1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
|
\section{Data structures for the hierarchical mesh}%
\label{S:hierarchical_mesh}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Dimension of the mesh}%
\label{S:mesh_dimension}
\label{S:mesh_constants}
The current version of \ALBERTA supports meshes triangulated using
$d$-dimensional simplices where $d\in\{1,2,3\}$. These are embedded in
$\R^n$, with $n\geq d$. For most applications we have $d=n$. However, for
finite element methods on curves ($d=1$) or surfaces
($d=2$) embedded in $\R^n$ (like mean curvature flow \cite{Dziuk:91}),
the vertex coordinates of the simplices have $n>d$ components.
There are three principal constants which affect the storage layout of
various data-types, from \albertaH:
%%
\cdx{DIM_LIMIT@{\DIMLIM}}
\cdx{DIM_OF_WORLD@{\DOW}}
\cdx{DIM_MAX@{\DIMMAX}}
\cdx{N_LAMBDA_MAX@{\BARYMAX}}
%%
\bv\begin{lstlisting}[name=MESH_DIMENSIONS,caption={[Hard-coded dimension limits]},label=C:MESH_DIMENSIONS]
/* DIM_OF_WORLD is a compile time constant, not defined in alberta.h */
#define DIM_LIMIT 3 /* limiting mesh-dimension */
#define DIM_MAX MIN(DIM_OF_WORLD, DIM_LIMIT)
\end{lstlisting}
\ev
%%
\begin{description}
\item[\DIMLIM] Defined to the limit for the mesh-dimension. More
than tetrahedral meshes are not supported, so this is defined to $3$.
\item[\DOW] Defined to the dimension of the ambient space, i.e. $n$ in
the notation used above.
\item[\DIMMAX] Defined to the maximum value of the mesh-dimension,
given the current value of \DOW.
\end{description}
%%
\paragraph{Derived dimension dependent constants}
%%
\ALBERTA provides some expressions for the number of face-simplices of
each possible co-dimension. In \ALBERTA, the name ``face'' is reserved
for the faces of tetrahedra; to denote the co-dimension $1$
face-simplex for simplices of arbitrary dimensions the name ``wall''
is used. Besides that, there are expressions for the possible number
of neighbours, the faculty of the mesh-dimension and the number of
barycentric co-ordinates of given dimension. \albertaH defines the
following generic macros:
%%
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES()@{\code{N\_VERTICES()}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES()@{\code{N\_EDGES()}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS()@{\code{N\_WALLS()}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES()@{\code{N\_FACES()}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH()@{\code{N\_NEIGH()}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA()@{\code{N\_LAMBDA()}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC()@{\code{DIM\_FAC()}}}
\bv\begin{lstlisting}[name=SPLX_COUNTS,caption={[Macros for the enumeration of
sub-simplices]},label=C:SPLX_COUNTS]
#define N_VERTICES(DIM) ((DIM)+1)
#define N_EDGES(DIM) ((DIM)*((DIM)+1)/2)
#define N_WALLS(DIM) ((DIM)+1)
#define N_FACES(DIM) (((DIM) == 3) * N_WALLS(DIM))
#define N_NEIGH(DIM) (((DIM) != 0) * N_WALLS(DIM))
#define N_LAMBDA(DIM) N_VERTICES(DIM)
#define DIM_FAC(DIM) ((DIM) < 2 ? 1 : (DIM) == 2 ? 2 : 6)
\end{lstlisting}\ev
%%
\begin{description}
\renewcommand{\itemsep}{-1ex}
\item[\code{N\_VERTICES()}] number of vertices of a simplex
\item[\code{N\_EDGES()}] number of edges of a simplex
\item[\code{N\_WALLS()}] number of co-dimension $1$ face-simplices of a simplex
\item[\code{N\_FACES()}] number of co-dimension $1$ face-simplices of a simplex of dimension $3$
\item[\code{N\_NEIGH()}] possible number of neighbour elements across walls
\item[\code{N\_LAMBDA()}] number barycentric co-ordinates
\item[\code{DIM\_FAC()}] faculty of the mesh-dimension
\end{description}
%%
From these generic macros \albertaH specializes variants with the
suffixes:
%%
\cdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_0D@{\code{N\_VERTICES\_0D}}}
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_0D@{\code{N\_VERTICES\_0D}}}
\cdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_0D@{\code{N\_EDGES\_0D}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_0D@{\code{N\_EDGES\_0D}}}
\cdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_0D@{\code{N\_NEIGH\_0D}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_0D@{\code{N\_NEIGH\_0D}}}
\cdx{N_FACES@{\code{N\_FACES}}!N_FACES_0D@{\code{N\_FACES\_0D}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES_0D@{\code{N\_FACES\_0D}}}
\cdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_0D@{\code{N\_WALLS\_0D}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_0D@{\code{N\_WALLS\_0D}}}
\cdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_0D@{\code{N\_LAMBDA\_0D}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_0D@{\code{N\_LAMBDA\_0D}}}
\cdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_0D@{\code{DIM\_FAC\_0D}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_0D@{\code{DIM\_FAC\_0D}}}
%%
\cdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_1D@{\code{N\_VERTICES\_1D}}}
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_1D@{\code{N\_VERTICES\_1D}}}
\cdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_1D@{\code{N\_EDGES\_1D}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_1D@{\code{N\_EDGES\_1D}}}
\cdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_1D@{\code{N\_NEIGH\_1D}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_1D@{\code{N\_NEIGH\_1D}}}
\cdx{N_FACES@{\code{N\_FACES}}!N_FACES_1D@{\code{N\_FACES\_1D}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES_1D@{\code{N\_FACES\_1D}}}
\cdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_1D@{\code{N\_WALLS\_1D}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_1D@{\code{N\_WALLS\_1D}}}
\cdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_1D@{\code{N\_LAMBDA\_1D}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_1D@{\code{N\_LAMBDA\_1D}}}
\cdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_1D@{\code{DIM\_FAC\_1D}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_1D@{\code{DIM\_FAC\_1D}}}
%%
\cdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_2D@{\code{N\_VERTICES\_2D}}}
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_2D@{\code{N\_VERTICES\_2D}}}
\cdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_2D@{\code{N\_EDGES\_2D}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_2D@{\code{N\_EDGES\_2D}}}
\cdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_2D@{\code{N\_NEIGH\_2D}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_2D@{\code{N\_NEIGH\_2D}}}
\cdx{N_FACES@{\code{N\_FACES}}!N_FACES_2D@{\code{N\_FACES\_2D}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES_2D@{\code{N\_FACES\_2D}}}
\cdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_2D@{\code{N\_WALLS\_2D}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_2D@{\code{N\_WALLS\_2D}}}
\cdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_2D@{\code{N\_LAMBDA\_2D}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_2D@{\code{N\_LAMBDA\_2D}}}
\cdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_2D@{\code{DIM\_FAC\_2D}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_2D@{\code{DIM\_FAC\_2D}}}
%%
\cdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_3D@{\code{N\_VERTICES\_3D}}}
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_3D@{\code{N\_VERTICES\_3D}}}
\cdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_3D@{\code{N\_EDGES\_3D}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_3D@{\code{N\_EDGES\_3D}}}
\cdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_3D@{\code{N\_NEIGH\_3D}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_3D@{\code{N\_NEIGH\_3D}}}
\cdx{N_FACES@{\code{N\_FACES}}!N_FACES_3D@{\code{N\_FACES\_3D}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES_3D@{\code{N\_FACES\_3D}}}
\cdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_3D@{\code{N\_WALLS\_3D}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_3D@{\code{N\_WALLS\_3D}}}
\cdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_3D@{\code{N\_LAMBDA\_3D}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_3D@{\code{N\_LAMBDA\_3D}}}
\cdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_3D@{\code{DIM\_FAC\_3D}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_3D@{\code{DIM\_FAC\_3D}}}
%%
\cdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_MAX@{\code{N\_VERTICES\_MAX}}}
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_MAX@{\code{N\_VERTICES\_MAX}}}
\cdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_MAX@{\code{N\_EDGES\_MAX}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_MAX@{\code{N\_EDGES\_MAX}}}
\cdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_MAX@{\code{N\_NEIGH\_MAX}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_MAX@{\code{N\_NEIGH\_MAX}}}
\cdx{N_FACES@{\code{N\_FACES}}!N_FACES_MAX@{\code{N\_FACES\_MAX}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES_MAX@{\code{N\_FACES\_MAX}}}
\cdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_MAX@{\code{N\_WALLS\_MAX}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_MAX@{\code{N\_WALLS\_MAX}}}
\cdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_MAX@{\code{N\_LAMBDA\_MAX}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_MAX@{\code{N\_LAMBDA\_MAX}}}
\cdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_MAX@{\code{DIM\_FAC\_MAX}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_MAX@{\code{DIM\_FAC\_MAX}}}
%%
\cdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_LIMIT@{\code{N\_VERTICES\_LIMIT}}}
\mdx{N_VERTICES@{\code{N\_VERTICES}}!N_VERTICES_LIMIT@{\code{N\_VERTICES\_LIMIT}}}
\cdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_LIMIT@{\code{N\_EDGES\_LIMIT}}}
\mdx{N_EDGES@{\code{N\_EDGES}}!N_EDGES_LIMIT@{\code{N\_EDGES\_LIMIT}}}
\cdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_LIMIT@{\code{N\_NEIGH\_LIMIT}}}
\mdx{N_NEIGH@{\code{N\_NEIGH}}!N_NEIGH_LIMIT@{\code{N\_NEIGH\_LIMIT}}}
\cdx{N_FACES@{\code{N\_FACES}}!N_FACES_LIMIT@{\code{N\_FACES\_LIMIT}}}
\mdx{N_FACES@{\code{N\_FACES}}!N_FACES_LIMIT@{\code{N\_FACES\_LIMIT}}}
\cdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_LIMIT@{\code{N\_WALLS\_LIMIT}}}
\mdx{N_WALLS@{\code{N\_WALLS}}!N_WALLS_LIMIT@{\code{N\_WALLS\_LIMIT}}}
\cdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_LIMIT@{\code{N\_LAMBDA\_LIMIT}}}
\mdx{N_LAMBDA@{\code{N\_LAMBDA}}!N_LAMBDA_LIMIT@{\code{N\_LAMBDA\_LIMIT}}}
\cdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_LIMIT@{\code{DIM\_FAC\_LIMIT}}}
\mdx{DIM_FAC@{\code{DIM\_FAC}}!DIM_FAC_LIMIT@{\code{DIM\_FAC\_LIMIT}}}
%%
\begin{description}
\renewcommand{\itemsep}{-1ex}
\item[\code{\_MAX}] maximum value given \DOW
\item[\code{\_LIMIT}] limiting value ever supported
\item[\code{\_0D}, \code{\_1D}, \code{\_2D}, \code{\_3D}]
special value given the mesh-dimension
\end{description}
%%
For example, the \code{N\_VERTICES} macro exists with the following variants:
\bv\begin{lstlisting}[caption={[Macros for the number of vertices]}]
#define N_VERTICES_0D 1
#define N_VERTICES_1D 2
#define N_VERTICES_2D 3
#define N_VERTICES_3D 4
#define N_VERTICES_MAX N_VERTICES(DIM_MAX)
#define N_VERTICES_LIMIT N_VERTICES(DIM_LIMIT)
\end{lstlisting}\ev
Finally we use the following definitions describing possible positions of
degrees of freedom on an element:
\cdx{N_NODE_TYPES@{\code{N\_NODE\_TYPES}}}
\cdx{CENTER@{\code{CENTER}}}
\cdx{VERTEX@{\code{VERTEX}}}
\cdx{EDGE@{\code{EDGE}}}
\cdx{FACE@{\code{FACE}}}
\ddx{NODE_TYPES@{\code{NODE\_TYPES}}}
\bv\begin{lstlisting}[name=NODE_TYPES,caption={[\code{NODE\_TYPES}]},label=T:NODE_TYPES]
typedef enum node_types {
VERTEX = 0,
CENTER,
EDGE,
FACE,
N_NODE_TYPES
} NODE_TYPES;
\end{lstlisting}\ev
The symbols refer to \DOFs located at the face-simplices with the
following meanings:
\begin{description}
\renewcommand{\itemsep}{-1ex}
\item[\code{VERTEX}] The vertex of a simplex. In $1$d the vertices are
treated as the ``walls'' of an element.
\item[\code{CENTER}] The interior of an element. The \DOFs of discontinuous
basis-functions, e.g., are always treated as \code{CENTER}-\DOFs.
\item[\code{EDGE}] The edges of an element. Note that $1$d simplices do
not have edges in \ALBERTA as long as it concerns the location of
\DOFs. So $1$d-meshes have only \code{VERTEX} and \code{CENTER} \DOFs.
\item[\code{FACE}] The faces of an element. This is reserved for $3$d
only. Note that the co-dimension $1$ face-simplex is denoted as
``wall-simplex'' within \ALBERTA.
\end{description}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The local indexing on elements}%
\label{S:local_index}
For the handling of higher order discretizations where besides
vertices DOFs can be located at edges (in 2d and 3d), faces (in 3d),
or center, we also need a local numbering for edges, and faces. Finally, a
local numbering of neighbours for handling neighbour information is
needed, used for instance in the refinement algorithm itself and for error
estimator calculation.
\idx{local numbering!edges}
\idx{refinement!local numbering!edges}
\idx{local numbering!faces}
\idx{refinement!local numbering!faces}
\idx{local numbering!neighbours}
\idx{refinement!local numbering!neighbours}
The \code{i}-th neighbour is always the element opposite the
\code{i}-th vertex. The \code{i}-th edge/face is the
edge/face opposite the \code{i}-th vertex in 2d respectively 3d;
edges in 3d are numbered in the following way (compare
Figure~\ref{F:edge_index}):
\begin{center}
\begin{tabular}{ll}
{\bf edge 0:} between vertex \code{0} and \code{1}, &
{\bf edge 3:} between vertex \code{1} and \code{2},\\
{\bf edge 1:} between vertex \code{0} and \code{2}, &
{\bf edge 4:} between vertex \code{1} and \code{3},\\
{\bf edge 2:} between vertex \code{0} and \code{3}, &
{\bf edge 5:} between vertex \code{2} and \code{3}.
\end{tabular}
\end{center}
\begin{figure}[htbp]
\hfill\includegraphics[scale=0.5]{EPS/edge_tria}\hfill%
\includegraphics[scale=0.5]{EPS/edge_tetra}\hfill
\vspace{-2mm}
\caption{Local indices of edges/neighbours in 2d and local indices
of edges in 3d.}\label{F:edge_index}
\end{figure}
The data structures described in the subsequent sections are based
on this local numbering of vertices, edges, faces, and neighbours.
\subsection{BLAS-like routines for \DOW- and \BARYMAX-arrays}
%%
The term ``BLAS'' stands for ``Basic Linear Algebra Subroutines'', see
\cite{LHKK:79,DDCHH:88}.
%%
There are several vector and array data-types associated with \DOW and
\BARYMAX. The basic array types are
%%
\ddx{REAL_D@{\code{REAL\_D}}}
\ddx{REAL_B@{\code{REAL\_B}}}
\bv\begin{lstlisting}[caption={[\code{REAL\_D}, \code{REAL\_B}]},label=T:REAL_D_REAL_B]
typedef REAL REAL_D[DIM_OF_WORLD];
typedef REAL REAL_B[N_LAMBDA_MAX];
\end{lstlisting}\ev
%%
\begin{description}
\renewcommand{\itemsep}{0pt}
\item[\REALD] An array of the dimension of the ambient space.
\item[\REALB] An array of the size of the maximum mesh-dimension at
given \DOW. Note that for a given mesh only the first
\code{N\_LAMBDA(mesh->dim)} components of a \REALB-vector are
actually used. Excess elements should be cleared to $0$.
\end{description}
%%
\mdx{INIT_BARY_?D()@{\code{INIT\_BARY\_?D()}}}
\mdx{INIT_BARY_MAX()@{\code{INIT\_BARY\_MAX()}}}
%%
To support the static initialization of \REALB-arrays there are macros
\code{INIT\_BARY\_?D()}. The definitions of these macros depend on the
values of \DIMMAX, we have the following defines in \albertaH:
\bv\begin{lstlisting}[name=INIT_BARY_?D,caption={[\code{INIT\_BARY\_?D}]},label=M:INIT_BARY]
#if DIM_MAX == 0
# define INIT_BARY_0D(a) { 1.0 }
# define INIT_BARY_1D(a, b) { 1.0 }
# define INIT_BARY_2D(a, b, c) { 1.0 }
# define INIT_BARY_3D(a, b, c, d) { 1.0 }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_0D(a)
#elif DIM_MAX == 1
# define INIT_BARY_0D(a) { (a), 0.0 }
# define INIT_BARY_1D(a, b) { (a), (b) }
# define INIT_BARY_2D(a, b, c) { (a), (b) }
# define INIT_BARY_3D(a, b, c, d) { (a), (b) }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_1D(a, b)
#elif DIM_MAX == 2
# define INIT_BARY_0D(a) { (a), 0.0, 0.0 }
# define INIT_BARY_1D(a, b) { (a), (b), 0.0 }
# define INIT_BARY_2D(a, b, c) { (a), (b), (c) }
# define INIT_BARY_3D(a, b, c, d) { (a), (b), (c) }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_2D(a, b, c)
#elif DIM_MAX == 3
# define INIT_BARY_0D(a) { (a), 0.0, 0.0, 0.0 }
# define INIT_BARY_1D(a, b) { (a), (b), 0.0, 0.0 }
# define INIT_BARY_2D(a, b, c) { (a), (b), (c), 0.0 }
# define INIT_BARY_3D(a, b, c, d) { (a), (b), (c), (d) }
# define INIT_BARY_MAX(a, b, c, d) INIT_BARY_3D(a, b, c, d)
#else
# error Unsupported DIM_MAX
#endif
\end{lstlisting}\ev
%%
To have array-types for matrices like Jacobians and Hessians there is
bunch of data-types in \albertaH. The suffixes which are composed from
the two letters \code{D} and \code{B} code the ordering of the array
dimensions, e.g. a \code{REAL\_BD} is an array which's first index
ranges from $0$ to (\BARYMAX-$1$) and which's second index ranges from
$0$ to (\DOW-$1$). Currently, the following types are defined:
%%
\ddx{REAL_B@{\code{REAL\_B}}}
\ddx{REAL_BB@{\code{REAL\_BB}}}
\ddx{REAL_D@{\code{REAL\_D}}}
\ddx{REAL_DD@{\code{REAL\_DD}}}
\ddx{REAL_BD@{\code{REAL\_BD}}}
\ddx{REAL_BBD@{\code{REAL\_BBD}}}
\ddx{REAL_DDD@{\code{REAL\_DDD}}}
\ddx{REAL_BDD@{\code{REAL\_BDD}}}
\ddx{REAL_BBDD@{\code{REAL\_BBDD}}}
\ddx{REAL_DB@{\code{REAL\_DB}}}
\ddx{REAL_DBB@{\code{REAL\_DBB}}}
\ddx{REAL_BBB@{\code{REAL\_BBB}}}
\ddx{REAL_BBBB@{\code{REAL\_BBBB}}}
\ddx{REAL_DBBB@{\code{REAL\_DBBB}}}
\ddx{REAL_DBBBB@{\code{REAL\_DBBBB}}}
\ddx{REAL_BDB@{\code{REAL\_BDB}}}
\ddx{REAL_BDBB@{\code{REAL\_BDBB}}}
%%
\bv\begin{lstlisting}[name=DOWBARY_TYPES,caption={[Geometric matrix and vector types]},label=T:DOWBARY_TYPES]
typedef REAL REAL_B[N_LAMBDA_MAX];
typedef REAL_B REAL_BB[N_LAMBDA_MAX];
typedef REAL REAL_D[DIM_OF_WORLD];
typedef REAL_D REAL_DD[DIM_OF_WORLD];
typedef REAL_D REAL_BD[N_LAMBDA_MAX];
typedef REAL_BD REAL_BBD[N_LAMBDA_MAX];
typedef REAL_DD REAL_DDD[DIM_OF_WORLD];
typedef REAL_DD REAL_BDD[N_LAMBDA_MAX];
typedef REAL_BDD REAL_BBDD[N_LAMBDA_MAX];
typedef REAL_B REAL_DB[DIM_OF_WORLD];
typedef REAL_BB REAL_DBB[DIM_OF_WORLD];
typedef REAL_BB REAL_BBB[N_LAMBDA_MAX];
typedef REAL_BBB REAL_BBBB[N_LAMBDA_MAX];
typedef REAL_BBB REAL_DBBB[DIM_OF_WORLD];
typedef REAL_BBBB REAL_DBBBB[DIM_OF_WORLD];
typedef REAL_DB REAL_BDB[N_LAMBDA_MAX];
typedef REAL_DBB REAL_BDBB[N_LAMBDA_MAX];
\end{lstlisting}\ev
%
To ease arithmetic with such vector- and matrix-types there is a
variety of inline-functions defined in \code{alberta\_inlines.h}
(\code{alberta\_inlines.h} is automatically included by \albertaH). We
describe only a selection, for the full list we refer the reader to
the header \code{alberta\_inlines.h}. Some of the following functions
are also available as matrix versions (e.g. \code{MAXEY\_DOW(a,x,y)},
\code{MSCP\_DOW(x,y)}, ...), but they aren't descripted seperately.
The prefix \code{M} means that they expect \code{REAL\_DD} matrices
instead of \code{REAL\_D} vectors. A tabular overview can be found in
Table~\ref{T:BLAS_REAL_D} and Table ~\ref{T:BLAS_REAL_DD}.
%%
\paragraph{Prototypes}
\fdx{AFFAFF_DOW()@{\code{AFFAFF\_DOW()}}}
\fdx{INVAFF_DOW()@{\code{INVAFF\_DOW()}}}
\fdx{AFFINV_DOW()@{\code{AFFINV\_DOW()}}}
\fdx{AFFINE_DOW()@{\code{AFFINE\_DOW()}}}
\fdx{COPY_DOW()@{\code{COPY\_DOW()}}}
\fdx{DIST_DOW()@{\code{DIST\_DOW()}}}
\fdx{NORM_DOW()@{\code{NORM\_DOW()}}}
\fdx{NRM2_DOW()@{\code{NRM2\_DOW()}}}
\fdx{SCAL_DOW()@{\code{SCAL\_DOW()}}}
\fdx{DST2_DOW()@{\code{DST2\_DOW()}}}
\fdx{EXPAND_DOW()@{\code{EXPAND\_DOW()}}}
\fdx{FORMAT_DOW()@{\code{FORMAT\_DOW()}}}
\fdx{SET_DOW()@{\code{SET\_DOW()}}}
\fdx{SCP_DOW()@{\code{SCP\_DOW()}}}
\fdx{GRAMSCP_DOW()@{\code{GRAMSCP\_DOW()}}}
\fdx{GRAD_DOW()@{\code{GRAD\_DOW()}}}
\fdx{GRAD_P_DOW()@{\code{GRAD\_P\_DOW()}}}
\fdx{D2_DOW()@{\code{D2\_DOW()}}}
\fdx{D2_P_DOW()@{\code{D2\_P\_DOW()}}}
\fdx{CMP_DOW()@{\code{CMP\_DOW()}}} \fdx{AX_DOW()@{\code{AX\_DOW()}}}
\fdx{AXEY_DOW()@{\code{AXEY\_DOW()}}}
\fdx{AXPY_DOW()@{\code{AXPY\_DOW()}}}
\fdx{AXPBY_DOW()@{\code{AXPBY\_DOW()}}}
\fdx{AXPBYP_DOW()@{\code{AXPBYP\_DOW()}}}
\fdx{AXPBYPCZ_DOW()@{\code{AXPBYPCZ\_DOW()}}}
\fdx{AXPBYPCZP_DOW()@{\code{AXPBYPCZP\_DOW()}}}
\fdx{MCOPY_DOW()@{\code{MCOPY\_DOW()}}}
\fdx{MDIST_DOW()@{\code{MDIST\_DOW()}}}
\fdx{MNORM_DOW()@{\code{MNORM\_DOW()}}}
\fdx{MNRM2_DOW()@{\code{MNRM2\_DOW()}}}
\fdx{MSCAL_DOW()@{\code{MSCAL\_DOW()}}}
\fdx{MDST2_DOW()@{\code{MDST2\_DOW()}}}
\fdx{MEXPAND_DOW()@{\code{MEXPAND\_DOW()}}}
\fdx{MFORMAT_DOW()@{\code{MFORMAT\_DOW()}}}
\fdx{MSET_DOW()@{\code{MSET\_DOW()}}}
\fdx{MSCP_DOW()@{\code{MSCP\_DOW()}}}
\fdx{MGRAMSCP_DOW()@{\code{MGRAMSCP\_DOW()}}}
\fdx{MGRAD_DOW()@{\code{MGRAD\_DOW()}}}
\fdx{MGRAD_P_DOW()@{\code{MGRAD\_P\_DOW()}}}
\fdx{MD2_DOW()@{\code{MD2\_DOW()}}}
\fdx{MD2_P_DOW()@{\code{MD2\_P\_DOW()}}}
\fdx{MCMP_DOW()@{\code{MCMP\_DOW()}}}
\fdx{MAX_DOW()@{\code{MAX\_DOW()}}}
\fdx{MAXEY_DOW()@{\code{MAXEY\_DOW()}}}
\fdx{MAXPY_DOW()@{\code{MAXPY\_DOW()}}}
\fdx{MAXPBY_DOW()@{\code{MAXPBY\_DOW()}}}
\fdx{MAXPBYP_DOW()@{\code{MAXPBYP\_DOW()}}}
\fdx{MAXPBYPCZ_DOW()@{\code{MAXPBYPCZ\_DOW()}}}
\fdx{MAXPBYPCZP_DOW()@{\code{MAXPBYPCZP\_DOW()}}}
\fdx{MAXTPY_DOW()@{\code{MAXTPY\_DOW()}}}
\fdx{MINVERT_DOW()@{\code{MINVERT\_DOW()}}}
\fdx{MV_DOW()@{\code{MV\_DOW()}}} \fdx{MTV_DOW()@{\code{MTV\_DOW()}}}
\fdx{MM_DOW()@{\code{MM\_DOW()}}} \fdx{MTM_DOW()@{\code{MTM\_DOW()}}}
\fdx{MMT_DOW()@{\code{MMT\_DOW()}}}
\fdx{MDET_DOW()@{\code{MDET\_DOW()}}}
\fdx{MGEMV_DOW()@{\code{MGEMV\_DOW()}}}
\fdx{MGEMTV_DOW()@{\code{MGEMTV\_DOW()}}}
\fdx{GEMV_DOW()@{\code{GEMV\_DOW()}}}
\fdx{GEMTV_DOW()@{\code{GEMTV\_DOW()}}}
\fdx{WEDGE_DOW()@{\code{WEDGE\_DOW()}}}
\fdx{DIST1_DOW()@{\code{DIST1\_DOW()}}}
\fdx{DIST8_DOW()@{\code{DIST8\_DOW()}}}
\fdx{NORM1_DOW()@{\code{NORM1\_DOW()}}}
\fdx{NORM8_DOW()@{\code{NORM8\_DOW()}}}
\fdx{NRMP_DOW()@{\code{NRMP\_DOW()}}}
\fdx{PNRMP_DOW()@{\code{PNRMP\_DOW()}}}
\fdx{SUM_DOW()@{\code{SUM\_DOW()}}}
\fdx{POW_DOW()@{\code{POW\_DOW()}}}
\fdx{SCAN_EXPAND_DOW()@{\code{SCAN\_EXPAND\_DOW()}}}
\fdx{SCAN_FORMAT_DOW()@{\code{SCAN\_FORMAT\_DOW()}}}
%%
\bv\begin{lstlisting}[name=DOW_BLAS,label=C:DOW_BLAS,caption={[BLAS-like operations for small matrices and vectors]}]
REAL SCP_DOW(const REAL_D x, const REAL_D y)
REAL GRAMSCP_DOW(const REAL_DD A, const REAL_D x, const REAL_D y)
REAL NORM_DOW(const REAL_D x)
REAL NRM2_DOW(const REAL_D x)
REAL NORM1_DOW(const REAL_D x)
REAL NORM8_DOW(const REAL_D x)
REAL NRMP_DOW(const REAL_D x, REAL p)
REAL PNRMP_DOW(const REAL_D x, REAL p)
REAL DIST_DOW(const REAL_D x, const REAL_D y)
REAL DST2_DOW(const REAL_D x, const REAL_D y)
REAL DIST1_DOW(const REAL_D x, const REAL_D y)
REAL DIST8_DOW(const REAL_D x, const REAL_D y)
REAL SUM_DOW(const REAL_D x)
REAL POW_DOW(REAL a)
REAL *SET_DOW(REAL a, REAL_D x)
REAL *COPY_DOW(const REAL_D x, REAL_D y)
REAL *SCAL_DOW(REAL a, REAL_D x)
REAL *AX_DOW(REAL a, REAL_D x)
bool CMP_DOW(REAL val, const REAL_D a)
REAL *AXEY_DOW(REAL a, const REAL_D x, REAL_D y)
REAL *AXPY_DOW(REAL a, const REAL_D x, REAL_D y)
REAL *AXPBY_DOW(REAL a, const REAL_D x,
REAL b, const REAL_D y, REAL_D z)
REAL *AXPBYP_DOW(REAL a, const REAL_D x,
REAL b, const REAL_D y, REAL_D z)
REAL *AXPBYPCZ_DOW(REAL a, const REAL_D x, REAL b, const REAL_D y,
REAL c, const REAL_D z, REAL_D w)
REAL *AXPBYPCZP_DOW(REAL a, const REAL_D x, REAL b, const REAL_D y,
REAL c, const REAL_D z, REAL_D w)
REAL WEDGE_DOW(const REAL_D x, const REAL_D y)
REAL *WEDGE_DOW(const REAL_D x, const REAL_D y, REAL_D z)
EXPAND_DOW(x)
FORMAT_DOW
SCAN_EXPAND_DOW(v)
SCAN_FORMAT_DOW
REAL *GRAD_DOW(int dim, const REAL_BD Lambda, const REAL_B b_grd, REAL_D x_grd)
REAL *GRAD_P_DOW(int dim, const REAL_BD Lambda,
const REAL_B b_grd, REAL_D x_grd)
REAL_D *D2_DOW(int dim, const REAL_BD Lambda,
const REAL_BB b_hesse, REAL_DD x_hesse)
REAL_D *D2_P_DOW(int dim, const REAL_BD Lambda,
const REAL_BB b_hesse, REAL_DD x_hesse)
REAL *MV_DOW(const REAL_DD m, const REAL_D v, REAL_D b)
REAL *MTV_DOW(const REAL_DD m, const REAL_D v, REAL_D b)
REAL *GEMV_DOW(REAL a, const REAL_DD m, const REAL_D v, REAL beta, REAL_D b)
REAL *GEMTV_DOW(REAL a, const REAL_DD m, const REAL_D v, REAL beta, REAL_D b)
REAL *AFFINE_DOW(const AFF_TRAFO *trafo, const REAL_D x, REAL_D y)
REAL *AFFINV_DOW(const AFF_TRAFO *trafo, const REAL_D x, REAL_D y)
AFF_TRAFO *AFFAFF_DOW(const AFF_TRAFO *A, const AFF_TRAFO *B, AFF_TRAFO *C)
AFF_TRAFO *INVAFF_DOW(const AFF_TRAFO *A, AFF_TRAFO *B)
REAL MSCP_DOW(const REAL_DD x, const REAL_DD y)
REAL MNORM_DOW(const REAL_DD m)
REAL MNRM2_DOW(const REAL_DD m)
REAL MDIST_DOW(const REAL_DD a, const REA_DD b)
REAL MDST2_DOW(const REAL_DD a, const REAL_DD b)
REAL_D *MSET_DOW(REAL val, REAL_DD m)
REAL_D *MCOPY_DOW(const REAL_DD x, REAL_DD y)
REAL_D *MSCAL_DOW(REAL a, REAL_DD m)
REAL_D *MAX_DOW(REAL a, REAL_DD m)
bool MCMP_DOW(REAL val, const REAL_DD a)
REAL_D *MAXEY_DOW(REAL a, const REAL_DD x, REAL_DD y)
REAL_D *MAXPY_DOW(REAL a, const REAL_DD x, REAL_DD y)
REAL_D *MAXTPY_DOW(REAL a, const REAL_DD x, REAL_DD y)
REAL_D *MAXPBY_DOW(REAL a, const REAL_DD x,
REAL b, const REAL_DD y, REAL_DD z)
REAL_D *MAXPBYP_DOW(REAL a, const REAL_DD x,
REAL b, const REAL_DD y, REAL_DD z)
REAL_D *MAXPBYPCZ_DOW(REAL a, const REAL_DD x, REAL b, const REAL_DD y,
REAL c, const REAL_DD z, REAL_DD w)
REAL_D *MAXPBYPCZP_DOW(REAL a, const REAL_DD x, REAL b, const REAL_DD y,
REAL c, const REAL_DD z, REAL_DD w)
MEXPAND_DOW(m)
MFORMAT_DOW
REAL_D *MGRAD_DOW(int dim, const REAL_BD Lambda, const REAL_DB b_grd,
REAL_DD x_grd)
REAL_D *MGRAD_P_DOW(int dim, const REAL_BD Lambda, const REAL_DB b_grd,
REAL_DD x_grd)
REAL_DD *MD2_DOW(int dim, const REAL_BD Lambda, const REAL_BB *b_hesse,
REAL_DDD x_hesse)
REAL_DD *MD2_P_DOW(int dim, const REAL_BD Lambda, const REAL_BB *b_hesse,
REAL_DDD x_hesse)
REAL_D *MINVERT_DOW(const REAL_DD m, REAL_DD mi)
REAL_D *MM_DOW(const REAL_DD a, const REAL_DD b, REAL_DD c)
REAL_D *MTM_DOW(const REAL_DD a, const REAL_DD b, REAL_DD c)
REAL_D *MMT_DOW(const REAL_DD a, const REAL_DD b, REAL_DD c)
REAL MDET_DOW(const REAL_DD m)
\end{lstlisting}\ev
%%
\paragraph{Descriptions}~\hfill\\
For a more compact presentation, refer to \tableref{T:BLAS_REAL_D} and
\ref{T:BLAS_REAL_DD}.
\begin{descr}
%%
\kitem{SCP\_DOW(x, y)} returns the Euclidean scalar product of the
two vectors \code{x}, \code{y}.
%%
\kitem{GRAMSCP\_DOW(A, x, y)} in case \code{A} is a spd-matrix it
returns the scalar product of the two vectors \code{x}, \code{y},
defined by \code{A}: $(x,y)_A := <x, Ay> $
%%
\kitem{NORM\_DOW(x)} returns the Euclidean norm of the vector
\code{x}.
%%
\kitem{NRM2\_DOW(x)} returns the Euclidean scalar product of the
vector \code{x} with itself. This means it returns the square of the
Euclidean norm of the vector \code{x}.
%%
\kitem{NORM1\_DOW(x)} returns the 1-norm of the vector
\code{x}. This means it returns the sum of the absolut values of the
vector entries.
%%
\kitem{NORM8\_DOW(x)} returns the infinity norm or maximum norm of
the vector \code{x}.
%%
\kitem{NRMP\_DOW(x, p)} returns the p-norm of the vector \code{x}.
%%
\kitem{PNRMP\_DOW(x, p)} returns the p-norm to the power of p of the
vector \code{x}.
%%
\kitem{DIST\_DOW(x, y)} returns the Euclidean distance between the
two vectors \code{x}, \code{y}.
%%
\kitem{DST2\_DOW(x, y)} returns the square of the Euclidean distance
between two vectors \code{x}, \code{y}.
%%
\kitem{DIST1\_DOW(x, y)} returns the 1-norm of the vector
\code{(x-y)}.
%%
\kitem{DIST8\_DOW(x, y)} returns the infinity norm of the vector
\code{(x-y)}.
%%
\kitem{SUM\_DOW(x)} returns the sum of the vector entries of the
vector \code{x}.
%%
\kitem{POW\_DOW(a)} returns \code{a} to the power of
\code{DIM\_OF\_WORLD}.
%%
\kitem{SET\_DOW(a, x)} set all elements of vector \code{x} to
\code{a}. Returns \code{x}
%%
\kitem{COPY\_DOW(x, y)} copies all elements of vector \code{x} to
\code{y}. Returns \code{y}.
%%
\kitem{SCAL\_DOW(a, x)} scales all elements of the vector \code{x}
with \code{a}. Returns \code{x}.
%%
\kitem{AX\_DOW(a, x)} scales all elements of vector \code{x} with
\code{a}. Returns \code{x}.
%%
\kitem{CMP\_DOW(val, a)} returns \code{true} if all elements of the
vector \code{a} have the same value \code{val}, and it returns
\code{false} if there is any element of the vector \code{a} with value
\code{!=val}.\\
%%
\kitem{AXEY\_DOW(a, x, y)} scales all elements of vector \code{x}
with \code{a} and stores the resulting vector in \code{y}. Returns
\code{y}.
%%
\kitem{AXPY\_DOW(a, x, y)} scales all elements of vector \code{x}
with \code{a} and add it up to the vector \code{y}. Returns \code{y}.
%%
\kitem{AXPBY\_DOW(a, x, b, y, z)} scales all elements of vector
\code{x} with \code{a}, scales all elements of the vector \code{y}
with \code{b} and add these two vectors. The result is stored in the
vector \code{z}. Returns \code{z}.
%%
\kitem{AXPBYP\_DOW(a, x, b, y, z)} scales all elements of vector
\code{x} with \code{a}, scales all elements of vector \code{y} with
\code{b} and add these two vectors up to the vector \code{z}. Returns
\code{z}.
%%
\kitem{AXPBYPCZ\_DOW(a, x, b, y, c, z, w)} scales all elements of
vector \code{x} with \code{a}, scales all elements of vector \code{y}
with \code{b}, scales all elements of vector \code{z} with \code{c}
and add these three vectors. The result is stored in the vector
\code{w}. Returns \code{w}.
%%
\kitem{AXPBYPCZP\_DOW(a, x, b, y, c, z, w)} scales all elements of
vector \code{x} with \code{a}, scales all elements of vector \code{y}
with \code{b}, scales all elements of vector \code{z} with \code{c}
and add these three vectors up to the vector \code{w}. Returns
\code{w}.
%%
\kitem{WEDGE\_DOW(a, b)} for \code{DIM\_OF\_WORLD==2} returns the
product \code{a[0]*b[1]-a[1]*b[0]}.
%%
\kitem{WEDGE\_DOW(a, b, r)} for \code{DIM\_OF\_WORLD==3} fills
\code{r} with the vector product $a\times b\in\R^3$. Returns \code{r}.
%%
\kitem{EXPAND\_DOW(x)} returns every entry of the vector \code{x}
seperated with a comma. It is used for easier print-out of
\code{REAL\_D}. An example is stated below.
%%
\kitem{FORMAT\_DOW} Example for \DOW\code{ == 2}:
\bv\begin{lstlisting}[label=C:FORMATEXPAND_DOW,name=FORMATEXPAND_DOW,caption={[\code{FORMAT\_DOW}, \code{EXPAND\_DOW}]}]
printf{"text" FORMAT_DOW "more text\n", EXPAND_DOW(x));
\end{lstlisting}\ev
%%
equivalent to:
%%
\bv\begin{lstlisting}[nolol,caption={}]
printf("text" "[%10.5le, %10.5le]" "more text\n", x[0], x[1]);
\end{lstlisting}\ev
%%
\kitem{SCAN\_EXPAND\_DOW(v)}
%%
\kitem{SCAN\_FORMAT\_DOW} an example will explain both (\DOW\code{ == 2}):
%%
\bv\begin{lstlisting}[caption={[\code{SCAN\_FORMAT\_DOW}, \code{SCAN\_EXPAND\_DOW}]},label=C:SCAN_FORMAT_EXPAND_DOW,name=SCAN_FORMAT_EXPAND_DOW]
printf{"text" SCAN_FORMAT_DOW "more text\n", SCAN_EXPAND_DOW(v));
\end{lstlisting}\ev
%%
equivalent to:
%%
\bv\begin{lstlisting}[nolol,caption={}]
printf("text" "%f %f" "more text\n", &v[0], &v[1]);
\end{lstlisting}\ev
%%
\kitem{GRAD\_DOW(dim, Lambda, b\_grd, x\_grd)} convert a barycentric
gradient \code{b\_grd} to a world gradient and stores the resulting
vector in \code{x\_grd}, given the gradient of the transformation to
the reference element \code{Lambda}. Whereas \code{dim} is the
dimension of the mesh. Returns \code{x\_grd}.
%%
\kitem{GRAD\_P\_DOW(dim, Lambda, b\_grd, x\_grd)} convert a
barycentric gradient \code{b\_grd} to a world gradient and add it up
to the vector \code{x\_grd}, given the gradient of the transformation
to the reference element \code{Lambda}. Whereas \code{dim} is the
dimension of the mesh. Returns \code{x\_grd}.
%%
\kitem{D2\_DOW(dim, Lambda, b\_hesse, x\_hesse)} convert a barycentric
Hesse matrix \code{b\_hesse} to a world Hesse matrix and stores the
resulting matrix in \code{x\_hesse}, given the gradient of the
transformation to the reference element \code{Lambda}. Whereas
\code{dim} is the dimension of the mesh. Returns \code{x\_hesse}.
%%
\kitem{D2\_P\_DOW(dim, Lambda, b\_hesse, x\_hesse)} convert a
barycentric Hesse matrix \code{b\_hesse} to a world Hesse matrix and
add it up to the matrix \code{x\_hesse}, given the gradient of the
transformation to the reference element \code{Lambda}. Whereas
\code{dim} is the dimension of the mesh. Returns \code{x\_hesse}.
%%
\kitem{MV\_DOW(m, v, b)} calculates the matrix-vector multiplication
of the matrix \code{m} and the vector \code{v}: \code{b += m*v}.
Returns \code{b}.
%%
%%
\kitem{MTV\_DOW(m, v, b)} calculates the matrix-vector multiplication
of the transpose of matrix \code{m} and the vector \code{v}: \code{b
+= $m^t$*v}. Returns \code{b}.
%%
%%
\kitem{GEMV\_DOW(a, m, v, beta, b)} returns \code{b = beta*b +
a*(m*v)}. Where \code{a} and \code{beta} are scalar (type
\code{REAL}), \code{m} a matrix (type \code{REAL\_DD}) and \code{v}
and \code{b} are vectors (type \code{REAL\_D}).
%%
\kitem{GEMTV\_DOW(a, m, v, beta, b)} returns \code{b = beta*b +
a*($m^t$*v)}. Where \code{a} and \code{beta} are scalar (type
\code{REAL}), \code{m} a matrix (type \code{REAL\_DD}) and \code{v}
and \code{b} are vectors (type \code{REAL\_D}).
%%
\kitem{AFFINE\_DOW(trafo, x, y)} calculates the affine transformation
between the two vectors \code{x} and \code{y} and returns the vector
\code{y}. It consists of a linear transformation (matrix-vector
multiplication with the matrix \code{trafo->M}) followed by a
translation (with the translation vector \code{trafo->t}). Adequate
formular: \code{y = trafo->M * x + trafo->t}.
%%
\kitem{AFFINV\_DOW(trafo, x, y)} applies the inverse of the affine
transformation between \code{x} and \code{y}. Returns \code{y}.
%%
\kitem{AFFAFF\_DOW(A, B, C)} returns ... \code{A}, \code{B},
\code{C}.
%%
\kitem{INVAFF\_DOW(A, B)} returns ... \code{A}, \code{B}.
%%
\kitem{MINVERT\_DOW(m, mi)} returns the inverted matrix \code{mi} of
the matrix \code{m}.
%%
\kitem{MM\_DOW(a, b, c)} returns the matrix matrix multiplication of
\code{a} and \code{b} and stores the resulting matrix in \code{c}.
Returns \code{c}.
%%
\kitem{MTM\_DOW(a, b, c)} returns the matrix matrix multiplication of
the transposed matrix of \code{a} and \code{b} and stores the
resulting matrix in \code{c}. Returns \code{c}.
%%
\kitem{MMT\_DOW(a, b, c)} returns the matrix matrix multiplication of
\code{a} and the transposed matrix of \code{b} and stores the
resulting matrix in \code{c}. Returns \code{c}.
%%
\kitem{MDET\_DOW(m)} returns the determinant of matrix \code{m}.
\end{descr}
%%
\begin{table}[htbp]
\fdx{DIST_DOW()@{\code{DIST\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!DIST_DOW()@{\code{DIST\_DOW()}}}
\fdx{NORM_DOW()@{\code{NORM\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!NORM_DOW()@{\code{NORM\_DOW()}}}
\fdx{NRM2_DOW()@{\code{NRM2\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!NRM2_DOW()@{\code{NRM2\_DOW()}}}
\fdx{SCAL_DOW()@{\code{SCAL\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!SCAL_DOW()@{\code{SCAL\_DOW()}}}
\fdx{DST2_DOW()@{\code{DST2\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!DST2_DOW()@{\code{DST2\_DOW()}}}
\fdx{SCP_DOW()@{\code{SCP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!SCP_DOW()@{\code{SCP\_DOW()}}}
\fdx{GRAMSCP_DOW()@{\code{GRAMSCP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!GRAMSCP_DOW()@{\code{GRAMSCP\_DOW()}}}
\fdx{AX_DOW()@{\code{AX\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AX_DOW()@{\code{AX\_DOW()}}}
\fdx{AXEY_DOW()@{\code{AXEY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AXEY_DOW()@{\code{AXEY\_DOW()}}}
\fdx{AXPY_DOW()@{\code{AXPY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AXPY_DOW()@{\code{AXPY\_DOW()}}}
\fdx{AXPBY_DOW()@{\code{AXPBY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AXPBY_DOW()@{\code{AXPBY\_DOW()}}}
\fdx{AXPBYP_DOW()@{\code{AXPBYP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AXPBYP_DOW()@{\code{AXPBYP\_DOW()}}}
\fdx{AXPBYPCZ_DOW()@{\code{AXPBYPCZ\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AXPBYPCZ_DOW()@{\code{AXPBYPCZ\_DOW()}}}
\fdx{AXPBYPCZP_DOW()@{\code{AXPBYPCZP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!AXPBYPCZP_DOW()@{\code{AXPBYPCZP\_DOW()}}}
\fdx{MDIST_DOW()@{\code{MDIST\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MDIST_DOW()@{\code{MDIST\_DOW()}}}
\fdx{MNORM_DOW()@{\code{MNORM\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MNORM_DOW()@{\code{MNORM\_DOW()}}}
\fdx{MNRM2_DOW()@{\code{MNRM2\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MNRM2_DOW()@{\code{MNRM2\_DOW()}}}
\fdx{MSCAL_DOW()@{\code{MSCAL\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MSCAL_DOW()@{\code{MSCAL\_DOW()}}}
\fdx{MDST2_DOW()@{\code{MDST2\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MDST2_DOW()@{\code{MDST2\_DOW()}}}
\fdx{MSCP_DOW()@{\code{MSCP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MSCP_DOW()@{\code{MSCP\_DOW()}}}
\fdx{MGRAMSCP_DOW()@{\code{MGRAMSCP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MGRAMSCP_DOW()@{\code{MGRAMSCP\_DOW()}}}
\fdx{MAX_DOW()@{\code{MAX\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAX_DOW()@{\code{MAX\_DOW()}}}
\fdx{MAXEY_DOW()@{\code{MAXEY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXEY_DOW()@{\code{MAXEY\_DOW()}}}
\fdx{MAXPY_DOW()@{\code{MAXPY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXPY_DOW()@{\code{MAXPY\_DOW()}}}
\fdx{MAXPBY_DOW()@{\code{MAXPBY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXPBY_DOW()@{\code{MAXPBY\_DOW()}}}
\fdx{MAXPBYP_DOW()@{\code{MAXPBYP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXPBYP_DOW()@{\code{MAXPBYP\_DOW()}}}
\fdx{MAXPBYPCZ_DOW()@{\code{MAXPBYPCZ\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXPBYPCZ_DOW()@{\code{MAXPBYPCZ\_DOW()}}}
\fdx{MAXPBYPCZP_DOW()@{\code{MAXPBYPCZP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXPBYPCZP_DOW()@{\code{MAXPBYPCZP\_DOW()}}}
\fdx{MAXTPY_DOW()@{\code{MAXTPY\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!MAXTPY_DOW()@{\code{MAXTPY\_DOW()}}}
\fdx{WEDGE_DOW()@{\code{WEDGE\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!WEDGE_DOW()@{\code{WEDGE\_DOW()}}}
\fdx{DIST1_DOW()@{\code{DIST1\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!DIST1_DOW()@{\code{DIST1\_DOW()}}}
\fdx{DIST8_DOW()@{\code{DIST8\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!DIST8_DOW()@{\code{DIST8\_DOW()}}}
\fdx{NORM1_DOW()@{\code{NORM1\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!NORM1_DOW()@{\code{NORM1\_DOW()}}}
\fdx{NORM8_DOW()@{\code{NORM8\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!NORM8_DOW()@{\code{NORM8\_DOW()}}}
\fdx{NRMP_DOW()@{\code{NRMP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!NRMP_DOW()@{\code{NRMP\_DOW()}}}
\fdx{PNRMP_DOW()@{\code{PNRMP\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!PNRMP_DOW()@{\code{PNRMP\_DOW()}}}
\fdx{SUM_DOW()@{\code{SUM\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!SUM_DOW()@{\code{SUM\_DOW()}}}
\fdx{POW_DOW()@{\code{POW\_DOW()}}}
\idx{BLAS for REAL_D@{BLAS for \code{REAL\_D}}!POW_DOW()@{\code{POW\_DOW()}}}
\begin{center}{\small
\begin{tabular}{|l|l|}
\hline
\Strut\verb|REAL SCP_DOW(const REAL_D x, const REAL_D y)| & $ (X,Y) = \sum_{i=0}^{d-1} X_i Y_i $ \\
\hline
\Strut\verb|REAL GRAMSCP_DOW(const REAL_DD A,| & $ (X,Y)_A = \sum_{i,j=0}^{d-1} X_i A_{ij} Y_j$ \\
\Strut\verb| const REAL_D x, const REAL_D y)| & ~ \\
\hline
\Strut\verb|REAL NORM_DOW(const REAL_D x)| & $ \|X\|_2 = \left(\sum_{i=0}^d |X_i|^2\right)^{\frac{1}{2}}$ \\
\hline
\Strut\verb|REAL NRM2_DOW(const REAL_D x)| & $ \|X\|_2^2 = \sum_{i=0}^{d-1} |X_i|^2 $ \\
\hline
\Strut\verb|REAL NORM1_DOW(const REAL_D x)| & $ \|X\|_1 = \sum_{i=0}^{d-1} |X_i| $ \\
\hline
\Strut\verb|REAL NORM8_DOW(const REAL_D x)| & $ \|X\|_\infty = \max_{i=0}^{d-1} |X_i| $ \\
\hline
\Strut\verb|REAL NRMP_DOW(const REAL_D x, REAL p)| & $ \|X\|_p = \left( \sum_{i=0}^{d-1} |X_i|^p\right)^{\frac{1}{p}} $ \\
\hline
\Strut\verb|REAL PNRMP_DOW(const REAL_D x, REAL p)| & $ \|X\|_p^p = \sum_{i=0}^{d-1} |X_i|^p $ \\
\hline
\Strut\verb|REAL DIST_DOW(const REAL_D x, const REAL_D y)| & $ dist = \left(\sum_{i=0}^{d-1} |X_i - Y_i|^2\right)^{\frac{1}{2}} $ \\
\hline
\Strut\verb|REAL DST2_DOW(const REAL_D x, const REAL_D y)| & $ dst2 = \sum_{i=0}^{d-1} |X_i - Y_i|^2 $ \\
\hline
\Strut\verb|REAL DIST1_DOW(const REAL_D x, const REAL_D y)| & $ dist1 = \sum_{i=0}^{d-1} |X_i - Y_i| $ \\
\hline
\Strut\verb|REAL DIST8_DOW(const REAL_D x, const REAL_D y)| & $ dist8 = \max_{i=0}^{d-1} |X_i - Y_i| $ \\
\hline
\Strut\verb|REAL SUM_DOW(const REAL_D x)| & $ sum = \sum_{i=0}^{d-1} X_i $ \\
\hline
\Strut\verb|REAL POW_DOW(REAL a)| & $ pow = a^d $ \\
\hline
\Strut\verb|REAL *SCAL_DOW(REAL a, REAL_D x)| & $ X *= a$ \\
\Strut\verb|REAL *AX_DOW(REAL a, REAL_D x)| & ~ \\
\hline
\Strut\verb|REAL *AXEY_DOW(REAL a, const REAL_D x, REAL_D y)| & $ Y = aX $\\
\hline
\Strut\verb|REAL *AXPY_DOW(REAL a, const REAL_D x, REAL_D y)| & $ Y +\!= aX$ \\
\hline
\Strut\verb|REAL *AXPBY_DOW(REAL a, const REAL_D x,| & $ Z = aX + bY $ \\
\Strut\verb| REAL b, const REAL_D y, REAL_D z)| & ~ \\
\hline
\Strut\verb|REAL *AXPBYP_DOW(REAL a, const REAL_D x,| & $ Z +\!= aX + bY $ \\
\Strut\verb| REAL b, const REAL_D y, REAL_D z)| & ~ \\
\hline
\Strut\verb|REAL *AXPBYPCZ_DOW(REAL a, const REAL_D x,| & $ W = aX + bY + cZ $ \\
\Strut\verb| REAL b, const REAL_D y, REAL c,| & ~ \\
\Strut\verb| const REAL_D z, REAL_D w)| & ~ \\
\hline
\Strut\verb|REAL *AXPBYPCZP_DOW(REAL a, const REAL_D x,| & $ W +\!= aX + bY + cZ $ \\
\Strut\verb| REAL b, const REAL_D y, REAL c,| & ~ \\
\Strut\verb| const REAL_D z, REAL_D w)| & ~ \\
\hline
\Strut\verb|REAL WEDGE_DOW(const REAL_D x, const REAL_D y)| & $ X[0]*Y[1]-X[1]*Y[0] $ \\
\Strut\verb| (for DIM_OF_WORLD == 2) | & ~ \\
\hline
\Strut\verb|REAL *WEDGE_DOW(const REAL_D x, const REAL_D y, REAL_D z)| & $ Z = X\times Y $ \\
\Strut\verb| (for DIM_OF_WORLD == 3) | & ~ \\
\hline
\end{tabular}
}\end{center}
\caption[Implemented BLAS routines for \code{REAL\_D} vectors]{Implemented BLAS routines for \code{REAL\_D} vectors ($d = $ \code{DIM\_OF\_WORLD},
with the prefix \code{M} for \code{REAL\_DD} matrices)}
\label{T:BLAS_REAL_D}
\end{table}
\begin{table}[htbp]
\fdx{MV_DOW()@{\code{MV\_DOW()}}}
\fdx{MTV_DOW()@{\code{MTV\_DOW()}}}
\fdx{MM_DOW()@{\code{MM\_DOW()}}}
\fdx{MTM_DOW()@{\code{MTM\_DOW()}}}
\fdx{MMT_DOW()@{\code{MMT\_DOW()}}}
\fdx{GEMV_DOW()@{\code{GEMV\_DOW()}}}
\fdx{GEMTV_DOW()@{\code{GEMTV\_DOW()}}}
\fdx{MGEMV_DOW()@{\code{MGEMV\_DOW()}}}
\fdx{MGEMTV_DOW()@{\code{MGEMTV\_DOW()}}}
\begin{center}{\small
\begin{tabular}{|l|l|}
\hline
\Strut\verb|REAL *MV_DOW(const REAL_DD m, const REAL_D v, REAL_D b)| & $ b +\!= M*v $ \\
\hline
\Strut\verb|REAL *MTV_DOW(const REAL_DD m, const REAL_D v, REAL_D b)| & $ b +\!= M^t*v $ \\
\hline
\Strut\verb|REAL *GEMV_DOW(REAL a, const REAL_DD m,| & $ b= beta*b+ a*(M*v) $ \\
\Strut\verb| const REAL_D v, REAL beta, REAL_D b)| & ~ \\
\hline
\Strut\verb|REAL *GEMTV_DOW(REAL a, const REAL_DD m,| & $ b= beta*b+ a*(M^t*v) $ \\
\Strut\verb| const REAL_D v, REAL beta, REAL_D b)| & ~ \\
\hline
\end{tabular}
}\end{center}
\caption{Implemented BLAS routines for matrix-vectors multiplication.}
\label{T:BLAS_REAL_DD}
\end{table}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Boundary types}%
\label{S:boundary}%
\idx{boundary types}
\begin{compatibility}
\label{CPT:boundary_types}
Previous versions of \ALBERTA were fixing the boundary conditions --
Dirichlet, Neumann, others -- in the macro-data file and
data-structures. This has changed: the new scheme is to assign only
``street-numbers'' to boundary segments in the macro-triangulation
and leave the interpretation to the application program. This
section describes some of the implications of this change. Compare
also \compatref{CPT:boundary_street_numbers} and
\compatref{CPT:macro_el_vertex_bound}. The reader is also referred
to the documentation for \code{dirichlet\_bound...()}
\secref{S:dirichlet_bound}, especially to
\exampleref{E:CLEARING_DIRICHLET_NODES}.
\end{compatibility}
In \ALBERTA boundary conditions are first of all attached to boundary
segments -- and thus to the boundary walls of an element. Boundary
segments carry ``street-numbers'' which are defined by the
macro-triangulation. At the moment $255$ different ``boundary types''
are possible, where type $0$ is reserved for interior walls.
%%
\ddx{BNDRY_TYPE@{\code{BNDRY\_TYPE}}}
\bv\begin{lstlisting}[nolol,caption={},name=BNDRY_TYPE,label=D:BNDRY_TYPE]
typedef U_CHAR BNDRY_TYPE;
\end{lstlisting}\ev
%%
Note that this is an \emph{unsigned} value, and does not carry any
information about the nature of a boundary condition (e.g. Dirichlet
versus natural versus ...) imposed on a specific boundary segment to
``close'' a specific differential equation or system of equations.
Of course, for doing the linear algebra implied by the need to solve a
discretized PDE it is often handy to assign boundary conditions to
degrees of freedom (DOFs) of the finite element spaces. For doing so
\ALBERTA uses signed characters -- \code{S\_CHAR} -- with the
convention that positive numbers flag Dirichlet boundary conditions,
negative numbers flag natural boundary conditions and $0$ indicates an
interior node. Specifically, there are three pre-defined constants
%%
\cdx{INTERIOR@{\code{INTERIOR}}}
\cdx{DIRICHLET@{\code{DIRICHLET}}}
\cdx{NEUMANN@{\code{NEUMANN}}}
\bv\begin{lstlisting}[nolol,caption={}]
#define INTERIOR 0
#define DIRICHLET 1
#define NEUMANN -1
\end{lstlisting}\ev
%%
and some macro which may help the to make code more readable, namely
%%
\mdx{IS_INTERIOR()@{\code{IS\_INTERIOR()}}}
\mdx{IS_DIRICHLET()@{\code{IS\_DIRICHLET()}}}
\mdx{IS_NEUMANN()@{\code{IS\_NEUMANN()}}}
\bv\begin{lstlisting}[nolol,caption={}]
#define IS_NEUMANN(bound) ((bound) <= NEUMANN)
#define IS_DIRICHLET(bound) ((bound) >= DIRICHLET)
#define IS_INTERIOR(bound) ((bound) == 0)
\end{lstlisting}\ev
There are some issues for assigning boundary conditions to
\code{DOF}s. One point is that a \code{DOF} may belong to boundary
segments with differing boundary classification, e.g. vertex
\code{DOF}s in 2d and vertex and edge \code{DOF}s in 3d. To handle
this point \ALBERTA provides a boundary bit-mask data type for such
\code{DOF}s, together with some support macros:
%%
\ddx{BNDRY_FLAGS@{\code{BNDRY\_FLAGS}}}
\bv\begin{lstlisting}[name=BNDRY_FLAGS,label=D:BNDRY_FLAGS,caption={[\code{BNDRY\_FLAGS}]}]
#define N_BNDRY_TYPES 256
typedef BITS_256 BNDRY_FLAGS;
/* Some "standard" bit-field operations, meant to hide the
* N_BNDRY_TYPES argument.
*/
#define BNDRY_FLAGS_INIT(flags) bitfield_zap((flags), N_BNDRY_TYPES)
#define BNDRY_FLAGS_ALL(flags) bitfield_fill((flags), N_BNDRY_TYPES)
#define BNDRY_FLAGS_CPY(to, from) bitfield_cpy((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_AND(to, from) bitfield_and((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_OR(to, from) bitfield_or((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_XOR(to, from) bitfield_xor((to), (from), N_BNDRY_TYPES)
#define BNDRY_FLAGS_CMP(a, b) bitfield_cmp((a), (b), N_BNDRY_TYPES)
/* bit 0 flags boundary segments, if not set we are in the interior */
#define BNDRY_FLAGS_IS_INTERIOR(mask) (!bitfield_tst((mask), 0))
/* Set bit 0 to mark this as a boundary bit-mask. */
#define BNDRY_FLAGS_MARK_BNDRY(flags) bitfield_set((flags), INTERIOR)
/* Return TRUE if SEGMENT has BIT set _and_ BIT != 0. */
#define BNDRY_FLAGS_IS_AT_BNDRY(segment, bit) \
((bit) && bitfield_tst((segment), (bit)))
/* Set a bit in the boundary-type mask. The precise meaning of BIT:
*
* BIT == 0: clear the boundary mask (meaning: interior node)
* BIT > 0: set bit BIT and also bit 0 (meaning: boundary node)
*/
#define BNDRY_FLAGS_SET(flags, bit) \
if ((bit) != INTERIOR) { \
bitfield_set((flags), INTERIOR); \
bitfield_set((flags), (bit)); \
} else { \
BNDRY_FLAGS_INIT(flags); \
}
/* return TRUE if SEGMENT and MASK have non-zero overlap */
#define BNDRY_FLAGS_IS_PARTOF(segment, mask) \
bitfield_andp((segment), (mask), 1 /* offset */, N_BNDRY_TYPES)
/* FindFirstBoundaryBit, return INTERIOR for interior nodes, otherwise the
* number of the first bit set in MASK.
*/
#define BNDRY_FLAGS_FFBB(mask) bitfield_ffs(mask, 1 /* offset */, N_BNDRY_TYPES)
\end{lstlisting}\ev
There is also a support function which returns for a given finite
element space on a given element the boundary classification of all
local \code{DOF}s in terms of such bit-masks, namely
\code{get\_bound()}, see \secref{S:fillgetelvec}. To collect boundary
information and interprete the information returned by
\code{get\_bound()} the function \code{dirichlet\_map()} can be used.
Omitting details like the handling of direct sums of finite element
spaces its implementation looks like follows. The effect is that
\code{bound[loc\_dof]} is set either to \code{DIRICHLET} or
\code{INTERIOR}, depending on whether the input bit-mask \code{mask}
and the boundary bit-masks of the local \code{DOF}s overlap.
%%
\bv\begin{lstlisting}[name=dirichlet_map,label=C:dirichlet_map,caption={[\code{dirichlet\_map()}]}]
void dirichlet_map(EL_SCHAR_VEC *bound,
const EL_BNDRY_VEC *bndry_bits,
const BNDRY_FLAGS mask)
{
int loc_dof;
for (loc_dof = 0; loc_dof < bound->n_components; loc_dof++) {
if (BNDRY_FLAGS_IS_INTERIOR(bndry_bits->vec[loc_dof])) {
bound->vec[loc_dof] = INTERIOR;
continue;
}
if (BNDRY_FLAGS_IS_PARTOF(bndry_bits->vec[loc_dof], mask)) {
bound->vec[loc_dof] = DIRICHLET;
} else {
bound->vec[loc_dof] = INTERIOR;
}
}
}
\end{lstlisting}\ev
%%
The use of the \code{dirichlet\_map()} function is also demonstrated
in the \code{assemble()}-function in the demo-program \code{heat.c},
see \secref{S:heat_build}.
%%
Besides the single-element mapper \code{dirichlet\_map()} there is
also support for filling an entire \code{DOF\_SCHAR\_VEC} at once with
the boundary-type interpretation for a given finite element space.
This task can be performed by the function \code{dirichlet\_bound()}
(and its variants), see \secref{S:dirichlet_bound}.
Generally, many function and structures accepts an argument (or
contain a component) of type \code{BNDRY\_FLAGS} which determines on
which part of the boundary they are acting. This concerns variants of
\code{dirichlet\_bound()} (\secref{S:dirichlet_bound}), the variants
of the support functions for Neumann or Robin boundary conditions
(\secref{S:neumann_bound}, \secref{S:robin_bound}), and the residual
error-estimator support functions (\secref{S:estimator}).
Data-structures affected are \code{DOF\_MATRIX}
(\secref{S:DOF_MATRIX}), \code{EL\_MATRIX\_INFO}
(\ref{T:EL_MATRIX_INFO}), \code{EL\_VEC\_INFO} (\ref{T:EL_VEC_INFO}),
\code{OPERATOR\_INFO} (\ref{T:OPERATOR_INFO}),
\code{BNDRY\_OPERATOR\_INFO} (\ref{T:BNDRY_OPERATOR_INFO}).
\subsection{The \code{MACRO\_EL} data structure}%
\label{S:macro_element}
We now describe the macro triangulation and data type for an element
of the macro triangulation. The macro triangulation is stored in an
array of macro elements:
%%
\ddx{MACRO_EL@{\code{MACRO\_EL}}}
\bv\begin{lstlisting}[name=MACRO_EL,label=T:MACRO_EL,caption={[\lstname]}]
#define N_BNDRY_TYPES 256
typedef U_CHAR BNDRY_TYPE;
typedef BITS_256 BNDRY_FLAGS;
typedef struct macro_el MACRO_EL;
struct macro_el
{
EL *el;
REAL_D *coord[N_VERTICES_MAX];
BNDRY_TYPE wall_bound[N_WALLS_MAX];
#if DIM_MAX > 1
BNDRY_FLAGS vertex_bound[N_VERTICES_MAX];
#endif
#if DIM_MAX > 2
BNDRY_FLAGS edge_bound[N_EDGES_MAX];
#endif
NODE_PROJ *projection[N_NEIGH_MAX + 1];
int index;
MACRO_EL *neigh[N_NEIGH_MAX];
S_CHAR opp_vertex[N_NEIGH_MAX];
S_CHAR neigh_vertices[N_NEIGH_MAX][N_VERTICES(DIM_MAX-1)];
AFF_TRAFO *wall_trafo[N_NEIGH_MAX];
#if DIM_MAX > 1
BNDRY_FLAGS np_vertex_bound[N_VERTICES_MAX];
#endif
#if DIM_MAX > 2
BNDRY_FLAGS np_edge_bound[N_EDGES_MAX];
#endif
S_CHAR orientation;
U_CHAR el_type;
struct {
MACRO_EL *macro_el;
S_CHAR opp_vertex;
} master;
};
\end{lstlisting}\ev
%
Description of the individual structure components:
\begin{descr}
%%
\kitem{el} The root of the binary tree located at this macro
element.
%%
\kitem{coord} The pointer to the world coordinates of the element's
vertices.
%%
\kitem{wall\_bound} The boundary classification of the respective
wall. $0$ means this is an interior wall, any other number between
$1$ and $255$ is a ``street number'', the boundary classification as
read from the macro triangulation. See also
\compatref{CPT:boundary_street_numbers}. See also
\secref{S:boundary}.
%%
\kitem{vertex\_bound} Only present for $\code{DIM\_MAX}>1$. The
boundary classification of the given vertex.
\begin{compatibility}
\label{CPT:macro_el_vertex_bound}
A vertex may belong to boundary segments with differing
classification numbers (``street numbers''). To make this
information accessible the \code{vertex\_bound} component is now a
bit-mask, see also \compatref{CPT:boundary_street_numbers} and
\secref{S:boundary}. The bit-mask has $256$ slots. If bit $i$ in
\code{vertex\_bound[v]} is set, then vertex number $v$ is located
on the boundary segment with classification number $i$. Bit $0$
has a special meaning: if it s \emph{not} set, then the vertex is
an interior vertex, in order to allow for a fast check whether the
vertex is a boundary vertex at all.
Macros and inline functions which simplify the handling of the
multi-bit bit-masks \code{BNDRY\_FLAGS} are described in
\secref{S:boundary}.
\end{compatibility}
%%
\kitem{edge\_bound} Only present for $\code{DIM\_MAX}>2$. The
boundary classification of a given edge. Compare the remarks in
\compatref{CPT:macro_el_vertex_bound} above.
%%
\kitem{projection} pointers for possible projection of new nodes
during refinement. \code{projection[1]}, if set, applies to all new
nodes. \code{projection[1+nr]} ($0\leq nr\leq\code{N\_WALLS(dim)}$)
applies to new nodes on specific walls and overrides
\code{projection[0]}. For details see \secref{S:node_projections}.
\nil pointers signify no projection for the given case.
%%
\kitem{index} The index of this macro element.
%%
\kitem{neigh} \code{neigh[i]} pointer to the macro element opposite
the \code{i}-th local vertex; it is a pointer to \nil if the
vertex/edges/faces opposite the \code{i}-th local vertex belongs to
the boundary.
%%
\kitem{opp\_vertex} \code{opp\_vertex[i]} is undefined if
\code{neigh[i]} is a pointer to \nil; otherwise it is the local
index of the neighbour's vertex opposite the common
vertex/edge/face.
%%
\hyperitem{MACRO_EL:neigh_vertices}{neigh\_vertices} If this is a
periodic mesh and wall number $w$ in the macro-element is part of a
periodic boundary, then \code{neigh\_vertices[w]} is the tuple of
local vertex numbers in the periodic neighbour the vertices of wall
number $w$ are mapped onto. This corresponds to the combinatoric
face-transformations specified in the macro-triangulation file
format (see \ref{E:MACRO_FILE_TEMPLATE}) and the \code{MACRO\_DATA}
structure (see \ref{T:MACRO_DATA}).
%%
\kitem{wall\_trafo} If non-\nil, then \code{wall\_trafo[w]} is the
geometrical face-transformation which maps the current mesh onto its
periodic neighbour across the wall number $w$.
%%
\hyperitem{MACRO_EL:np_vertex_bound}{np\_vertex\_bound} Non-periodic
version of the component \code{vertex\_bound}, see above. If the
mesh carries a periodic structure, then it is nonetheless possible
to use a non-periodic mesh-traversal and define non-periodic finite
element spaces.
%%
\hyperitem{MACRO_EL:np_edge_bound}{np\_edge\_bound} Non-periodic
version of the structure component \code{edge\_bound}, see above.
See also the remarks to \code{np\_vertex\_bound} above.
%%
\kitem{el\_type} type of the element $\mathtt{\in [0,1,2]}$ used for
refinement and coarsening (for the definition of the element type
see Section~\ref{book:S:refinement_algorithm}), only 3d.
%%
\kitem{orientation} orientation of a tetrahedron --- depending on the
vertex numbering, this is \code{+1} or \code{-1} (only 3d).
%%
\kitem{master} In the presence of trace-meshes (aka ``sub-meshes'')
\code{master} gives the link to the macro-element of the ambient
``master''-mesh containing the trace-mesh this
\code{MACRO\_EL}-structure belongs to. The current (trace)-element
is the wall numbered \code{master.opp\_vertex} in the ambient
\code{master.macro\_el}. See \secref{S:tracemesh_implementation}.
\end{descr}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The \code{EL} data structure}%
\label{S:element}
The elements of the binary trees and information that should be
present for tree elements are stored in the data structure:
\ddx{EL@{\code{EL}}}
\bv\begin{lstlisting}[name=EL,label=C:EL]
typedef struct el EL;
struct el
{
EL *child[2];
DOF **dof;
S_CHAR mark;
REAL *new_coord;
#if ALBERTA_DEBUG
int index;
#endif
};
\end{lstlisting}\ev
%
The members yield following information:
\begin{descr}
\kitem{child} pointers to the two children for interior elements of the
tree; \code{child[0]} is a pointer to \nil for leaf elements;
\code{child[1]} is a pointer to user data on leaf elements if
the user is storing data on leaf elements, otherwise
\code{child[1]} is also a pointer to \nil for leaf elements (see
\secref{S:leaf_data_info}).
\kitem{dof} vector of pointers to DOFs; these pointers
may be available for the element vertices; for the edges
(in 2d and 3d), for the faces (in 3d), and for the barycenter;
they are ordered in the following way: the
first \code{N\_VERTICES} entries correspond to the DOFs at the
vertices; the next one are those at the edges, if present, then
those at the faces, if present, and finally those at the
barycenter, if present; the offsets are defined in the \code{MESH}
structure (see Sections \ref{S:mesh_data_structure},
\ref{S:refinement_routines}, \ref{S:coarsening_routines}).
\kitem{mark} marker for refinement and coarsening: if \code{mark} is
positive for a leaf element this element is refined \code{mark}
times; if it is negative for a leaf element the element may be
coarsened \code{-mark} times; (see Sections
\ref{S:refinement_routines}, \ref{S:coarsening_routines}).
\kitem{new\_coord} if the element has a boundary edge on a curved boundary
this is a pointer to the coordinates of the new vertex that is
created due to the refinement of the element, otherwise it is a
\nil pointer; thus, coordinate information can also be produced by
the traversal routines in the case of a curved boundary.
\kitem{index} unique global index of the element; these indices are
not strictly ordered and may be larger than the number of elements
in the binary tree (the list of indices may have holes after
coarsening); the index is available only if \code{ALBERTA\_DEBUG} is
\true.
\end{descr}
\subsection{The \code{EL\_INFO} data structure}%
\label{el_info}
\label{S:EL_INFO}
The \code{EL\_INFO} data structure has entries for all information
which is not stored on elements explicitely, but may be generated by
the mesh traversal routines; most entries of the \code{EL\_INFO} structure
are only filled if requested (see \secref{S:traverse}).
\begin{samepage}
\ddx{EL_INFO@{\code{EL\_INFO}}}
\bv\begin{lstlisting}[name=EL_INFO,label=T:EL_INFO]
typedef struct el_info EL_INFO;
struct el_info
{
MESH *mesh;
REAL_D coord[N_VERTICES_MAX];
const MACRO_EL *macro_el;
EL *el;
const EL_INFO *parent;
FLAGS fill_flag;
int level;
S_CHAR macro_wall[N_WALLS_MAX];
BNDRY_TYPE wall_bound[N_WALLS_MAX];
BNDRY_FLAGS vertex_bound[N_VERTICES_MAX];
#if DIM_MAX > 2
BNDRY_FLAGS edge_bound[N_EDGES_MAX];
#endif
const NODE_PROJ *active_projection;
EL *neigh[N_NEIGH_MAX];
S_CHAR opp_vertex[N_NEIGH_MAX];
REAL_D opp_coord[N_NEIGH_MAX];
U_CHAR el_type;
S_CHAR orientation;
struct {
EL *el;
int opp_vertex;
REAL_D opp_coord;
U_CHAR el_type;
S_CHAR orientation;
} master, mst_neigh;
EL_GEOM_CACHE el_geom_cache;
};
\end{lstlisting}\ev
\end{samepage}
The members yield the following information:
\begin{descr}
\kitem{mesh} A pointer to the current mesh, this information is
always present.
%%
\kitem{coord} \code{coord[i]} is a \code{DIM\_OF\_WORLD} vector
storing the Cartesian coordinates of the \code{i}-th vertex. This
information is only present if the component \code{fill\_flag}
contains the flag \code{FILL\_COORDS}.
%%
\kitem{macro\_el} The current element belongs to the binary tree
located at the macro element \code{macro\_el}. This information is
always present.
%%
\kitem{el} Pointer to the current element. This information is always
present.
%%
\kitem{parent} \code{el} is a child of element \code{parent}. This
information is always present.
\begin{compatibility}
In previous versions \ALBERTA, \code{parent} was just a pointer of
type \code{EL *}, now it is a pointer to the \code{EL\_INFO}
structure of the parent element.
\end{compatibility}
%%
\kitem{fill\_flag} Actually, the bit-wise ``or'' of multiple
fill-flags, indicating which elements are called and which
information should be present (see \secref{S:traverse}) in the
\code{EL\_INFO}-structure. \emph{Note that components of the
\code{EL\_INFO} structure which are not flagged as valid by
\code{fill\_flag} need not be initialized and may contain random
data.}
%%
\kitem{level} level of the current element; the level is zero for
macro elements and the level of the children is (level of the parent
+ 1); the level is always filled by the traversal routines.
%%
\kitem{macro\_wall} \code{macro\_wall[nr]} contains the number of
the wall in the ambient macro-element the wall numbered \code{nr} of
the current element is located at, or $-1$ if that wall is an
interior wall (with respect to the ambient macro element). This
piece of information is only present when \code{fill\_flag} contains
the flag \code{FILL\_MACRO\_WALLS}.
%%
\kitem{wall\_bound} The boundary classification of the walls of the
current element. See also \compatref{CPT:boundary_types}. This piece
of information is only valid if \code{fill\_flag} contains the flag
\code{FILL\_BOUND}. \emph{Note that is not necessary to request
\code{FILL\_BOUND} to access the boundary classification of the
walls of the current element; this is done more efficiently by
requesting \code{FILL\_MACRO\_WALLS} and then calling the function
\code{wall\_bound(el\_info, wall)}.}
\begin{compatibility}
In previous versions of \ALBERTA the \code{EL\_INFO} structure
also optionally contained the boundary classification of
``walls'', but using the names \code{vertex\_bound} for 1d-meshes,
\code{edge\_bound} for 2d meshes and \code{face\_bound} for 3d
meshes. As this was extremely unhandy a new name ``wall'' was
introduced to refer to co-dimension $1$ simplices (the name
``face'' was unluckily already occupied and ``defined'' to refer
to faces of tetrahedra in 3d).
\end{compatibility}
%%
\kitem{vertex\_bound} Boundary classification of the vertices. This
piece of information is only valid if \code{fill\_flag} contains the
flag \code{FILL\_BOUND}.
\begin{compatibility}
This is now a bit-field of type \code{BNDRY\_FLAGS}. See also
\compatref{CPT:boundary_types}.
\end{compatibility}
%%
\kitem{edge\_bound} Boundary classification of the edges ($d>1$).
This piece of information is only valid if \code{fill\_flag}
contains the flag \code{FILL\_BOUND}.
\begin{compatibility}
This is now a bit-field of type \code{BNDRY\_FLAGS}. See also
\compatref{CPT:boundary_types}.
\end{compatibility}
%%
\kitem{active\_projection} If not \nil, a pointer to the projection
function which is used to project the newly created vertex during
refinement.
%%
\kitem{neigh} \code{neigh[i]} pointer to the element opposite the
\code{i}-th local vertex; it is a pointer to \nil if the wall
opposite the \code{i}-th local vertex belongs to the boundary. This
piece of information is only present if \code{fill\_flag} contains
the flag \code{FILL\_NEIGH}.
%%
\kitem{opp\_vertex} \code{opp\_vertex[i]} is undefined if
\code{neigh[i]} is a pointer to \nil; otherwise it is the local
index of the neighbour's vertex opposite the common wall. This
piece of information is only present if \code{fill\_flag} contains
the flag \code{FILL\_NEIGH}.
%%
\kitem{opp\_coord} \code{opp\_coord[i]} coordinates of the
\code{i-th} neighbour's vertex opposite the common wall. This piece
of information is only present if \code{fill\_flag} contains the
flag \code{FILL\_OPP\_COORDS}.
%%
\kitem{el\_type} The element's type (see
Section~\ref{S:refinement_routines}); is filled automatically by the
traversal routines (only 3d).
%%
\kitem{orientation} $\pm 1$: sign of the determinant of the transformation
to the reference element\idx{reference element} with vertices
$(0,0,0)$, $(1,1,1)$, $(1,1,0)$, $(1,0,0)$ (see
Figure~\ref{book:F:standard_elements}).
%%
\kitem{master} If the current element belongs to a co-dimension $1$
trace-mesh (aka ``slave-mesh'', ``sub-mesh'') then this
data-structure contains information concerning the element of the
master-mesh the current element belongs to. This piece of
information is only valid if \code{fill\_flag} contains the flag
\code{FILL\_MASTER\_INFO}.
\begin{descr}
\kitem{el} Always filled with \code{FILL\_MASTER\_INFO}.
%%
\kitem{opp\_vertex} Always filled with \code{FILL\_MASTER\_INFO}.
%%
\kitem{opp\_coord} Only filled if \code{FILL\_COORD} is also set
in \code{fill\_flag}
%%
\kitem{el\_type} Always filled with \code{FILL\_MASTER\_INFO}, if
the master-mesh is 3d.
%%
\kitem{orientation} Always filled with \code{FILL\_MASTER\_INFO}, if
the master-mesh is 3d.
\end{descr}
%%
\kitem{mst\_neigh} Same information as \code{master}, but for
neighbour across the slave element. Only filled if \code{fill\_flag}
contains \code{FILL\_MASTER\_NEIGH}.
%%
\kitem{el\_geom\_cache} A storage area which is used to cache
various geometric quantities of the current element, like the
determinant of the transformation to the reference element, the
normals of the walls of te current element. The data should only be
accessed through the function \code{fill\_el\_geom\_cache(el\_info,
fill\_flags)}, see \secref{S:fill_el_geom_cache}.
\end{descr}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Caching of geometric element quantities}
\label{S:fill_el_geom_cache}
Often it would be useful to share data like the determinant of the
transformation to the reference element or the derivative of that
transformation between pieces of program-code which are separated by
call-hierarchies, or maybe one simply does not want to blow-up the
parameter lists of application provided function hooks. To this aim
there exists a caching mechanism, called \code{EL\_GEOM\_CACHE}, which
should only be accessed and is filled by calls to
\code{fill\_el\_geom\_cache()}. The reader is also referred to the
documentation of \code{fill\_quad\_el\_cache()},
\secref{S:fill_quad_el_cache}, especially in the context of parametric
meshes of higher polynomial order. \exampleref{E:fill_quad_el_cache}
contains a simplistic example for both, \code{fill\_el\_geom\_cache()}
and \code{fill\_quad\_el\_cache()}. The element-cache structure and
the related definitions and proto-types are as follows:
%%
\idx{element geometry!fill_el_geom_cache()@{\code{fill\_el\_geom\_cache()}}}
\idx{element geometry!EL_GEOM_CACHE@{\code{EL\_GEOM\_CACHE}}}
\fdx{fill_el_geom_cache()@{\code{fill\_el\_geom\_cache()}}}
\ddx{EL_GEOM_CACHE@{\code{EL\_GEOM\_CACHE}}}
\bv\begin{lstlisting}[name=EL_GEOM_CACHE,label=T:EL_GEOM_CACHE]
typedef struct el_geom_cache EL_GEOM_CACHE;
struct el_geom_cache
{
EL *current_el;
FLAGS fill_flag;
REAL det;
REAL_BD Lambda;
int orientation[N_WALLS_MAX][2];
int rel_orientation[N_WALLS_MAX];
REAL wall_det[N_WALLS_MAX];
REAL_D wall_normal[N_WALLS_MAX];
};
#define FILL_EL_DET (1 << 0)
#define FILL_EL_LAMBDA (1 << 1)
#define FILL_EL_WALL_SHIFT(wall) (2 + 4*(wall))
#define FILL_EL_WALL_MASK(wall) (0x7 << FILL_EL_WALL_SHIFT(wall))
#define FILL_EL_WALL_DET(wall) (1 << (FILL_EL_WALL_SHIFT(wall)+0))
#define FILL_EL_WALL_NORMAL(wall) (1 << (FILL_EL_WALL_SHIFT(wall)+1))
#define FILL_EL_WALL_ORIENTATION(wall) (1 << (FILL_EL_WALL_SHIFT(wall)+2))
#define FILL_EL_WALL_REL_ORIENTATION(wall) (1 << (FILL_EL_WALL_SHIFT(wall)+3))
#define FILL_EL_WALL_DETS \
(FILL_EL_WALL_DET(0)|FILL_EL_WALL_DET(1)| \
FILL_EL_WALL_DET(2)|FILL_EL_WALL_DET(3))
#define FILL_EL_WALL_NORMALS \
(FILL_EL_WALL_NORMAL(0)|FILL_EL_WALL_NORMAL(1)| \
FILL_EL_WALL_NORMAL(2)|FILL_EL_WALL_NORMAL(3))
#define FILL_EL_WALL_ORIENTATIONS \
(FILL_EL_WALL_ORIENTATION(0)|FILL_EL_WALL_ORIENTATION(1)| \
FILL_EL_WALL_ORIENTATION(2)|FILL_EL_WALL_ORIENTATION(3))
#define FILL_EL_WALL_REL_ORIENTATIONS \
(FILL_EL_WALL_REL_ORIENTATION(0)|FILL_EL_WALL_REL_ORIENTATION(1)| \
FILL_EL_WALL_REL_ORIENTATION(2)|FILL_EL_WALL_REL_ORIENTATION(3))
static inline const EL_GEOM_CACHE *
fill_el_geom_cache(const EL_INFO *el_info, FLAGS fill_flag);
\end{lstlisting}\ev
The members of \code{EL\_GEOM\_CACHE} have the following meaning:
\begin{descr}
\kitem{current\_el} For internal use only.
%%
\kitem{fill\_flag} A bit-mask, bit-wise or of the fill flags
listed above (\ref{T:EL_GEOM_CACHE}).
%%
\kitem{det} The determinant of the transformation to the reference
element. Filled by \code{fill\_el\_geom\_cache(..., FILL\_EL\_DET)}.
This is the cached value of the quantity computed by
\code{el\_det()}, see \secref{S:bary_routines}.
%%
\kitem{Lambda} The derivative of the barycentric coordinates w.r.t.
the Cartesian coordinates. Filled by
\code{fill\_el\_geom\_cache(..., FILL\_EL\_LAMBDA)}.
This is the cached value of the quantity computed by
\code{el\_grd\_lambda()}, see \secref{S:bary_routines}.
%%
\kitem{orientation} An (absolute) orientation of the walls of the
current element and its neighbour. \code{orientation[wall][0]} is
the orientation of the wall of the current element,
\code{orientation[wall][1]} is the orientation of the same wall, but
relative to the neighbour. Filled by
\code{fill\_el\_geom\_cache(..., FILL\_EL\_WALL\_ORIENTATION(wall))}.
These are the cached values of two calls to
\code{wall\_orientation()}, see \secref{S:bary_routines}.
%%
\kitem{rel\_orientation} \code{rel\_orientation[wall]} is the cached
value of \code{wall\_rel\_orientation()}, see
\secref{S:bary_routines}. Filled by \code{fill\_el\_geom\_cache(...,
FILL\_EL\_WALL\_REL\_ORIENTATION(wall))}.
%%
\kitem{wall\_det} The cached return value of
\code{get\_wall\_normal)()}, see \secref{S:bary_routines}. Filled by
\code{fill\_el\_geom\_cache(..., FILL\_EL\_WALL\_DET(wall))}.
%%
\kitem{wall\_det} The cached value of the quantity computed by
\code{get\_wall\_normal)()}, see \secref{S:bary_routines}. Filled by
\code{fill\_el\_geom\_cache(..., FILL\_EL\_WALL\_NORMAL(wall))}.
%%
\end{descr}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The \code{INDEX} macro}%
\label{S:index_macro}%
\idx{element indices}
It is often very helpful --- especially during program development ---
for every element to have a unique global index.
This requires an entry in the element data structure which adds to
the needed computer memory.
On the other hand this additional amount of computer memory may be
a disadvantage in real applications where a big number of elements
is needed, and --- after program development --- element index information
is no longer of interest.
In the debug versions of the \ALBERTA libraries (\code{ALBERTA\_DEBUG==1})
an element index is available. The macro
\mdx{INDEX()@{\code{INDEX()}}}
\bv\begin{lstlisting}[name=INDEX(),label=C:INDEX]
INDEX(el)
\end{lstlisting}\ev
is defined to access element indices independently of the value of
\code{ALBERTA\_DEBUG}. If no indices are available, the macro returns
\code{-1}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Application data on leaf elements}%
\label{S:leaf_data_info}
As mentioned in \secref{book:S:hierarchical_mesh1}, it is often necessary to
provide access to special user data which is needed only on leaf elements.
Error indicators give examples for such data.
Information for leaf elements depends strongly on the application and
so it seems not to be appropriate to define a fixed data type for
storing this information. Thus, we implemented the following general
concept: The user can define his own type for data that should be
present on leaf elements. \ALBERTA only needs the size of memory that
is required to store leaf data. During refinement and coarsening
\ALBERTA automatically allocates and deallocates memory for user data
on leaf elements. Thus, after grid modifications each leaf element
possesses a memory area which is big enough to take leaf data.
To access leaf data we must have for each leaf element a pointer to
the provided memory area. This would need an additional pointer on
leaf elements. To make the element data structure as small as possible
and in order to avoid different element types for leaf and interior
elements we ``hide'' leaf data at the pointer of the second child on
leaf elements:
By definition, a leaf element is an element without children. For a
leaf element the pointers to the first \emph{and} second child are pointers
to \nil, but since we u:se a binary tree the pointer to the second
child must be \nil if the pointer to the first child is a \nil
pointer and vice versa. Thus, only testing the first child will give
correct information whether an element is a leaf element or not, and
we do not have to use the pointer of the second child for this
test. As consequence we can use the pointer of the second child as a
pointer to the allocated area for leaf data and the user can write or
read leaf data via this pointer (using casting to a self-defined data
type defined).
The consequence is that a pointer to the second child is only a
pointer to an element if the pointer to the first child is not a
\nil pointer. Thus testing whether an element is a leaf element
or not must only be done using the pointer to the first child. If no
leaf data is stored on the mesh then the pointer to the second child
is also a \nil pointer for leaf elements.
Finally, the user may supply routines for transforming user data
from parent to children during refinement and for transforming user data
from children to parent during coarsening. If these routines are
not supplied, information stored for the parent or the children respectively
is lost.
Leaf data storage may be initialized only once for any given
mesh. Please note that leaf data is not stored when exporting meshes
to disk (see \secref{S:file_formats}).
The following function initializes leaf data:
\fdx{init_leaf_data()@{\code{init\_leaf\_data()}}}
\bv\begin{lstlisting}[name=init_leaf_data(),label=C:init_leaf_data]
size_t init_leaf_data(MESH *mesh, size_t size,
void (*refine_leaf_data)(EL *parent, EL *child[2]),
void (*coarsen_leaf_data)(EL *parent, EL *child[2]));
\end{lstlisting}\ev
\begin{descr}
\kitem{mesh} pointer to the mesh on which leaf data is to be stored
\kitem{size} size of memory area for storing leaf data;
\ALBERTA may increase the
size of leaf data in order to guarantee an aligned memory access.
\kitem{refine\_leaf\_data} pointer to a function for transformation
of leaf data during refinement; first,
\code{refine\_leaf\_data(parent, child)} transforms leaf data from
the parent to the two children if \code{refine\_leaf\_data} is
not \nil; after that leaf data of the parent is destroyed.
\kitem{coarsen\_leaf\_data} pointer to a function for transformation
of leaf data during coarsening;
first,
\code{coarsen\_leaf\_data(parent, child)} transforms leaf data from
the two children to the parent if \code{refine\_leaf\_data} is
not \nil; after that leaf data the of the children is destroyed.
\end{descr}
%
The following macros for testing leaf elements and accessing leaf data are
provided:
\mdx{IS_LEAF_EL()@{\code{IS\_LEAF\_EL()}}}
\mdx{LEAF_DATA()@{\code{LEAF\_DATA()}}}
\bv\begin{lstlisting}[name={IS_LEAF_DATA(), LEAF_DATA()},label=C:IS_LEAF_DATA]
#define IS_LEAF_EL(el) (!(el)->child[0])
#define LEAF_DATA(el) ((void *)(el)->child[1])
\end{lstlisting}\ev
The first macro \code{IS\_LEAF\_EL(el)} is true for leaf elements
and false for elements inside the binary tree; for leaf elements,
\code{LEAF\_DATA(el)} returns a pointer to leaf data hidden at
the pointer to the second child.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The \code{RC\_LIST\_EL} data structure}%
\label{S:rc_list_el}
For refining and coarsening we need information of the elements at the
refinement and coarsening edge (compare Sections~\ref{book:S:refinement_algorithm}
and \ref{book:S:coarsening_algorithm}). Thus, we have to collect all
elements at this edge. In 1d the patch is built from the current element
only, in 2d we have at most the current element and
its neighbour across this edge, if the edge is not part of the
boundary. In 3d we have to loop around this edge to collect all the
elements. Every element at the edge has at most two neighbours sharing
the same edge. Defining an orientation for this edge, we can define
the {\em right} and {\em left} neighbour in 3d.
For every element at the refinement/coarsening edge we have an entry
in a vector. The elements of this vector build the refinement/coarsening
patch. In 1d the vector has length \code{1}, in 2d length \code{2}, and
in 3d length \code{mesh->max\_no\_edge\_neigh} since this is the maximal
number of elements sharing the same edge in the mesh \code{mesh}.
\ddx{RC_LIST_EL@{\code{RC\_LIST\_EL}}}
\bv\begin{lstlisting}[name=RC_LIST_EL,label=C:RC_LIST_EL]
typedef struct rc_list_el RC_LIST_EL;
struct rc_list_el
{
EL_INFO el_info;
int no;
int flag;
RC_LIST_EL *neigh[2];
int opp_vertex[2];
};
\end{lstlisting}\ev
Information that is provided for every element in this
\code{RC\_LIST\_EL} vector:
\begin{descr}
\kitem{el\_info} information for element corresponding to this
\code{RC\_LIST\_EL} structure. This is not a pointer since \code{EL\_INFO}
structures are often overwritten during mesh traversal.
\kitem{no} this is the \code{no}--th entry in the vector.
\kitem{flag} only used in the coarsening module: \code{flag} is \code{true}
if the coarsening edge of the element is the coarsening edge of
the patch, otherwise \code{flag} is \code{false}.
\kitem{neigh} \code{neigh[0/1]} neighbour of element to the right/left
in the orientation of the edge, or a \nil pointer in the case
of a boundary face (only 3d).
\kitem{opp\_vertex} \code{opp\_vertex[0/1]} the opposite vertex of
\code{neigh[0/1]} (only 3d).
\end{descr}
This \code{RC\_LIST\_EL} vector is one argument to the interpolation
and restriction routines for DOF vectors (see Section~\ref{S:DOF_INTERPOL}).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The \code{MESH} data structure}%
\label{S:mesh_data_structure}
All information about a triangulation is accessible via the \code{MESH}
data structure:
\ddx{MESH@{\code{MESH}}}
\bv\begin{lstlisting}[name=MESH,label=T:MESH]
struct mesh
{
const char *name;
int dim;
int n_vertices;
int n_elements;
int n_hier_elements;
int n_edges; /* Only used for dim > 1 */
int n_faces; /* Only used for dim == 3 */
int max_edge_neigh; /* Only used for dim == 3 */
bool is_periodic; /* true if it is possible to define periodic*/
int per_n_vertices;/* DOF_ADMINS on this mesh. The per_n_... */
int per_n_edges; /* entries count the number of quantities on*/
int per_n_faces; /* the periodic mesh (i.e. n_faces counts */
/* periodic faces twice, n_per_faces not). */
AFF_TRAFO *const*wall_trafos;
int n_wall_trafos;
int n_macro_el;
MACRO_EL *macro_els;
REAL_D bbox[2]; /* bounding box for the mesh */
REAL_D diam; /* bbox[1] - bbox[0] */
PARAMETRIC *parametric;
DOF_ADMIN **dof_admin;
int n_dof_admin;
int n_dof_el; /* sum of all dofs from all admins */
int n_dof[N_NODE_TYPES]; /* sum of vertex/edge/... dofs from
* all admins
*/
int n_node_el; /* number of used nodes on each element */
int node[N_NODE_TYPES]; /* index of first vertex/edge/... node*/
unsigned int cookie; /* changed on each refine/coarsen. Use
* this to check consistency of meshes
* and DOF vectors when reading from
* files.
*/
void *mem_info; /* pointer for administration; don't touch! */
};
\end{lstlisting}\ev
%%
The members yield following information:
\begin{descr}
\kitem{name} string with a textual description for the mesh, or \nil.
Note that \code{name} will be duplicated by calling \code{strdup(3)}
by the \code{GET\_MESH()} call.
%%
\kitem{dim} dimension $d$ of the mesh. May be any number from \code{0} to
\code{DIM\_OF\_WORLD}. Zero dimensional meshes are simply isolated vertices
lacking most of the features of 1d/2d/3d meshes. They were
implemented for completeness.
%%
\kitem{n\_vertices} number of vertices of the mesh.
%%
\kitem{n\_elements} number of leaf elements of the mesh.
%%
\kitem{n\_hier\_elements} number of all elements of the mesh.
%%
\kitem{n\_edges} number of edges of the mesh (2d and 3d).
%%
\kitem{n\_faces} number of faces of the mesh (3d).
%%
\kitem{max\_edge\_neigh} maximal number of elements that share one
edge; used to allocate memory to store pointers to the
neighbour at the refinement/coarsening edge (3d).
%%
\kitem{is\_periodic} a boolean value, set to \code{true} for
periodic meshes, see \secref{S:periodic}.
%%
\kitem{per\_n\_vertices, per\_n\_edges, per\_n\_faces} the
respective quantities, but counted taking the periodic structure
into account, \code{n\_faces}, e.g., counts periodic faces twice,
\code{per\_n\_faces} not.
%%
\kitem{wall\_trafos, n\_wall\_trafos} The geometric face
transformation defining the periodic structure of the mesh, see
\secref{S:periodic}.
%%
\kitem{n\_macro\_el} number of macro elements.
%%
\kitem{macro\_els} pointer to the macro element array.
%%
\kitem{bbox} the bounding box of the mesh.
%%
\kitem{diam} diameter of the mesh in the \code{DIM\_OF\_WORLD} directions.
%%
\kitem{parametric} is a pointer to \nil if the mesh contains no
parametric elements; otherwise it is a pointer to a
\code{PARAMETRIC} structure containing coefficients of the
parameterization and related information; for more information see
\secref{S:parametric_meshes}.
\end{descr}
The last entries are used for the administration of DOFs and are explained
in Section \ref{S:DOFs2} in detail.
\begin{descr}
\kitem{dof\_admin} vector of \code{dof\_admin}s.
\kitem{n\_dof\_admin} number of \code{dof\_admin}s.
\kitem{n\_node\_el} number of nodes on a single element where DOFs are
located; needed for the (de-) allocation of the
\code{dof}-vector on the element.
\kitem{n\_dof\_el} number of all DOFs on a single element.
\kitem{n\_dof} number of DOFs at the different positions \code{VERTEX},
\code{EDGE}, (\code{FACE},) \code{CENTER} on an element:
\begin{descr}
\kitem{n\_dof[VERTEX]} number of DOFs at a vertex; if no DOFs are
associated to the barycenter, then this value is 0.
\kitem{n\_dof[CENTER]} number of DOFs at the barycenter; if no DOFs are
associated to the barycenter, then this value is 0.
\kitem{n\_dof[EDGE]} number of DOFs at an edge; if no DOFs are
associated to edges, then this value is 0 (2d and 3d);
\kitem{n\_dof[FACE]} number of DOFs at a face; if no DOFs are
associated to faces, then this value is 0 (3d);
\end{descr}
\kitem{node} gives the index of the first node at vertex, edge (2d and 3d),
face (3d), and barycenter:
\begin{descr}
\kitem{node[VERTEX]} always has value 0; \code{dof[0],...,dof[N\_VERTICES-1]}
are always DOFs at the vertices, if DOFs are located at vertices.
\kitem{node[CENTER]} \code{dof[node[CENTER]]} are the DOFs at the
barycenter, if DOFs are located at the barycenter.
\kitem{node[EDGE]} \code{dof[node[EDGE]],..., dof[node[EDGE]+N\_EDGES-1]}
are the DOFs at the \code{N\_EDGES} edges, if DOFs are located at edges
(2d and 3d);
\kitem{node[FACE]} \code{dof[node[FACE]],..., dof[node[FACE]+N\_FACES-1]}
are the DOFs at the \code{N\_FACES} faces, if DOFs are located at
faces (3d);
\end{descr}
\end{descr}
The \code{cookie} value is automatically initialized with a random
value if \code{ALBERTA\_DEBUG==0} and with a fixed number for
\code{ALBERTA\_DEBUG==1}. It is incremented on each mesh change
(refinement or coarsening). On writing meshes or finite element
coefficient vectors to disk the current cookie value is also stored. The
purpose is to provide a safety check on reading meshes and vectors; if
the cookies do not match, then \ALBERTA issues a warning message since
no guarantee can be given that coefficient vector and mesh will match.
Finally, the pointer \code{mem\_info} is used for internal memory management
and must not be changed.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Initialization of meshes}%
\label{S:mesh_initialization}%
\idx{initialization of meshes}
It is possible to handle any number of meshes of any dimension $d\leq n$ in
a given simulation. A mesh must be allocated by the following
function or macro
\fdx{check_and_get_mesh()@{\code{check\_and\_get\_mesh()}}}
\fdx{GET_MESH()@{\code{GET\_MESH()}}}
\mdx{GET_MESH()@{\code{GET\_MESH()}}}
\bv\begin{lstlisting}[name=GET_MESH(),label=C:GET_MESH]
check_and_get_mesh(int dim, int dow, int neigh,
const char *version, const char *name,
const MACRO_DATA *macro_data,
NODE_PROJ *(*init_node_proj)(MESH *, MACRO_EL *, int),
AFF_TRAFO *(*init_wall_trafo)(MESH *, MACRO_EL *, int wall));
#define GET_MESH(dim, name, macro_data, init_node_proj, init_wall_trafo) \
check_and_get_mesh((dim), DIM_OF_WORLD, ALBERTA_DEBUG, \
ALBERTA_VERSION, (name), (macro_data), \
(init_node_proj), (init_wall_trafos))
\end{lstlisting}\ev
\paragraph{Descriptions}
\begin{descr}
\kitem{check\_and\_get\_mesh(dim, dow, debug, version, name, macro\_data,}
\kitem{\hspace*{22ex}init\_node\_proj, init\_wall\_trafos)}~\\
Return a
pointer to a filled mesh structure; several consistency checks are
performed. The application should not change any entry in the
returned structure. There is no other possibility to define new
meshes inside \ALBERTA. The arguments \code{dow}, \code{debug} and
\code{version} are checked against the constants in the used
library; if these values are identical, the mesh is allocated,
otherwise an error message is produced and the program stops.
%%
\begin{description}
\item[parameters]\hfill
\begin{description}
\item[\code{dim}] Desired dimension of the mesh
($1\leq\text{\code{dim}}\leq\min\{\text{\code{DIM\_OF\_WOLRD}},\,3\}$).
\item[\code{dow}] Must be \code{DIM\_OF\_WORLD}.
\item[\code{debug}] Must be \code{ALBERTA\_DEBUG}.
\item[\code{version}] Must be \code{ALBERTA\_VERSION}.
\item[\code{name}] A string holding a textual description of mesh
and is duplicated at the member \code{name} of the mesh.
\item[\code{macro\_data}] A pointer to the desired macro
triangulation, see \secref{S:macro_tria} for details.
\item[\code{init\_node\_proj}] Optional, may be \code{NULL}. A
pointer to a function that will perform the initialization of
new vertex projections, see \secref{S:node_projections}.
\item[\code{init\_wall\_trafos}] Optional, may be \code{NULL}. A
pointer to a function which initializes face transformations in
the context of periodic meshes.
\end{description}
\end{description}
\kitem{GET\_MESH(dim, name, macro\_data, init\_node\_proj, init\_wall\_trafos)}~\\
%%
Return a pointer to a filled mesh structure; this macro calls
\code{check\_and\_get\_mesh()} and automatically supplies this
function with the three (missing) arguments; this macro should
always be used for creation of meshes.
\end{descr}
A mesh that is not needed any more can be freed by a call of the
function
\fdx{free_mesh()@{\code{free\_mesh()}}}
\bv\begin{lstlisting}[name=free_mesh(),label=C:free_mesh()]
void free_mesh(MESH *);
\end{lstlisting}\ev
%
Description:
\begin{descr}
\kitem{free\_mesh(mesh)} will de--allocate all memory used
by \code{mesh} (elements, DOFs, etc.), and finally the data
structure \code{mesh} too. Submeshes of this mesh are also freed, see
also \secref{S:submesh_implementation}.
\end{descr}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Projection of new nodes}%
\label{S:node_projections}%
\idx{node projection}
During refinement of simplices \ALBERTA usually places the new nodes
at the midpoint of the refinement edge. Some applications require
meshes having curved boundaries parametrized by a given continuous
function. For these it is possible to automatically project new nodes
on the boundary using this function. As the mesh is refined the curved
interface is successively better approximated.
Figure~\ref{F:node_projection} illustrates some refinements of a
triangle with one edge on the curved boundary. The projections of
refinement edge midpoints (small circles) to the curved boundary are
shown by the black dots.
\begin{figure}[htbp]
\centerline{\includegraphics[scale=0.7]{EPS/param_bound}}
\caption[Refinement at curved boundary]{Refinement at curved boundary:
refinement edge midpoints $\circ$ are projected to the curved
boundary $\bullet$}
\label{F:node_projection}
\end{figure}
\ALBERTA implements this in a very general way. It is possible to not only
project nodes to boundaries, but also to arbitrary interfaces in the interior
of the mesh. It is even possible to project \emph{all} new nodes of the mesh
to a given surface, making it possible to triangulate parametrized embedded
surfaces or curves.
The following type is used to describe node projection functions:
\ddx{NODE_PROJECTION@{\code{NODE\_PROJECTION}}}
\bv\begin{lstlisting}[label=T:NODE_PROJECTION]
typedef struct node_projection NODE_PROJECTION;
struct node_projection
{
void (*func)(REAL_D old_coord, const EL_INFO *eli, const REAL_B lambda);
};
\end{lstlisting}\ev
The component \code{func} must overwrite the given coordinate vector
\code{old\_coord} with the projected coordinates. As an alternative to
world coordinates, the function may use the barycentric coordinates
\code{lambda} describing a position on the element \code{eli}. The result
must always be returned as world coordinates in the vector \code{old\_coord},
however.
The idea is that the user provides a callback function
\code{init\_node\_proj} during mesh initialization. This function
must decide which vertices/edges/faces (for 1d/2d/3d) of which macro
elements are to belong to the parametrized interface. All nodes
belonging to the interface are automatically projected during
refinement. \ALBERTA calls \code{init\_node\_proj} several times for
each macro element and thus builds the \code{projection} entries of the
\code{MACRO\_EL} structures, see \secref{S:macro_element}.
During the allocation of a
mesh with \code{check\_and\_get\_mesh()}, see \secref{S:mesh_initialization},
the user may pass the function pointer
\code{init\_node\_proj}. This function has the following form:
\idx{node projection!init_node_proj()@{\code{init\_node\_proj()}}}
\bv\begin{lstlisting}
NODE_PROJECTION *init_node_proj(MESH *mesh, MACRO_EL *mel, int case);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{mesh} pointer to the mesh
\kitem{mel} pointer to the macro element
\kitem{case} \ALBERTA calls \code{init\_node\_proj} once with
\code{case==0} and additionally for \code{case==1} to
\code{case==N\_NEIGH(mesh->dim)+1} if $\mathtt{dim\in\{2,3\}}$.
If \code{init\_node\_proj} returns a \code{NODE\_PROJECTION} for
\code{case==0}, then all new nodes will be projected. If
\code{init\_node\_proj} returns a \code{NODE\_PROJECTION} for
$\mathtt{case\in\{1,\dots,N\_NEIGH(dim)+1\}}$, $\mathtt{dim\in\{2,3\}}$,
then all new nodes on edge/face \code{case-1} will be projected. This overrides
the \code{case==0} projection, if also set. A \nil value represents no
projection.
\end{descr}
\begin{example}[Triangulation of a unit ball]
\label{Ex:unit_ball}
The following code demonstrates the projection of boundary nodes
to the unit sphere in any dimension.
\idx{node projection!example of node projection}
\bv\begin{lstlisting}
static void ball_proj_func(REAL_D vertex, const EL_INFO *eli,
const REAL_B lambda)
{
REAL norm = NORM_DOW(vertex);
norm = 1.0 / MAX(1.0E-15, norm);
SCAL_DOW(norm, vertex);
return;
}
static NODE_PROJECTION *init_node_proj(MESH *mesh, MACRO_EL *mel, int c)
{
static NODE_PROJECTION ball_proj = {ball_proj_func};
if(c > 0 && !mel->neigh[c-1])
return &ball_proj;
else
return nil;
}
\end{lstlisting}\ev
\end{example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Reading and writing macro triangulations}%
\label{S:macro_tria}%
\label{S:macro_triang}%
\idx{macro triangulation!reading macro triangulations}
\idx{macro triangulation!writing macro triangulations}
Data for macro triangulations can easily be stored in an
\code{ASCII}-file (for binary macro files, see the end of this
section). For the macro triangulation file we use a similar key-data
format like for the parameter initialization (see
Section~\ref{par_files}). A line containing a \code{`:'}-character
defines a key. The key consists of all characters from the start of
line up to the \code{`:'}-char, including spaces. Everything after the
colon potentially contains data, either on the same line or on the
following lines. Data following a \code{`\#'}-character is ignored,
\code{`\#'} is the comment-character. The following template lists all
possible keys with a brief description of the data format. Luckily, an
application does not need to specify all of the key-value pairs in all
cases. A simple example is given further below, see
\exampleref{E:MACRO_UNIT_INTERVAL}, \ref{E:MACRO_UNIT_SQUARE} and
\ref{E:MACRO_UNIT_CUBE} below.
%
\paragraph{Macro-file template}
%
\idx{macro triangulation!macro triangulation file}
\bv\begin{lstlisting}[name=MACRO_FILE_TEMPLATE,label=E:MACRO_FILE_TEMPLATE]
# _This_ is a comment, introduced by a hash mark
DIM: dim
DIM_OF_WORLD: dow
number of vertices: nv
number of elements: ne
vertex coordinates:
# Comments may be mixed with data
# _This_ line and the line above are comments
<DIM_OF_WORLD coordinates of vertex[0]>
...
<DIM_OF_WORLD coordinates of vertex[nv-1]>
element vertices:
<N_VERTICES(dim) indices of vertices of simplex[0]>
...
<N_VERTICES(dim) indices of vertices of simplex[ne-1]>
element boundaries:
<N_NEIGH(dim) boundary descriptions of simplex[0]>
...
<N_NEIGH(dim) boundary descriptions of simplex[ne-1]>
element neighbours:
<N_NEIGH(dim) neighbour indices of simplex[0]>
...
<N_NEIGH(dim) neighbour indices of of simplex[ne-1]>
element type:
<element type of simplex[0]>
...
<element type of simplex[ne-1]>
number of wall transformations: <number of generators>
wall transformations:
<data for first group generator, an affine isometry in projective notation>
...
<data for last group generator, an affine isometry in projective notation>
element wall transformations:
<N_WALLS(dim) wall-transformations for simplex[0]>
...
<N_WALLS(dim) wall-transformations for simplex[ne-1]>
number of wall vertex transformations: <number of transformations>
wall vertex transformations:
<first mapping between periodic walls, identifying vertex indices>
...
<last mapping between periodic walls, identifying vertex indices>
\end{lstlisting}\ev
\paragraph{Key-value descriptions}
Data for elements and vertices are read and stored in vectors for the
macro triangulation. Index information given in the file correspond to
this vector oriented storage of data. Thus, index information must be
in the range \code{0,...,ne-1} for elements and \code{0,...,nv-1} for
vertices. Generally, ordering of data is of little importance except
that the \code{DIM} and \code{DIM\_OF\_WORLD} keys must come first,
and that ``natural'' dependencies must be obeyed: the number of
entities (vertices, elements, etc.) has to be specified before the
data defining those entities, and data attached to entities must be
defined after defining the entities it is attached to (e.g.
neighbourhood relations have to be defined after defining the elements
of the mesh).
\begin{description}
\item[\code{DIM}] Mandatory. The mesh dimension.
%%
\item[\code{DIM\_OF\_WORLD}] Mandatory. Dimension of the ambient
space. The parameter \code{DIM\_OF\_WORLD} must match the libary
value of \code{DIM\_OF\_WORLD}. By these values it is checked
whether the provided data matches the versions of the
\ALBERTA-libraries in use. \ALBERTA supports
$\code{DIM\_OF\_WORLD}>3$ (but only meshes of dimension up to $3$).
\ALBERTA-libraries with higher co-dimension can be selected through
switches for the \code{configure}-script prior to compiling the
\ALBERTA-package.
%%
\item[\code{number of vertices}] Mandatory. Number of vertex
coordinates following the \code{vertex coordinates} keyword. The
number of vertices must be specified prior to defining the
coordinates themselves.
%%
\item[\code{number of elements}] Mandatory. The number of elements of
the macro triangulation. This must be specified before defining any
other data attached to elements, like the mesh connectivity or the
neighbourhood relations.
%%
\item[\code{vertex coordinates}] Mandatory. The coordinates, specified
by tuples of floating point values of dimension
\code{DIM\_OF\_WORLD}.
%%
\item[\code{element vertices}] Mandatory. The mesh connectivity. The
simplices are defined by their vertices, specified as offsets into
the coordinate data defined in the \code{vertex coordinates}
section. Counting starts at $0$, so the first vertex has the number
$0$. The data-line \code{0 3 4}, e.g., would define a triangle
defined by the vertices $0$, $3$ and $4$. Note that the ordering of
vertices defines the refinement edge, which is always located
between the vertices with the local number $0$ and $1$. This
ordering of vertices (and the element type for 3d) determines the
distribution of the refinement edges for the children.
%%
\item[\code{element boundaries}] Optional. For each element one line,
which assigns a number between $0$ and $255$ (respectively $-128$
and $+127$) to each co-dimension 1 sub-simplex of each element. The
\code{element boundaries}-key may be omitted. If this is the case,
each boundary segment is assigned a number of $1$. Note that
interior walls have to be assigned a value of $0$.
In the context of periodic meshes, periodic boundaries can still
carry a classification number. This number is accessible in the
\code{MACRO\_EL}-structure (see \ref{T:MACRO_EL}) and during
non-periodic mesh-traversal.
\begin{compatibility}
\label{CPT:boundary_street_numbers}
If the macro file contains boundary
``types'', then those are treated as mere ``street numbers'' by
the current \ALBERTA version. Previous versions used positive
numbers to indicate that a given boundary segment was subject to
Dirichlet boundary condition and negative numbers were used to
indicate that the respective segment carried natural boundary
conditions.
This was dropped because
\begin{enumerate}
\item the macro-triangulation should carry geometric information
only
\item it imposed too many restrictions, especially for the case
were different components of systems of differential equations
may be subject to different kind of boundary conditions on the
same boundary segment
\end{enumerate}
Therefore the new scheme is now to only provide a classification
of boundary segments by the macro triangulation. The
interpretation of this classification is then left to the
application program.
Vertices (2d) and edges (3d) may in fact belong to boundary
segments with different ``street numbers''. This information is
for example accessible through the function \code{get\_bound()},
see \secref{S:fillgetelvec}. See also \secref{S:boundary}.
The current \ALBERTA versions prefer positive boundary-types, the
\code{BNDRY\_TYPE} data type is in fact an \code{unsigned char} at
the moment. Negative boundary type from ``old'' macro-data files
are interpreted as positive numbers by the usual $2$-complement
arithmetic.
\end{compatibility}
%%
\item[\code{element neighbours}] Optional. Neighbourhood
relationships. This information may be omitted from the
macro-triangulation in which case it is computed by \ALBERTA. This
computation is costly for large triangulations, so if neighbourhood
information is available, it is advisable to include it in the
macro-triangulation if the macro triangulation is a mesh with many
simplices. If given then for each wall of each element the number of
the neighbouring element has to be specified, or $-1$ if there is no
such neighbour.
%%
\item[\code{element type}] Optional. This key is relevant only for 3d.
In 3d, each element carries a ``type'' between $0$ an $2$
(inclusive). This type influences the mesh refinement algorithm, see
\secref{book:S:refinement_algorithm}. If the \code{element type} key is
omitted, then \ALBERTA assigns each macro-element a type of $0$.
%%
\item[\code{number of wall transformations}] Optional. The number of
face transformations which define a periodic structure on the mesh.
See below under \code{wall transformations}.
%%
\item[\code{wall transformations}] Optional. For \ALBERTA, a periodic
mesh is (part of) the fundamental domain of a crystallographic
group. A fundamental domain of such group comes with a dedicated set
of generators of the crystallographic group: the
face-transformations which map the current fundamental domain to its
neighbour across a given face (the notion ``face'' is already
occupied within \ALBERTA, denoting co-dimension $1$ face-simplices
in 3d, so ``wall'' denotes what ``face'' should have been used for:
a co-dimension $1$ face-simplex, separating a simplex from its
direct neighbour).
The group-generators have to be specified in projective notation,
acting on column vectors. For example, a simple translation by an
amount of $2$ in $x_2$-direction in 3d would be specified as
\bv\begin{verbatim}
1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1
\end{verbatim}\ev
\ALBERTA assumes that the group generators are affine isometries,
consequently, the inverses of the generators need not be specified.
It is not necessary to format the matrices as shown above, \ALBERTA
reads as many white-space separated numbers as it needs.
See also \secref{S:periodic}.
%%
\item[\code{element wall transformations}] Optional. The corresponding
information is computed by \ALBERTA when reading the macro-file if
it is omitted. If specified, the data defines for each wall of each
element the index into the array of wall-transformations which maps
the current mesh to its periodic neighbour across the given wall.
Per convention counting starts at $1$, where negative numbers denote
the inverse of the given wall-transformation. A number of $0$
indicates that the specific wall does not carry a face
transformation (this applies to all interior walls as well as
non-periodic parts of the boundary). See also \secref{S:periodic}.
%%
\item[\code{number of wall vertex transformations}] Optional. Number
of combinatoric face transformations. See below \code{wall vertex
transformations}.
%%
\item[\code{wall vertex transformations}] Optional, computed on the
fly if omitted. If specified the data following this key defines
combinatoric face transformation by mapping boundary faces -- given
by the global number of their vertices -- onto other boundary faces.
For instance, to map a 2d boundary face -- an edge -- connecting
vertex $0$ and $1$ onto the boundary edge between the vertices
numbered $6$ and $7$ the following data would have to be specified:
\bv\begin{verbatim}
0 6
1 7
\end{verbatim}\ev
The ordering is important. Above lines implies that vertex $0$ is
identified with vertex number $6$ and vertex number $1$ is
identified with vertex $7$ -- or that the corresponding edges are
identified with the orientation implied by the given ordering of the
vertices. See also \secref{S:periodic}.
\end{description}
\begin{example}[The standard triangulation of the unit interval in $\R^1$]
\label{E:MACRO_UNIT_INTERVAL}
\idx{macro triangulation!example of a macro triangulation in 1d}
\idx{macro triangulation!unit interval in 1d}
The easiest example is the macro triangulation for the interval $(0,1)$
in 1d. We just have one element and two vertices.
%%
\begin{minipage}{0.4\hsize}
\bv\begin{lstlisting}[name=MACRO_UNIT_INTERVAL,label=C:MACRO_UNIT_INTERVAL]
DIM: 1
DIM_OF_WORLD: 1
number of elements: 1
number of vertices: 2
element vertices:
0 1
vertex coordinates:
0.0 0.0
1.0 0.0
\end{lstlisting}\ev
\end{minipage}\hfill
\begin{minipage}{0.5\hsize}
\begin{center}
\includegraphics[scale=1.0]{EPS/macro1d}\\[2mm]
Macro triangulation of the unit interval.
\end{center}
\end{minipage}
\end{example}
\begin{example}[The standard triangulation of the unit square in $\R^2$]
\label{E:MACRO_UNIT_SQUARE}
\idx{macro triangulation!unit square in 2d}
\idx{macro triangulation!example of a macro triangulation in 2d}
Still rather simple is the macro triangulation for the unit square
$(0,1)\times(0,1)$ in 2d. Here, we have two elements and four vertices.
The refinement edge is the diagonal for both elements.
\begin{minipage}{0.4\hsize}
\bv\begin{lstlisting}[name=MACRO_UNIT_SQUARE,label=C:MACRO_UNIT_SQUARE]
DIM: 2
DIM_OF_WORLD: 2
number of elements: 2
number of vertices: 4
element vertices:
2 0 1
0 2 3
vertex coordinates:
0.0 0.0
1.0 0.0
1.0 1.0
0.0 1.0
\end{lstlisting}\ev
\end{minipage}\hfill
\begin{minipage}{0.5\hsize}
\begin{center}
\includegraphics[scale=0.5]{EPS/macro2d}\\[2mm]
Macro triangulation of the unit square.
\end{center}
\end{minipage}
\end{example}
\begin{example}[The standard triangulation of the unit cube in $\R^3$]%
\label{E:MACRO_UNIT_CUBE}
\idx{macro triangulation!example of a macro triangulation in 3d}
\idx{macro triangulation!unit cube in 3d}
More involved is already the macro triangulation for the unit cube
$(0,1)^3$ in 3d. Here, we have eight vertices and six elements, all
meeting at one diagonal; the shown specification of \code{element
vertices} prescribes this diagonal as the refinement edge for all
elements.
\begin{minipage}{0.4\hsize}
\bv\begin{lstlisting}[name=MACRO_UNIT_CUBE,label=C:MACRO_UNIT_CUBE]
DIM: 3
DIM_OF_WORLD: 3
number of vertices: 8
number of elements: 6
vertex coordinates:
0.0 0.0 0.0
1.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 1.0
1.0 1.0 0.0
1.0 1.0 1.0
0.0 1.0 0.0
0.0 1.0 1.0
element vertices:
0 5 4 1
0 5 3 1
0 5 3 2
0 5 4 6
0 5 7 6
0 5 7 2
\end{lstlisting}\ev
\end{minipage}
\hfill
\begin{minipage}{0.5\hsize}
\begin{center}
\includegraphics{EPS/macro3d}\\[2mm]
Macro triangulation of the unit cube.
\end{center}
\end{minipage}
\end{example}
\begin{example}[A triangulation of three quarters of the unit disc]
\idx{macro triangulation!example for three quarters of the unit disc}
Here, we describe a more complex example where we are dealing with a
curved boundary and mixed type boundary condition. Due to the curved
boundary, we have to initialize the projection mechanism when allocating
a mesh as described in \secref{S:node_projections}. The actual projection is
easy to implement, since we only have normalize the coordinates for
nodes belonging to the curved boundary.
We assume that the two straight edges belong to the
Neumann boundary, and the curved boundary is the Dirichlet boundary.
For handling mixed boundary types we have to specify \code{element
boundaries} in the macro triangulation file. Information about
\code{element boundaries} is also used inside the function
\code{init\_node\_proj}.\medskip
\begin{minipage}[b]{0.4\hsize}
\bv\begin{lstlisting}
DIM: 2
DIM_OF_WORLD: 2
number of vertices: 5
number of elements: 3
vertex coordinates:
0.0 0.0
1.0 0.0
0.0 1.0
-1.0 0.0
0.0 -1.0
element vertices:
1 2 0
2 3 0
3 4 0
element boundaries:
0 -1 2
0 0 2
-1 0 2
\end{lstlisting}\ev
\end{minipage}
\hfill
\begin{minipage}[b]{0.5\hsize}
\begin{center}
\includegraphics[scale=0.75]{EPS/macro34}\\[2mm]
Macro triangulation of a 3/4 disc.
\end{center}
\end{minipage}
\medskip
\noindent
The function \code{init\_node\_proj()} to initialize projection of nodes
can be implemented similarly to Example \ref{Ex:unit_ball}. The projection
routine \code{ball\_proj\_func} remains the same.
\idx{node projection!example for three fourths of the unit disc}%
\bv\begin{lstlisting}
static NODE_PROJECTION *init_node_proj(MESH *mesh, MACRO_EL *mel, int c)
{
static NODE_PROJECTION ball_proj = {ball_proj_func};
if(c > 0 && mel->edge_bound[c-1] == 2)
return &ball_proj;
else
return nil;
}
\end{lstlisting}\ev
\end{example}
\subsubsection{Reading macro triangulations from a file}
Reading data of the macro grid from these files can be done by
\fdx{read_macro()@{\code{read\_macro()}}}
\idx{macro triangulation!read_macro()@{\code{read\_macro()}}}
\bv\begin{lstlisting}
MACRO_DATA *read_macro(const char *filename);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{read\_macro(filename)} reads data of the macro triangulation
from the \code{ASCII}-file \code{filename} and returns a pointer to
a filled \code{MACRO\_DATA} structure (see \secref{S:macro_import}).
Using index information from the file, all information concerning
element vertices, neighbour relations can be calculated directly.
During the initialization of the macro triangulation, other entries
like \code{n\_edges}, \code{n\_faces}, and \code{max\_edge\_neigh}
in the mesh data structure are calculated. Please note that
projection of nodes as described in \secref{S:node_projections} is
only possible for new nodes arising during refinement.
\end{descr}
A binary data format allows faster import of a macro triangulation,
especially when the macro triangulation already consists of many
elements. Macro data written previously by binary \code{write\_macro}
routines (see below) can be read in native or machine independent
binary format by the two routines
\fdx{read_macro_bin()@{\code{read\_macro\_bin()}}}
\idx{macro triangulation!read_macro_bin()@{\code{read\_macro\_bin()}}}
\fdx{read_macro_xdr()@{\code{read\_macro\_xdr()}}}
\idx{macro triangulation!read_macro_xdr()@{\code{read\_macro\_xdr()}}}
\bv\begin{lstlisting}
MACRO_DATA *read_macro_bin(const char *filename);
MACRO_DATA *read_macro_xdr(const char *filename);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{read\_macro\_bin(filename)} reads data of the macro
triangulation from the native binary file
\code{filename}; the file \code{filename} was previously generated by the
function \code{write\_macro\_bin()}, see below.
\kitem{read\_macro\_xdr(filename)} reads data of the macro
triangulation from the machine independent binary
file \code{filename}, the file \code{filename} was previously generated by
the function \code{write\_macro\_xdr()}, see below.
\end{descr}
\subsubsection{Dumping macro triangulations to a file}%
\label{S:write_macro}%
\idx{macro triangulation!writing macro triangulations}
The counterpart of functions for reading macro triangulations
are functions for writing macro triangulations to file.
To be more general, it is possible to create a macro triangulation
from the triangulation given by the leaf elements of a mesh.
As mentioned above, it can be faster to use a binary format than the
textual formal for writing and reading macro triangulations with many
elements.
\fdx{write_macro()@{\code{write\_macro()}}}
\idx{macro triangulation!write_macro()@{\code{write\_macro()}}}
\fdx{write_macro_bin()@{\code{write\_macro\_bin()}}}
\idx{macro triangulation!write_macro_bin()@{\code{write\_macro\_bin()}}}
\fdx{write_macro_xdr()@{\code{write\_macro\_xdr()}}}
\idx{macro triangulation!write_macro_xdr()@{\code{write\_macro\_xdr()}}}
\bv\begin{lstlisting}
int write_macro(MESH *, const char *);
int write_macro_bin(MESH *, const char *);
int write_macro_xdr(MESH *, const char *);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{write\_macro(mesh, name)} writes the triangulation given by
the leaf elements of
\code{mesh} as a macro triangulation to the file specified by
\code{name} in the above described format; if the file could
be written, the return value is \code{1}, otherwise an error
message is produced and the return value is \code{0}.
\kitem{write\_macro\_bin(mesh, name)} writes the triangulation given by
the leaf elements of
\code{mesh} as a macro triangulation to the file specified by
\code{name} in native binary format.
\kitem{write\_macro\_xdr(mesh, name)} writes the triangulation given by
the leaf elements of
\code{mesh} as a macro triangulation to the file specified by
\code{name} in machine independent binary format.
\end{descr}
For exporting meshes including the whole hierarchy, see \secref{S:file_formats}
\subsection{Import and export of macro triangulations from/to other formats}%
\label{S:macro_import}%
\idx{macro triangulation!import macro triangulations}%
\idx{macro triangulation!export macro triangulations}
When meshes are created using a simplicial grid generation tool, then
data will usually not be in the \ALBERTA macro triangulation format
described above in Section \ref{S:macro_tria}. In order to simplify
the import of such meshes, an array-based data structure
\code{MACRO\_DATA} is provided, using flat \code{C}-arrays for storing
the data, and indirect index-arrays to bind the data to elements and
define the mesh connectivity. Such a data structure can easily be
filled by an import routine; the filled data structure can then
converted into an \ALBERTA mesh. Of course, another possibility is to
convert the data to \ALBERTA's textual macro-file format as described
in \secref{S:macro_triang} above. The \code{MACRO\_DATA} structure is
defined as
%
\begin{samepage}
\ddx{MACRO_DATA@{\code{MACRO\_DATA}}}
\bv\begin{lstlisting}[name=MACRO_DATA,label=T:MACRO_DATA]
typedef struct macro_data MACRO_DATA;
struct macro_data
{
int dim; /* dimension of the elements */
int n_total_vertices;
int n_macro_elements;
REAL_D *coords; /* Length will be n_total_vertices */
int *mel_vertices; /* mel_vertices[i*N_VERTICES(dim)+j]:
* global index of jth vertex of element i
*/
int *neigh; /* neigh[i*N_NEIGH(dim)+j]:
* neighbour j of element i or -1 at boundaries
*/
int *opp_vertex; /* opp_vertex[i*N_NEIGH(dim)+j]: if set (need not
* be) the local vertex number w.r.t. the neighbour
* of the vertex opposit the separating wall.
*/
BNDRY_TYPE *boundary; /* boundary[i*N_NEIGH(dim)+j]:
* boundary type of jth co-dim 1 facet of element i
*
* WARNING: In 1D the local index corresponds
* to vertex 1 & vice versa! (Consistent with
* macro_data.neigh)
*/
U_CHAR *el_type; /* el_type[i]: type of element i only used in 3d! */
/********* the remainder is only needed for periodic meshes ***********/
int (*wall_vtx_trafos)[N_VERTICES(DIM_MAX-1)][2]; /* the wall trafos */
/* Wall transformations are in terms of mappings between
* vertices. i-th wall trafo: global vertex number
* wall_vtx_trafos[i][v][0] maps to wall_vtx_trafos[i][v][1],
* v loops through the local vertex number of the respective wall.
*/
int n_wall_vtx_trafos;/* for periodic meshes: number of
* combinatorical wall trafos.
*/
int *el_wall_vtx_trafos;
/* el_wall_vtx_trafos[i*N_WALLS(dim)+j] number of the wall
* transformation of the j-th wall for the i-th element. > 0:
* #wall_trafo+1. < 0: inverse of -(#wall_trafo+1)
*/
AFF_TRAFO *wall_trafos; /* The group generators of the space group
* defining the periodic structure of the
* mesh.
*/
int n_wall_trafos;
int *el_wall_trafos; /* N = el_wall_trafos[i*N_NEIGH(dim)+j]:
*
* number of the wall transformation mapping to
* the neighbouring fundamental domain across
* the given wall.
*
* If negative: inverse of generator -N-1
* If positive: generator +N-1
*/
};
\end{lstlisting}\ev
\end{samepage}
The members yield following information:
\begin{descr}
\kitem{dim} dimension of the triangulation.
%%
\kitem{n\_total\_vertices} number of vertices.
%%
\kitem{n\_macro\_elements} number of mesh elements.
%%
\kitem{coords} \code{REAL\_D} array of size
\code{n\_total\_vertices} holding the
point coordinates of all vertices.
%%
\kitem{mel\_vertices} integer array of size \code{n\_macro\_elements
* N\_VERTICES(dim)} storing element index information;
\code{mel\_vertices[i*N\_VERTICES[dim]+j]} is the index of the
\code{j}th vertex of element \code{i}.
%%
\kitem{neigh} integer array of size
\code{n\_macro\_elements*N\_NEIGH(dim)}, where
\code{neigh[i*N\_NEIGH(dim)+j]} is the index of the \code{j}th
neighbour element of element \code{i}, or \code{-1} in case of a
boundary.
%%
\kitem{boundary} \code{S\_CHAR} array of size
\code{n\_macro\_elements*N\_NEIGH(dim)}, where
\code{boundary[i*N\_NEIGH(dim)+j]} is the
boundary type of the \code{j}th vertex/edge/face of element \code{i}
(in 1d/2d/3d). Please note that the index \code{0} corresponds to vertex $1$
and vice versa in 1d, consistent with the numbering used for \code{neigh}.
%%
\kitem{el\_type} a \code{U\_CHAR} vector of size
\code{n\_macro\_elements} holding the element type of each mesh element
(only 3d).
%%
\kitem{wall\_vtx\_trafos, n\_wall\_vtx\_trafos} correspond to the
data specified with the key \code{wall vertex transformations}, see
\secref{S:macro_tria}. This field stores face-transformations in
terms of mappings between vertices. For the $i$-the face
transformation the global vertex number
\code{wall\_vtx\_trafos[i][v][0]} maps to the global vertex number
\code{wall\_vtx\_trafos[i][v][1]}, v loops through the \emph{local}
vertex number of the respective wall.
%%
\kitem{el\_wall\_vtx\_trafos} If
$\code{el\_wall\_vtx\_trafos[i*N\_WALLS(dim)+j]}!=0$ then it is the
number of the face-transformation the $j$-th wall on the for the
$i$-th element is subject to. Negative number indicate that the
inverse of the respective face-transformation is attached to that
wall. Note that one has to subtract $1$ from this value before using
it as index into \code{wall\_vtx\_trafos}, because arrays in
\code{C} are indexed starting with $0$.
%%
\kitem{wall\_trafos, n\_wall\_trafos} The group generators and their
number of the space group defining the periodic structure of the
mesh. See \secref{S:periodic}.
%%
\kitem{el\_wall\_trafos} If $\code{N =
el\_wall\_trafos[i*N\_NEIGH(dim)+j]}!=0$ then $N$ is the number of
the face-transformation mapping the mesh to the neighboring
fundamental domain across the given wall. If $N$ is negative, then
the actual face-transformation is the inverse of the $N$-th
transformation. Note that one has to subtract $1$ from this value
before using it as index into \code{wall\_trafos}, because arrays in
\code{C} are indexed starting with $0$.
\end{descr}
A \code{MACRO\_DATA} structure can be allocated and freed by
\fdx{get_macro_data()@{\code{get\_macro\_data()}}}
\fdx{free_macro_data()@{\code{free\_macro\_data()}}}
\bv\begin{lstlisting}
MACRO_DATA *alloc_macro_data(int dim, int nv, int ne, FLAGS);
void free_macro_data(MACRO_DATA *);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{alloc\_macro\_data(dim, n\_vertices, n\_elements, flags)} allocates a
\code{dim}-dimensional
\code{MACRO\_DATA} structure together with all arrays needed to hold
\code{n\_vertices} vertices and \code{n\_elements} mesh
elements. The \code{coords} and \code{mel\_vertices} arrays are
allocated in any case, while \code{neigh}, \code{boundary} and
\code{el\_type} arrays are allocated only when requested as
indicated by the corresponding flags \code{FILL\_NEIGH},
\code{FILL\_BOUNDARY}, and \code{FILL\_EL\_TYPE} set by a
bitwise \textsf{OR} in \code{flags}.
\kitem{free\_macro\_data(data)} frees all previously allocated storage
for \code{MACRO\_DATA} \code{data} and all the arrays in it.
\end{descr}
Once \code{MACRO\_DATA} structure is filled, it can be
saved to file in the \ALBERTA macro triangulation format, or
it can be directly be converted into a \code{MESH}.
\fdx{macro_data2mesh()@{\code{macro\_data2mesh()}}}
\idx{macro triangulation!macro_data2mesh()@{\code{macro\_data2mesh()}}}
\fdx{write_macro_data()@{\code{write\_macro\_data()}}}
\idx{macro triangulation!write_macro_data()@{\code{write\_macro\_data()}}}
\fdx{write_macro_data_bin()@{\code{write\_macro\_data\_bin()}}}
\idx{macro triangulation!write_macro_data_bin()@{\code{write\_macro\_data\_bin()}}}
\fdx{write_macro_data_xdr()@{\code{write\_macro\_data\_xdr()}}}
\idx{macro triangulation!write_macro_data_xdr()@{\code{write\_macro\_data\_xdr()}}}
\bv\begin{lstlisting}
void macro_data2mesh(MESH *mesh, const MACRO_DATA *data,
NODE_PROJECTION *(*n_proj)(MESH *,MACRO_EL *,int));
int write_macro_data(MACRO_DATA *, const char *);
int write_macro_data_bin(MACRO_DATA *, const char *);
int write_macro_data_xdr(MACRO_DATA *, const char *);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{macro\_data2mesh(mesh, macro\_data, n\_proj)} converts the
triangulation with data given in \code{macro\_data} into a
\code{MESH} structure. It sets most entries in \code{mesh},
allocates macro elements needed, assigns DOFs according to
\code{mesh->n\_dof}, and calculates \code{mesh->diam}. The
coordinates in \code{macro\_data->coords} are copied to a newly
allocated array, thus the entire \code{MACRO\_DATA} structure can
be freed after calling this routine. When not \code{nil}, the
\code{n\_proj} function is used to initialize projection of new nodes.
\kitem{write\_macro\_data(macro\_data, name)} writes the macro
triangulation with data stored in \code{macro\_data} in the \ALBERTA
format described in Section \ref{S:macro_tria} to file \code{name}.
The return value is \code{0} when an error occured and
\code{1} in case the file was written successfully.
\kitem{write\_macro\_data\_bin(macro\_data, name)} writes data of the
macro triangulation stored in \code{macro\_data} in native
binary format to file \code{name}; the return value is \code{0} when
an error occured and \code{1} in case the file was written successfully.
\kitem{write\_macro\_data\_xdr(macro\_data, name)}
writes data of the macro triangulation stored in
\code{macro\_data} in machine independent binary format to file
\code{name}; the return value is \code{0} when an error occured and
\code{1} in case the file was written successfully.
\end{descr}
It is appropriate to check whether a macro triangulation given in a
\code{MACRO\_DATA} structure allows for recursive refinement, by
testing for possible recursion cycles. An automatic correction by
choosing other refinement edges may be done, currently implemented only
in 2d.
%
\fdx{macro_test()@{\code{macro\_test()}}}
\idx{macro triangulation!macro_test()@{\code{macro\_test()}}}
\bv\begin{lstlisting}
void macro_test(MACRO_DATA *, const char *);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{macro\_test(macro\_data, name)} checks the triangulation
given in \code{macro\_data} for potential cycles during recursive
refinement. In the case that such a cycle is detected, the routine
tries to correct this by renumbering element vertices (which is
currently implemented only in 2d) and then writes the new, changed
triangulation using \code{write\_macro\_data()} to a file
\code{name}, when the second parameter is not \code{nil}.
\end{descr}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End:
|