EL\_INFO} structure for the neighbour element.
  It is also legal to just call
  \code{get\_quad\_fast(bas\_fcts, get\_neigh\_quad(el\_info, wall\_quad, neigh), ...)} but \code{get\_neigh\_quad\_fast()} is slightly more efficient.
\end{descr}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\subsection{Caching of geometric quantities on quadrature
  nodes}
\label{S:fill_quad_el_cache}

Like for geometric quantities which are constant on a given
mesh-element it is useful to share geometric data attached to
quadrature nodes between different places of program code, see also
\secref{S:fill_el_geom_cache}. For this purpose there is a
per-quadrature-per-element cache, called \code{QUAD\_EL\_CACHE}, which
can be filled and accessed through calls to the function
\code{fill\_quad\_el\_cache()}. This is in particular useful for
higher-order parametric meshes, where for example the transformation
to the reference element is no longer piece-wise constant on each
element. Internally, the \code{QUAD\_EL\_CACHE} is maintained as part
of the ``metadata'' attached to each quadrature rule, see
\ref{T:QUAD}. The per-quadrature node cache and the related
definitions and proto-types are as follows:
%%
\bv\begin{lstlisting}[name=QUAD_EL_CACHE,label=T:QUAD_EL_CACHE]
typedef struct quad_el_cache QUAD_EL_CACHE;

struct quad_el_cache
{
  EL      *current_el;
  FLAGS   fill_flag;
  REAL_D  *world;
  struct {
    REAL      *det;
    REAL_BD   *Lambda;
    REAL_BDD  *DLambda;
    REAL_BD   *grd_world;
    REAL_BDB  *D2_world;
    REAL_BDBB *D3_world;
    REAL      *wall_det;    /* for co-dim 1 */
    REAL_D    *wall_normal; /* for co-dim 1 */
    REAL_DB   *grd_normal;  /* for co-dim 1 */
    REAL_DBB  *D2_normal;   /* for co-dim 1 */
  } param;
};

#define FILL_EL_QUAD_WORLD       0x0001
#define FILL_EL_QUAD_DET         0x0002
#define FILL_EL_QUAD_LAMBDA      0x0004
#define FILL_EL_QUAD_DLAMBDA     0x0008
#define FILL_EL_QUAD_GRD_WORLD   0x0010
#define FILL_EL_QUAD_D2_WORLD    0x0020
#define FILL_EL_QUAD_D3_WORLD    0x0040
#define FILL_EL_QUAD_WALL_DET    0x0100
#define FILL_EL_QUAD_WALL_NORMAL 0x0200
#define FILL_EL_QUAD_GRD_NORMAL  0x0400
#define FILL_EL_QUAD_D2_NORMAL   0x0800

static inline const QUAD_EL_CACHE *fill_quad_el_cache(const EL_INFO *el_info,
						      const QUAD *quad,
						      FLAGS fill);
\end{lstlisting}\ev

The quadrature cache can be obtained and filled by calls to
\code{fill\_quad\_el\_cache()}, see also below
\exampleref{E:fill_quad_el_cache}. The members of
\code{QUAD\_EL\_CACHE} have the following meaning:
\begin{descr}
  \kitem{current\_el} For internal use only.
  %%
  \kitem{fill\_flag} A bit-mask, bit-wise or of the fill flags
  listed above (\ref{T:QUAD_EL_CACHE}).
  %% 
  \kitem{world} The world co-ordinates of the quadrature points,
  filled by \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_WORLD)}.
  %% 
  \kitem{param} A cache for geometric quantities which are constant on
  each element for affine-linear meshes, but vary between quadrature
  points for higher-order parametric meshes.
  \begin{descr}
    \kitem{det} The determinant of the transformation to the reference
    element, filled by 
    filled by \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_DET)}.
    %%
    \kitem{Lambda} The derivative of the barycentric coordinates
    w.r.t.  the Cartesian coordinates, filled by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_LAMBDA)}.
    %%
    \kitem{DLambda} The second derivatives of the barycentric
    coordinates w.r.t. the Cartesian coordinates, filled by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_DLAMBDA)}.
    %%
    \kitem{grd\_world} The first derivatives of the Cartesian
    coordinates w.r.t. the barycentric coordinates, filled by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_GRD\_WORLD)}.
    %%
    \kitem{D2\_world} The second derivatives of the Cartesian
    coordinates w.r.t. the barycentric coordinates, filled by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_D2\_WORLD)}.
    %%
    \kitem{D3\_world} The third derivatives of the Cartesian
    coordinates w.r.t. the barycentric coordinates, filled by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_D3\_WORLD)}.
    %%
    \kitem{wall\_det} The determinant of the transformation of the
    walls to the reference element's walls. This can be filled only
    for co-dimension $1$ quadratures by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_WALL\_DET)}.
    %%
    \kitem{wall\_normal} The outer wall-normal. This can be filled
    only for co-dimension $1$ quadratures by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_WALL\_NORMAL)}.
    %%
    \kitem{grd\_normal} The first derivative of the outer normal-field
    with respect to the barycentric coordinates.  This can be filled
    only for co-dimension $1$ quadratures by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_GRD\_NORMAL)}.
    %%
    \kitem{D2\_normal} The second derivative of the outer normal-field
    with respect to the barycentric coordinates.  This can be filled
    only for co-dimension $1$ quadratures by
    \code{fill\_quad\_el\_cache(..., FILL\_EL\_QUAD\_D2\_NORMAL)}.
  \end{descr}  
\end{descr}

\begin{example}
  \label{E:fill_quad_el_cache}
  A simple example which computes the measure of the region occupied
  by the mesh (of course, this can be achieved more efficiently by
  computing a boundary integral \dots). This example is, of course,
  quite artificial -- and in this context it would be more efficient
  \emph{not} to read through the per-element caches.
  %%
  \bv\begin{lstlisting}[name=fill_quad_el_cache,label=C:quad_el_cache]
    const PARAMERIC *param = mesh->parametric;
    const QUAD *quad = get_quadrature(mesh->dim, 3 /* degree */);
    REAL meas = 0.0;
    TRAVERSE_FIRST(mesh, -1, CALL_LEAF_EL|FILL_COORDS) {
      int iq;
      if (param->init_element(el_info, param)) {
        const QUAD_EL_CACHE *qelc = fill_quad_el_cache(el_info, quad, FILL_EL_QUAD_DET);
        for (iq = 0; iq < quad->n_points; iq++) {
          meas += quad->w[iq] * qelc->param.det[iq];
        }
      } else {
        const EL_GEOM_CACHE *elgc = fill_el_geom_cache(el_info, FILL_EL_DET);
        meas += elgc->det / (REAL)DIM_FAC(mesh->dim);
      }
    } TRAVERSE_NEXT()
  \end{lstlisting}\ev
\end{example}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Functions for the evaluation of finite elements}
\label{S:eval}

Finite element functions are evaluated locally on single elements
using barycentric coordinates (compare \secref{book:S:eval_fe}). \ALBERTA
supplies several functions for calculating values and first and second
derivatives of finite element functions on single elements. Functions
for the calculation of derivatives are currently only implemented
for (non--parametric) simplices.

Recalling \mathref{book:E:uh_on_S} on page \pageref{book:E:uh_on_S} we obtain
for the value of a finite element function $\uh$ on an element $S$
\[
\uh(x(\lambda)) = \sum\limits_{i = 1}^m u^i_S\, \pbar^i(\lambda)
\qquad \mbox{for all } \lambda \in \Sbar,
\]
where $\left(\pbar^1,\dots,\pbar^m\right)$ is a basis of $\Pbar$ and
$\left(u_S^1,\dots,u_S^m\right)$ the local coefficient vector
of $\uh$ on $S$. Derivatives are evaluated on $S$ by
\[
\nabla u_h(x(\lambda)) = \Lambda^t
 \sum_{i = 1}^m u_S^i \, \nablal \pbar^i(\lambda), \qquad \lambda \in \Sbar
\]
and
\[
D^2 u_h(x(\lambda)) = \Lambda^t \sum_{i = 1}^m u_S^i \,
D^2_\lambda \pbar^i(\lambda)\Lambda, \qquad \lambda \in \Sbar,
\]
where $\Lambda$ is the Jacobian of the barycentric coordinates,
compare \secref{book:S:eval_Dfe}.

These formulas are used for all evaluation routines. Information
about values of basis functions and their derivatives can be 
calculated via function pointers in the \code{BAS\_FCTS} structure.
Additionally, the local coefficient vector and the Jacobian
of the barycentric coordinates are needed (for the calculation of
derivatives).

The following routines calculate values of a finite element function
at a single point, given in barycentric coordinates:
\fdx{eval_uh()@{\code{eval\_uh()}}}%
\idx{evaluation of finite element functions!eval_uh()@{\code{eval\_uh()}}}
\fdx{eval_grd_uh()@{\code{eval\_grd\_uh()}}}%
\idx{evaluation of finite element functions!eval_grd_uh()@{\code{eval\_grd\_uh()}}}%
\fdx{eval_D2_uh()@{\code{eval\_D2\_uh()}}}%
\idx{evaluation of finite element functions!eval_D2_uh()@{\code{eval\_D2\_uh()}}}%
\fdx{eval_uh_d()@{\code{eval\_uh\_d()}}}%
\idx{evaluation of finite element functions!eval_uh_d()@{\code{eval\_uh\_d()}}}
\fdx{eval_grd_uh_d()@{\code{eval\_grd\_uh\_d()}}}%
\idx{evaluation of finite element functions!eval_grd_uh_d()@{\code{eval\_grd\_uh\_d()}}}%
\fdx{eval_div_uh_d()@{\code{eval\_div\_uh\_d()}}}%
\idx{evaluation of finite element functions!eval_div_uh_d()@{\code{eval\_div\_uh\_d()}}}%
\fdx{eval_D2_uh_d()@{\code{eval\_D2\_uh\_d()}}}%
\idx{evaluation of finite element functions!eval_D2_uh_d()@{\code{eval\_D2\_uh\_d()}}}%
\fdx{eval_uh_dow()@{\code{eval\_uh\_dow()}}}%
\idx{evaluation of finite element functions!eval_uh_dow()@{\code{eval\_uh\_dow()}}}
\fdx{eval_grd_uh_dow()@{\code{eval\_grd\_uh\_dow()}}}%
\idx{evaluation of finite element functions!eval_grd_uh_dow()@{\code{eval\_grd\_uh\_dow()}}}%
\fdx{eval_div_uh_dow()@{\code{eval\_div\_uh\_dow()}}}%
\idx{evaluation of finite element functions!eval_div_uh_dow()@{\code{eval\_div\_uh\_dow()}}}%
\fdx{eval_D2_uh_dow()@{\code{eval\_D2\_uh\_dow()}}}%
\idx{evaluation of finite element functions!eval_D2_uh_dow()@{\code{eval\_D2\_uh\_dow()}}}%
\bv\begin{lstlisting}
REAL eval_uh(const REAL_B lambda, const EL_REAL_VEC *uh_loc,
             const BAS_FCTS *bfcts);
REAL *eval_grd_uh(REAL_D result, const REAL_B lambda, const REAL_BD Lambda,
                  const EL_REAL_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_D *eval_D2_uh(REAL_DD result, const REAL_B lambda, const REAL_BD Lambda,
                   const EL_REAL_VEC *uh_loc, const BAS_FCTS *bfcts);

REAL *eval_uh_d(REAL_D result, const REAL_B lambda,
                const EL_REAL_D_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_D *eval_grd_uh_d(REAL_DD result, const REAL_B lambda,
                      const REAL_BD Lambda, const EL_REAL_D_VEC *uh_loc,
                      const BAS_FCTS *bfcts);
REAL eval_div_uh_d(const REAL_B lambda, const REAL_BD Lambda,
                   const EL_REAL_D_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_DD *eval_D2_uh_d(REAL_DDD result, const REAL_B lambda,
                      const REAL_BD Lambda, const EL_REAL_D_VEC *uh_loc,
                      const BAS_FCTS *bfcts);

REAL *eval_uh_dow(REAL_D result, const REAL_B lambda,
                  const EL_REAL_VEC_D *uh_loc, const BAS_FCTS *bfcts);
REAL_D *eval_grd_uh_dow(REAL_DD result, const REAL_B lambda,
                        const REAL_BD Lambda, const EL_REAL_VEC_D *uh_loc,
                        const BAS_FCTS *bfcts);
REAL eval_div_uh_dow(const REAL_B lambda, const REAL_BD Lambda,
                     const EL_REAL_VEC_D *uh_loc, const BAS_FCTS *bfcts);
REAL_DD *eval_D2_uh_dow(REAL_DDD result, const REAL_B lambda,
                        const REAL_BD Lambda, const EL_REAL_VEC_D *uh_loc,
                        const BAS_FCTS *bfcts);
\end{lstlisting}\ev
Description:

In the following $\code{lambda} = \lambda$ are the barycentric
coordinates at which the function is evaluated, $\code{Lambda} =
\Lambda$ is the Jacobian of the barycentric coordinates, \code{uh} the
local coefficient vector $\left(u_S^0,\dots,u_S^{\code{m}-1}\right)$
(where $u_S^i$ is a \code{REAL} or a \code{REAL\_D}), and
\code{bas\_fcts} is a pointer to a \code{BAS\_FCTS} structure, storing
information about the set of local basis functions
$\left(\pbar^0,\dots,\pbar^{\code{m}-1}\right)$.

All functions returning a pointer to a vector or matrix provide memory
for the vector or matrix in a statically allocated memory area. This
area is overwritten during the next call. If the first argument of such
a function is not \nil, then it is a pointer to a storage area where
the results are stored. This memory area must be of correct size, no
check is performed.

\begin{compatibility}
  \label{compat:resultspace}
  Former versions of \ALBERTA expected the argument providing optional
  storage for the result at the last place in the parameter list. In
  the current version of the library, storage for the result is still
  optional, but generally passed as first argument to the respective
  function.
\end{compatibility}

The functions for \DOW-valued discrete functions come in two variants,
one for discrete functions based on scalar-valued local basis function
sets, where the coefficients are \DOW-valued, and one for discrete
functions which may be based on either scalar-valued or \DOW-valued
local basis functions, modeled by \code{DOF\_REAL\_VEC\_D} -- and
locally by \code{EL\_REAL\_VEC\_D} -- objects. The names for the
latter functions have a \code{\dots\_dow} suffix, the others a
\code{\dots\_d} suffix. Besides the slightly differing argument types
the calling conventions for both variants are the same, so they are
documented together in the descriptions following below.

\begin{descr}
\kitem{eval\_uh(lambda, uh\_loc, bas\_fcts)} the function returns
  $\uh(\lambda)$.
  %% 
\kitem{eval\_grd\_uh(result, lambda, Lambda, uh\_loc, bas\_fcts)} the function 
  returns a pointer \code{ptr} to a vector of length \DOW storing
  $\nabla \uh(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[i]}} = {\uh}_{,x_\code{i}}(\lambda),
  \qquad \code{i}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
  %% 
\kitem{eval\_D2\_uh(result, lambda, Lambda, uh\_loc, bas\_fcts)} the function 
  returns a pointer \code{ptr} to a matrix of size
  $(\DOW\times\DOW)$ storing $D^2 \uh(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[i][j]}} = {\uh}_{,x_\code{i}x_\code{j}}(\lambda),
  \qquad \code{i},\code{j}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
  %% 
\kitem{eval\_uh\_[d|dow](result, lambda, uh\_loc, bas\_fcts)}
  the function 
  returns a pointer \code{ptr} to a vector of length \DOW storing
  $\uh(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[k]}} = {\uh}_\code{k}(\lambda),
  \qquad \code{k}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
 %% 
\kitem{eval\_grd\_uh\_[d|dow](result, lambda, Lambda, uh\_loc, bas\_fcts)}
  the function returns a pointer \code{ptr} to a vector of \DOW
  vectors of length \DOW storing $\nabla {\uh}(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[k][i]}} = {\uh}_{\code{k},x_\code{i}}(\lambda),
  \qquad \code{k},\code{i}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
 %% 
\kitem{eval\_div\_uh\_[d|dow](lambda, Lambda, uh\_loc, bas\_fcts)} the function 
  returns \, $\div \uh(\lambda)$.
  %% 
\kitem{eval\_D2\_uh\_[d|dow](result, lambda, Lambda, uh\_loc, bas\_fcts)} the function 
  returns a pointer \code{ptr} to a vector of $(\DOW\times\DOW)$
  matrices of length \DOW storing $D^2 {\uh}(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[k][i][j]}} = {\uh}_{\code{k},x_\code{i}x_\code{j}}(\lambda),
  \qquad \code{k},\code{i},\code{j}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
 %% 
\end{descr}

Using pre--computed values of basis functions at the evaluation point,
these routines can be implemented more efficiently.
\fdx{eval_uh_fast()@{\code{eval\_uh\_fast()}}}
\idx{evaluation of finite element functions!eval_uh_fast()@{\code{eval\_uh\_fast()}}}
\fdx{eval_grd_uh_fast()@{\code{eval\_grd\_uh\_fast()}}}
\idx{evaluation of finite element functions!eval_grd_uh_fast()@{\code{eval\_grd\_uh\_fast()}}}
\fdx{eval_D2_uh_fast()@{\code{eval\_D2\_uh\_fast()}}}
\idx{evaluation of finite element functions!eval_D2_uh_fast()@{\code{eval\_D2\_uh\_fast()}}}
\fdx{eval_uh_d_fast()@{\code{eval\_uh\_d\_fast()}}}
\idx{evaluation of finite element functions!eval_uh_d_fast()@{\code{eval\_uh\_d\_fast()}}}
\fdx{eval_grd_uh_d_fast()@{\code{eval\_grd\_uh\_d\_fast()}}}
\idx{evaluation of finite element functions!eval_grd_uh_d_fast()@{\code{eval\_grd\_uh\_d\_fast()}}}
\fdx{eval_div_uh_d_fast()@{\code{eval\_div\_uh\_d\_fast()}}}
\idx{evaluation of finite element functions!eval_div_uh_d_fast()@{\code{eval\_div\_uh\_d\_fast()}}}
\fdx{eval_D2_uh_d_fast()@{\code{eval\_D2\_uh\_d\_fast()}}}
\idx{evaluation of finite element functions!eval_D2_uh_d_fast()@{\code{eval\_D2\_uh\_d\_fast()}}}
\fdx{eval_uh_dow_fast()@{\code{eval\_uh\_dow\_fast()}}}
\idx{evaluation of finite element functions!eval_uh_dow_fast()@{\code{eval\_uh\_dow\_fast()}}}
\fdx{eval_grd_uh_dow_fast()@{\code{eval\_grd\_uh\_dow\_fast()}}}
\idx{evaluation of finite element functions!eval_grd_uh_dow_fast()@{\code{eval\_grd\_uh\_dow\_fast()}}}
\fdx{eval_div_uh_dow_fast()@{\code{eval\_div\_uh\_dow\_fast()}}}
\idx{evaluation of finite element functions!eval_div_uh_dow_fast()@{\code{eval\_div\_uh\_dow\_fast()}}}
\fdx{eval_D2_uh_dow_fast()@{\code{eval\_D2\_uh\_dow\_fast()}}}
\idx{evaluation of finite element functions!eval_D2_uh_dow_fast()@{\code{eval\_D2\_uh\_dow\_fast()}}}
\bv\begin{lstlisting}
REAL eval_uh_fast(const EL_REAL_VEC *uh_loc, const QUAD_FAST *qfast, int iq);
const REAL *eval_grd_uh_fast(REAL_D grd_uh, const REAL_BD Lambda,
                             const EL_REAL_VEC *uh_loc,
                             const QUAD_FAST *qfast, int iq);
const REAL_D *eval_D2_uh_fast(REAL_DD result, const REAL_BD Lambda,
                              const EL_REAL_VEC *uh_loc,
                              const QUAD_FAST *qfast, int iq);

const REAL *eval_uh_d_fast(REAL_D result, const EL_REAL_D_VEC *uh_loc,
                           const QUAD_FAST *qfast, int iq);
const REAL_D *eval_grd_uh_d_fast(REAL_DD result, const REAL_BD Lambda,
                                 const EL_REAL_D_VEC *uh_loc,
                                 const QUAD_FAST *qfast, int iq);
REAL eval_div_uh_d_fast(const REAL_BD Lambda, const EL_REAL_D_VEC *uh_loc,
                        const QUAD_FAST *qfast, int iq);
const REAL_DD *eval_D2_uh_d_fast(REAL_DDD result, const REAL_BD Lambda,
                                 const EL_REAL_D_VEC *uh_loc,
                                 const QUAD_FAST *qfast, int iq);

const REAL *eval_uh_dow_fast(REAL_D result, const EL_REAL_VEC_D *uh_loc,
                             const QUAD_FAST *qfast, int iq);
const REAL_D *eval_grd_uh_dow_fast(REAL_DD result, const REAL_BD Lambda,
                                   const EL_REAL_VEC_D *uh_loc,
                                   const QUAD_FAST *qfast, int iq);
REAL eval_div_uh_dow_fast(const REAL_BD Lambda, const EL_REAL_VEC_D *uh_loc,
                          const QUAD_FAST *qfast, int iq);
const REAL_DD *eval_D2_uh_dow_fast(REAL_DDD result, const REAL_BD Lambda,
                                   const EL_REAL_VEC_D *uh_loc,
                                   const QUAD_FAST *qfast, int iq);
\end{lstlisting}\ev
\begin{compatibility}
  \label{compat:evalcallconv}
  Former versions of \ALBERTA didn't expect the arguments
  \begin{lstlisting}
    ..., const QUAD_FAST *qfast, int iq, ...    
  \end{lstlisting}
  -- meaning the \hyperref[S:QUAD_FAST]{quadrature cache} and the
  index of the quadrature point -- but instead expected the actual
  cached-values to be passed, i.e. for the computation of the gradient
  \begin{lstlisting}
    ..., qfast->grd_phi[iq], qfast->n_bas_fcts, ...
  \end{lstlisting}
  There is some potential for confusion, in particular because the
  proto-types listed in the old documentation often omit the parameter
  name and only give the parameter type. In the new version,
  \lstinline!.., int iq, ...! denotes the index of the quadrature
  point. The number of basis functions on the reference element is not
  needed, because the evaluation functions fetch this quantity
  themselves from the \hyperref[S:QUAD_FAST]{\code{QUAD\_FAST}} data
  structure.
\end{compatibility}
Description: 
In the following $\code{Lambda} = \Lambda$ denotes the Jacobian of the
barycentric coordinates, \code{uh\_loc} the local coefficient vector (of
type \hyperref[T:EL_REAL_VEC]{\code{EL\_REAL\_VEC}},
\hyperref[T:EL_REAL_D_VEC]{\code{EL\_REAL\_D\_VEC}} etc.) on an element.
\begin{descr}
\kitem{eval\_uh\_fast(uh\_loc, qfast, iq)} the function returns $\uh(\lambda)$;

 \code{qfast} is a quadrature cache storing the values 
  $\pbar^0(\lambda),\dots,\pbar^{\code{m}-1}(\lambda)$.
  %% 
\kitem{eval\_grd\_uh\_fast(grd, Lambda, uh\_loc, qfast, iq)} 
  the function returns a pointer \code{ptr} to a vector of length
  \DOW storing $\nabla \uh(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[i]}} = {\uh}_{,x_\code{i}}(\lambda),
  \qquad \code{i}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{grd} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  \code{qfast} is a quadrature cache storing 
  $\nablal \pbar^0(\lambda),\dots,\nablal \pbar^{\code{m}-1}(\lambda)$;
 %% 
\kitem{eval\_D2\_uh\_fast(D2, Lambda, uh\_loc, qfast, iq)} the function 
  returns a pointer \code{ptr} to a matrix of size
  $(\DOW\times\DOW)$ storing $D^2 \uh(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[i][j]}} = {\uh}_{,x_\code{i}x_\code{j}}(\lambda),
  \qquad \code{i},\code{j}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{D2} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  \code{qfast} is a quadrature cache storing 
  $D^2_\lambda \pbar^0(\lambda),\dots,D2_\lambda\pbar^{\code{m}-1}
  (\lambda)$.
 %% 
\kitem{eval\_uh\_[d|dow]\_fast(result, uh\_loc, qfast, iq)} the function 
  returns a pointer \code{ptr} to a vector of \DOW vectors of
  length \DOW storing $\nabla {\uh}(\lambda)$, i.e. 
  \[
  \mbox{\code{ptr[k][i]}} = {\uh}_{\code{k},x_\code{i}}(\lambda),
  \qquad \code{k},\code{i}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{qfast} is a quadrature cache storing the values 
  $\pbar^0(\lambda),\dots,\pbar^{\code{m}-1}(\lambda)$;

  \code{result} is optional and provides storage for the resulty if non-\nil.
  See \compatref{compat:resultspace}.
  %% 
\kitem{eval\_grd\_uh\_[d|dow]\_fast(grd, Lambda, uh\_loc, qfast, iq)} 
  the function returns a pointer \code{ptr} to a vector of \DOW
  vectors of length \DOW storing $\nabla {\uh}(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[k][i]}} = {\uh}_{\code{k},x_\code{i}}(\lambda),
  \qquad \code{k},\code{i}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{qfast} is a quadrature cache storing
  $\nablal \pbar^0(\lambda),\dots,\nablal
  \pbar^{\code{m}-1}(\lambda)$;
  \code{grd} is optional storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
  %% 
\kitem{eval\_div\_uh\_[d|dow]\_fast(Lambda, uh\_loc, qfast, iq)} the function 
  returns $\div \uh(\lambda)$;

  \code{qfast} is a quadrature cache storing 
  $\nablal \pbar^0(\lambda),\dots,\nablal \pbar^{\code{m}-1}(\lambda)$.
  Unused entries must be set to \code{0.0}.
  %% 
\kitem{eval\_D2\_uh\_[d|dow]\_fast(D2, Lambda, uh\_loc, qfast, iq)}
  the function returns a pointer \code{ptr} to a vector of
  $(\DOW\times\DOW)$ matrices of length \DOW storing
  $D^2 {\uh}(\lambda)$, i.e.
  \[
  \mbox{\code{ptr[k][i][j]}} = {\uh}_{\code{k},x_\code{i}x_\code{j}}(\lambda),
  \qquad \code{k},\code{i},\code{j}=0,\dots,\mbox{\DOW}-1;
  \]
  \code{qfast} is a quadrature cache storing 
  $D^2_\lambda \pbar^0(\lambda),\dots,D2_\lambda\pbar^{\code{m}-1}
  (\lambda)$;

  \code{D2} is optional storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
\end{descr}

One important task is the evaluation of finite element functions at
all quadrature nodes for a given quadrature formula. Using the
\code{QUAD\_FAST} data structures, the values of the basis functions
are known at the quadrature nodes which results in an efficient
calculation of values and derivatives of finite element functions
at these quadrature points.
\fdx{uh_at_qp()@{\code{uh\_at\_qp()}}}%
\idx{evaluation of finite element functions!uh_at_qp()@{\code{uh\_at\_qp()}}}%
\idx{numerical quadrature!uh_at_qp()@{\code{uh\_at\_qp()}}}%
\fdx{grd_uh_at_qp()@{\code{[param\_]grd\_uh\_at\_qp()}}}%
\idx{evaluation of finite element functions!grd_uh_at_qp()@{\code{[param\_]grd\_uh\_at\_qp()}}}%
\idx{numerical quadrature!grd_uh_at_qp()@{\code{[param\_]grd\_uh\_at\_qp()}}}%
\fdx{D2_uh_at_qp()@{\code{[param\_]D2\_uh\_at\_qp()}}}
\idx{evaluation of finite element functions!D2_uh_at_qp()@{\code{[param\_]D2\_uh\_at\_qp()}}}
\idx{numerical quadrature!D2_uh_at_qp()@{\code{[param\_]D2\_uh\_at\_qp()}}}
\fdx{uh_d_at_qp()@{\code{uh\_d\_at\_qp()}}}%
\idx{evaluation of finite element functions!uh_d_at_qp()@{\code{uh\_d\_at\_qp()}}}%
\idx{numerical quadrature!uh_d_at_qp()@{\code{uh\_d\_at\_qp()}}}%
\fdx{grd_uh_d_at_qp()@{\code{[param\_]grd\_uh\_d\_at\_qp()}}}%
\idx{evaluation of finite element functions!grd_uh_d_at_qp()@{\code{[param\_]grd\_uh\_d\_at\_qp()}}}%
\idx{numerical quadrature!grd_uh_d_at_qp()@{\code{[param\_]grd\_uh\_d\_at\_qp()}}}%
\fdx{div_uh_d_at_qp()@{\code{[param\_]div\_uh\_d\_at\_qp()}}}%
\idx{evaluation of finite element functions!div_uh_d_at_qp()@{\code{[param\_]div\_uh\_d\_at\_qp()}}}%
\idx{numerical quadrature!div_uh_d_at_qp()@{\code{[param\_]div\_uh\_d\_at\_qp()}}}%
\fdx{D2_uh_d_at_qp()@{\code{[param\_]D2\_uh\_d\_at\_qp()}}}%
\idx{evaluation of finite element functions!D2_uh_d_at_qp()@{\code{[param\_]D2\_uh\_d\_at\_qp()}}}%
\idx{numerical quadrature!D2_uh_d_at_qp()@{\code{[param\_]D2\_uh\_d\_at\_qp()}}}%
\fdx{uh_dow_at_qp()@{\code{uh\_dow\_at\_qp()}}}%
\idx{evaluation of finite element functions!uh_dow_at_qp()@{\code{uh\_dow\_at\_qp()}}}%
\idx{numerical quadrature!uh_dow_at_qp()@{\code{uh\_dow\_at\_qp()}}}%
\fdx{grd_uh_dow_at_qp()@{\code{[param\_]grd\_uh\_dow\_at\_qp()}}}%
\idx{evaluation of finite element functions!grd_uh_dow_at_qp()@{\code{[param\_]grd\_uh\_dow\_at\_qp()}}}%
\idx{numerical quadrature!grd_uh_dow_at_qp()@{\code{[param\_]grd\_uh\_dow\_at\_qp()}}}%
\fdx{div_uh_dow_at_qp()@{\code{[param\_]div\_uh\_dow\_at\_qp()}}}%
\idx{evaluation of finite element functions!div_uh_dow_at_qp()@{\code{[param\_]div\_uh\_dow\_at\_qp()}}}%
\idx{numerical quadrature!div_uh_dow_at_qp()@{\code{[param\_]div\_uh\_dow\_at\_qp()}}}%
\fdx{D2_uh_dow_at_qp()@{\code{[param\_]D2\_uh\_dow\_at\_qp()}}}%
\idx{evaluation of finite element functions!D2_uh_dow_at_qp()@{\code{[param\_]D2\_uh\_dow\_at\_qp()}}}%
\idx{numerical quadrature!D2_uh_dow_at_qp()@{\code{[param\_]D2\_uh\_dow\_at\_qp()}}}%
\bv\begin{lstlisting}
REAL *uh_at_qp(REAL *result, const QUAD_FAST *qfast,
               const EL_REAL_VEC *uh_loc);
REAL_D *grd_uh_at_qp(REAL_D *result, const QUAD_FAST *qfast,
                     const REAL_BD Lambda, const EL_REAL_VEC *uh_loc);
REAL_DD *D2_uh_at_qp(REAL_DD *result, const QUAD_FAST *qfast,
                     const REAL_BD Lambda, const EL_REAL_VEC *uh_loc);

REAL_D *param_grd_uh_at_qp(REAL_D vec[], const QUAD_FAST *qfast,
                           const REAL_BD Lambda[], const EL_REAL_VEC *uh_loc);
REAL_DD *param_D2_uh_at_qp(REAL_DD *result,  const QUAD_FAST *qfast,
                           const REAL_BD Lambda[], const REAL_BDD DLambda[],
                           const EL_REAL_VEC *uh_loc);

REAL_D *uh_d_at_qp(REAL_D *result, const QUAD_FAST *qfast,
                   const EL_REAL_D_VEC *uh_loc);
REAL_DD *grd_uh_d_at_qp(REAL_DD *result, const QUAD_FAST *qfast,
                        const REAL_BD Lambda, const EL_REAL_D_VEC *uh_loc);
REAL *div_uh_d_at_qp(REAL *result, const QUAD_FAST *qfast,
                     const REAL_BD Lambda, const EL_REAL_D_VEC *uh_loc);
REAL_DDD *D2_uh_d_at_qp(REAL_DDD vec[], const QUAD_FAST *qfast,
                        const REAL_BD Lambda, const EL_REAL_D_VEC *uh_loc);

REAL_DD *param_grd_uh_d_at_qp(REAL_DD vec[], const QUAD_FAST *qfast,
                              const REAL_BD Lambda[],
                              const EL_REAL_D_VEC *uh_loc);
REAL *param_div_uh_d_at_qp(REAL vec[], const QUAD_FAST *qfast,
                           const REAL_BD Lambda[],
                           const EL_REAL_D_VEC *uh_loc);
REAL_DDD *param_D2_uh_d_at_qp(REAL_DDD vec[], const QUAD_FAST *qfast,
                              const REAL_BD grd_lam[],
                              const REAL_BDD DLambda[],
                              const EL_REAL_D_VEC *uh_loc);

REAL_D *uh_dow_at_qp(REAL_D *result, const QUAD_FAST *qfast,
                     const EL_REAL_VEC_D *uh_loc);
REAL_DD *grd_uh_dow_at_qp(REAL_DD *result, const QUAD_FAST *qfast,
                          const REAL_BD Lambda, const EL_REAL_VEC_D *uh_loc);
REAL *div_uh_dow_at_qp(REAL *result, const QUAD_FAST *qfast,
                       const REAL_BD Lambda,  const EL_REAL_VEC_D *uh_loc);
REAL_DDD *D2_uh_dow_at_qp(REAL_DDD vec[], const QUAD_FAST *qfast,
                          const REAL_BD Lambda, const EL_REAL_VEC_D *uh_loc);

REAL_DD *param_grd_uh_dow_at_qp(REAL_DD vec[], const QUAD_FAST *qfast,
                                const REAL_BD *Lambda,
                                const EL_REAL_VEC_D *uh_loc);
REAL *param_div_uh_dow_at_qp(REAL vec[], const QUAD_FAST *qfast,
                             const REAL_BD *Lambda,
                             const EL_REAL_VEC_D *uh_loc);
REAL_DDD *param_D2_uh_dow_at_qp(REAL_DDD *result, const QUAD_FAST *qfast,
                                const REAL_BD *Lambda, const REAL_BDD *DLambda,
                                const EL_REAL_VEC_D *uh_loc);
\end{lstlisting}\ev
Description:
In the following \code{uh\_loc} denotes the local coefficient vector (of
type \hyperref[T:EL_REAL_VEC]{\code{EL\_REAL\_VEC}},
\hyperref[T:EL_REAL_D_VEC]{\code{EL\_REAL\_D\_VEC}} etc.) on an element.
\begin{descr}
\kitem{uh\_at\_qp(result, qfast, uh\_loc)} the function returns a pointer
  \code{ptr} to a vector of length \code{qfast->n\_points} storing the
  values of $\uh$ at all quadrature points of \code{qfast->quad}, i.e.
  \[
  \mbox{\code{ptr[l]}} = \uh(\mbox{\code{qfast->quad->lambda[l]}})
  \]
  where $\code{l}=0,\dots,\mbox{\code{qfast->quad->n\_points}}-1$;

  the \code{INIT\_PHI} flag must be set in \code{qfast->init\_flag};

  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
 %% 
\kitem{grd\_uh\_at\_qp(result, qfast, Lambda, uh\_loc)} the function returns
  a pointer \code{ptr} to a vector of length \code{qfast->n\_points}
  of \DOW vectors storing $\nabla \uh$ at all quadrature points of
  \code{qfast->quad}, i.e.
  \[
  \mbox{\code{ptr[l][i]}} = 
  {\uh}_{,x_\code{i}}(\mbox{\code{qfast->quad->lambda[l]}})
  \]
  where $\code{l}=0,\dots,\mbox{\code{qfast->quad->n\_points}}-1$, and
  $\code{i}=0,\dots,\mbox{\DOW}-1$;

  the \code{INIT\_GRD\_PHI} flag must be set in
  \code{qfast->init\_flag};

  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  %% 
\kitem{D2\_uh\_at\_qp(result, qfast, Lambda, uh\_loc)}

  %% 
\kitem{param\_grd\_uh\_at\_qp(result, qfast, Lambdas, uh\_loc)} version for
  parametric meshes; must be passed a vector storing the gradients of
  the barycentric coordinates at each quadrature point. The same holds
  for the other \code{param\_}-prefixed routines.

  %% 
\kitem{[param\_]D2\_uh\_at\_qp(result, qfast, Lambda[s], uh\_loc, D2)} The
  function returns a pointer \code{ptr} to a vector of length
  \code{qfast->n\_points} of $(\DOW\times\DOW)$ matrices storing $D^2
  \uh$ at all quadrature points of \code{qfast->quad}, i.e.
  \[
  \mbox{\code{ptr[l][i][j]}} =
  {\uh}_{,x_\code{i}x_\code{j}}(\mbox{\code{qfast->quad->lambda[l]}})
  \]
  where $\code{l}=0,\dots,\mbox{\code{qfast->quad->n\_points}}-1$, and
  $\code{i},\code{j}=0,\dots,\mbox{\DOW}-1$;
  
  the \code{INIT\_D2\_PHI} flag must be set in
  \code{qfast->init\_flag};

  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  %% 
\kitem{uh\_[d|dow]\_at\_qp(result, qfast, uh\_loc)} The function returns a pointer
  \code{ptr} to a vector of length \code{qfast->n\_points} of \DOW
  vectors storing the values of $\uh$ at all quadrature points of
  \code{qfast->quad}, i.e.
  \[
  \mbox{\code{ptr[l][k]}} = 
  {\uh}_\code{k}(\mbox{\code{qfast->quad->lambda[l]}})
  \]
  where $\code{l}=0,\dots,\mbox{\code{qfast->quad->n\_points}}-1$, and
  $\code{k}=0,\dots,\mbox{\DOW}-1$;

  the \code{INIT\_PHI} flag must be set in \code{qfast->init\_flag};

  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  %% 
\kitem{grd\_uh\_[d|dow]\_at\_qp(result, qfast, Lambda, uh\_loc)}
  %% 
\kitem{div\_uh\_[d|dow]\_at\_qp(result, qfast, Lambda, uh\_loc)}
  %% 
\kitem{D2\_uh\_[d|dow]\_at\_qp(result, qfast, Lambda[], uh\_loc)} The function
  returns a pointer \code{ptr} to a vector of length
  \code{qfast->n\_points} of $(\DOW\times\DOW\times\DOW)$ tensors
  storing $D^2 \uh$ at all quadrature points \code{qfast->quad}, i.e.
  \[
  \mbox{\code{ptr[l][k][i][j]}} =
  {\uh}_{\code{k},x_\code{i}x_\code{j}}(\mbox{\code{qfast->quad->lambda[l]}})
  \]
  where $\code{l}=0,\dots,\mbox{\code{qfast->quad->n\_points}}-1$, and
  $\code{k},\code{i},\code{j}=0,\dots,\mbox{\DOW}-1$;

  the \code{INIT\_D2\_PHI} flag must be set in
  \code{qfast->init\_flag};

  \code{result} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  %% 
\kitem{param\_grd\_uh\_[d|dow]\_at\_qp(vec[], qfast, Lambda[], uh\_loc)} The
  function returns a pointer \code{ptr} to a vector of length
  \code{qfast->n\_points} of $(\DOW\times\DOW)$ matrices storing
  $\nabla \uh$ at all quadrature points of \code{qfast->quad}, i.e.
  \[
  \mbox{\code{ptr[l][k][i]}} = 
  {\uh}_{\code{k},x_\code{i}}(\mbox{\code{qfast->quad->lambda[l]}})
  \]
  where $\code{l}=0,\dots,\mbox{\code{qfast->quad->n\_points}}-1$, and
  $\code{k},\code{i}=0,\dots,\mbox{\DOW}-1$;

  the \code{INIT\_GRD\_PHI} flag must be set in
  \code{qfast->init\_flag};

  \code{vec} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.

  %% 
\kitem{param\_div\_uh\_[d|dow]\_at\_qp(result[], qfast, Lambda[], uh\_loc)}

  %% 
\kitem{param\_D2\_uh\_[d|dow]\_at\_qp(result, qfast, Lambda, DLambda, uh\_loc)}
  Second derivatives for parametric meshes.  Note that one needs the
  second derivatives \code{DLambda} of the barycentric co-ordinates
  with respect to the cartesian co-ordiantes for this function. Also
  note that -- in the case of non-zero co-dimension -- the matrix
  $(\ul\nabla(\ul\nabla u)_i)_j$ built from the components of the
  second tangential derivatives is \emph{not} symmetric in general.

  \code{vec} is optional and provides storage for the result if non-\nil.
  See \compatref{compat:resultspace}.
\end{descr}

\fdx{eval_bar_grd_uh()@{\code{eval\_bar\_grd\_uh()}}}
\fdx{eval_bar_grd_uh_d()@{\code{eval\_bar\_grd\_uh\_d()}}}
\fdx{eval_bar_grd_uh_dow()@{\code{eval\_bar\_grd\_uh\_dow()}}}
\fdx{eval_bar_grd_uh_fast()@{\code{eval\_bar\_grd\_uh\_fast()}}}
\fdx{eval_bar_grd_uh_d_fast()@{\code{eval\_bar\_grd\_uh\_d\_fast()}}}
\fdx{eval_bar_grd_uh_dow_fast()@{\code{eval\_bar\_grd\_uh\_dow\_fast()}}}
\fdx{bar_grd_uh_at_qp()@{\code{bar\_grd\_uh\_at\_qp()}}}
\fdx{bar_grd_uh_d_at_qp()@{\code{bar\_grd\_uh\_d\_at\_qp()}}}
\fdx{bar_grd_uh_dow_at_qp()@{\code{bar\_grd\_uh\_dow\_at\_qp()}}}
\fdx{eval_bar_D2_uh()@{\code{eval\_bar\_D2\_uh()}}}
\fdx{eval_bar_D2_uh_d()@{\code{eval\_bar\_D2\_uh\_d()}}}
\fdx{eval_bar_D2_uh_dow()@{\code{eval\_bar\_D2\_uh\_dow()}}}
\fdx{eval_bar_D2_uh_fast()@{\code{eval\_bar\_D2\_uh\_fast()}}}
\fdx{eval_bar_D2_uh_d_fast()@{\code{eval\_bar\_D2\_uh\_d\_fast()}}}
\fdx{eval_bar_D2_uh_dow_fast()@{\code{eval\_bar\_D2\_uh\_dow\_fast()}}}
\fdx{bar_D2_uh_at_qp()@{\code{bar\_D2\_uh\_at\_qp()}}}
\fdx{bar_D2_uh_d_at_qp()@{\code{bar\_D2\_uh\_d\_at\_qp()}}}
\fdx{bar_D2_uh_dow_at_qp()@{\code{bar\_D2\_uh\_dow\_at\_qp()}}}

\bv\begin{lstlisting}
REAL *eval_bar_grd_uh(REAL_B result, const REAL_B lambda,
                      const EL_REAL_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_B *eval_bar_grd_uh_d(REAL_DB result, const REAL_B lambda,
                          const EL_REAL_D_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_B *eval_bar_grd_uh_dow(REAL_DB result, const REAL_B lambda,
                            const EL_REAL_VEC_D *uh_loc,
                            const BAS_FCTS *bfcts);

REAL *eval_bar_grd_uh_fast(REAL_B result, const EL_REAL_VEC *uh_loc,
                           const QUAD_FAST *qfast, int iq);
REAL_B *eval_bar_grd_uh_d_fast(REAL_DB result, const EL_REAL_D_VEC *uh_loc,
                               const QUAD_FAST *qfast, int iq);
REAL_B *eval_bar_grd_uh_dow_fast(REAL_DB result, const EL_REAL_VEC_D *uh_loc,
                                 const QUAD_FAST *qfast, int iq);

REAL_B *bar_grd_uh_at_qp(REAL_B *result, const QUAD_FAST *qfast,
                         const EL_REAL_VEC *uh_loc);
REAL_DB *bar_grd_uh_d_at_qp(REAL_DB *result, const QUAD_FAST *qfast,
                            const EL_REAL_D_VEC *uh_loc);
REAL_DB *bar_grd_uh_dow_at_qp(REAL_DB *result, const QUAD_FAST *fast,
                              const EL_REAL_VEC_D *uh_loc);

REAL_B *eval_bar_D2_uh(REAL_BB result, const REAL_B lambda,
                       const EL_REAL_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_BB *eval_bar_D2_uh_d(REAL_DBB result, const REAL_B lambda,
                          const EL_REAL_D_VEC *uh_loc, const BAS_FCTS *bfcts);
REAL_BB *eval_bar_D2_uh_dow(REAL_DBB result, const REAL_B lambda,
                            const EL_REAL_VEC_D *uh_loc,
                            const BAS_FCTS *bfcts);

REAL_B *eval_bar_D2_uh_fast(REAL_BB result, const EL_REAL_VEC *uh_loc,
                            const QUAD_FAST *qfast, int iq);
REAL_BB *eval_bar_D2_uh_d_fast(REAL_DBB result, const EL_REAL_D_VEC *uh_loc,
                               const QUAD_FAST *qfast, int iq, bool update)
REAL_BB *eval_bar_D2_uh_dow_fast(REAL_DBB result, const EL_REAL_VEC_D *uh_loc,
                                 const QUAD_FAST *qfast, int iq);

REAL_BB *bar_D2_uh_at_qp(REAL_BB *result, const QUAD_FAST *qfast,
                         const EL_REAL_VEC *uh_loc);
REAL_DBB *bar_D2_uh_d_at_qp(REAL_DBB vec[], const QUAD_FAST *qfast,
                            const EL_REAL_D_VEC *uh_loc);
REAL_DBB *bar_D2_uh_dow_at_qp(REAL_DBB vec[], const QUAD_FAST *qfast,
                              const EL_REAL_VEC_D *uh_loc);
\end{lstlisting}\ev

Description: These functions compute the respective derivatives with
respect to barycentric co-ordinates. Otherwise they are functionally
equivalent to the functions without the \code{bar\_}-prefix.

%\begin{descr}
%\kitem{eval\_bar\_grd\_uh(result, lambda, uh\_loc, bfcts)}
%\kitem{eval\_bar\_grd\_uh\_d(result, lambda, uh\_loc, bfcts)}
%\kitem{eval\_bar\_grd\_uh\_dow(result, lambda, uh\_loc, bfcts)}

%\kitem{eval\_bar\_grd\_uh\_fast(result, uh\_loc, qfast, iq)}
%\kitem{eval\_bar\_grd\_uh\_d\_fast(result, uh\_loc, qfast, iq)}
%\kitem{eval\_bar\_grd\_uh\_dow\_fast(result, uh\_loc, qfast, iq)}

%\kitem{bar\_grd\_uh\_at\_qp(result, qfast, uh\_loc)}
%\kitem{bar\_grd\_uh\_d\_at\_qp(result, qfast, uh\_loc)}
%\kitem{bar\_grd\_uh\_dow\_at\_qp(result, qfast, uh\_loc)}

%\kitem{eval\_bar\_D2\_uh(result, lambda, uh\_loc, bfcts)}
%\kitem{eval\_bar\_D2\_uh\_d(result, lambda, uh\_loc, bfcts)}
%\kitem{eval\_bar\_D2\_uh\_dow(result, lambda, uh\_loc, bfcts)}

%\kitem{eval\_bar\_D2\_uh\_fast(result, uh\_loc, qfast, iq)}
%\kitem{eval\_bar\_D2\_uh\_d\_fast(result, uh\_loc, qfast, iq)}
%\kitem{eval\_bar\_D2\_uh\_dow\_fast(result, uh\_loc, qfast, iq)}

%\kitem{bar\_D2\_uh\_at\_qp(result, qfast, uh\_loc)}
%\kitem{bar\_D2\_uh\_d\_at\_qp(result, qfast, uh\_loc)}
%\kitem{bar\_D2\_uh\_dow\_at\_qp(result, qfast, uh\_loc)}
%\end{descr}

\section{Calculation of norms for finite element functions}\label{S:eval_norm}

\ALBERTA supplies functions for the calculation of the $L^2$ norm and
$H^1$ semi--norm of a given scalar or vector valued finite element
function.
%% 
\fdx{H1_norm_uh()@{\code{H1\_norm\_uh()}}}
\idx{evaluation tools!H1_norm_uh()@{\code{H1\_norm\_uh()}}}
\fdx{L2_norm_uh()@{\code{L2\_norm\_uh()}}}
\idx{evaluation tools!L2_norm_uh()@{\code{L2\_norm\_uh()}}}
\fdx{H1_norm_uh_d()@{\code{H1\_norm\_uh\_d()}}}
\idx{evaluation tools!H1_norm_uh_d()@{\code{H1\_norm\_uh\_d()}}}
\fdx{L2_norm_uh_d()@{\code{L2\_norm\_uh\_d()}}}
\idx{evaluation tools!L2_norm_uh_d()@{\code{L2\_norm\_uh\_d()}}}
\fdx{H1_norm_uh_dow()@{\code{H1\_norm\_uh\_dow()}}}
\idx{evaluation tools!H1_norm_uh_dow()@{\code{H1\_norm\_uh\_dow()}}}
\fdx{L2_norm_uh_dow()@{\code{L2\_norm\_uh\_dow()}}}
\idx{evaluation tools!L2_norm_uh_dow()@{\code{L2\_norm\_uh\_dow()}}}
\bv\begin{lstlisting}[label=P:DISC_FCT_NORMS]
REAL H1_norm_uh(const QUAD *, const DOF_REAL_VEC *);
REAL L2_norm_uh(const QUAD *, const DOF_REAL_VEC *);
REAL H1_norm_uh_d(const QUAD *, const DOF_REAL_D_VEC *);
REAL L2_norm_uh_d(const QUAD *, const DOF_REAL_D_VEC *);
REAL H1_norm_uh_dow(const QUAD *, const DOF_REAL_VEC_D *);
REAL L2_norm_uh_dow(const QUAD *, const DOF_REAL_VEC_D *);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{H1\_norm\_uh(quad, uh)}
%%
\fdx{H1_norm_uh()@{\code{H1\_norm\_uh()}}}
\idx{evaluation tools!H1_norm_uh()@{\code{H1\_norm\_uh()}}}
%%
returns an approximation to the $H^1$ semi norm $(\int_\Omega |\nabla
u_h|^2)^{1/2}$ of a finite element function; the coefficient vector of
the vector is stored in \code{uh}; the domain is given by
\code{uh->fe\_space->mesh}; the element integrals are approximated by
the numerical quadrature \code{quad}, if \code{quad} is not \nil;
otherwise a quadrature which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree-2} is used.
%%
\kitem{L2\_norm\_uh(quad, uh)}
%%
\fdx{L2_norm_uh()@{\code{L2\_norm\_uh()}}}
\idx{evaluation tools!L2_norm_uh()@{\code{L2\_norm\_uh()}}}
%%
returns an approximation to the $L^2$ norm $(\int_\Omega
|u_h|^2)^{1/2}$ of a finite element function; the coefficient vector
of the vector is stored in \code{uh}; the domain is given by
\code{uh->fe\_space->mesh}; the element integrals are approximated by
the numerical quadrature \code{quad}, if \code{quad} is not \nil;
otherwise a quadrature which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree} is used.
%%
\kitem{H1\_norm\_uh\_[d|dow](quad, uh\_d)}
%%
\fdx{H1_norm_uh_d()@{\code{H1\_norm\_uh\_d()}}}
\idx{evaluation tools!H1_norm_uh_d()@{\code{H1\_norm\_uh\_d()}}}
\fdx{H1_norm_uh_dow()@{\code{H1\_norm\_uh\_dow()}}}
\idx{evaluation tools!H1_norm_uh_dow()@{\code{H1\_norm\_uh\_dow()}}}
%%
returns an approximation to the $H^1$ semi norm of a vector valued
finite element function; the coefficient vector of the vector is
stored in \code{uh\_d}; the domain is given by
\code{uh\_d->fe\_space->mesh}; the element integrals are approximated
by the numerical quadrature \code{quad}, if \code{quad} is not \nil;
otherwise a quadrature which is exact of degree
\code{2*uh\_d->fe\_space->bas\_fcts->degree-2} is used.
%%
\kitem{L2\_norm\_uh\_[d|dow](quad, uh\_d)}
%%
\fdx{L2_norm_uh_d()@{\code{L2\_norm\_uh\_d()}}}
\idx{evaluation tools!L2_norm_uh_d()@{\code{L2\_norm\_uh\_d()}}}
\fdx{L2_norm_uh_dow()@{\code{L2\_norm\_uh\_dow()}}}
\idx{evaluation tools!L2_norm_uh_dow()@{\code{L2\_norm\_uh\_dow()}}}
%%
returns an approximation to the $L^2$ norm of a vector valued finite
element function; the coefficient vector of the vector is stored in
\code{uh\_d}; the domain is given by \code{uh\_d->fe\_space->mesh};
the element integrals are approximated by the numerical quadrature
\code{quad}, if \code{quad} is not \nil; otherwise a quadrature which
is exact of degree \code{2*uh\_d->fe\_space->bas\_fcts->degree} is
used.
\end{descr}

\section{Interface for application provided functions}
\label{S:user_fcts} %% oh, what a user ...

Often the library function in the \ALBERTA package require certain
application provided functions, e.g. for assembling the ``right hand
side'', for computations of the ``true'' error, for inhomogeneous
boundary conditions or for interpolation of (non-discrete) functions
onto finite element spaces. This section defines some basis calling
conventions concerning these application provided functions.

Most of these function must conform to one of the following proto-types:
%%
\ddx{FCT_AT_X@{\code{FCT\_AT\_X}}}
\idx{application function types!FCT_AT_X@{\code{FCT\_AT\_X}}}
\ddx{GRD_FCT_AT_X@{\code{GRD\_FCT\_AT\_X}}}
\idx{application function types!GRD\_FCT_AT_X@{\code{GRD\_FCT\_AT\_X}}}
\ddx{D2_FCT_AT_X@{\code{D2\_FCT\_AT\_X}}}
\idx{application function types!D2\_FCT_AT_X@{\code{D2\_FCT\_AT\_X}}}
\ddx{FCT_D_AT_X@{\code{FCT\_D\_AT\_X}}}
\idx{application function types!FCT_D_AT_X@{\code{FCT\_D\_AT\_X}}}
\ddx{GRD_FCT_D_AT_X@{\code{GRD\_FCT\_D\_AT\_X}}}
\idx{application function types!GRD\_FCT_D_AT_X@{\code{GRD\_FCT\_D\_AT\_X}}}
\ddx{D2_FCT_D_AT_X@{\code{D2\_FCT\_D\_AT\_X}}}
\idx{application function types!D2\_FCT_D_AT_X@{\code{D2\_FCT\_D\_AT\_X}}}
\ddx{LOC_FCT_AT_QP@{\code{LOC\_FCT\_AT\_QP}}}
\idx{application function types!LOC_FCT_AT_QP@{\code{LOC\_FCT\_AT\_QP}}}
\ddx{GRD_LOC_FCT_AT_QP@{\code{GRD\_LOC\_FCT\_AT\_QP}}}
\idx{application function types!GRD_LOC_FCT_AT_QP@{\code{GRD\_LOC\_FCT\_AT\_QP}}}
\ddx{LOC_FCT_D_AT_QP@{\code{LOC\_FCT\_D\_AT\_QP}}}
\idx{application function types!LOC_FCT_D_AT_QP@{\code{LOC\_FCT\_D\_AT\_QP}}}
\ddx{GRD_LOC_FCT_D_AT_QP@{\code{GRD\_LOC\_FCT\_D\_AT\_QP}}}
\idx{application function types!GRD_LOC_FCT_D_AT_QP@{\code{GRD\_LOC\_FCT\_D\_AT\_QP}}}
%%
\bv\begin{lstlisting}
typedef REAL (*FCT_AT_X)(const REAL_D x);
typedef const REAL *(*GRD_FCT_AT_X)(const REAL_D x, REAL_D result);
typedef const REAL_D *(*D2_FCT_AT_X)(const REAL_D x, REAL_DD result);

typedef const REAL    *(*FCT_D_AT_X)(const REAL_D x, REAL_D result);
typedef const REAL_D  *(*GRD_FCT_D_AT_X)(const REAL_D x, REAL_DD result);
typedef const REAL_DD *(*D2_FCT_D_AT_X)(const REAL_D x, REAL_DDD result);

typedef REAL (*LOC_FCT_AT_QP)(const EL_INFO *el_info,
			      const QUAD *quad, int iq,
			      void *ud);
typedef const REAL *(*LOC_FCT_D_AT_QP)(REAL_D result,
				       const EL_INFO *el_info,
				       const QUAD *quad, int iq,
				       void *ud);
typedef const REAL *(*GRD_LOC_FCT_AT_QP)(REAL_D res,
					 const EL_INFO *el_info,
					 const REAL_BD Lambda,
					 const QUAD *quad, int iq,
					 void *ud);
typedef const REAL_D *(*GRD_LOC_FCT_D_AT_QP)(REAL_DD res,
					     const EL_INFO *el_info,
					     const REAL_BD Lambda,
					     const QUAD *quad, int iq,
					     void *ud);
\end{lstlisting}\ev

\begin{datatype}{FCT\_AT\_X}
\label{S:FCT_AT_X_fptr}
\ddx{FCT_AT_X@{\code{FCT\_AT\_X}}}
\idx{application function types!FCT_AT_X@{\code{FCT\_AT\_X}}}

\item[Prototype]~\hfill

\begin{lstlisting}
typedef REAL (*FCT_AT_X)(const REAL_D x);
\end{lstlisting}

\item[Synopsis]~\hfill

\begin{lstlisting}
FCT_AT_X fptr;

result = fptr(x);
\end{lstlisting}

\item[Description]~\hfill

  Evaluate at the point \code{x} and return a
  scalar value. This is the simplest function-type.
  %% 

\item[Parameters]~\hfill

  \begin{descr}
  \kitem{x} The point of evaluation.
  \end{descr}

\item[Return Value]~\hfill

  The function value.

\end{datatype}

\begin{datatype}{GRD\_FCT\_AT\_X}
\label{S:GRD_FCT_AT_X_fptr}
\ddx{GRD_FCT_AT_X@{\code{GRD\_FCT\_AT\_X}}}
\idx{application function types!GRD\_FCT_AT_X@{\code{GRD\_FCT\_AT\_X}}}

\item[Prototype]~\hfill

\begin{lstlisting}
const REAL *GRD_FCT_AT_X(const REAL_D x, REAL\_D result);
\end{lstlisting}

\item[Synopsis]~\hfill

\begin{lstlisting}
GRD_FCT_AT_X fptr;

result = fptr(x, result);
result = fptr(x, NULL);
\end{lstlisting}

\item[Description]~\hfill

  Evaluate the first derivative at the point \code{x}.
\item[Parameters]~\hfill
  \begin{descr}
  \kitem{x} The point of evaluation, in Cartesian coordinates.
  \kitem{result} Storage for the result, or \nil.
  \end{descr}
\item[Return Value] The address of \code{result}, if \code{result !=
    \nil}, otherwise a pointer to a statically allocated storage
  area, see \exampleref{E:grd_user_fct} below.
%%
\end{datatype}

\begin{example}
  \label{E:grd_user_fct}
  \bv\begin{lstlisting}[name=GRD_FCT_AT_X_ABI,label=C:GRD_FCT_AT_X_ABI]
      const REAL *grd_g_implementation(const REAL_D x, REAL_D result) {
        static REAL_D storage; /* mind the "static" key-word!!! */

        if (result == NULL) {
          result = storage;
        }
        
        ... /* mighty complicated computations for "result" */
        
        return result;
      }
\end{lstlisting}\ev
\end{example}

\hrulefill

\begin{descr}

  \kitem{const REAL\_D *D2\_FCT\_AT\_X(const REAL\_D x, REAL\_DD result)}
  Evaluate the second derivative at the point \code{x}.
  \begin{description}
  \item[Parameters]~\hfill
    \begin{descr}
      \kitem{x} The point of evaluation, in Cartesian coordinates.
      \kitem{result} Storage for the result, or \nil.
    \end{descr}
  \item[Return Value] The address of \code{result}, if \code{result !=
      \nil}, otherwise a pointer to a statically allocated storage
    area, see \exampleref{E:D2_user_fct} below.
  \end{description}
  \begin{example}
    \label{E:D2_user_fct}
    \bv\begin{lstlisting}[name=D2_FCT_AT_X_ABI,label=C:D2_FCT_AT_X_ABI]
      const REAL_D *D2_g_implementation(const REAL_D x, REAL_DD result) {
        static REAL_DD storage; /* mind the "static" key-word!!! */

        if (result == NULL) {
          result = storage;
        }
        
        ... /* mighty complicated computations for "result" */
        
        return (const REAL_D *)result;
      }
    \end{lstlisting}\ev
  \end{example}
  %%

  \hrulefill

  \kitem{const REAL *FCT\_D\_AT\_X(const REAL\_D x, REAL\_D result)}
  \kitem{const REAL\_D *GRD\_FCT\_D\_AT\_X(const REAL\_D x, REAL\_DD result)}
  \kitem{const REAL\_DD *D2\_FCT\_D\_AT\_X(const REAL\_D x, REAL\_DDD result)}
  %%
  ~\hfill
  Evaluate a vector valued function at the point \code{x}. There is, of
  course, no difference between the \code{GRD\_FCT\_AT\_X} and the
  \code{FCT\_D\_AT\_X} function pointers.
  \begin{description}
  \item[Parameters]~\hfill
    \begin{descr}
      \kitem{x} The point of evaluation, in Cartesian coordinates.
      \kitem{result} Storage for the result, or \nil.
    \end{descr}
  \item[Return Value] The address of \code{result}, if \code{result !=
      \nil}, otherwise a pointer to a statically allocated storage
    area, see \exampleref{E:user_fct_d} below.
  \end{description}
  \begin{example}
    \label{E:user_fct_d}
    \bv\begin{lstlisting}[name=FCT_D_AT_X_ABI,label=C:FCT_D_AT_X_ABI]
      const REAL *g_implementation(const REAL_D x, REAL_D result) {
        static REAL_D storage; /* mind the "static" key-word!!! */

        if (result == NULL) {
          result = storage;
        }
        
        ... /* mighty complicated computations for "result" */
        
        return result;
      }
    \end{lstlisting}\ev
  \end{example}
  
\pagebreak[2]
  \kitem{REAL LOC\_FCT\_AT\_QP(}
  \kitem{           const EL\_INFO *el\_info, const QUAD *quad, int iq, void *ud)}
  ~\hfill

  %% 
  Evaluate the function at \code{quad->lambda[iq]}. This looks
  slightly more complicated than the simple \code{FCT\_AT\_X} types,
  but passing the \code{EL\_INFO} descriptor along with quadrature
  rule opens the door to implement even complicated functions in an
  efficient and simpler way than is possible with the simple
  \code{FCT\_AT\_X} types. See also \exampleref{E:loc_fct_at_qp}.
  \begin{description}
  \item[Parameters]~\hfill
    \begin{descr}
      \kitem{el\_info} The current \code{EL\_INFO} descriptor.
      \kitem{quad} The quadrature rule storing the evaluation points.
      \kitem{iq} The number of the evaluation point.
      \kitem{ud} Application data pointer.
    \end{descr}
  \item[Return Value] The function value.
  \end{description}

  \hrulefill

  \kitem{const REAL *GRD\_LOC\_FCT\_AT\_QP(}
  \kitem{              REAL\_D res, const EL\_INFO *el\_info, const QUAD *quad, int iq, void *ud)}
  \kitem{const REAL *LOC\_FCT\_D\_AT\_QP(}
  \kitem{              REAL\_D res, const EL\_INFO *el\_info, const QUAD *quad, int iq, void *ud)}
  \kitem{const REAL\_D *GRD\_LOC\_FCT\_D\_AT\_QP(}
  \kitem{              REAL\_DD res, const EL\_INFO *el\_info, const QUAD *quad, int iq, void *ud)}
  %%
  More or less self-explanatory, the convention for the \code{res}
  argument are the same as for the \code{FCT\_AT\_X} types: a \nil
  pointer must be accepted, and then a pointer to a statically
  allocated storage area has to be returned, otherwise the result has
  to be stored in \code{res}, and the return value must be \code{res},
  too.

\end{descr}


\section{Calculation of errors of finite element approximations}
\label{S:error_cal}

For test purposes it is convenient to calculate the ``exact error''
between a finite element approximation and the exact solution.
\ALBERTA supplies functions to calculate the error in several norms.
For test purposes, the integral error routines may be used as ``error
estimators'' in an adaptive method. The local element error $\int_S
|\nabla (u-u_h)|^2$ or $\int_S |u-u_h|^2$ can be used as an error
indicator and can be stored on the element leaf data, for example.
\ALBERTA provides also functions for the computation of the mean value
of a given function, respectively the mean value difference of a given
non-discrete function and a discrete function.

Not all variants of the functions listed below will be explained in
detail further below. For the calling conventions for the application
supplied function pointer we refer the reader to \secref{S:user_fcts}
on page \pageref{S:user_fcts}.
%%
\fdx{max_err_at_qp()@{\code{max\_err\_at\_qp()}}}
\idx{evaluation tools!max_err_at_qp()@{\code{max\_err\_at\_qp()}}}
\fdx{max_err_at_qp_loc()@{\code{max\_err\_at\_qp\_loc()}}}
\idx{evaluation tools!max_err_at_qp_loc()@{\code{max\_err\_at\_qp\_loc()}}}
\fdx{max_err_dow_at_qp()@{\code{max\_err\_dow\_at\_qp()}}}
\idx{evaluation tools!max_err_dow_at_qp()@{\code{max\_err\_dow\_at\_qp()}}}
\fdx{max_err_dow_at_qp_loc()@{\code{max\_err\_dow\_at\_qp\_loc()}}}
\idx{evaluation tools!max_err_dow_at_qp_loc()@{\code{max\_err\_dow\_at\_qp\_loc()}}}
%%
\fdx{max_err_at_vert()@{\code{max\_err\_at\_vert()}}}
\idx{evaluation tools!max_err_at_vert()@{\code{max\_err\_at\_vert()}}}
\fdx{max_err_at_vert_loc()@{\code{max\_err\_at\_vert\_loc()}}}
\idx{evaluation tools!max_err_at_vert_loc()@{\code{max\_err\_at\_vert\_loc()}}}
\fdx{max_err_dow_at_vert()@{\code{max\_err\_dow\_at\_vert()}}}
\idx{evaluation tools!max_err_dow_at_vert()@{\code{max\_err\_dow\_at\_vert()}}}
\fdx{max_err_dow_at_vert_loc()@{\code{max\_err\_dow\_at\_vert\_loc()}}}
\idx{evaluation tools!max_err_dow_at_vert_loc()@{\code{max\_err\_dow\_at\_vert\_loc()}}}
%%
\fdx{L2_err()@{\code{L2\_err()}}}
\idx{evaluation tools!L2_err()@{\code{L2\_err()}}}
\fdx{L2_err_loc()@{\code{L2\_err\_loc()}}}
\idx{evaluation tools!L2_err_loc()@{\code{L2\_err\_loc()}}}
\fdx{L2_err_weighted()@{\code{L2\_err\_weighted()}}}
\idx{evaluation tools!L2_err_weighted()@{\code{L2\_err\_weighted()}}}
\fdx{L2_err_dow()@{\code{L2\_err\_dow()}}}
\idx{evaluation tools!L2_err_dow()@{\code{L2\_err\_dow()}}}
\fdx{L2_err_loc_dow()@{\code{L2\_err\_loc\_dow()}}}
\idx{evaluation tools!L2_err_loc_dow()@{\code{L2\_err\_loc\_dow()}}}
\fdx{L2_err_dow_weighted()@{\code{L2\_err\_dow\_weighted()}}}
\idx{evaluation tools!L2_err_dow_weighted()@{\code{L2\_err\_dow\_weighted()}}}
%%
\fdx{H1_err()@{\code{H1\_err()}}}
\idx{evaluation tools!H1_err()@{\code{H1\_err()}}}
\fdx{H1_err_loc()@{\code{H1\_err\_loc()}}}
\idx{evaluation tools!H1_err_loc()@{\code{H1\_err\_loc()}}}
\fdx{H1_err_weighted()@{\code{H1\_err\_weighted()}}}
\idx{evaluation tools!H1_err_weighted()@{\code{H1\_err\_weighted()}}}
\fdx{H1_err_dow()@{\code{H1\_err\_dow()}}}
\idx{evaluation tools!H1_err_dow()@{\code{H1\_err\_dow()}}}
\fdx{H1_err_loc_dow()@{\code{H1\_err\_loc\_dow()}}}
\idx{evaluation tools!H1_err_loc_dow()@{\code{H1\_err\_loc\_dow()}}}
\fdx{H1_err_dow_weighted()@{\code{H1\_err\_dow\_weighted()}}}
\idx{evaluation tools!H1_err_dow_weighted()@{\code{H1\_err\_dow\_weighted()}}}
%%
\fdx{mean_value()@{\code{mean\_value()}}}
\idx{evaluation tools!mean_value()@{\code{mean\_value()}}}
\fdx{mean_value_dow()@{\code{mean\_value\_dow()}}}
\idx{evaluation tools!mean_value_dow()@{\code{mean\_value\_dow()}}}
\fdx{mean_value_loc()@{\code{mean\_value\_loc()}}}
\idx{evaluation tools!mean_value_loc()@{\code{mean\_value\_loc()}}}
\fdx{mean_value_loc_dow()@{\code{mean\_value\_loc\_dow()}}}
\idx{evaluation tools!mean_value_loc_dow()@{\code{mean\_value\_loc\_dow()}}}
\bv\begin{lstlisting}
REAL max_err_at_qp(FCT_AT_X u, const DOF_REAL_VEC *uh, const QUAD *quad);
REAL max_err_at_qp_loc(LOC_FCT_AT_QP u_loc, void *ud, FLAGS fill_flag,
		       const DOF_REAL_VEC *uh,
		       const QUAD *quad);
REAL max_err_dow_at_qp(FCT_D_AT_X u,
		       const DOF_REAL_VEC_D *uh,
		       const QUAD *quad);
REAL max_err_dow_at_qp_loc(LOC_FCT_D_AT_QP u_loc,
			   void *ud, FLAGS fill_flag,
			   const DOF_REAL_VEC_D *uh,
			   const QUAD *quad);

REAL max_err_at_vert(FCT_AT_X u, const DOF_REAL_VEC *uh);
REAL max_err_at_vert_loc(LOC_FCT_AT_QP u_at_qp,
			 void *ud, FLAGS fill_flag,
			 const DOF_REAL_VEC *uh);
REAL max_err_dow_at_vert(FCT_D_AT_X u, const DOF_REAL_VEC_D *uh);
REAL max_err_dow_at_vert_loc(LOC_FCT_D_AT_QP u_at_qp,
			     void *ud, FLAGS fill_flag,
			     const DOF_REAL_VEC_D *uh);

REAL L2_err(FCT_AT_X u, const DOF_REAL_VEC *uh,
	    const QUAD *quad,
	    bool rel_err, bool mean_value_adjust,
	    REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_loc(LOC_FCT_AT_QP u_loc, void *ud, FLAGS fill_flag,
		const DOF_REAL_VEC *uh,
		const QUAD *quad,
		bool rel_err, bool mean_value_adjust,
		REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_weighted(FCT_AT_X weight, FCT_AT_X u, const DOF_REAL_VEC *uh,
		     const QUAD *quad,
		     bool rel_err, bool mean_value_adjust,
		     REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_dow(FCT_D_AT_X u,
		const DOF_REAL_VEC_D *uh,
		const QUAD *quad,
		bool rel_err, bool mean_value_adjust,
		REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_loc_dow(LOC_FCT_D_AT_QP u_loc,
		    void *ud, FLAGS fill_flag,
		    const DOF_REAL_VEC_D *uh,
		    const QUAD *quad,
		    bool rel_err, bool mean_value_adjust,
		    REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);
REAL L2_err_dow_weighted(FCT_AT_X weight, FCT_D_AT_X u,
			 const DOF_REAL_VEC_D *uh,
			 const QUAD *quad,
			 bool rel_err, bool mean_value_adjust,
			 REAL *(*rw_err_el)(EL *el), REAL *max_l2_err2);

REAL H1_err(GRD_FCT_AT_X grd_u, const DOF_REAL_VEC *uh, 
	    const QUAD *quad, bool rel_err, REAL *(*rw_err_el)(EL *),
	    REAL *max_el_err2);
REAL H1_err_loc(GRD_LOC_FCT_AT_QP grd_u_loc,
		void *ud, FLAGS fill_flag,
		const DOF_REAL_VEC *uh, 
		const QUAD *quad, bool rel_err, REAL *(*rw_err_el)(EL *),
		REAL *max_el_err2);
REAL H1_err_weighted(FCT_AT_X weight, GRD_FCT_AT_X grd_u,
		     const DOF_REAL_VEC *uh, const QUAD *quad,
		     bool rel_err, REAL *(*rw_err_el)(EL *),
		     REAL *max_el_err2);
REAL H1_err_dow(GRD_FCT_D_AT_X grd_u, const DOF_REAL_VEC_D *uh,
		const QUAD *quad,
		bool rel_err, REAL *(*rw_err_el)(EL *), REAL *max_el_err2);
REAL H1_err_loc_dow(GRD_LOC_FCT_D_AT_QP grd_u_loc, void *ud, FLAGS fill_flag,
		    const DOF_REAL_VEC_D *uh, const QUAD *quad,
		    bool rel_err, 
		    REAL *(*rw_err_el)(EL *), REAL *max_el_err2);
REAL H1_err_dow_weighted(FCT_AT_X weight, GRD_FCT_D_AT_X grd_u,
			 const DOF_REAL_VEC_D *uh,
			 const QUAD *quad,
			 bool rel_err, REAL *(*rw_err_el)(EL *),
			 REAL *max_el_err2);

REAL mean_value(MESH *mesh, REAL (*f)(const REAL_D), const DOF_REAL_VEC *fh,
                const QUAD *quad);
REAL mean_value_loc(MESH *mesh, LOC_FCT_AT_QP f_at_qp,
                    void *ud, FLAGS fill_flags,
                    const DOF_REAL_VEC *fh, const QUAD *quad);
const REAL *mean_value_dow(MESH *mesh, FCT_D_AT_X f, const DOF_REAL_VEC_D *fh,
                           const QUAD *quad, REAL_D mean);
const REAL *mean_value_loc_dow(REAL_D mean, MESH *mesh,
                               LOC_FCT_D_AT_QP f_at_qp,
                               void *ud, FLAGS fill_flag,
                               const DOF_REAL_VEC_D *fh,
                               const QUAD *quad);
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{max\_err\_at\_qp(u, uh, quad)}
%%
the function returns the maximal error, $\max |u-u_h|$, between the
true solution and the approximation at all quadrature nodes on all
elements of a mesh; \code{u} is a pointer to a function for the
evaluation of the true solution, \code{uh} stores the coefficients of
the approximation, \code{uh->fe\_space->mesh} is the underlying mesh,
and \code{quad} is the quadrature which gives the quadrature nodes; if
\code{quad} is \nil, a quadrature which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree-2} is used.
%%
\kitem{H1\_err(grd\_u, uh, quad, rel\_err, rw\_el\_err, max)}
%%
the function returns an approximation to the absolute error
$(\int_\Omega |\nabla (u-u_h)|^2)^{1/2}$ (\code{rel\_err == 0}) or
relative error $(\int_\Omega|\nabla(u-u_h)|^2/\int_\Omega|\nabla
u|^2)^{1/2}$ (\code{rel\_err == 1}) between the true solution and the
approximation in the $H^1$ semi norm;
       
\code{grd\_u} is a pointer to a function for the evaluation of the
gradient of the true solution returning a \DOW vector storing this
gradient, \code{uh} stores the coefficients of the approximation,
\code{uh->fe\_space->mesh} is the underlying mesh, and \code{quad} is
the quadrature for the approximation of the element integrals; if
\code{quad} is \nil, a quadrature which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree-2} is used;

if \code{rw\_el\_err} is not \nil, the return value of
\code{(*rw\_el\_err)(el)} provides for each mesh element \code{el} an
address where the local error is stored; if \code{max} is not \nil,
\code{*max} is the maximal local error on an element on output.
%%
\kitem{L2\_err(u, uh, quad, rel\_err, rw\_el\_err, max)}
%%
the function returns an approximation to the absolute error
$(\int_\Omega |u-u_h|^2)^{1/2}$ (\code{rel\_err == 0}) or the relative
error $(\int_\Omega|u-u_h|^2/\int_\Omega|u|^2)^{1/2}$ (\code{rel\_err
  == 1}) between the true solution and the approximation in the $L^2$
norm,
       
\code{u} is a pointer to a function for the evaluation of the true
solution, \code{uh} stores the coefficients of the approximation,
\code{uh->fe\_space->mesh} is the underlying mesh, and \code{quad} is
the quadrature for the approximation of the element integrals; if
\code{quad} is \nil, a quadrature which is exact of degree
\code{2*uh->fe\_space->bas\_fcts->degree-2} is used;

if \code{rw\_el\_err} is not \nil, the return value of
\code{(*rw\_el\_err)(el)} provides for each mesh element \code{el} an
address where the local error is stored; if \code{max} is not \nil,
\code{*max} is the maximal local error on an element on output.
%%
\kitem{max\_err\_at\_qp\_[d|dow](u\_d, uh\_d, quad)}
%%
the function returns the maximal error between the true solution and
the approximation at all quadrature nodes on all elements of a mesh;
\code{u\_d} is a pointer to a function for the evaluation of the true
solution returning a \DOW vector storing the value of the function,
\code{uh\_d} stores the coefficients of the approximation,
\code{uh\_d->fe\_space->mesh} is the underlying mesh, and \code{quad}
is the quadrature which gives the quadrature nodes; if \code{quad} is
\nil, a quadrature which is exact of degree
\code{2*uh\_d->fe\_space->bas\_fcts->degree-2} is used.
%%
\kitem{H1\_err2\_[d|dow](grd\_u\_d, uh\_d, quad, rel\_err, rw\_el\_err, max)} 
%%
the function returns an approximation to the absolute error
(\code{rel\_err == 0}) or relative error (\code{rel\_err == 1})
between the true solution and the approximation in the $H^1$ semi
norm;

\code{grd\_u\_d} is a pointer to a function for the evaluation of the
Jacobian of the true solution returning a $\DOW\times\DOW$ matrix
storing this Jacobian, \code{uh\_d} stores the coefficients of the
approximation, \code{uh\_d->fe\_space->mesh} is the underlying mesh,
and \code{quad} is the quadrature for the approximation of the element
integrals; if \code{quad} is \nil, a quadrature which is exact of
degree \code{2*uh\_d->fe\_space->bas\_fcts->degree-2} is used;

if \code{rw\_el\_err} is not \nil, the return value of
\code{(*rw\_el\_err)(el)} provides for each mesh element \code{el} an
address where the local error is stored; if \code{max} is not \nil,
\code{*max} is the maximal local error on an element on output.

\kitem{L2\_err2\_[d|dow](u\_d, uh\_d, quad, rel\_err, rw\_el\_err, max)} 
%%
the function returns an approximation to the absolute error
(\code{rel\_err == 0}) or relative error (\code{rel\_err == 1})
between the true solution and the approximation in the $L^2$ norm;

\code{u\_d} is a pointer to a function for the evaluation of the true
solution returning a \DOW vector storing the value of the function,
\code{uh\_d} stores the coefficients of the approximation,
\code{uh\_d->fe\_space->mesh} is the underlying mesh, and \code{quad}
is the quadrature for the approximation of the element integrals; if
\code{quad} is \nil, a quadrature which is exact of degree
\code{2*uh\_d->fe\_space->bas\_fcts->degree-2} is used;

if \code{rw\_el\_err} is not \nil, the return value of
\code{(*rw\_el\_err)(el)} provides for each mesh element \code{el} an
address where the local error is stored; if \code{max} is not \nil,
\code{*max} is the maximal local error on an element on output.
%%
\kitem{mean\_value(mesh, f, fh, quad)}
%%
\fdx{mean_value()@{\code{mean\_value()}}}
\idx{evaluation tools!mean_value()@{\code{mean\_value()}}}
%%
\kitem{mean\_value\_[d|dow](mesh, f, fh, quad, mean)}
%%
\fdx{mean_value_dow()@{\code{mean\_value\_dow()}}}
\idx{evaluation tools!mean_value_dow()@{\code{mean\_value\_dow()}}}
%%
\kitem{mean\_value\_loc(mesh, f\_at\_qp, ud, fill\_flags, fh, quad)}
%%
\fdx{mean_value_loc()@{\code{mean\_value\_loc()}}}
\idx{evaluation tools!mean_value_loc()@{\code{mean\_value\_loc()}}}
%%
\kitem{mean\_value\_loc\_[d|dow](mean, mesh, f\_at\_qp, ud, fill\_flags, fh, quad)}
%%
\fdx{mean_value_loc_dow()@{\code{mean\_value\_loc\_dow()}}}
\idx{evaluation tools!mean_value_loc_dow()@{\code{mean\_value\_loc\_dow()}}}
%%
compute the mean value of either a finite element function or a
non-discrete function. If both are given return the difference of
their mean values \code{(f-fh)}.
\end{descr}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End: