File: nonlin.tex

package info (click to toggle)
alberta 3.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,176 kB
  • sloc: ansic: 135,836; cpp: 6,601; makefile: 2,801; sh: 333; fortran: 180; lisp: 177; xml: 30
file content (1330 lines) | stat: -rw-r--r-- 52,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
\section{Nonlinear reaction--diffusion equation}%
\label{S:nonlin-impl}%
\idx{implementation of model problems!nonlinear reaction--diffusion equation}%
\idx{nonlinear reaction--diffusion equation!implementation}

In this section, we discuss the implementation of a stationary,
nonlinear problem. Due to the nonlinearity, the computation of the
discrete solution is more complex. The solver for the nonlinear
reaction--diffusion equation and the solver for Poisson equation,
described in Section~\ref{S:poisson-impl}, thus mainly differ in the
routines \code{build()} and \code{solve()}.

Here we describe the solution by a Newton method, which involves the
assemblage and solution of a linear system in each iteration. Hence,
we do not split the assemble and solve routines in \code{build()} and
\code{solve()} as in the solver for the Poisson equation (compare
Sections~\ref{S:ellipt_build} and \ref{S:ellipt_solve}), but only set
Dirichlet boundary values for the initial guess in \code{build()} and
solve the nonlinear equation (including the assemblage of linearized
systems) in \code{solve()}.  The actual solution process is
implemented by several subroutines in the separate file
\code{nlsolve.c}, see Sections~\ref{S:nonlin_build} and
\ref{S:nonlin_solve}.

Additionally we describe a simple way to handle different problem data easily,
see Sections \ref{S:nonlin_org} and \ref{S:nonlin_data}.
\medskip

We consider the following nonlinear reaction--diffusion equation:
\begin{subequations}\label{E:reac-diff}
\begin{alignat}{2}
  -k \Delta u + \sigma \, u^4  &= f + \sigma \,u_{ext}^4&
   \qquad &\mbox{in }\Omega \subset \R^d, \\
  u &= g  & &\mbox{on }\partial\Omega.
\end{alignat}
\end{subequations}
For $\Omega\subset \R^2$, this equation models the heat transport in a thin
plate $\Omega$ which radiates heat and is heated by an external heat source
$f$. Here, $k$ is the constant heat conductivity, $\sigma$ the
Stefan--Boltzmann constant, $g$ the temperature at the edges of the plate and
$u_{ext}$ the temperature of the surrounding space (absolute temperature in
${}^\circ\!K$).

The solver is applied to following data:
\begin{itemize}
\item[$\bullet$]
For testing the solver we again use the `exponential peak'
\[
   u(x) = e^{-10\,|x|^2}, \qquad x \in \Omega = (-1,1)^d,\, k=1,\,
   \sigma=1,\,   u_{ext} = 0.
\]
\item[$\bullet$] In general (due to the nonlinearity), the problem is
  not uniquely solvable; depending on the initial guess for
  the nonlinear solver at least two discrete solutions can be obtained
  by using data
\[
 \Omega = (0,1)^d,\, k=1,\,\sigma = 1,\, f\equiv 1,\, g\equiv 0,
\,u_{ext} = 0.
\]
and the interpolant of 
\[
  u_0(x) = 4^d\,U_0 \prod_{i=1}^{d} x_i (1 - x_i)
 \qquad \mbox{with } U_0 \in [-5.0, 1.0].
\]
as initial guess for the discrete solution on the coarsest grid.
\item[$\bullet$]
The last application now addresses a physical problem in 2d
with following data:
\begin{align*}
\Omega = (-1,1)^2,\, k=2,\,\sigma = 5.67\mbox{e-8},
\, g\equiv 300,\, u_{ext}= 273,\,
  f(x) =  
    \begin{cases}
      150, & \mbox{if } x \in (-\frac12,\frac12)^2,\\
        0, & \mbox{otherwise.}
    \end{cases}
\end{align*}
\end{itemize}

\subsection{Program organization and header file}\label{S:nonlin_org}

The implementation is split into three source files:
\begin{descr}
\kitem{nonlin.c} main program with all subroutines for the adaptive procedure;
                 initializes DOFs, leaf data and problem dependent data in 
                 \code{main()}
                 and the \code{solve()} routine calls the nonlinear solver;
\kitem{nlprob.c} definition of problem dependent data;
\kitem{nlsolve.c} implementation of the nonlinear solver.
\end{descr}
Data structures used in all source files, and prototypes of functions
are defined in the header file \code{nonlin.h}, which includes the
\code{alberta.h} header file on the first line. This file is included
by all three source files.
\bv\begin{verbatim}
typedef struct prob_data PROB_DATA;
struct prob_data
{
  MACRO_DATA   *data;
  REAL          k, sigma;

  REAL        (*g)(const REAL_D x);
  REAL        (*f)(const REAL_D x);

  REAL        (*u0)(const REAL_D x);

  REAL        (*u)(const REAL_D x);
  const REAL *(*grd_u)(const REAL_D x, REAL_D input);
};

/*--- file nlprob.c --------------------------------------------------------*/
const PROB_DATA *init_problem(MESH *mesh);

/*--- file nlsolve.c -------------------------------------------------------*/
int nlsolve(DOF_REAL_VEC *, REAL, REAL, REAL (*)(const REAL_D));
\end{verbatim}\ev
The data structure \code{PROB\_DATA} yields following information:
\begin{descr}
\kitem{data} pointer to a macro triangulation object;
\kitem{k} diffusion coefficient (constant heat conductivity);
\kitem{sigma} reaction coefficient (Stefan--Boltzmann constant);
\kitem{g} pointer to a function for evaluating boundary values;
\kitem{f} pointer to a function for evaluating the right-hand side
          ($f$ + $\sigma\,u_{ext}^4$);
\kitem{u0} pointer to a function for evaluating an initial guess for the
           discrete solution on the macro triangulation, if not \nil;
\kitem{u} pointer to a function for evaluating the true solution, if not \nil
          (only for test purpose); 
\kitem{grd\_u} pointer to a function for evaluating the gradient of the 
          true solution, if not \nil (only for test purpose).
\end{descr}

The function \code{init\_problem()} initializes problem data, like
boundary values, right hand side, etc. which is stored in a
\code{PROB\_DATA} structure and reads data of the macro triangulation
for the actual problem.  The function \code{nlsolve()} implements the
nonlinear solver by a Newton method including the assemblage and
solution of the linearized sub-problems.

\subsection{Global variables}
In the main source file for the nonlinear solver \code{nonlin.c}
we use the following global variables:
\bv\begin{verbatim}
#include "nonlin.h"

#include "alberta-demo.h"          /* proto-types for support functions */

static bool do_graphics = true;    /* global graphics switch          */

static const FE_SPACE  *fe_space;  /* initialized by init_dof_admin() */
static DOF_REAL_VEC    *u_h;       /* initialized by build()          */
static const PROB_DATA *prob_data; /* initialized by main()           */
static BNDRY_FLAGS dirichlet_mask; /* bit-mask for Dirichlet segments */
\end{verbatim}\ev
As in the solver for the linear Poisson equation, we have a pointer to
the used \code{fe\_space} and the discrete solution \code{u\_h}.  In
this file, we do not need a pointer to a \code{DOF\_MATRIX} for
storing the system matrix and a pointer to a \code{DOF\_REAL\_VEC} for
storing the right hand side. The system matrix and right hand side are
handled by the nonlinear solver \code{nlsolve()}, implemented in
\code{nlsolve.c}. Data about the problem is handled via the
\code{prob\_data} pointer. The variable \code{dirichlet\_mask} marks
those segments on which Dirichlet boundary conditions are imposed, see
\secref{S:boundary}. It is initialized by the \code{main()} function.

\subsection{The main program for the nonlinear reaction--diffusion equation}%
\label{S:nonlin_main}

The main program is very similar to the main program of the Poisson
problem described in Section~\ref{S:ellipt_main}. 

After initializing the access to the parameter file and processing
command-line parameters (see \secref{S:parse_parameters}), the mesh
with the used leaf data is initialized, problem dependent data,
including the macro triangulation, are initialized by
\code{init\_problem(mesh)} (see Section~\ref{S:nonlin_data}), a finite
element space is allocated, the structure for the adaptive method is
filled, and finally the adaptive method is started.
%%
\bv\begin{verbatim} int main(int argc, char **argv)
 { FUNCNAME("main"); MESH *mesh; const BAS_FCTS *lagrange; ADAPT_STAT
 *adapt; int dim, degree = 1, n_refine;

  /*****************************************************************************
   * first of all, initialize the access to parameters of the init file
   ****************************************************************************/
  parse_parameters(argc, argv, "INIT/nonlin.dat");

  GET_PARAMETER(1, "global refinements", "%d", &n_refine);
  GET_PARAMETER(1, "polynomial degree", "%d", &degree);
  GET_PARAMETER(1, "mesh dimension", "%d", &dim);
  GET_PARAMETER(1, "online graphics", "%d", &do_graphics);

  BNDRY_FLAGS_ALL(dirichlet_mask); /* Only Dirichlet b.c. supported here */
  /*****************************************************************************
   * init problem dependent data and read macro triangulation
   ****************************************************************************/

  prob_data = init_problem();

  /*****************************************************************************
   *  get a mesh with DOFs and leaf data                               
   ****************************************************************************/

  mesh = GET_MESH(dim,"Nonlinear problem mesh", prob_data->data, NULL, NULL);

  free_macro_data(prob_data->data);

  init_leaf_data(mesh, sizeof(LEAF_DAT),
		 NULL /* refine_leaf_data() */,
		 NULL /* coarsen_leaf_data() */);

  lagrange = get_lagrange(mesh->dim, degree);
  TEST_EXIT(lagrange, "no lagrange BAS_FCTS\n");

  fe_space = get_fe_space(mesh, lagrange->name, lagrange, 1, ADM_FLAGS_DFLT);

  global_refine(mesh, n_refine*mesh->dim, FILL_NOTHING);

  /*****************************************************************************
   *  init adapt structure and start adaptive method
   ****************************************************************************/
  adapt = get_adapt_stat(dim, "nonlin", "adapt", 1, NULL);
  adapt->estimate = estimate;
  adapt->get_el_est = get_el_est;
  adapt->build_after_coarsen = build;
  adapt->solve = solve;

  adapt_method_stat(mesh, adapt);

  WAIT_REALLY;

  return 0;
}
\end{verbatim}\ev

\subsection{Initialization of leaf data}%
\label{S:nonlin_dofs_leaf}

The functions for initializing leaf data (\code{init\_leaf\_data()}),
and for accessing leaf data (\code{rw\_el\_est()},
\code{get\_el\_est()}) are exactly the same as in the solver for the
linear Poisson equation, compare \secref{S:ellipt_leaf_data}.

\subsection{The build routine}%
\label{S:nonlin_build}

As mentioned above, inside the build routine we only access one vector
for storing the discrete solution. On the coarsest grid, the
discrete solution is initialized with zeros, or by interpolating
the function \code{prob\_data->u0}, which implements an initial 
guess for the discrete solution. On a refined grid we do not
initialize the discrete solution again. Here, we use the discrete
solution from the previous step, which is interpolated during
mesh modifications, as an initial guess.

In each adaptive cycle, Dirichlet boundary values are set for
the discrete solution. This ensures $u_0 \in g_h + \Xc_h$ for
the initial guess of the Newton method.
\bv\begin{verbatim}
static void build(MESH *mesh, U_CHAR flag)
{
  FUNCNAME("build");

  dof_compress(mesh);
  MSG("%d DOFs for %s\n", fe_space->admin->size_used, fe_space->name);

  if (!u_h)                 /*  access and initialize discrete solution    */
  {
    u_h    = get_dof_real_vec("u_h", fe_space);
    u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
    u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
    if (prob_data->u0)
      interpol(prob_data->u0, u_h);
    else
      dof_set(0.0, u_h);
  }

  /* set boundary values */
  dirichlet_bound(u_h, NULL, NULL, dirichlet_mask, prob_data->g);

  return;
}
\end{verbatim}\ev

\subsection{The solve routine}%
\label{S:nonlin_solve}

The \code{solve()} routine solves the nonlinear equation by calling
the function \code{nlsolve()} which is implemented in \code{nlsolve.c}
and described below in \secref{S:nonlin_solver}. 
After solving the discrete problem, the 
new discrete solution and true error is displayed via the 
\code{graphics()} routine. The true error can be computed only for
the first application, where the true solution is known
(\code{prob\_data->u()} and \code{prob\_data->grd\_u()} are not \nil).
\bv\begin{verbatim}
static void solve(MESH *mesh)
{
  nlsolve(u_h, prob_data->k, prob_data->sigma, prob_data->f, dirichlet_mask);

  if (do_graphics) {
    graphics(mesh, u_h, NULL, prob_data->u, HUGE_VAL /* time */);
  }

  return;
}
\end{verbatim}\ev

\subsection{The estimator for the nonlinear problem}%
\label{S:nonlin_est}

In comparison to the Poisson program, the function \code{r()} which implements
the lower order term in the element residual changes due to the term $\sigma
u^4$ in the differential operator, compare \secref{S:ellipt_est}.  The right
hand side $f + \sigma u_{ext}^4$ is already implemented in the function
\code{prob\_data->f()}.

In the function \code{estimate()} we have to initialize the diagonal
of \code{A} with the heat conductivity \code{prob\_data->k} and for
the function \code{r()} we need the values of $u_h$ at the quadrature
node, thus \code{r\_flag = INIT\_UH} is set. The initialization of
parameters for the estimator is the same as in
\secref{S:ellipt_estimate}. Finally, the error indicator is displayed
by \code{graphics()}.

\bv\begin{verbatim}
static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq, REAL uh_iq,
              const REAL_D grd_uh_iq)
{
  REAL_D      x;
  REAL        uhx2 = SQR(uh_iq);

  coord_to_world(el_info, quad->lambda[iq], x);
  return(prob_data->sigma*uhx2*uhx2 - (*prob_data->f)(x));
}

#define EOC(e,eo) log(eo/MAX(e,1.0e-15))/M_LN2

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)
{
  FUNCNAME("estimate");
  static int     degree, norm = -1;
  static REAL    C[3] = {1.0, 1.0, 0.0};
  static REAL    est, est_old = -1.0, err = -1.0, err_old = -1.0;
  static REAL    r_flag = INIT_UH;
  REAL_DD        A = {{0.0}};
  int            n;

  for (n = 0; n < DIM_OF_WORLD; n++)
    A[n][n] = prob_data->k;  /* set diagonal of A; other elements are zero  */

  if (norm < 0)
  {
    norm = H1_NORM;
    GET_PARAMETER(1, "error norm", "%d", &norm);
    GET_PARAMETER(1, "estimator C0", "%f", C);
    GET_PARAMETER(1, "estimator C1", "%f", C+1);
    GET_PARAMETER(1, "estimator C2", "%f", C+2);
  }
  degree = 2*u_h->fe_space->bas_fcts->degree;
  est = ellipt_est(u_h, adapt, rw_el_est, NULL, degree, norm, C,
                   (const REAL_D *) A, r, r_flag);

  MSG("estimate   = %.8le", est);
  if (est_old >= 0)
    print_msg(", EOC: %.2lf\n", EOC(est,est_old));
  else
    print_msg("\n");
  est_old = est;

  if (norm == L2_NORM  &&  prob_data->u)
    err = L2_err(prob_data->u, u_h, NULL, 0, NULL, NULL);
  else if (norm == H1_NORM  &&  prob_data->grd_u)
    err = H1_err(prob_data->grd_u, u_h, NULL, 0, NULL, NULL);

  if (err >= 0)
  {
    MSG("||u-uh||%s = %.8le", norm == L2_NORM ? "L2" : "H1", err);
    if (err_old >= 0)
      print_msg(", EOC: %.2lf\n", EOC(err,err_old));
    else
      print_msg("\n");
    err_old = err;
    MSG("||u-uh||%s/estimate = %.2lf\n", norm == L2_NORM ? "L2" : "H1",
        err/MAX(est,1.e-15));
  }
  if (do_graphics) {
    graphics(mesh, NULL, get_el_est, NULL, HUGE_VAL /* time */);
  }

  return adapt->err_sum;
}
\end{verbatim}\ev

\subsection{Initialization of problem dependent data}%
\label{S:nonlin_data}

The file \code{nlprob.c} contains all problem dependent data. On the
first line, \code{nonlin.h} is included and then two variables for
storing the values of the heat conductivity and the Stefan --Boltzmann
constant are declared. These values  are used by several functions:
\bv\begin{verbatim}
#include "nonlin.h"
static REAL  k = 1.0, sigma = 1.0;
\end{verbatim}\ev

The following functions are used in the first example for testing the
nonlinear solver (\code{problem number: 0}):
\bv\begin{verbatim}
static REAL u_0(const REAL_D x)
{
  REAL   x2 = SCP_DOW(x,x);
  return(exp(-10.0*x2));
}

static const REAL *grd_u_0(const REAL_D x, REAL_D input)
{
  static REAL_D buffer = {};
  REAL         *grd = input ? input : buffer;
  REAL          ux = exp(-10.0*SCP_DOW(x,x));
  int           n;

  for (n = 0;  n < DIM_OF_WORLD; n++)
    grd[n] = -20.0*x[n]*ux;

  return(grd);
}

static REAL f_0(const REAL_D x)
{
  REAL  r2 = SCP_DOW(x,x), ux  = exp(-10.0*r2), ux4 = ux*ux*ux*ux;
  return(sigma*ux4 - k*(400.0*r2 - 20.0*DIM_OF_WORLD)*ux);
}
\end{verbatim}\ev

For the computation of a stable and an unstable (but non-physical)
solution, depending on the initial choice of the discrete solution, the
following functions are used, which also use a global variable
\code{U0}.  Such an unstable solution in 3d is shown in
Figure~\ref{F:nl-sol-grid3d}.  
Data is given as follows (\code{problem number: 1}):
\bv\begin{verbatim}
static REAL U0 = 0.0;

static REAL g_1(const REAL_D x)
{
#if DIM_OF_WORLD == 1
  return(4.0*U0*x[0]*(1.0-x[0]));
#endif
#if DIM_OF_WORLD == 2
  return(16.0*U0*x[0]*(1.0-x[0])*x[1]*(1.0-x[1]));
#endif
#if DIM_OF_WORLD == 3
  return(64.0*U0*x[0]*(1.0-x[0])*x[1]*(1.0-x[1])*x[2]*(1.0-x[2]));
#endif
}

static REAL f_1(const REAL_D x)
{
  return(1.0);
}
\end{verbatim}\ev

\begin{figure}[htbp]
\begin{center}
\includegraphics[width=0.48\hsize]{EPS/nl-sol3d}\hfill%
\includegraphics[width=0.48\hsize]{EPS/nl-grid3d}
\end{center}
\caption[Graph of the unstable solution, nonlinear reaction-diffusion
problem]{Graph of the unstable solution with corresponding mesh of the
  nonlinear reaction-diffusion problem in 3d on the clipping plane
  $z=0.5$.  The pictures were produced by the gltools.}
\label{F:nl-sol-grid3d} 
\end{figure}

The last example needs functions for boundary data and right hand side
and variables for the temperature at the edges, and $\sigma\,u_{ext}^4$.
A solution to this problem is depicted in Figure~\ref{F:nl-sol-grid2d}
and problem data is (\code{problem number: 2}):
\bv\begin{verbatim}
static REAL g2 = 300.0, sigma_uext4 = 0.0;
static REAL g_2(const REAL_D x)
{
  return(g2);
}

static REAL f_2(const REAL_D x)
{
  if (x[0] >= -0.25  &&  x[0] <= 0.25  &&  x[1] >= -0.25  &&  x[1] <= 0.25)
    return(150.0 + sigma_uext4);
  else
    return(sigma_uext4);
}
\end{verbatim}\ev
\begin{figure}[htbp]
\begin{center}
\includegraphics[width=0.48\hsize]{EPS/nl-sol2d}\hfill%
\includegraphics[width=0.48\hsize]{EPS/nl-grid2d}
\end{center}
\caption[Graph of the physical solution, nonlinear
reaction-diffusion problem]{Graph of the solution to the physical
  problem with corresponding mesh of the nonlinear reaction-diffusion
  problem in 2d. The pictures were produced by the gltools.}
\label{F:nl-sol-grid2d} \end{figure}

Depending on the chosen problem via the parameter \code{problem
number}, the function \code{init\_problem()} initializes the entries
of a \code{PROB\_DATA} structure, adjusts the corresponding function
pointers, reads the macro triangulation, and returns a pointer to the
filled \code{PROB\_DATA} structure. Information stored in
\code{PROB\_DATA} is then used in the \code{build()} and the
\code{nlsolve()} routines.
\bv\begin{verbatim}
const PROB_DATA *init_problem(MESH *mesh)
{
  FUNCNAME("init_problem");
  static PROB_DATA prob_data;
  int              pn = 2;

  GET_PARAMETER(1, "problem number", "%d", &pn);
  switch (pn)
  {
  case 0:   /*---  problem with known true solution  -----------------------*/
    k = 1.0;
    sigma = 1.0;

    prob_data.g = u_0;
    prob_data.f = f_0;

    prob_data.u = u_0;
    prob_data.grd_u = grd_u_0;

    prob_data.data = read_macro("Macro/macro-big.amc");
    break;
  case 1:   /*---  problem for computing a stable and an unstable sol.  ----*/
    k = 1.0;
    sigma = 1.0;

    prob_data.g = g_1;
    prob_data.f = f_1;

    prob_data.u0 = g_1;
    GET_PARAMETER(1, "U0", "%f", &U0);

    prob_data.data = read_macro("Macro/macro.amc");
    break;
  case 2:   /*---  physical problem  ---------------------------------------*/
    k = 2.0;
    sigma = 5.67e-8;
    sigma_uext4 = sigma*273*273*273*273;

    prob_data.g = g_2;
    prob_data.f = f_2;
    prob_data.data = read_macro("Macro/macro-big.amc");
    break;
  default:
    ERROR_EXIT("no problem defined with problem no. %d\n", pn);
  }
  prob_data.k = k;
  prob_data.sigma = sigma;

  return &prob_data;
}
\end{verbatim}\ev

\subsection{The parameter file for the nonlinear reaction--diffusion equation}%
\label{S:nonlin_param}

The following parameter file \code{INIT/nonlin.dat} is read by \code{main()} 
for 2d.
\bv\begin{verbatim}
mesh dimension:       2
problem number:       2
global refinements:   1
polynomial degree:    2

online graphics:      false

U0:     -5.0          % height of initial guess for Problem 1

% graphic windows: solution, estimate, mesh, and error if size > 0
graphic windows:         500 500 0 0
% for gltools graphics you can specify the range for the values of
% discrete solution for displaying:  min max
% automatical scaling by display routine if min >= max
gltools range:  1.0 0.0

newton tolerance: 1.e-6     % tolerance for Newton
newton max. iter: 50        % maximal number of iterations of Newton
newton info:      6         % information level of Newton
newton restart:   10        % number of iterations for step size control

linear solver max iteration:  1000
linear solver restart:        10  %  only used for GMRES
linear solver tolerance:      1.e-8
linear solver info:           0   
linear solver precon:         2   % 0: no precon 1: diag precon
                                  % 2: HB precon 3: BPX precon

error norm:           1   % 1: H1_NORM, 2: L2_NORM
estimator C0:         0.1 % constant of element residual
estimator C1:         0.1 % constant of jump residual
estimator C2:         0.0 % constant of coarsening estimate

adapt->strategy:        2   % 0: no adaption 1: GR 2: MS 3: ES 4:GERS
adapt->tolerance:       1.e-2
adapt->MS_gamma:        0.5
adapt->max_iteration:   15
adapt->info:            4

WAIT: 1
\end{verbatim}\ev

Besides the parameters for the Newton solver and the height of the
initial guess \code{U0} in Problem 1, the file is very similar to the 
parameter file \code{ellipt.dat} for the Poisson problem,
compare Section~\ref{S:ellipt_par}. As mentioned above, additional
parameters may be defined or overwritten by command line
arguments, see Section~\ref{S:nonlin_main}.


\subsection{Implementation of the nonlinear solver}%
\label{S:nonlin_solver}

In this section, we now describe the solution of the nonlinear problem
which differs most from the solver for the Poisson equation.  It is
the last module missing for the adaptive solver.  We use the abstract
Newton methods of Section~\ref{S:nls} for solving
\[
u_h \in g_h + \Xc_h: \qquad F(u_h) = 0 \qquad \mbox{in } \Xc_h^*,
\]
where $g_h \in X_h$ is an approximation to boundary data $g$.  Using
the classical Newton method, we start with an initial guess $u_0\in
g_h+\Xc_h$, where Dirichlet boundary values are set in the
\code{build()} routine (compare Section~\ref{S:nonlin_build}).  For $m
\geq 0$ we compute
\[
d_m \in \Xc_h: \qquad DF(u_m) d_m = F(u_m) \qquad \mbox{in } \Xc_h^*
\]
and set
\[
u_{m+1} = u_m - d_m
\]
until some suitable norm $\|d_m\|$ or $\|F(u_{m+1})\|$ is sufficiently
small. Since the correction $d_m$ satisfies $d_m\in\Xc_h$, all Newton
iterates $u_m$ satisfy $u_m \in g_h+\Xc_h$, $m \geq 0$.
Newton methods with step size control solve similar defect equations and
perform similar update steps, compare \secref{S:nls}.

For $v\in g_h+\Xc_h$ the functional $F(v)\in\Xc_h^*$ 
of the nonlinear reaction--diffusion equation is defined by
\begin{equation}\label{E:F(v)}
\ldual{F(v)}{\varphi_j}{\Xc_h^* \times \Xc_h} =
 \int_\Omega k \nabla \varphi_j \nabla v  + \sigma\, \varphi_j\, v^4\,dx-
 \int_\Omega (f  + u_{ext}^4) \varphi_j \,dx
\qquad \mbox{for all } \varphi_j \in \Xc_h,
\end{equation}
and the Frechet derivative $DF(v)$ of $F$ is given by
\begin{equation}\label{E:DF(v)}
\ldual{DF(v)\,\varphi_i}{\varphi_j}{\Xc_h^* \times \Xc_h} =
 \int_\Omega k \nabla \varphi_j \nabla \varphi_i + 
  4 \sigma\, v^3\, \varphi_j\, \varphi_i \,dx 
\qquad \mbox{for all } \varphi_i,\, \varphi_j\in \Xc_h.
\end{equation}

The Newton solvers need a function for assembling the right hand side
vector of the discrete system \mathref{E:F(v)}, and the system matrix
of the linearized equation \mathref{E:DF(v)} for some given $v$ in
$X_h$. The system matrix is always symmetric. It is positive definite,
if $v \geq 0$, and is then solved by the conjugate gradient method.
For $v\not\geq 0$ BiCGStab is used. We choose the $H^1$ semi--norm
as problem dependent norm $\|.\|$.

\subsubsection{Problem dependent data structures for assembling and solving}

Similar to the assemblage of the system matrix for the Poisson problem,
we define a data structure \code{struct op\_info} in order to
pass information to the routines which describe the differential operator.
In the assembling of the linearized system around a given 
finite element function $v$ we additionally need the 
diffusion coefficient $k$ and reaction coefficient $\sigma$.
In general, $v$ is not constant on the elements, thus we have
to compute the zero order term by numerical quadrature on each
element. For this we need access to the used quadrature for this
term, and a vector storing the values of $v$ for all quadrature nodes.
\bv\begin{verbatim}
struct op_info
{
  REAL_BD  Lambda;          /*  the gradient of the barycentric coordinates */
  REAL    det;              /*  |det D F_S|                                 */

  REAL    k, sigma;         /*  diffusion and reaction coefficient          */

  const QUAD_FAST *quad_fast;  /*  quad_fast for the zero order term        */
  const REAL      *v_qp;       /*  v at all quadrature nodes of quad_fast   */
};
\end{verbatim}\ev

The general Newton solvers pass data about the actual problem by 
\code{void} pointers to the problem dependent routines. Information that
is used by these routines are collected in the data structure
\code{NEWTON\_DATA}
\bv\begin{verbatim}
typedef struct newton_data NEWTON_DATA;
struct newton_data
{
  const FE_SPACE   *fe_space;     /* used finite element space              */
  BNDRY_FLAGS      dirichlet_mask;

  REAL       k;                   /* diffusion coefficient                  */
  REAL       sigma;               /* reaction coefficient                   */
  REAL       (*f)(const REAL_D);  /* for evaluation f + sigma u_ext^4       */

  DOF_MATRIX *DF;                 /* pointer to system matrix               */

/*---  parameters for the linear solver  -----------------------------------*/
  OEM_SOLVER solver;              /* used solver: CG (v >= 0) else BiCGStab */
  REAL       tolerance;
  REAL	     ssor_omega;
  int        max_iter;
  int	     ssor_iter;
  int        ilu_k;
  int        restart;
  int        info;
  OEM_PRECON icon;
  const PRECON *precon;
};
\end{verbatim}\ev
All entries of this structure besides \code{solver} are initialized
in the function \code{nlsolve()}. The entry \code{solver} is set
every time the linearized matrix is assembled.

\subsubsection{The assembling routine}

\newcommand{\Nb}{N\vphantom{\Nc}}
Denote by $\{\varphi_0,\dots,\varphi_{\Nc}\}$ the basis of $\Xc_h$, by
$\{\varphi_0,\dots,\varphi_{\Nb}\}$ the basis of $X_h$. Let $\boldsymbol{A}$
be the stiffness matrix, i.e.
\[
A_{ij} = 
\begin{cases}
\int_\Omega k \nabla \varphi_j \nabla \varphi_i\,dx &
i = 0,\dots,\Nc,\, j = 0,\dots,\Nb,\\
\delta_{ij} & i = \Nc+1,\dots,\Nb,\, j = 0,\dots,\Nb,
\end{cases}
\]
and $\boldsymbol{M} = \boldsymbol{M}(v)$ the mass matrix, i.e.
\[
M_{ij} = 
\begin{cases}
\int_\Omega \sigma\, v^3\, \varphi_j\, \varphi_i\,dx &
 i = 0,\dots,\Nc,\, j = 0,\dots,\Nb,\\
0 & i = \Nc+1,\dots,\Nb,\, j = 0,\dots,\Nb.
\end{cases}
\]
The system matrix $\boldsymbol{L}$, representing $DF(v)$,
of the linearized equation is then given as
\[
\boldsymbol{L} = \boldsymbol{A} + 4 \boldsymbol{M}.
\]
The right hand side vector $\boldsymbol{F}$, representing $F(v)$ is
for all non--Dirichlet DOFs $j$ given by
\begin{align}\label{E:ApMv}
F_j &= 
\int_\Omega k \nabla v \nabla \varphi_j  + \sigma\, v^4\, \varphi_j \,dx
- \int_\Omega (f + \sigma u_{ext}^4) \varphi_j  \,dx\notag \\
&= (\boldsymbol{A}\,\boldsymbol{v} +  \boldsymbol{M}\,\boldsymbol{v})_j
- \int_\Omega (f + \sigma u_{ext}^4) \varphi_j  \,dx,
\end{align}
where $\boldsymbol{v}$ denotes the coefficient vector of $v$. Thus, we
want to use information assembled into $\boldsymbol{A}$ and
$\boldsymbol{M}$ for both system matrix and right hand side vector.

Unfortunately, this can not be done \emph{after} assembling
$\boldsymbol{A} + 4\, \boldsymbol{M}$ into the system matrix
$\boldsymbol{L}$ due to the different scaling of $\boldsymbol{M}$ in
the system matrix (factor $4$) and right hand side (factor $1$).
Storing both matrices $\boldsymbol{A}$ \emph{and} $\boldsymbol{M}$ is
too costly, since matrices are the objects in finite element codes
which need most memory.

The solution to this problem comes from the observation, that
\mathref{E:ApMv} holds also element--wise for the element contributions
of the right hand side and element matrices $\boldsymbol{A}_S$ and 
$\boldsymbol{M}_S$ when replacing $\boldsymbol{v}$ by the local 
coefficient vector $\boldsymbol{v}_S$.
Hence, on elements $S$ we compute the element contributions of 
$\boldsymbol{A}_S$ and $\boldsymbol{M}_S$, add them to the system
matrix, and use them and the local coefficient vector
$\boldsymbol{v}_S$ for adding the right hand side contribution
to the load vector.

The resulting assembling routine is more complicated in comparison to
the very simple routine used for the linear Poisson problem. On the
other hand, using \ALBERTA routines for the computation of element
matrices, extracting local coefficient vectors, and boundary
information, the routine is still rather easy to implement. The
implementation still does not depend on the actually used set of local
basis functions.

The function \code{update()} which is now described in detail, can be
seen as an example for the very flexible implementation of rather
complex nonlinear and time dependent problems which often show the
same structure (compare the implementation of the assembling routine
for the time dependent heat equation, Section~\ref{S:heat_build}). It
demonstrates the functionality and flexibility of the \ALBERTA tools:
the assemblage of complex problems is still quite easy, whereas the
resulting code is quite efficient.

Similar to the linear Poisson solver, we provide a function
\code{LALt()} for the second order term. Besides the additional
scaling by the heat conductivity $k$, it is exactly the same as for the
Poisson problem.  For the nonlinear reaction--diffusion equation we
also need a function \code{c()} for the zero order term. This term is
assembled using element-wise quadrature and thus needs information
about the function $v$ used in the linearization at all quadrature
nodes.  Information for \code{LALt()} and \code{c()} is stored in the
data structure \code{struct op\_info}, see above.  The members of this
structure are initialized during mesh traversal in \code{update()}.
\bv\begin{verbatim}
static const REAL_B *LALt(const EL_INFO *el_info,
			  const QUAD *quad, 
			  int iq, void *ud)
{
  struct op_data *info = (struct op_data *)ud;
  REAL           fac = info->k*info->det;
  int            i, j, k, dim = el_info->mesh->dim;
  static REAL_BB LALt;

  for (i = 0; i <= dim; i++) {
    for (j = i; j <= dim; j++) {
      for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)
	LALt[i][j] += info->Lambda[i][k]*info->Lambda[j][k];
      LALt[i][j] *= fac;
      LALt[j][i] = LALt[i][j];
    }
  }
  return (const REAL_B *)LALt;
}

static REAL c(const EL_INFO *el_info, const QUAD *quad, int iq, void *ud)
{
  struct op_data *info = (struct op_data *)ud;
  REAL  v3;

  DEBUG_TEST_EXIT(info->quad_fast->quad == quad, "quads differ\n");

  v3 = info->v_qp[iq]*info->v_qp[iq]*info->v_qp[iq];

  return(info->sigma*info->det*v3);
}
\end{verbatim}\ev

As mentioned above, we use a general Newton solver and a pointer to the 
\code{update()} routine is adjusted inside the function \code{nlsolve()} 
in the data structure for this solver. Such a solver does not have any
information about the actual problem, nor information about the
\ALBERTA data structures for storing DOF vectors and matrices. This is
also reflected in the arguments of \code{update()}:
\bv\begin{verbatim}
static void update(void *ud, int dim, const REAL *v, int up_DF, REAL *F);
\end{verbatim}\ev
Here, \code{dim} is the dimension of the discrete nonlinear problem,
\code{v} is a \emph{vector} storing the coefficients of the 
finite element function which is used for the linearization, \code{up\_DF}
is a flag indicating whether $DF(v)$ should be assembled or not.
If \code{F} is not \nil, then $F(v)$ should be assembled and
stored in the \emph{vector} \code{F}. Information about the
\ALBERTA finite element space, a pointer to a DOF matrix, etc. can
be passed to \code{update()} by the \code{ud} pointer. The declaration
\bv\begin{verbatim}
  NEWTON_DATA    *data = (NEWTON_DATA *)ud;
\end{verbatim}\ev
converts the \code{void *} pointer \code{ud} into a pointer \code{data} to
a structure \code{NEWTON\_DATA} which gives access to all 
information, used for the assembling (see above). This structure
is initialized in \code{nlsolve()} before starting the Newton method.

The \code{update()} routine contains three parts: an
initialization of the assembling functions (only done on the first
call), a conversion of the vectors that are arguments to the routine
into DOF vectors, and finally the assembling.

\paragraph{Initialization of the assembling functions.}

The initialization of \ALBERTA functions for the assembling is similar
to the initialization in the \code{build()} routine of the linear
Poisson equation (compare Section~\ref{S:ellipt_build}). There are
minor differences:

\begin{enumerate}
\item In addition to the assemblage of the 2nd order term
(see the function \code{LALt()}), we now have to assemble the zero
order term too (see the function \code{c()}).  The integration of the
zero order term has to be done by using an element wise quadrature
which needs the values of $v^3$ at all quadrature nodes.  The two
element matrices are computed separately. This makes it possible to
use them for the system matrix and right hand side.

\item In the solver for the Poisson problem, we have filled an
  \code{OPERATOR\_INFO} structure with information about the
  differential operator. This structure is an argument to
  \code{fill\_matrix\_info()} which returns a pointer to a structure
  \code{EL\_MATRIX\_INFO}. This pointer is used for the complete
  assemblage of the system matrix by some \ALBERTA routine. A detailed
  description of this structures and the general assemblage routines
  for matrices can be found in \secref{S:matrix_assemblage}.  Here, we
  want to use only the function for computing the element matrices.
  Thus, we only need the entries \code{el\_matrix\_fct()} and
  \code{fill\_info} of the \code{EL\_MATRIX\_INFO} structure, which
  are used to compute the element matrix (\code{fill\_info} is the
  second argument to \code{el\_matrix\_fct()}). We initialize a
  function pointer \code{fill\_a} with data pointer \code{a\_info} for
  the computation of the element matrix $\boldsymbol{A}_S$ and a
  function pointer \code{fill\_c} with data pointer \code{c\_info} for
  the computation $\boldsymbol{M}_S$.
  
  All other information inside the \code{EL\_MATRIX\_INFO} structure
  is used for the automatic assembling of element matrices into the
  system matrix by \code{update\_matrix()}. Such information can be
  ignored here, since this is now done in \code{update()}.
  
\item For the assembling of the element matrix into the system matrix
  and the element contribution of the right hand side into the load
  vector we need information about the number of local basis
  functions, \code{n\_phi}, and how to access global DOFs from the
  elements, \code{get\_dof()}. This function uses the DOF
  administration \code{admin} of the finite element space.  We also
  need information about the boundary type of the local basis
  functions, \code{get\_bound()}, and for the computation of the
  values of $v$ at quadrature nodes, we have to extract the local
  coefficient vector from the global one, \code{get\_v\_loc()}. These
  functions and the number of local basis functions can be accessed
  via the \code{bas\_fcts} inside the \code{data->fe\_space}
  structure. The used \code{admin} is the \code{admin} structure in
  \code{data->fe\_space}. For details about these functions we refer
  to Sections \ref{S:basfct_data}, \ref{S:dof_access}, and
  \ref{book:S:eval_fe}.
\end{enumerate}

\paragraph{Conversion of the vectors into DOF vectors.}

The input vector \code{v} of \code{update()} is a vector storing the
coefficients of the function used for the linearization. It is not a
DOF vector, but \ALBERTA routines for extracting a local coefficient
vector need a DOF vector. Thus, we have to ``convert'' \code{v} into
some DOF vector \code{dof\_v}. This is done by calls
%%
\bv\begin{lstlisting}
  init_dof_real_vec_skel(dof_v, "v", data->fe_space);
  distribute_to_dof_real_vec_skel(dof_v, v);
\end{lstlisting}\ev
%%
We refer the reader to \secref{S:dof_vec_skel} for a more detailed
discussion.

In the same way we have to convert \code{F} to a DOF vector \code{dof\_F}
if \code{F} is not \nil.

\paragraph{The assemblage of the linearized system.}

If the system matrix has to be assembled, then the
DOF matrix \code{data->DF} is cleared and we check which solver
can be used for solving the linearized equation. 

If the right hand side has to be assembled, then this vector 
is initialized with values
\[
- \int_\Omega (f + \sigma u_{ext}^4) \varphi_j  \,dx.
\]

For the assemblage of the element contributions we use the
non--recursive mesh traversal routines. On each element we access
the local coefficient vector \code{v\_loc}, the global DOFs \code{dof}
and boundary types \code{bound} of the local basis functions.

Next, we initialize the Jacobian of the barycentric coordinates and
compute the values of $v$ at the quadrature node by \code{uh\_at\_qp()}.
Hence $v^3$ can easily be calculated in \code{c()} at all quadrature
nodes. Routines for evaluating finite element functions and their
derivatives are described in detail in \secref{S:eval}.

Now, all members of \code{struct op\_info} are initialized, and
we compute the element matrices $\boldsymbol{A}_S$ by the function
\code{fill\_a()} and $\boldsymbol{M}_S$ by the function \code{fill\_c()}.

These contributions are added to the system matrix if \code{up\_DF} is
not zero.  Finally, the right hand side contributions for all non
Dirichlet DOFs are computed, and zero Dirichlet boundary values are
set for Dirichlet DOFs, if \code{F} is not \nil.

The following sources code listing quotes the entire \code{update()}
sub-routine:
%%
\bv\begin{verbatim}
static void update(void *ud, int dim, const REAL *v, bool up_DF, REAL *F)
{
  /* Some quantities remembered across calls. Think of this routine
   * like being a "library function" ... The stuff is re-initialized
   * whenever the finite element space changes. We use fe_space->admin
   * to check for changes in the finite element space because
   * DOF_ADMIN's are persisitent within ALBERTA, while fe-space are
   * not.
   */
  static EL_MATRIX_INFO elmi2, elmi0;
  static const DOF_ADMIN *admin = NULL;
  static struct op_data op_data[1]; /* storage for det and Lambda */

  /* Remaining (non-static) variables. */
  const BAS_FCTS  *bas_fcts = NULL;
  int             n_phi;
  int             mesh_dim;
  NEWTON_DATA    *data = (NEWTON_DATA *)ud;
  FLAGS          fill_flag;
  DOF_REAL_VEC   dof_v[1];
  DOF_REAL_VEC   dof_F[1];

/*--------------------------------------------------------------------------*/
/*  init functions for assembling DF(v) and F(v)                            */
/*--------------------------------------------------------------------------*/

  bas_fcts = data->fe_space->bas_fcts;
  n_phi    = bas_fcts->n_bas_fcts;
  mesh_dim = bas_fcts->dim;

  if (admin != data->fe_space->admin) {
    OPERATOR_INFO o_info2 = { NULL, }, o_info0 = { NULL, };
    const QUAD    *quad;

    admin     = data->fe_space->admin;

    quad     = get_quadrature(mesh_dim, 2*bas_fcts->degree-2);
    o_info2.row_fe_space   = data->fe_space;
    o_info2.quad[2]        = quad;
    o_info2.LALt.real      = LALt;
    o_info2.LALt_pw_const  = true;
    o_info2.LALt_symmetric = true;
    o_info2.user_data      = op_data;

    fill_matrix_info(&o_info2, &elmi2);

    o_info0.row_fe_space   = data->fe_space;
    o_info0.quad[0]        = quad;
    o_info0.c.real         = c;
    o_info0.c_pw_const     = false;
    o_info0.user_data      = op_data;

    fill_matrix_info(&o_info0, &elmi0);

    op_data->quad_fast = get_quad_fast(bas_fcts, quad, INIT_PHI);
  }

/*--------------------------------------------------------------------------*/
/*  make a DOF vector from input vector v_vec                               */
/*--------------------------------------------------------------------------*/
  init_dof_real_vec_skel(dof_v, "v", data->fe_space);
  distribute_to_dof_real_vec_skel(dof_v, v);

/*--------------------------------------------------------------------------*/
/*  make a DOF vector from F, if not NULL                                    */
/*--------------------------------------------------------------------------*/
  if (F) {
    init_dof_real_vec_skel(dof_F, "F(v)", data->fe_space);
    distribute_to_dof_real_vec_skel(dof_F, F);
  }

/*--------------------------------------------------------------------------*/
/*  and now assemble DF(v) and/or F(v)                                      */
/*--------------------------------------------------------------------------*/
  op_data->k     = data->k;
  op_data->sigma = data->sigma;

  if (up_DF)
  {
/*--- if v_vec[i] >= 0 for all i => matrix is positive definite (p=1)  ----*/
    data->solver = dof_min(dof_v) >= 0 ? CG : BiCGStab;
    clear_dof_matrix(data->DF);
  }

  if (F)
  {
    dof_set(0.0, dof_F);			//!! Seggi
    L2scp_fct_bas(data->f, op_data->quad_fast->quad, dof_F);
    dof_scal(-1.0, dof_F);
  }

  fill_flag = CALL_LEAF_EL|FILL_COORDS|FILL_BOUND;
  TRAVERSE_FIRST(data->fe_space->mesh, -1, fill_flag) {
    const EL_REAL_VEC  *v_loc;
    const EL_DOF_VEC   *dof;
    const EL_BNDRY_VEC *bndry_bits;
    EL_SCHAR_VEC bound[n_phi];
    const EL_MATRIX *elmat2, *elmat0;

    v_loc      = fill_el_real_vec(NULL, el_info->el, dof_v);
    dof        = get_dof_indices(NULL, data->fe_space, el_info->el);
    bndry_bits = get_bound(NULL, bas_fcts, el_info);

/*--------------------------------------------------------------------------*/
/* initialization of values used by LALt and c                              */
/*--------------------------------------------------------------------------*/

    op_data->det = el_grd_lambda_0cd(el_info, op_data->Lambda);

    op_data->v_qp = uh_at_qp(NULL, op_data->quad_fast, v_loc);

    elmat2 = elmi2.el_matrix_fct(el_info, elmi2.fill_info);

    elmat0 = elmi0.el_matrix_fct(el_info, elmi0.fill_info);

    /* Translate the geometric boundary classification into
     * Dirichlet/Neumann/Interior boundary condition
     * interpretation. Inside the loop over the mesh-elements we need
     * only to care about Dirichlet boundary conditions.
     */
    dirichlet_map(bound, bndry_bits, data->dirichlet_mask);

    if (up_DF)  /*---  add element contribution to matrix DF(v)  ----------*/
    {
/*--------------------------------------------------------------------------*/
/*  add a(phi_i,phi_j) + 4*m(u^3*phi_i,phi_j) to matrix                     */
/*--------------------------------------------------------------------------*/
      add_element_matrix(data->DF, 1.0, elmat2, NoTranspose, dof, dof, bound);
      add_element_matrix(data->DF, 4.0, elmat0, NoTranspose, dof, dof, bound);
    }

    if (F)     /*---  add element contribution to F(v)  --------------------*/
    {
      int i;
/*--------------------------------------------------------------------------*/
/*  F(v) += a(v, phi_i) + m(v^4, phi_i)                                     */
/*--------------------------------------------------------------------------*/
      bi_mat_el_vec(1.0, elmat2, 1.0, elmat0, v_loc, 1.0, dof_F, dof, bound);
      for (i = 0; i < n_phi; i++) {
	if (bound->vec[i] >= DIRICHLET) {
	  F[dof->vec[i]] = 0.0;  /*--- zero Dirichlet boundary conditions! -*/
	}
      }
    }
    
  } TRAVERSE_NEXT();

  /* Record that the boundary conditions are built into the matrix, needed
   * e.g. by the hierarchical preconditioners.
   */
  BNDRY_FLAGS_CPY(data->DF->dirichlet_bndry, data->dirichlet_mask);
\end{verbatim}\ev

\subsubsection{The linear sub--solver}

For the solution of the linearized problem we use the \code{oem\_solve\_s()}
function, which is also used in the solver for the linear Poisson equation
(compare Section~\ref{S:ellipt_solve}). Similar to the \code{update()}
function, we have to convert the right hand side vector \code{F}
and the solution vector \code{d} to DOF vectors. Information about
the system matrix and parameters for the solver are passed by \code{ud}.
The member \code{data->solver} is initialized in \code{update()}.

\bv\begin{verbatim}
static int solve(void *ud, int dim, const REAL *F, REAL *d)
{
  NEWTON_DATA   *data = (NEWTON_DATA *)ud;
  int           iter;
  DOF_REAL_VEC  dof_F[1];
  DOF_REAL_VEC  dof_d[1];
  
/*--------------------------------------------------------------------------*/
/*  make DOF vectors from F and d                                           */
/*--------------------------------------------------------------------------*/
  init_dof_real_vec_skel(dof_F, "F", data->fe_space);
  distribute_to_dof_real_vec_skel(dof_F, F);
  
  init_dof_real_vec_skel(dof_d, "d", data->fe_space);
  distribute_to_dof_real_vec_skel(dof_d, d);

  
  if (data->icon == ILUkPrecon)
	  data->precon = init_oem_precon(data->DF, NULL, data->info, ILUkPrecon, data->ilu_k);
  else
	  data->precon = init_oem_precon(data->DF, NULL, data->info, data->icon,
                                 data->ssor_omega, data->ssor_iter);
  iter = oem_solve_s(data->DF, NULL, dof_F, dof_d, data->solver, 
		     data->tolerance, data->precon, data->restart, 
		     data->max_iter, data->info);

  return iter;
}
\end{verbatim}\ev

\subsubsection{The computation of the $H^1$ semi norm}

The $H^1$ semi norm can easily be calculated by converting the input
vector \code{v} into a DOF-vector and then calling the \ALBERTA routine
\code{H1\_norm\_uh()} (compare Section~\ref{S:eval_norm}).
\bv\begin{verbatim}
static REAL norm(void *ud, int dim, const REAL *v)
{
  NEWTON_DATA   *data = (NEWTON_DATA *)ud;
  DOF_REAL_VEC  dof_v[1]; /* = {NULL, NULL, "v"};*/
  
  init_dof_real_vec_skel(dof_v, "v", data->fe_space);
  distribute_to_dof_real_vec_skel(dof_v, v);

  return H1_norm_uh(NULL, dof_v);
}
\end{verbatim}\ev

\subsubsection{The nonlinear solver}

The function \code{nlsolve()} initializes the structure \code{NEWTON\_DATA}
with problem dependent information. Here, we have to allocate a
DOF matrix for storing the system matrix (only on the first call),
and initialize parameters for the linear sub--solver and problem dependent
data (like heat conductivity $k$, etc.)

The structure \code{NLS\_DATA} is filled with information for the
general Newton solver (the problem dependent routines \code{update()},
\code{solve()}, and \code{norm()} described above). All these routines use
the same structure \code{NEWTON\_DATA} for problem dependent
information.

The dimension of the discrete equation is 
\bv\begin{verbatim}
dim = u0->fe_space->admin->size_used;
\end{verbatim}\ev
where \code{u0} is a pointer to a DOF vector storing the initial
guess.  Note, that after the call to \code{dof\_compress()} in the
\code{build()} routine, \code{dim} holds the true dimension of the
discrete equation.  Without a \code{dof\_compress()} there may be
holes in DOF vectors, and \verb|u0->fe_space->admin->size_used|
bigger than the last \emph{used} index, and again \code{dim} is the
dimension of the discrete equation for the Newton solver. The
\ALBERTA routines do not operate on unused indices, whereas the
Newton solvers do operate on unused indices too, because they do not
know about used and unused indices. In this situation, all unused
DOFs would have to be cleared for the initial solution \code{u0} by
\bv\begin{verbatim} 
FOR_ALL_FREE_DOFS(u0->fe_space->admin, u0->vec[dof] = 0.0);
\end{verbatim}\ev
The same applies to the vector storing the right hand side in 
\code{update()}. The \code{dof\_set()} function only initializes
used indices.

Finally, we reallocate the workspace used by the Newton solvers
(compare Section~\ref{S:nls}) and start the Newton method.
\bv\begin{verbatim}
int nlsolve(DOF_REAL_VEC *u0, REAL k, REAL sigma, REAL (*f)(const REAL_D),
	    const BNDRY_FLAGS dirichlet_mask)
{
  FUNCNAME("nlsolve");
  static NEWTON_DATA  data =
    { NULL, { 0, }, 0, 0, NULL, NULL, CG, 1.e-8, 1.0, 1000, 1, 8, 0, 2, 0, NULL };
  static NLS_DATA     nls_data;
  int                 iter, dim = u0->fe_space->admin->size_used;

  if (!data.fe_space)
  {
/*--------------------------------------------------------------------------*/
/*--  init parameters for newton  ------------------------------------------*/
/*--------------------------------------------------------------------------*/
    nls_data.update      = update; 
    nls_data.update_data = &data;
    nls_data.solve       = solve;
    nls_data.solve_data  = &data;
    nls_data.norm        = norm;
    nls_data.norm_data   = &data;

    nls_data.tolerance = 1.e-4;
    GET_PARAMETER(1, "newton tolerance", "%e", &nls_data.tolerance);
    nls_data.max_iter = 50;
    GET_PARAMETER(1, "newton max. iter", "%d", &nls_data.max_iter);
    nls_data.info = 8;
    GET_PARAMETER(1, "newton info", "%d", &nls_data.info);
    nls_data.restart = 0;
    GET_PARAMETER(1, "newton restart", "%d", &nls_data.restart);
    

/*--------------------------------------------------------------------------*/
/*--  init data for update and solve  --------------------------------------*/
/*--------------------------------------------------------------------------*/

    data.fe_space = u0->fe_space;
    data.DF       = get_dof_matrix("DF(v)", u0->fe_space, NULL);

    data.tolerance = 1.e-2*nls_data.tolerance;
    GET_PARAMETER(1, "linear solver tolerance", "%f", &data.tolerance);
    GET_PARAMETER(1, "linear solver max iteration", "%d", &data.max_iter);
    GET_PARAMETER(1, "linear solver info", "%d", &data.info);
    GET_PARAMETER(1, "linear solver precon", "%d", &data.icon);
    if (data.icon == __SSORPrecon) {
    	GET_PARAMETER(1, "linear precon ssor omega", "%f", &data.ssor_omega);
    	GET_PARAMETER(1, "linear precon ssor iter", "%d", &data.ssor_iter);
    }
    if (data.icon == ILUkPrecon)
        GET_PARAMETER(1, "linear precon ilu(k)", "%d", &data.ilu_k);
    GET_PARAMETER(1, "linear solver restart", "%d", &data.restart);
  }
  TEST_EXIT(data.fe_space == u0->fe_space, "can't change f.e. spaces\n");
  BNDRY_FLAGS_CPY(data.dirichlet_mask, dirichlet_mask);

/*--------------------------------------------------------------------------*/
/*--  init problem dependent parameters  -----------------------------------*/
/*--------------------------------------------------------------------------*/
  data.k     = k;
  data.sigma = sigma;
  data.f     = f;

/*--------------------------------------------------------------------------*/
/*--  enlarge workspace used by newton(_fs), and solve by Newton  ----------*/
/*--------------------------------------------------------------------------*/
  if (nls_data.restart)
  {
    nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 4*dim*sizeof(REAL));
    iter = nls_newton_fs(&nls_data, dim, u0->vec);
  }
  else
  {
    nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 2*dim*sizeof(REAL));
    iter = nls_newton(&nls_data, dim, u0->vec);
  }

  return iter;
}
\end{verbatim}\ev

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End: