1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
|
\section{Data structures for parametric meshes}%
\label{S:parametric_meshes}
\idx{parametric meshes}%
The current version of \ALBERTA offers support for so-called
\emph{parametric meshes} which are triangulations where some or all of
the simplices are non-linear images of the reference element.
Typically, the transformation from the reference element $\Shat$ to
the curved simplex $S$ is a polynomial, but in principle this need not
be the case. \ALBERTA has predefined polynomial parameterisations up
to polynomial degree $4$: $S = F_S(\Shat)$, $F_S\in\P_k(\Shat)$ for
$k=1,2,3,4$. The limitation $k\leq 4$ just means that piecewise
polynomial parameterisations up to the maximal degree for the Lagrange
basis functions within \ALBERTA are supported (Section
\ref{S:basfct_impl}).
The standard case for applications is the iso-parametric approximation
of curved boundaries; care has to be taken when the polynomial degree
of the parameterisation is so high that some of the Lagrange-nodes
fall into the interior of the simplex. \ALBERTA implements the
algorithm developed in \cite{Lenoir:86}. The suite of demo-programs
shipped with the \ALBERTA-package contains a program called
\code{ellipt-isoparam}, which implements the discretization of
Poisson's equation on an iso-parametric triangulation of a unit-disc.
Many other applications besides isoparametric boundary approximation
are conceivable, for example in moving finite elements, where the
positions of nodes may change with time and need to be described by a
time dependent parameterization. Stationary example programs for $1$,
$2$ and $3$ dimensional parametric meshes can again be found in the
demo-suite:
\begin{description}
\item[\code{src/Common/ellipt-sphere.c}] Poisson's equation on the
$1$-, $2$- and $3$-dimensional unit-sphere, i.e.
$S^k\subset\R^{k+1}$ $(1\leq k \leq 3)$.
\item[\code{src/Common/ellipt-torus.c}] Poisson's equation on the $1$-
, $2$- and $3$-torus, i.e. $T^k\subset\R^{k+1}$ $(1\leq k \leq 3)$.
\item[\code{src/3d/ellipt-moebius.c}] Poisson's equation on an
embedded Moebius-strip (yes, \ALBERTA can handle unorientable meshes).
\item[\code{src/4d/ellipt-klein-bottle.c}] Embedded Klein's bottle.
\item[\code{src/5d/ellipt-klein-3-bottle.c}] Embedded non-orientable
$3$-manifold in $\R^5$, similar to a Klein's bottle, but one
dimension higher.
\end{description}
Using parametric elements does not imply a fundamental change of data
structures within \ALBERTA. The mesh still consists of a hierarchical
collection of \code{EL} structures, however these only represent the
topological structure of the mesh. The coordinate and shape
information of all elements, standard or parametric, is stored using
an internal \code{DOF\_REAL\_D\_VEC coords} representing the global
parametrization encoded in $F_S$ for all $S$. The finite element space
containing \code{coords} is a standard Lagrange space of order $1$,
$2$, $3$ or $4$.
A mesh may be turned into a parametric mesh with piece-wise polynomial
parameterization by calling the function
\hyperref[S:use_lagrange_parametric_fct]{\code{use\_lagrange\_parametric()}}
described below. This allocates \code{coords} and turns some or all
mesh elements into parametric simplices, depending on the options
determined by the user. The shape of the parametric simplices is
furthermore uniquely determined by the value of \code{coords} at the
Lagrange nodes. There are interface routines
\hyperref[S:get_lagrange_coords_fct]{\code{get\_lagrange\_coords()}},
\hyperref[S:copy_lagrange_coords_fct]{\code{copy\_lagrange\_coords()}}
and
\hyperref[S:get_lagrange_touched_edges_fct]{\code{get\_lagrange\_touched\_edges()}}
to give an application access to the coordinate data, see below in
Sections
\ref{S:use_lagrange_parametric_fct}-\ref{S:get_lagrange_touched_edges_fct}.
%The parametrization \code{coords} is initialized with the original mesh
%coordinates as determined by the macro triangulation. The shape of the
%parametric simplices is then calculated by projecting the Lagrange nodes
%using a \code{NODE\_PROJECTION}, see \secref{S:node_projections}.
Note that on curved elements the ordinary routines to convert between
barycentric coordinates and Cartesian coordinates, or to compute their
derivatives (see \secref{S:bary_routines}), may no longer be used.
Instead, the corresponding hooks in the \code{PARAMETRIC}-structure
described below have to be called. It may be convenient in this case
to use calls to the per-element quadrature caches (see
\secref{S:fill_quad_el_cache}). An exception is the case of
affine-linear ``parametric'' meshes, or the case of affine-linear mesh
elements of only partially parametric meshes: there the standard
routines described in \secref{S:bary_routines} may still be used.
We start with a more detailed description of how to use ``standard''
piece-wise polynomial parameterizations and continue with the
description of the general interface in Section
\secref{S:PARAMETRIC_struct} further below.
%%
% Figure was created using my code "write_mesh_fig()", DK.
\begin{figure}[tbp]
\centering
\includegraphics[scale=0.75]{EPS/refine_parametric}
\caption[Parametric meshes, triangulation of a disc]{Successive
refinements of the triangulation of a disc with \code{strategy ==
PARAM\_STRAIGHT\_CHILDS}. Parametric simplices are shaded in
gray.}%
\label{F:refine_parametric}
\end{figure}
%
\subsection{Piece-wise polynomial parametric meshes}%
\label{S:access_param_mesh}%
\idx{parametric meshes!accessing}
The following functions are available to access and manipulate meshes
with ``standard'' piece-wise polynomial parameterizations:
%%
\fdx{use_lagrange_parametric()@{\code{use\_lagrange\_parametric()}}}
\fdx{get_lagrange_coords()@{\code{get\_lagrange\_coords()}}}
\fdx{get_lagrange_touched_edges()@{\code{get\_lagrange\_touched\_edges()}}}
\fdx{copy_lagrange_coords()@{\code{copy\_lagrange\_coords()}}}
\bv\begin{lstlisting}
typedef enum param_strategy {
PARAM_ALL = 0,
PARAM_CURVED_CHILDS = 1,
PARAM_STRAIGHT_CHILDS = 2
} PARAM_STRATEGY;
#define PARAM_PERIODIC_COORDS 0x04
void use_lagrange_parametric(MESH *mesh, int degree,
NODE_PROJECTION *n_proj, FLAGS flags);
DOF_REAL_D_VEC *get_lagrange_coords(MESH *mesh);
DOF_UCHAR_VEC *get_lagrange_touched_edges(MESH *mesh);
void copy_lagrange_coords(MESH *mesh, DOF_REAL_D_VEC *coords, bool to_mesh);
\end{lstlisting}\ev
%%
\begin{figure}[tbp]
\centering
\input EPS/curved_simplex
\caption[Paremetric meshes, transformation to the reference
element]{Mapping of the standard simplex under a quadratic
transformation $F_S$ with standard numbering of the local Lagrange
nodes. The curve $\lambda_0=\lambda_1$ is shown dashed.}
\label{F:curved_simplex}
\end{figure}
%%
\begin{function}{use\_lagrange\_parametric()}
\label{S:use_lagrange_parametric_fct}
%%
\fdx{use_lagrange_parametric()@{\code{use\_lagrange\_parametric()}}|(}
\idx{parametric meshes!use_lagrange_parametric()@{\code{use\_lagrange\_parametric()}}|(}
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
void use_lagrange_parametric(MESH *mesh, int degree,
NODE_PROJECTION *selective, FLAGS strategy);
typedef enum param_strategy {
PARAM_ALL = 0, PARAM_CURVED_CHILDS = 1, PARAM_STRAIGHT_CHILDS = 2
} PARAM_STRATEGY;
#define PARAM_PERIODIC_COORDS 0x04
\end{lstlisting}\ev
\item[Synopsis] ~\hfill
\bv\begin{lstlisting}[basicstyle=\normalsize]
use_lagrange_parametric(mesh, degree, selective, strategy);
\end{lstlisting}\ev
\item[Description] ~\hfill
Convert the given \code{mesh} into a parametric mesh. The mesh may
already be refined. Parametric simplices will be the image of the
reference simplex under a polynomial transformation of specified
\hyperlink{use_lagrange_parametric:degree}{\code{degree}}. The
maximal value of
\hyperlink{use_lagrange_parametric:degree}{\code{degree}}
is limited by the maximal degree of
the Lagrange basis functions implemented in \ALBERTA (currently
$4$). Internally a coordinate vector \code{coords} is allocated
within the standard Lagrange finite element space of order
\hyperlink{use_lagrange_parametric:degree}{\code{degree}}
Specifying \code{1} means that simplices will still
be the images of an affine transformation, which is useful for
special applications.
The \code{coords} vector employs special \code{refine\_interpol} and
\code{coarse\_restrict} entries to enable the described refinement
of curved simplices. Concerning the coarsening of the mesh, all
parents of parametric elements are automatically parametric elements
themselves. The information describing the shape of children is
passed back up to parents in a straight forward fashion.
The function generates a filled \code{PARAMETRIC} structure and sets
the entry \code{mesh->parametric} to point at it. Only one call of
the function is possible per mesh. If the mesh belongs to a
submesh-hierarchy, then \code{use\_lagrange\_parametric()} must be
called on the top-level master mesh. The sub-meshes will then
inherit the parametric structure from the top-level master mesh.
Sub-meshes are discussed in Section \ref{S:submesh_implementation}.
When \code{use\_lagrange\_parametric()} is invoked, then this will
initiate a mesh-traversal to initialize the coordinate vector
\code{coords} mentioned above. On all curved elements -- see the
parameter
\hyperlink{use_lagrange_parametric:selective}{\code{selective}} --
the corresponding projection routine will be invoked to project the
affine (non-curved) coordinates of the Lagrange nodes to whatever
manifold is defined by the projection function. As described in
\secref{S:node_projections} \ALBERTA allows for a default projection
for the entire element, or for distinct projections attached to the
``walls'' of the elements.
\item[Parameters]~\hfill
\begin{descr}
\hyperitem{use_lagrange_parametric:mesh}{mesh} The mesh to be
equipped with a parametric structure.
%%
\hyperitem{use_lagrange_parametric:degree}{degree} The degree of the
parameterization. Currently, the maximum degree is $4$, limited
only by the maximum degree of the Lagrange basis functions
implemented in \ALBERTA. \ALBERTA takes special care --
implementing the algorithm explained in \cite{Lenoir:86} -- that
higher degree iso-parametric boundary approximation will yield
optimal convergence rates.
%%
\hyperitem{use_lagrange_parametric:selective}{selective} Optional,
maybe \nil. If non-\nil, then \ALBERTA only treats those elements
as curved ones which carry exactly this
\hyperref[T:NODE_PROJECTION]{\code{NODE\_PROJECTION}} structure.
If \code{selective == \nil}, then all elements carrying a
projection routine (see \secref{S:node_projections}) will be
treated as curved elements.
%%
\hyperitem{use_lagrange_parametric:strategy}{strategy}
The parameter \code{strategy} splits in two parts: \code{(strategy
\& PARAM\_STRATEGY\_MASK)} determines which newly created
simplices are treated as parametric simplices during refinement of
the mesh. The remaining flag is \code{PARAM\_PERIODIC\_COORDS}.
It determines whether the finite element function which holds the
coordinate information of the parametric mesh is itself a periodic
function. The demo-program
\code{demo/src/4d/ellipt-klein-bottle.c} contains an example
application.
The following values are defined for \code{(strategy \&
PARAM\_STRATEGY\_MASK)}.
\begin{descr}
\kitem{PARAM\_ALL}
All elements of the mesh will be treated as parametric
elements, implying that determinants and Jacobeans will
be calculated at all quadrature points during assembly.
This is useful e.g. for triangulations of embedded
curved manifolds. Please note that during refinement a
parent element will be split along the surface defined
by the equation $lambda_0 = lambda_1$.
\kitem{PARAM\_CURVED\_CHILDS} Only those elements of the mesh
affected by \code{n\_proj} will be treated as parametric elements.
Simplices are split along the surface $lambda_0 = lambda_1$ during
mesh refinement. Using \code{PARAM\_CURVED\_CHILDS} should be
avoided for parameterisations of degree $> 2$, maybe it should not
be used at all.
\kitem{PARAM\_STRAIGHT\_CHILDS} Only those elements of the mesh
affected by \code{n\_proj} will be treated as parametric elements.
\code{PARAM\_STRAIGHT\_CHILDS} should be used for the
approximation of curved boundaries. This keeps the number of
curved simplices as small as possible and \ALBERTA takes care to
position the Lagrange nodes of the parametric elements such that
optimal approximation order can be achieved; this is not trivial,
see \cite{Lenoir:86}.
\end{descr}
%%
\end{descr}
\item[Examples] ~\hfill
See below \exampleref{example:isoparam_unit_ball}.
\end{function}
%%
\fdx{use_lagrange_parametric()@{\code{use\_lagrange\_parametric()}}|)}
\idx{parametric meshes!use_lagrange_parametric()@{\code{use\_lagrange\_parametric()}}|)}
%%
\begin{function}{get\_lagrange\_coords()}
\label{S:get_lagrange_coords_fct}
%%
\fdx{get_lagrange_coords()@{\code{get\_lagrange\_coords()}}|(}
\idx{parametric meshes!get_lagrange_parametric()@{\code{get\_lagrange\_coords()}}|(}
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
DOF_REAL_D_VEC *get_lagrange_coords(MESH *mesh);
\end{lstlisting}\ev
\item[Synopsis] ~\hfill
\bv\begin{lstlisting}[basicstyle=\normalsize]
coord_dof_vec = get_lagrange_coords(mesh);
\end{lstlisting}\ev
\item[Description] ~\hfill
Returns the internal \code{DOF\_REAL\_D\_VEC coords} used to store
the coordinates of parametric elements. The user may change entries
of this vector by hand, if some care is used if the parametric mesh
was initialized with \code{strategy != PARAM\_ALL}. See below the
description for
\hyperref[S:get_lagrange_touched_edges_fct]{\code{get\_lagrange\_touched\_edges()}}.
See also
\hyperref[S:copy_lagrange_coords_fct]{\code{copy\_lagrange\_coords()}}
for a more secure interface to the coordinate information.
\item[Parameters]~\hfill
\begin{descr}
\hyperitem{get_lagrange_coords:mesh}{mesh} A
\hyperref[T:MESH]{\code{mesh}}-structure carrying a parametric
structure previously initialized by a call to
\hyperref[S:use_lagrange_parametric_fct]{\code{use\_lagrange\_parametric()}},
see \secref{S:use_lagrange_parametric_fct} above.
%%
\end{descr}
\item[Return Value] ~\hfill
A pointer to the underlying coordinate function, a
\code{DOF\_REAL\_D\_VEC} belonging to a finite element space of the
piece-wise polynomial degree as specified by the
\hyperlink{use_lagrange_parametric:degree}{\code{degree}} parameter
passed to
\hyperref[S:use_lagrange_parametric_fct]{\code{use\_lagrange\_parametric()}}.
%%\item[Examples] ~\hfill
\end{function}
%%
\fdx{get_lagrange_coords()@{\code{get\_lagrange\_coords()}}|)}
\idx{parametric meshes!get_lagrange_parametric()@{\code{get\_lagrange\_coords()}}|)}
%%
\begin{function}{copy\_lagrange\_coords()}
\label{S:copy_lagrange_coords_fct}
%%
\fdx{copy_lagrange_coords()@{\code{copy\_lagrange\_coords()}}|(}
\idx{parametric meshes!copy_lagrange_parametric()@{\code{copy\_lagrange\_coords()}}|(}
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
typedef enum param_copy_direction {
COPY_FROM_MESH = false,
COPY_TO_MESH = true
} PARAM_COPY_DIRECTION;
void copy_lagrange_coords(MESH *mesh, DOF_REAL_D_VEC *coords, bool to_mesh);
\end{lstlisting}\ev
\item[Synopsis] ~\hfill
\bv\begin{lstlisting}[basicstyle=\normalsize]
copy_lagrange_coords(mesh, coord_copy, to_mesh);
\end{lstlisting}\ev
\item[Description] ~\hfill
This is the recommended interface to the coordinate information for
(Lagrange-) parametric meshes. Only the coordinate \emph{values} are
copied; the function also makes sure that affine elements remain
affine by using linear interpolation between the vertices of a
simplex if that simplex has no curved edge. The state of the edges
is determined by the \code{touched\_edges} vector returned by
\hyperref[S:get_lagrange_touched_edges_fct]{\code{get\_lagrange\_touched\_edges()}},
see below. \code{copy\_lagrange\_coords()} handles also a case when
a mesh has no parametric structure, but uses \code{EL->new\_coord}
to store coordinate information for the vertices, see
\secref{S:node_projections}. See also
\hyperref[S:get_lagrange_coords_fct]{\code{get\_lagrange\_coords()}}.
\item[Parameters]~\hfill
\begin{descr}
\hyperitem{copy_lagrange_coords:mesh}{mesh} A
\hyperref[T:MESH]{\code{mesh}}-structure carrying a parametric
structure previously initialized by a call to
\hyperref[S:use_lagrange_parametric_fct]{\code{use\_lagrange\_parametric()}},
see \secref{S:use_lagrange_parametric_fct} above.
%%
\hyperitem{copy_lagrange_coords:coord_copy}{coord\_copy} A
\code{DOF\_REAL\_D\_VEC}, storage for the coordinate information.
Note that \code{coord\_copy} is not itself installed as coordinate
vector in the mesh, just the coordinate data is copied to and from
\code{coord\_copy}, where the direction of the copy-operation is
specified by the parametric \code{to\_mesh}, see below.
%%
\hyperitem{copy_lagrange_coords:to\_mesh}{to\_mesh} If \code{true},
then the coordinate data is copied from \code{coord\_copy} to the
mesh, otherwise the coordinate function of the mesh is copied to
\code{coord\_copy}.
\end{descr}
%\item[Return Value] ~\hfill
%%\item[Examples] ~\hfill
\end{function}
%
\fdx{copy_lagrange_coords()@{\code{copy\_lagrange\_coords()}}|)}
\idx{parametric meshes!copy_lagrange_parametric()@{\code{copy\_lagrange\_coords()}}|)}
%%
\begin{function}{get\_lagrange\_touched\_edges()}
\label{S:get_lagrange_touched_edges_fct}
%%
\fdx{get_lagrange_touched_edges()@{\code{get\_lagrange\_touched\_edges()}}|(}
\idx{parametric meshes!get_lagrange_parametric()@{\code{get\_lagrange\_touched\_edges()}}|(}
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
DOF_UCHAR_VEC *get_lagrange_touched_edges(MESH *mesh);
\end{lstlisting}\ev
\item[Synopsis] ~\hfill
\bv\begin{lstlisting}[basicstyle=\normalsize]
touched_edges_vec = get_lagrange_touched_edges(mesh);
\end{lstlisting}\ev
\item[Description] ~\hfill
Returns the internally used \code{DOF\_UCHAR\_VEC touched\_edges}.
Internally \ALBERTA maintains the ``projection-state'' of all edges.
\code{1} means that the corresponding edge has suffered a
projection, \code{0} means that it is still in the affine linear
state. A simplex is treated as parametric simplex if and only if any
of its edges has been projected. Otherwise a simplex is not curved.
The flags vector is only used if \code{strategy != PARAM\_ALL}, this
function will produce a warning and return \nil if \code{strategy ==
PARAM\_ALL}.
When changing the coordinate vector returned by
\hyperref[S:get_lagrange_coords_fct]{\code{get\_lagrange\_coords()}}
it falls into the responsibility of the application to also change
the projection status of the edges.
\item[Parameters]~\hfill
\begin{descr}
\hyperitem{get_lagrange_touched_edges:mesh}{mesh} A
\hyperref[T:MESH]{\code{mesh}}-structure carrying a parametric
structure previously initialized by a call to
\hyperref[S:use_lagrange_parametric_fct]{\code{use\_lagrange\_parametric()}},
see \secref{S:use_lagrange_parametric_fct} above.
%%
\end{descr}
\item[Return Value] ~\hfill
A pointer to a \code{DOF\_SCHAR\_VEC}, with one DOF per edge,
indicating whether the respective edge is curved or not, with
\code{touched\_edges->vec[dof] == true} meaning the edge is curved
and \code{touched\_edges->vec[dof] == false} meaning the edge is \emph{not}
curved.
%%\item[Examples] ~\hfill
\end{function}
%%
\fdx{get_lagrange_touched_edges()@{\code{get\_lagrange\_touched\_edges()}}|)}
\idx{parametric meshes!get_lagrange_parametric()@{\code{get\_lagrange\_touched\_edges()}}|)}
%%
\begin{example}[Isoparametric elements for the unit ball]
\label{example:isoparam_unit_ball}
We turn again to the triangulation of the unit ball treated in Example
\ref{Ex:unit_ball}.
\idx{parametric meshes!isoparametric elements for the unit ball}
\bv\begin{verbatim}
static void ball_proj_func(REAL_D x,
const EL_INFO *el_info, const REAL_B lambda)
{
SCAL_DOW(1.0/NORM_DOW(x), x);
}
static NODE_PROJECTION ball_proj = {ball_proj_func};
static NODE_PROJECTION *init_node_proj(MESH *mesh, MACRO_EL *mel, int c)
{
if(c > 0 && !mel->neigh[c-1])
return &ball_proj;
else
return NULL;
}
int main()
{
MESH *mesh;
const BAS_FCTS *bas_fcts;
const FE_SPACE *fe_space;
MACRO_DATA *data;
...
data = read_macro("ball.amc");
mesh = GET_MESH(MESH_DIM, "ALBERTA mesh", data,
init_node_proj, NULL /* init_wall_trafos */);
free_macro_data(data);
bas_fcts = get_lagrange(mesh->dim, /* degree == */ 3);
use_lagrange_parametric(mesh, 3, NULL, PARAM_STRAIGHT_CHILDS);
...
}
\end{verbatim}\ev
\ALBERTA compares the node-projections of all elements with the value
of \code{\&ball\_proj}, in our example only the boundary faces will
have produce a match. Since \code{strategy ==
PARAM\_STRAIGHT\_CHILDS}, \ALBERTA will only use parametric elements
in a narrow boundary layer, see \figref{F:refine_parametric}.
\end{example}
\subsection{The \code{PARAMETRIC} structure}%
\idx{PARAMETRIC structure@{\code{PARAMETRIC} structure}}
\label{S:PARAMETRIC_struct}
A parametric mesh is described by the structure
\ddx{PARAMETRIC@{\code{PARAMETRIC}}} \code{PARAMETRIC}. The structure
is a collection of function pointers -- ``methods'' -- which define
the parameterisation. The piecewise polynomial parameterisations
predefined in \ALBERTA work in arbitrary co-dimension, see
\secref{S:access_param_mesh} above.
\bv\begin{verbatim}
typedef struct parametric PARAMETRIC;
struct parametric
{
char *name;
bool not_all;
bool use_reference_mesh;
bool (*init_element)(const EL_INFO *el_info, const PARAMETRIC *parametric);
void (*coord_to_world)(const EL_INFO *info, const QUAD *quad,
int n, const REAL_B lambda[], REAL_D *world);
void (*world_to_coord)(const EL_INFO *info, int n,
const REAL_D world[],
REAL_B lambda[], int *k);
void (*det)(const EL_INFO *info, const QUAD *quad,
int n, const REAL_B lambda[], REAL dets[]);
void (*grd_lambda)(const EL_INFO *info, const QUAD *quad,
int n, const REAL_B lambda[],
REAL_BD Lambda[], REAL_BDD DLambda[], REAL dets[]);
void (*grd_world)(const EL_INFO *info, const QUAD *quad,
int n, const REAL_B lambda[],
REAL_BD grd_Xtr[], REAL_BDB D2_Xtr[], REAL_BDBB D3_Xtr[]);
void (*wall_normal)(const EL_INFO *el_info, int wall,
const QUAD *wall_quad,
int n, const REAL_B lambda[],
REAL_D nu[], REAL_DB grd_nu[], REAL_DBB D2_nu[],
REAL dets[]);
void (*inherit_parametric)(MESH *slave);
void (*unchain_parametric)(MESH *slave);
void *data;
};
\end{verbatim}\ev
Description:
\begin{descr}
\kitem{name} a textual description of the parametric structure,
intended as debugging aid.
\kitem{not\_all}, if nonzero, signifies that not all of the mesh
elements are to be parametric (curved) simplices. This entry must
not be changed by the application program.
\kitem{use\_reference\_mesh}, if set, means that certain routines
should use the reference triangulation consisting of standard
simplices instead of the parametric mesh, see the description
further below. Is set to \false by default.
\idx{Per-element initializers!PARAMETRIC@{\code{PARAMETRIC}}}
\idx{init_element()@{\code{init\_element()}}!PARAMETRIC@{\code{PARAMETRIC}}}
\kitem{init\_element(el\_info, parametric)} This is a per-element
initialiser which must be called for each \code{el\_info} during a
mesh traversal before calling any other function hook of the
\code{PARAMETRIC} structure. The argument \code{parametric} must
point to the \code{PARAMETRIC} structure itself.
A specific implementation of a parametric mesh should use the
\code{init\_element()}-hook to perform all necessary initialisations
needed to define the transformation from the reference element to
the given mesh element. The return value should be \code{true} if
the given element indeed is curved, and \code{false} if it is just
an affine image of the reference element. In the latter case
\code{init\_element(el\_info, \dots)} is supposed to fill
\code{el\_info->coord} with the current element's coordinate
information -- despite the fact that the \code{el\_info} argument
carries the \code{const} attribute. This way the normal per-element
functions can be used (e.g. \code{el\_det()},
\code{el\_grd\_lambda()} etc.) instead of the parametric
replacements defined in the \code{PARAMETRIC} structure. This
simplifies the program flow (and source code) for applications using
only partially parametric meshes a lot.
\kitem{coord\_to\_world(el\_info, quad, n, lambda, world)}
Implements the function $F_S$ itself. Given an element
\code{el\_info}, a vector of barycentric coordinates \code{lambda}
of length \code{n}, this function writes the corresponding vector of
length \code{n} of world coordinates into \code{world}. Using this
function on multiple sets of coordinates at once may be more
efficient than repeatedly calling this function. If the \code{quad}
attribute is not \nil, then \code{quad->n\_points} and
\code{quad->lambda} instead of \code{n} and \code{lambda}.
Additionally, a specific parametric implementation may handle the
case \code{quad != } \nil more efficiently by using caching
\code{QUAD\_FAST} quadratures and the like.
\kitem{world\_to\_coord()} This entry replaces the standard
\code{world\_to\_coord()} function available for standard simplices.
It represents the inverse $F_S^{-1}$. Currently, there is only a
partial implementation available, which may or may not work in the
context of iso-parametric boundary approximation.
\kitem{det(el\_info, quad, n, lambda, dets)} This function computes
$|\det DF_S(\hat x(\lambda))|$ which is required for numerical
integration, see Remark \ref{book:R:numerical_int}. The barycentric
coordinates are again passed as an array \code{lambda} of length
\code{n}. The absolute value of the determinant at each $\lambda$ is
written into the array \code{dets}. Since this routine is mostly
used for numerical integration the user may pass a pointer
\code{quad} to a quadrature structure instead of \code{lambda}. The
function will then calculate the determinants at all quadrature
nodes of the given numerical quadrature. Additionally, a specific
parametric implementation may handle the case \code{quad != } \nil
more efficiently by using caching \code{QUAD\_FAST} quadratures and
the like. See \secref{S:quad_data} for details on using numerical
quadrature routines and structures.
\kitem{grd\_lambda(el\_info, quad, n, lambda, Lambda, DLambda, dets)}
This routine is similar to the entry \code{dets} above. It
additionally fills the array \code{Lambda} with the values of the
derivative $\Lambda_S$ of the barycentric coordinates defined in
\secref{book:S:eval_Dfe}. Optionally, \code{grd\_lambda()} also
computes the second derivatives of the barycentric coordinates. The
second derivatives of the barycentric coordinates are necessary to
compute the second derivatives of finite element functions on curved
simplices, e.g. for the implementation of residual error estimators.
%%
The arguments \code{DLambda} and \code{dets} may be \nil.
\kitem{grd\_world(el\_info, quad, n, lambda, grd\_Xtr, D2\_Xtr,
D3\_Xtr)} Compute the derivatives of the Cartesian coordinates with
respect to the barycentric coordinates. The arguments \code{D2\_Xtr}
and \code{D3\_Xtr} may be \nil, in which case the quantities are
simply not computed. The \code{tr}-suffix stands for ``transposed'',
meaning that actually the transposed of the Jacobians is computed.
This way, in the affine linear case \code{grd\_Xtr} is just the
matrix formed by the vertex coordinates as rows.
\kitem{wall\_normal(el\_info, wall, quad, n, lambda, nu, grd\_nu,
D2\_nu, dets)} This function hook is the parametric replacement
for library function \code{get\_wall\_normal()}. Again,
\code{quad->lambda} and \code{quad->n\_points} is used instead of
\code{lambda} and \code{n} if \code{quad !=} \nil. \code{quad} must
be a co-dimension $1$ quadrature as returned by
\code{get\_wall\_quad()} or \code{get\_bndry\_quad()}. Either of the
arguments \code{nu}, \code{grd\_nu}, \code{D2\_nu} or \code{dets}
may be \nil; otherwise \code{normals} stores the outer unit normal
field of the face opposite of the vertex with local number
\code{wall} and \code{dets} stores the values of the surface
element. The derivatives of the normal-field are, for instance,
needed for vector-valued basis functions like face- or edge-bubbles
(``wall-bubbles''). To this aim the outer normal field is extended
into the interior of an element by setting it constant on the
coordinate lines defined by the barycentric coordinates on the
reference element.
\kitem{inherit\_parametric(slave), unchain\_parametric(slave)}~\\
\code{inherit\_parametric()} is used by \code{get\_submesh()},
\code{unchain\_parametric()} is used by \code{unchain\_submesh()}.
An application which defines its own \code{PARAMETRIC} structure can
set both pointers to \nil if the sub-mesh feature is not needed.
\kitem{data} This \code{void *} pointer is intended for the purpose
of chaining implementation specific information to the
\code{PARAMETRIC} structure. In a \code{C++} context the function
hooks defined in the \code{PARAMETRIC} structure could be virtual
methods, and implementations would just inherit the
\code{PARAMETRIC} base-class.
\end{descr}
\medskip
Using the flag \code{FILL\_COORDS} on a mesh traversal (see
\secref{S:traverse}) would fill the \code{EL\_INFO} structures with
coordinate information of the so-called \emph{reference mesh} based on
the original macro triangulation. The reference mesh is what is would
be used without a call to \code{use\_lagrange\_parametric()}. This
reference mesh is normally hidden from the application unless
specifically requested by setting the entry
\code{PARAMETRIC->use\_reference\_mesh} to \true. Furthermore, the
mesh traversal routines ignore the \code{FILL\_COORDS} flag unless
\code{use\_reference\_mesh} is \true. However, special applications
may profit from accessing the reference mesh. On the other hand, most
\ALBERTA routines, e.~g.~ routines to evaluate derivatives of basis
functions, will automatically use the parametric mesh structure when
present.
The function pointers \code{PARAMETRIC->coord\_to\_world},
\code{PARAMETRIC->world\_to\_coord}, \code{PARAMETRIC->det},
\code{PARAMETRIC->grd\_lambda}, \code{PARAMETRIC->wall\_normal} should
be used instead of the standard routines for standard simplicial
triangulations
\begin{itemize}
\item \code{world\_to\_coord()}
\item \code{coord\_to\_world()}
\item \code{el\_det()}
\item \code{el\_volume()}
\item \code{el\_grd\_lambda()}
\item \code{get\_wall\_normal()}
\end{itemize}
described in detail in \secref{S:bary_routines}. The exception are
affine elements on only partially parametric meshes: if
\code{PARAMETRIC->init\_element()} returns \code{false} then the
standard routines may be used instead of the function hooks of the
\code{PARAMETRIC} structure. The same holds when using a
``parametric'' mesh of piece-wise polynomial degree through the
\code{use\_lagrange\_parametric()} call, simply because this
implementation ``fakes'' a partially parametric mesh which is
non-curved on all elements. The use of the standard routines in the
affine-linear context can simplify application programs quite a bit.
If \code{ALBERTA\_DEBUG==1} and
\code{use\_reference\_mesh == false} then using the standard library
routines on parametric simplices will exit with an error message. This
is a safety measure to prevent accidental misuse.
\begin{example}[Use of a parametric mesh]
\label{E:parametric_mesh_traverse}
\idx{parametric meshes!use of a parametric mesh}
\idx{Per-element initializers!example for a parametric mesh}
\idx{Per-element initializers!example for extra fill-flags}
\idx{Per-element initializers!example for mesh-traversal}
\idx{init_element()@{\code{init\_element()}}!example for a parametric mesh}
\idx{init_element()@{\code{init\_element()}}!example for extra fill-flags}
\idx{init_element()@{\code{init\_element()}}!example for mesh-traversal}
%%
This example shows how to write a routine which performs a global
interpolation of a given function onto a finite element space. This is
a much simplified version of the \code{interpol()}-implementation
which can be found in \code{alberta/src/Common/eval.c} (path relative
to the top-level directory of the source distribution of \ALBERTA).
Compare also with \secref{S:I_FES}. The simplifications mostly concern
the missing support for direct sums of finite element spaces, but as
this is a scalar-only example, the restriction does not seem to be too
severe.
The function \code{interpol\_simple()} defined here takes a pointer to
an application defined function \code{REAL (*f)(const REAL\_D arg)},
and a \code{DOF\_REAL\_VEC} and loops over all mesh-elements, calling
the local interpolation routines in turn on all elements. We assume
here that the evaluation of \code{f()} is extremely costly, so we are
careful not to evaluate \code{f()} too often. There are two
helper-function, \code{inter\_fct\_loc()} and
\code{inter\_fct\_loc\_param()}, which are used as arguments to the
actual call to the \code{bfcts->interpol()} hook. Note that the code
uses the non-parametric version if either \code{mesh->parametric} is
\nil, or if \code{mesh->parametric->init\_element()} returns
\code{false}.
The example also shows the use of another type of per-element
initializers: basis functions may also carry such a function-hook,
refer to \secref{S:init_element} for a detailed description.
%%
\bv\begin{lstlisting}
static
REAL inter_fct_loc(const EL_INFO *el_info, const QUAD *quad, int iq,
void *ud)
{
FCT_AT_X fct = *(FCT_AT_X *)ud;
REAL_D world;
coord_to_world(el_info, quad->lambda[iq], world);
return fct(world);
}
static
REAL inter_fct_loc_param(const EL_INFO *el_info, const QUAD *quad, int iq,
void *ud)
{
const PARAMETRIC *parametric = el_info->mesh->parametric;
FCT_AT_X fct = *(FCT_AT_X *)ud;
REAL_D world;
parametric->coord_to_world(el_info, NULL, 1, quad->lambda + iq, &world);
return fct(world);
}
void interpol_simple(DOF_REAL_VEC *dv, FCT_AT_X f)
{
/* Some abbreviations ... */
const FE_SPACE *fe_space = dv->fe_space;
const BAS_FCTS *bfcts = fe_space->bas_fcts;
const DOF_ADMIN *admin = fe_space->admin;
MESH *mesh = fe_space->mesh;
const PARAMETRIC *param = mesh->parametric;
EL_REAL_VEC *vec_loc;
bool is_param;
FLAGS fill_flags;
int indices[bfcts->n_bas_fcts_max];
DOF dofs[bfcts->n_bas_fcts_max];
/* Initialize each component of vec to HUGE_VAL, misusing it as
* flag-argument
*/
FOR_ALL_DOFS(admin, dv->vec[dof] = HUGE_VAL);
/* Get an element vector to store the result of the interpolation in */
vec_loc = get_el_real_vec(bfcts);
/* Basis functions may need special fill-flags */
fill_flags = FILL_COORDS|bfcts->fill_flags;
TRAVERSE_FIRST(mesh, -1, CALL_LEAF_EL|fill_flags) {
int i, n_indices;
REAL val;
/* Basis-functions may need a per-element initialization */
if (INIT_ELEMENT(el_info, bfcts) == INIT_EL_TAG_NULL) {
continue;
}
/* Call the per-element initializer of mesh->parametric(), if needed */
is_param = param != NULL && param->init_element(el_info, param);
/* Determine which of the local coefficients need to be computed */
GET_DOF_INDICES(bfcts, el_info->el, admin, dofs);
for (i = 0, n_indices = 0; i < bfcts->n_bas_fcts; i++) {
if ((val = dv->vec[dofs[i]]) == HUGE_VAL) {
indices[n_indices++] = i;
} else {
/* "partial" interpolation may need information about the
* omitted DOFs nevertheless.
*/
vec_loc->vec[i] = val;
}
}
/* Do the actual interpolation. The parametric version could be
* handled more efficiently if n_indices == n_bas_fcts; in this
* case we would only need a single call to
* param->coord_to_world(). Implementing such (and other
* optimizations) is left to the reader as an exercise).
*/
if (n_indices == bfcts->n_bas_fcts) {
/* Interpolation for all DOFs. The parametric version could be
* handled more efficiently in this case: we would only need a
* single call to param->coord_to_world(). Implementing such
* (and other * optimizations) is left to the reader as an
* exercise).
*/
INTERPOL(bfcts, vec_loc, el_info, -1, -1, NULL,
is_param ? inter_fct_loc_param : inter_fct_loc, &f);
/* Store the computed values in the global DOF-vector, no need
* for the indices indirection
*/
for (i = 0; i < bfcts->n_bas_fcts; i++) {
dv->vec[dofs[i]] = vec_loc->vec[i];
}
} else {
/* partial interpolation */
INTERPOL(bfcts, vec_loc, el_info, -1, n_indices, indices,
is_param ? inter_fct_loc_param : inter_fct_loc, &f);
/* Store the computed values in the global DOF-vector. Note that
* BOTH, the global and the local coefficient vector, are
* accessed indirectly over the indices array.
*/
for (i = 0; i < n_indices; i++) {
dv->vec[dofs[indices[i]]] = vec_loc->vec[indices[i]];
}
}
} TRAVERSE_NEXT();
free_el_real_vec(vec_loc); /* Cleanup after ourselves */
if (INIT_ELEMENT_NEEDED(bfcts)) {
/* We possibly did not ran over all elementse, initialize any
* left-over DOFs to 0.0.
*/
FOR_ALL_DOFS(admin,
if (dv->vec[dof] == HUGE_VAL) {
dv->vec[dof] = 0.0;
});
}
}
\end{lstlisting}\ev
\end{example}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End:
|