File: solve-tools.tex

package info (click to toggle)
alberta 3.1.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 19,176 kB
  • sloc: ansic: 135,836; cpp: 6,601; makefile: 2,801; sh: 333; fortran: 180; lisp: 177; xml: 30
file content (3526 lines) | stat: -rw-r--r-- 142,198 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
\section{Solver for linear and nonlinear systems}%
\label{S:solver}

\ALBERTA provides own solvers for general linear and nonlinear
systems. The solvers use dense \code{REAL}-vectors for storing
coefficients. They are aware of \ALBERTA's DOF-vector and -matrix data
structures and work with an application provided subroutine for the
matrix-vector multiplication, and in case a preconditioner is used, a
function for preconditioning. The nonlinear solvers need subroutines
for assemblage and solution of a linearized system.

In the subsequent sections we describe the basic data structures for
the \textsf{OEM} (\textsf{O}rthogonal \textsf{E}rror \textsf{M}ethods)
module, a built-in \ALBERTA interface for solving systems involving a
\code{DOF\_MATRIX} and \code{DOF\_REAL[\_D]\_VEC[\_D]} objects, and
the access to functions for matrix-vector multiplication and
preconditioning for a direct use of the \textsf{OEM} solvers.  Then we
describe the basic data structures for multigrid solvers and for the
available solvers of nonlinear equations.  Most of the implemented
methods (and more) are described for example in
\cite{Meister:99,Saad:96}.

\subsection{Krylov-space solvers for general linear systems}%
\label{S:oem}%
\label{S:OEM}%
\idx{linear solvers|(}

Very efficient solvers for linear systems are Krylov-space solvers
(or \textsf{O}rthogonal \textsf{E}rror \textsf{M}ethods).
The \textsf{OEM} library provides such solvers for the solution of general
linear systems
\[
A\, x = b
\]
with $A \in \R^{N\times N}$ and $x,b \in \R^N$. The library solvers
work on dense flat vectors and do not need to know the storage of the
system matrix, or the matrix used for preconditioning.  Matrix-vector
multiplication and preconditioning is done by application provided
routines.

Most of the implemented \code{OEM} solvers are a \code{C}-translation
from the solvers of the FORTRAN OFM library (Orthogonale Fehler
Methoden), by D\"orfler \cite{Doerfler:95a}. \code{SymmLQ} is the
algorithm described in \cite{PaigeSaunders:75}, and \code{TfQMR} is
described in {\color{red} TO BE DETERMINED}. All solvers allow for
\emph{left} preconditioning and some also for \emph{right}
preconditioning.

The data structure (defined in \code{alberta\_util.h}) for passing information
about matrix-vector multiplication, preconditioning and tolerances,
etc. to the solvers is
\ddx{OEM_DATA@{\code{OEM\_DATA}}}
\idx{linear solver!OEM_DATA@{\code{OEM\_DATA}}}
\bv\begin{lstlisting}[label=D:OEM_DATA]
typedef int (*OEM_MV_FCT)(void *data, int dim, const REAL *rhs, REAL *u);

typedef struct oem_data OEM_DATA;
struct oem_data
{
  OEM_MV_FCT mat_vec;
  void       *mat_vec_data;
  OEM_MV_FCT mat_vec_T;
  void       *mat_vec_T_data;
  void       (*left_precon)(void *, int, REAL *);
  void       *left_precon_data;
  void       (*right_precon)(void *, int, REAL *);
  void       *right_precon_data;

  REAL       (*scp)(void *, int, const REAL *, const REAL *);
  void       *scp_data;

  WORKSPACE  *ws;

  REAL       tolerance;
  int        restart;
  int        max_iter;
  int        info;

  REAL       initial_residual;
  REAL       residual;
};
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{mat\_vec} pointer to a function for the matrix--vector multiplication
  with the system matrix;

  \code{mat\_vec(mat\_vec\_data, dim, u, b)} applies the system matrix 
  to the input vector \code{u} and stores the product in
  \code{b}; \code{dim} is the dimension of the linear system, 
  \code{mat\_vec\_data} a pointer to application.
  %% 
  \kitem{mat\_vec\_data} pointer to application data for the
  matrix-vector multiplication, first argument to
  \code{mat\_vec()}.
  %% 
  \kitem{mat\_vec\_T} pointer to a function for the matrix--vector
  multiplication with the transposed system matrix;

  \code{mat\_vec\_T(mat\_vec\_data, dim, u, b)} applies the transposed
  system matrix to the input vector \code{u} and stores 
  the product in \code{b}; \code{dim} is the dimension of the linear
  system, \code{mat\_vec\_T\_data} a pointer to application data.
  %% 
  \kitem{mat\_vec\_T\_data} pointer to application data for the matrix-vector 
  multiplication with the transposed system matrix, first argument to 
  \code{mat\_vec\_T()}.
  %% 
  \kitem{left\_precon} pointer to function for left preconditioning;
  it may be a \nil pointer; in this case no left preconditioning is done;
  
  \code{left\_precon(left\_precon\_data, dim, r)} is the 
  implementation of the left preconditioner; \code{r} is 
  input and output vector of length \code{dim} and 
  \code{left\_precon\_data} a pointer to application data.
  %% 
  \kitem{left\_precon\_data} pointer to application data for the left
  preconditioning, first argument to \code{left\_precon()}.
  %% 
  \kitem{right\_precon} pointer to function for right preconditioning;
  it may be a \nil pointer; in this case no right preconditioning is done;

  \code{right\_precon(right\_precon\_data, dim, r)} is the
  implementation of the right preconditioner; \code{r} is input and
  output vector of length \code{dim} and \code{right\_precon\_data} a
  pointer to application data.
  %% 
  \kitem{right\_precon\_data} pointer to application data for the
  right preconditioning, first argument to \code{right\_precon()}.
  %% 
  \kitem{scp} pointer to a function for computing a problem dependent scalar
  product; it may be a \nil pointer; in this case the Euclidian
  scalar product is used;

  \code{scp(scp\_data, dim, x, y)} computes the problem dependent
  scalar product of the two vectors \code{x} and \code{y} of length
  \code{dim}; \code{scp\_data} is a pointer to application data.
  %% 
  \kitem{scp\_data} pointer to application data for computing the
  scalar product, first argument to \code{scp()}.
  %% 
  \kitem{ws} a pointer to a \code{WORKSPACE} structure for storing additional
  vectors used by a solver; if the space is not sufficient, the
  used solver will enlarge this workspace; if \code{ws} is \nil, then
  the used solver allocates memory, which is freed before exit.
  %% 
  \kitem{tolerance} tolerance for the residual; if the norm of the residual
  is less than or equal to \code{tolerance}, the solver returns
  the actual iterate as the solution of the system.
  %% 
  \kitem{restart} restart for the linear solver; used only by
  \code{oem\_gmres()} at the moment.
  %% 
  \kitem{max\_iter} maximal number of iterations to be
  performed although the tolerance may not be reached.
  %% 
  \kitem{info} the level of information produced by the solver; \code{0}
  is the lowest level of information (no information is printed)
  and \code{10} the highest level.
  %% 
  \kitem{initial\_residual} stores the norm of the initial residual on exit.
  %% 
  \kitem{residual} stores the norm of the final residual on exit.
\end{descr}

The following linear solvers are currently implemented.
Table \ref{T:OEM_methods} gives an overview over the implemented
solvers, the matrix types they apply to, and the cost of one iteration.
\begin{table}
\begin{center}
 \begin{tabular}{|c|c|l|c|} \hline
   Method & Matrix & Operations & Storage\\ \hline\hline
   BiCGstab & symmetric & 2 MV + 12 V & $5N$ \\
   CG & symmetric positive definite& 1 MV + 5 V & $3N$ \\
   GMRES & regular & k MV + ... & $(k+2)N + k(k+4)$ \\
   ODir & symmetric positive & 1 MV + 11 V & $5N$ \\
   ORes & symmetric & 1 MV + 12 V & $7N$ \\
   SymmLQ & symmetric & & $6N$\\
   TfQMR & regular & & $11N$\\
\hline
 \end{tabular}
\end{center}
\caption[Iterative solvers, storage requirements and matrix types]{OEM methods with applicable matrix types,
  numbers of operations per iteration (MV matrix-vector products, V
  vector operations), and storage requirements ($N$ number of unknowns,
  $k$ GMRES subspace dimension)}
\label{T:OEM_methods}
\end{table}
\fdx{oem_bicgstab()@{\code{oem\_bicgstab()}}}%
\idx{linear solvers!oem_bicgstab()@{\code{oem\_bicgstab()}}}%
\fdx{oem_cg()@{\code{oem\_cg()}}}%
\idx{linear solvers!oem_cg()@{\code{oem\_cg()}}}%
\fdx{oem_tfqmr()@{\code{oem\_tfqmr()}}}%
\idx{linear solvers!oem_tfqmr()@{\code{oem\_tfqmr()}}}%
\fdx{oem_gmres()@{\code{oem\_gmres()}}}%
\idx{linear solvers!oem_gmres()@{\code{oem\_gmres()}}}%
\fdx{oem_gmres_k()@{\code{oem\_gmres\_k()}}}%
\idx{linear solvers!oem_gmres_k()@{\code{oem\_gmres\_k()}}}%
\fdx{oem_odir()@{\code{oem\_odir()}}}%
\idx{linear solvers!oem_odir()@{\code{oem\_odir()}}}%
\fdx{oem_ores()@{\code{oem\_ores()}}}%
\idx{linear solvers!oem_ores()@{\code{oem\_ores()}}}%
\fdx{oem_symmlq()@{\code{oem\_symmlq()}}}%
\idx{linear solvers!oem_symmlq()@{\code{oem\_symmlq()}}}%
\bv\begin{lstlisting}
int oem_bicgstab(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_cg(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_gmres(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_gmres_k(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_odir(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_ores(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_tfqmr(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
int oem_symmlq(OEM_DATA *oem_data, int dim, const REAL *rhs, REAL *u0);
\end{lstlisting}\ev
Description:
\begin{descr}
  \kitem{oem\_bicgstab(oem\_data, dim, rhs, u0)} solves a linear system
  by a stabilized BiCG method and can be used for symmetric
  system matrices; \code{oem\_data} stores information about
  matrix vector multiplication, preconditioning, tolerances, etc.
  \code{dim} is the dimension of the linear system, \code{rhs}
  the right hand side vector, and \code{u0} the initial guess
  on input and the solution on output; \code{oem\_bicgstab()}
  needs a workspace for storing \code{5*dim} additional \code{REAL}s;
  the return value is the number of iterations;
  \code{oem\_bicgstab()} only uses left preconditioning.
  %% 
  \kitem{oem\_cg(oem\_data, dim, rhs, u0)} solves a linear system
  by the conjugate gradient method and can be used for symmetric
  positive definite system matrices; \code{oem\_data} stores
  information about matrix vector multiplication,
  preconditioning, tolerances, etc. \code{dim} is the dimension
  of the linear system, \code{rhs} the right hand side vector, and
  \code{u0} the initial guess on input and the solution on
  output; \code{oem\_cg()} needs a workspace for storing
  \code{3*dim} additional \code{REAL}s; the return value is the
  number of iterations; \code{oem\_cg()} only uses left
  preconditioning.
  %% 
  \kitem{oem\_gmres(oem\_data, dim, rhs, u0)} solves a linear system
  by the GMRes method with restart and can be used for regular
  system matrices; \code{oem\_data} stores information about
  matrix vector multiplication, preconditioning, tolerances, etc.
  \code{dim} is the dimension of the linear system, \code{rhs}
  the right hand side vector, and \code{u0} the initial guess
  on input and the solution on output; \code{oem\_data->restart}
  is the dimension of the Krylov--space for 
  the minimizing procedure; \code{oem\_data->restart} must be bigger
  than \code{0} and less or equal \code{dim}, otherwise
  \code{restart=10} will be used; \code{oem\_gmres()} needs a
  workspace for storing  
  \code{(oem\_data->restart+2)*dim +
    oem\_data->restart*(oem\_data->restart+4)} 
  additional \code{REAL}s.
  %% 
  \kitem{oem\_gmres\_k(oem\_data, dim, rhs, u0)} performs just one restart step
  (minimization on a $k$-dimensional Krylov subspace) of the GMRES
  method. This routine can be used as subroutine in other
  solvers. For example, \code{oem\_gmres()} just iterates this
  until the tolerance is met. Other applications are nonlinear
  GMRES solvers, where a new linearization is done after each
  linear GMRES restart step.
  %% 
  \kitem{oem\_odir(oem\_data, dim, rhs, u0)} solves a linear system
  by the method of orthogonal directions and can be used for
  symmetric, positive system matrices; \code{oem\_data} stores
  information about matrix vector multiplication,
  preconditioning, tolerances, etc.  \code{dim} is the dimension
  of the linear system, \code{rhs} the right hand side vector, and
  \code{u0} the initial guess on input and the solution on
  output; \code{oem\_dir()} needs a workspace for storing
  \code{5*dim} additional \code{REAL}s; the return value is the
  number of iterations; \code{oem\_odir()} only uses left
  preconditioning.
  %% 
  \kitem{oem\_ores(oem\_data, dim, rhs, u0)} solves a linear system
  by the method of orthogonal residuals and can be used for symmetric
  system matrices; 
  \code{oem\_data} stores information about
  matrix vector multiplication, preconditioning, tolerances, etc.
  \code{dim} is the dimension of the linear system, \code{rhs}
  the right hand side vector, and \code{u0} the initial guess
  on input and the solution on output; \code{oem\_res()}
  needs a workspace for storing \code{7*dim} additional \code{REAL}s;
  the return value is the number of iterations;
  \code{oem\_ores()} only uses left preconditioning.
  %% 
  \kitem{oem\_symmlq(oem\_data, dim, rhs, u0)} solves a symmetric
  linear system. \code{oem\_data} stores information about matrix
  vector multiplication, preconditioning, tolerances, etc.
  \code{dim} is the dimension of the linear system, \code{rhs}
  the right hand side vector, and \code{u0} the initial guess on
  input and the solution on output; \code{oem\_symmlq()} needs a
  workspace for storing \code{6*dim} additional \code{REAL}s; the
  return value is the number of iterations.  \code{oem\_symmlq()}
  supports uses left preconditioning.
  %% 
  \kitem{oem\_tfqmr(oem\_data, dim, rhs, u0)} solves a linear system
  using a transpose-free QMR method and can be used for regular
  system matrices; \code{oem\_data} stores
  information about matrix vector multiplication,
  preconditioning, tolerances, etc. \code{dim} is the dimension
  of the linear system, \code{rhs} the right hand side vector, and
  \code{u0} the initial guess on input and the solution on
  output; \code{oem\_tfqmr()} needs a workspace for storing
  \code{11*dim} additional \code{REAL}s; the return value is the
  number of iterations.
\end{descr}

\subsection{Krylov-space solvers for DOF matrices and vectors}%
\label{S:ALBERTA_OEM_solvers}

\begin{compatibility}
  \label{compat:precon}
  The support for additional preconditioners, as well as the
  block-matrix structure induced by the support for
  \hyperref[S:chain_impl]{direct sums of finite element spaces} (see
  \secref{S:chain_impl}) made it necessary to provide a more flexible
  and extendible interface to the implemented preconditioners.
  Additionally, some of the preconditioners need further parameters.

  Therefore, the selection of a particular preconditioner has been
  moved to separate functions
  \hyperref[S:init_oem_precon_fct]{\code{init\_oem\_precon()}},
  \hyperref[S:vinit_oem_precon_fct]{\code{vinit\_oem\_precon()}} and
  \hyperref[S:init_precon_from_type_fct]{\code{init\_precon\_from\_type()}},
  the latter requiring a special support structure
  \hyperref[S:PRECON_TYPE_struct]{\code{PRECON\_TYPE}} to pass
  parameters on to the preconditioners.

  Solver-functions, which previously accepted a mere integer to select
  a particular preconditioner, now need a pointer to a
  \hyperref[T:PRECON]{\code{PRECON}}-structure, see below
  \secref{S:precon}.
\end{compatibility}

We describe here the interface between \ALBERTA's DOF-vectors and
-matrices and the available general OEM-solvers described in the
previous \secref{S:oem}. At the highest level, there are three function,
namely \code{oem\_solve\_s()}, \code{oem\_solve\_d()} and
\code{oem\_solve\_dow()}.  The calling conventions for the three
functions are functionally identical, except for the data-type of the
DOF-vector arguments.  The function \code{oem\_solve\_s()} is used for
scalar valued problems, i.e.
\[
A\,x = b
\]
with $A \in \R^{N\times N}$ and $x,b \in \R^N$. Vector valued problems
need a closer examination, there are two cases:
\begin{enumerate}
\item \DOW-valued finite element spaces based on scalar basis functions:

\code{oem\_solve\_d()} and \code{oem\_solve\_dow()} can both either be
used for decoupled or coupled \DOW-valued problems. Decoupled problems
are of the form
\[
\left[\begin{matrix}
A      &  0      & \ldots & 0\\
0      &  A      & \ddots & \vdots\\
\vdots & \ddots  & \ddots & 0\\
0      & \ldots  &    0   & A
\end{matrix}\right]
\left[\begin{matrix} u_1\\ u_2\\ \vdots\\ u_n\end{matrix}\right]
=
\left[\begin{matrix} f_1\\ f_2\\ \vdots\\ f_n\end{matrix}\right]
\]
with $A \in \R^{N\times N}$ and $u_i,f_i \in \R^N$, $i = 1,\dots,n$,
where $n = \code{DIM\_OF\_WORLD}$. The vectors $(u_1,\dots,u_n)$ and
$(f_1,\dots,f_n)$ are stored in \code{DOF\_REAL\_D\_VEC}s, whereas
the matrix is stored as a single scalar \code{DOF\_MATRIX}.

Coupled \DOW-valued problems lead in this context to matrices of the form
\[
\left[\begin{matrix}
A^{00} &  \ldots & A^{0n}\\
\vdots &  \ddots & \vdots\\
A^{n0} &  \ldots & A^{nn}
\end{matrix}\right]
\left[\begin{matrix} u_1\\ \vdots\\ u_n\end{matrix}\right]
=
\left[\begin{matrix} f_1\\ \vdots\\ f_n\end{matrix}\right]
\]
with $A^{\mu\nu} \in \R^{N\times N}$ and $u_\nu,f_\mu \in \R^N$,
$\mu,\nu = 1,\dots,n$, where $n = \code{DIM\_OF\_WORLD}$. The vectors
$(u_1,\dots,u_n)$ and $(f_1,\dots,f_n)$ are again stored in
\code{DOF\_REAL\_D\_VEC}s. One prominent example is the discretisation
of a Stokes-problem with prescribed stresses on the boundary: in this
case the weak formulation has to be based on the deformation tensor,
which leads to matrix of above type. The matrix is still stored as a
\code{DOF\_MATRIX} structure, but its entries are $\DOW\times\DOW$
blocks: the data is stored as an $N\times N$ matrix of small $d\times
d$ blocks in analogy to \code{DOF\_REAL\_D\_VEC}s. See also
\ref{book:S:DisCoupled}.  Compare also \compatref{compat:DOWB_MATRIX}.

\item Finite element spaces based on \DOW-valued basis functions:

  In this case the DOF-vectors are scalar-valued, and the resulting
  DOF-matrix is just a scalar matrix, compare also
  \secref{book:S:DisCoupled}.
\end{enumerate}

Note that the interface routines to the OEM-solvers are aware of
direct sums of finite element spaces, as described in
\secref{S:chain_impl}, the resulting block-matrices generated by the
assemble-framework will be handled correctly, including the cases
where a standard Lagrangian finite element space is augmented by
vector-valued basis functions like face-bubbles.

An application selects a particular solver by passing one of the
following enumeration values to \code{oem\_solve\_[s|d|dow]()}:
%%
\ddx{OEM_SOLVER@{\code{OEM\_SOLVER}}}
\idx{linear solver!OEM_SOLVER@{\code{OEM\_SOLVER}}}
%%
\bv\begin{lstlisting}[label=enum:OEM_SOLVER]
typedef enum {
  NoSolver, BiCGStab, CG, GMRes, ODir, ORes, TfQMR, GMRes_k, SymmLQ
} OEM_SOLVER;
\end{lstlisting}\ev
%%
New identifiers may be added to this enumeration when new solvers are
added to \ALBERTA.
%%
In more detail, the three high-level interface function are described
below:
\begin{function}{oem\_solve\_[s|d|dow]()}
\label{S:oem_solve_fct}

\item[Prototypes] ~\hfill
%%
\fdx{oem_solve_d()@{\code{oem\_solve\_d()}}}%
\idx{linear solvers!oem_solve_d()@{\code{oem\_solve\_d()}}}%
\fdx{oem_solve_s()@{\code{oem\_solve\_s()}}}%
\idx{linear solvers!oem_solve_s()@{\code{oem\_solve\_s()}}}%
\fdx{oem_solve_dow()@{\code{oem\_solve\_dow()}}}%
\idx{linear solvers!oem_solve_dow()@{\code{oem\_solve\_dow()}}}%
%%
\bv\begin{lstlisting}
int oem_solve_s(const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
                const DOF_REAL_VEC *f, DOF_REAL_VEC *u,
                OEM_SOLVER solver,
                REAL tol, const PRECON *precon,
                int restart, int max_iter, int info);
int oem_solve_d(const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
                const DOF_REAL_D_VEC *f, DOF_REAL_D_VEC *u,
                OEM_SOLVER solver,
                REAL tol, const PRECON *precon,
                int restart, int max_iter, int info);
int oem_solve_dow(const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
                  const DOF_REAL_VEC_D *f, DOF_REAL_VEC_D *u,
                  OEM_SOLVER solver,
                  REAL tol, const PRECON *precon,
                  int restart, int max_iter, int info);
\end{lstlisting}\ev

\fdx{oem_solve_d()@{\code{oem\_solve\_d()}}}%
\idx{linear solvers!oem_solve_d()@{\code{oem\_solve\_d()}}}%
\fdx{oem_solve_s()@{\code{oem\_solve\_s()}}}%
\idx{linear solvers!oem_solve_s()@{\code{oem\_solve\_s()}}}%
\fdx{oem_solve_dowb()@{\code{oem\_solve\_dowb()}}}%
\idx{linear solvers!oem_solve_dowb()@{\code{oem\_solve\_dowb()}}}%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
iterations = oem_solve_[s|d|dow](A, mask, f, u,
                                 solver, tol, precon,
                                 restart, max_iter, info);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Attempt to solve the linear system defined by the
  matrix \code{A}, an optional restriction to a sub-space by masking
  out DOFs via \code{mask}, a load-vector \code{f} and an initial
  guess and storage \code{u} for the approximative solution.
\item[Parameters]~\hfill
  \begin{descr}
  \kitem{A} Pointer to a \code{DOF\_MATRIX} storing the system
    matrix.
    %% 
  \hyperitem{oem_solve:mask}{mask} Pointer to a \code{DOF\_SCHAR\_VEC}
    masking out parts of the finite element space: if
    \code{mask->vec[d] >= DIRICHLET}, then \code{A} will act as if the
    $d$-th row would be zero. Compare also the discussion in the
    section about Dirichlet boundary condition, see
    \secref{S:dirichlet_bound}
    %% 
  \kitem{f} A pointer to a \code{DOF\_REAL[\_D]\_VEC[\_D]} storing
    the load-vector of the linear system.
    %% 
  \kitem{u} A pointer to a \code{DOF\_REAL[\_D]\_VEC[\_D]} storing the
    initial guess on input and the approximative solution on output.
    In the context of interpolated Dirichlet boundary conditions
    special provisions have to be taken for the ``Dirichlet-nodes''.
    Compare the discussion in \secref{S:dirichlet_bound}.
    %% 
  \kitem{solver} Use the respective OEM-solver; see
    \hyperref[enum:OEM_SOLVER]{above} for the available keywords.
    %% 
  \kitem{tol} Tolerance for the residual; if the norm of the
    residual is less or equal \code{tol},
    \code{oem\_solve\_[s|d|dow]()} returns the actual iterate as the
    approximative solution of the system.
    %% 
  \kitem{precon} A pointer to a structure describing the
    preconditioner to use, see further below in \secref{S:precon}.
    \begin{compatibility}
      Previous versions used a simple number here, but as the
      preconditioner frame-work has become much more complicated,
      because of the support for direct sums of finite element spaces,
      the code for the selection of the preconditioner has been
      separated from the entry-point to the solvers.
    \end{compatibility}
    %% 
  \kitem{restart} Only used by \code{gmres}: the maximum dimension
    of the Krylov-space.
    %% 
  \kitem{max\_iter} Maximal number of iterations to be performed by
    the linear solver. This can be compared with the return value --
    which gives the number of iterations actually performed -- to
    determine whether the solver has achieved its goal.
    %% 
  \kitem{info} This is the level of information of the linear solver; 
    \code{0} is the lowest level of information (no information is printed)
    and \code{10} the highest level.
  \end{descr}
\item[Return Value] ~\hfill

  The number of iterations the solver needed until the norm of the
  residual was below \code{tol}, or \code{max\_iter} if the solver was
  not able to reach its goal before the prescribed maximum iteration
  count was exhausted.
\end{function}

There is also an interface to the OEM-solvers which splits the call to
the OEM-methods into an initialization part, an execution part and a
cleanup part. This is useful when the same solver applies the same
matrix to varying load-vectors. One example is the implementation of a
CG-method for Schur's complement operator of a saddle-point problem
(see \secref{S:OEM_SPCG} below). The following functions implement
this interface:

\fdx{get_oem_solver()@{\code{get\_oem\_solver()}}}%
\idx{linear solvers!get_oem_solver()@{\code{get\_oem\_solver()}}}%
%%
\fdx{init_oem_solve()@{\code{init\_oem\_solve()}}}%
\idx{linear solvers!init_oem_solve()@{\code{init\_oem\_solve()}}}%
%%
\fdx{release_oem_solve()@{\code{release\_oem\_solve()}}}%
\idx{linear solvers!release_oem_solve()@{\code{release\_oem\_solve()}}}%
%%
\fdx{call_oem_solve_s()@{\code{call\_oem\_solve\_s()}}}%
\idx{linear solvers!call_oem_solve_s()@{\code{call\_oem\_solve\_s()}}}%
%%
\fdx{call_oem_solve_d()@{\code{call\_oem\_solve\_d()}}}%
\idx{linear solvers!call_oem_solve_d()@{\code{call\_oem\_solve\_d()}}}%
%%
\fdx{call_oem_solve_dow()@{\code{call\_oem\_solve\_dow()}}}%
\idx{linear solvers!call_oem_solve_dow()@{\code{call\_oem\_solve\_dow()}}}%
%%
\bv\begin{lstlisting}
typedef int (*OEM_MV_FCT)(void *data, int dim, const REAL *rhs, REAL *u);

OEM_MV_FCT get_oem_solver(OEM_SOLVER);
OEM_DATA *init_oem_solve(const DOF_MATRIX *A,
                         const DOF_SCHAR_VEC *mask,
                         REAL tol, const PRECON *precon,
                         int restart, int max_iter, int info);
void release_oem_solve(const OEM_DATA *oem);
int call_oem_solve_s(const OEM_DATA *oem, OEM_SOLVER solver,
                     const DOF_REAL_VEC *f, DOF_REAL_VEC *u);
int call_oem_solve_dow(const OEM_DATA *oem, OEM_SOLVER solver,
                        const DOF_REAL_VEC_D *f, DOF_REAL_VEC_D *u);
int call_oem_solve_d(const OEM_DATA *oem, OEM_SOLVER solver,
                     const DOF_REAL_D_VEC *f, DOF_REAL_D_VEC *u);
\end{lstlisting}\ev

See Example
\ref{example:oem_solve_impl}-\ref{example:get_oem_solver_direct_sums}
for short code skeletons explaining the use of these functions. The
descriptions for the individual functions are as follows:

\begin{function}{get\_oem\_solver()}
\label{S:get_oem_solver_fct}
%%
\fdx{get_oem_solver()@{\code{get\_oem\_solver()}}}%
\idx{linear solvers!get_oem_solver()@{\code{get\_oem\_solver()}}}%
%%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
solver_fct = get_oem_solver(solver_num);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Return a function pointer for the solver indicated by
  \code{solver\_num} which shuld be one of the symbols
  \code{BiCGStab}, \code{CG} \code{GMRes}, \code{ODir}, \code{ORes},
  \code{TfQMR}, \code{GMRes\_k}, \code{SymmLQ}.

\item[Parameters]~\hfill
  \begin{descr}
    \kitem{solver\_num} As explained above.
  \end{descr}
\item[Return Value]~\hfill
  
  A function pointer conforming to the type
  
\bv\begin{lstlisting}
int (*OEM_MV_FCT)(void *data, int dim, const REAL *rhs, REAL *u);
\end{lstlisting}\ev
\end{function}

\begin{function}{init\_oem\_solve()}
\label{S:init_oem_solve_fct}

%%
\fdx{init_oem_solve()@{\code{init\_oem\_solve()}}}%
\idx{linear solvers!init_oem_solve()@{\code{init\_oem\_solve()}}}%
%%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
oem_data_handle =
  init_oem_solve(A, mask, tol, precon, restart, max_iter, info);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \code{OEM\_DATA}-handle which can be passed to the
  function pointers returned by \code{get\_oem\_solver()} (see above).
  The specific solver to use, as well as the storage for the solution
  and the load-vector, is left unspecified here; these data is given
  as parameters to \code.{call\_oem\_solve\_[s|d|dow]()}, see below.
  The data handle returned by this functions eventually should be
  deleted by a call to \code{realeas\_oem\_solve()}, which is also
  described below.
\item[Parameters]~\hfill

  The parameters have the same meaning as the respective parameters to
  \code{oem\_solve\_[s|d|dow()}; the explanations are just repeated
  here:
  \begin{descr}
    \kitem{A} Pointer to a \code{DOF\_MATRIX} storing the system
    matrix.
    %%
    \hyperitem{init_oem_solve:mask}{mask} Pointer to a
    \code{DOF\_SCHAR\_VEC} masking out parts of the finite element
    space: if \code{mask->vec[d] >= DIRICHLET}, then \code{A} will act
    as if the $d$-th row would be zero. Compare also the discussion in
    the section about Dirichlet boundary condition, see
    \secref{S:dirichlet_bound}
    %%
    \kitem{tol} Tolerance for the residual; if the norm of the
    residual is less or equal \code{tol},
    \code{oem\_solve\_[s|d|dow]()} returns the actual iterate as the
    approximative solution of the system.
    %%
    \kitem{precon} A pointer to a structure describing the
    preconditioner to use, see further below in \secref{S:precon}.
    \begin{compatibility}
      Previous versions used a simple number here, but as the
      preconditioner frame-work has become much more complicated,
      because of the support for direct sums of finite element spaces,
      the code for the selection of the preconditioner has been
      separated from the entry-point to the solvers.
    \end{compatibility}
    %%
    \kitem{restart} Only used by \code{gmres}: the maximum dimension
    of the Krylov-space.
    %%
    \kitem{max\_iter} Maximal number of iterations to be performed by
    the linear solver. This can be compared with the return value --
    which gives the number of iterations actually performed -- to
    determine whether the solver has achieved its goal.
    %%
    \kitem{info} This is the level of information of the linear solver; 
    \code{0} is the lowest level of information (no information is printed)
    and \code{10} the highest level.
  \end{descr}
\item[Return Value]~\hfill

  A pointer to an initialized \code{OEM\_DATA}-structure, see the
  source-code listing on page \pageref{D:OEM_DATA}.
\end{function}

\begin{function}{release\_oem\_solve()}
\label{S:release_oem_solve_fct}

%%
\fdx{release_oem_solve()@{\code{release\_oem\_solve()}}}%
\idx{linear solvers!release_oem_solve()@{\code{release\_oem\_solve()}}}%
%%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
release_oem_solve(oem_data_handle);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Release an \code{OEM\_DATA}-handle previously acquired by a call to
  \code{init\_oem\_solve\_[s|d|dow]()} as explained above.
\item[Parameters]~\hfill
  \begin{descr}
    \kitem{oem\_data\_handle} The \code{OEM\_DATA}-pointer to destroy.
  \end{descr}
\end{function}

\begin{function}{call\_oem\_solve\_[s|d|dow]()}
\label{S:call_oem_solve_fct}

%%
\fdx{call_oem_solve_s()@{\code{call\_oem\_solve\_s()}}}%
\idx{linear solvers!call_oem_solve_s()@{\code{call\_oem\_solve\_s()}}}%
%%
\fdx{call_oem_solve_d()@{\code{call\_oem\_solve\_d()}}}%
\idx{linear solvers!call_oem_solve_d()@{\code{call\_oem\_solve\_d()}}}%
%%
\fdx{call_oem_solve_dow()@{\code{call\_oem\_solve\_dow()}}}%
\idx{linear solvers!call_oem_solve_dow()@{\code{call\_oem\_solve\_dow()}}}%
%%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
iterations = call_oem_solve_[s|d|dow](oem_data_handle, solver, f, u);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Call an iterative solver, as indicated by \code{solver}, trying to
  solve the linear system described by \code{oem\_data\_handle} for
  the unknown \code{u}, given the load-vector \code{f}. \code{u} is at
  the same time the storage for the solution and the initial guess for
  the iterative solver.
\item[Parameters]~\hfill

  With the exception of \code{oem\_data\_handle} the parameters have
  the same meaning as the respective parameters to
  \code{oem\_solve\_[s|d|dow()}; the explanations are just repeated
  here:
  \begin{descr}
    \kitem{oem\_data\_handle} A \code{OEM\_DATA}-structure, as
    returned by a previous call to \code{init\_oem\_solve()} (or
    filled in ``by hand'').
    %%
    \kitem{f} A pointer to a \code{DOF\_REAL[\_D]\_VEC[\_D]} storing
    the load-vector of the linear system.
    %%
    \kitem{u} A pointer to a \code{DOF\_REAL[\_D]\_VEC[\_D]} storing
    the initial guess on input and the approximative solution on
    output. In the context of interpolated Dirichlet boundary
    conditions special provisions have to be taken for the
    ``Dirichlet-nodes''. Compare the discussion in
    \secref{S:dirichlet_bound}.
    %%
    \kitem{solver} Use the respective OEM-solver; see above for the
    available keywords.
  \end{descr}
\item[Return Value]~\hfill

  The number of iterations the solver needed until the norm of the
  residual was below \code{tol}, or \code{max\_iter} if the solver was
  not able to reach its goal before the prescribed maximum iteration
  count was exhausted.
\end{function}

\hrulefill

\begin{example}
  \label{example:oem_solve_impl}
The high-level function
%%
\bv\begin{lstlisting}
iterations = oem_solve_[s|d|dow](A, mask, f, u,
                                 solver, tol, precon,
                                 restart, max_iter, info);
\end{lstlisting}\ev
%%
is implemented as follows:
%%
\bv\begin{lstlisting}
int oem_solve_s(const DOF_MATRIX *A, const DOF_SCHAR_VEC *mask,
		const DOF_REAL_VEC *f,  DOF_REAL_VEC *u,
		OEM_SOLVER solver, REAL tol, const PRECON *precon,
		int restart, int max_iter, int info)
{
  const OEM_DATA *oem;
  int iter;
  
  oem = init_oem_solve(A, mask, tol, precon, restart, max_iter, info);
  iter = call_oem_solve_s(oem, solver, f, u);
  release_oem_solve(oem);

  return iter;
}
\end{lstlisting}\ev
%%
\end{example}

\begin{example}
  \label{example:get_oem_solver}
  If it is clear which solver to use, then the call through
  \code{call\_oem\_solve\_[s|d|dow]()} in
  \exampleref{example:oem_solve_impl} can be replaced by a direct call
  to the solver-routine like follows. Note, however, that this is a
  simplified example which does not take into account that
  \code{u->fe\_space} could be a direct sum of finite element spaces,
  as explained in \secref{S:chain_impl}. Of course, it is just fine
  for application to ignore the ``direct sum'' feature if it is clear
  that it is not needed. See
  \exampleref{example:get_oem_solver_direct_sums} for an example of
  how to deal with direct sums. The reader should also remember that
  -- for simple applications -- it is sufficient to use the high-level
  routines \code{oem\_solve\_[s|d|dow]()}, see also
  \exampleref{example:oem_solve_impl} for the connection between the
  example given here and the high-level routines.
  %%
  \bv\begin{lstlisting}
const OEM_DATA *oem;
int iter;
OEM_MV_FCT solver_fct;
int dim;
  
oem        = init_oem_solve(A, mask, tol, precon, restart, max_iter, info);
solver_fct = get_oem_solver(CG); /* e.g. */
dim        = dof_real_vec_length(u->fe_space);
FOR_ALL_FREE_DOFS(u->fe_space->admin,
  if (dof < dim) u->vec[dof] = f->vec[dof] = 0.0);
...
solver_fct(oem, dim, f->vec, u->vec); /* maybe do this multiple times ... */
...
FOR_ALL_FREE_DOFS(u->fe_space->admin,
  if (dof < dim) f_other->vec[dof] = 0.0);
solver_fct(oem, dim, f_other->vec, u->vec); /* ... with other load-vectors */
...
release_oem_solver();
  \end{lstlisting}\ev
%%
\end{example}
%%
\begin{example}
  \label{example:get_oem_solver_direct_sums}
  A similar code-skeleton, taking direct sums of finite element spaces
  into account (see \secref{S:dof_vec_skel}) would look like as quoted
  below. The interested reader maybe also wants to have a look at the
  source code \code{alberta-VERSION/alberta/src/Common/oem\_solve.c}
  in the \ALBERTA distribution.  See
  \exampleref{example:get_oem_solver} for a simpler example, ignoring
  that ``direct sum'' feature. The reader should also remember that --
  for simple applications -- it is sufficient to use the high-level
  routines \code{oem\_solve\_[s|d|dow]()}, see also
  \exampleref{example:oem_solve_impl} for the connection between the
  example given here and the high-level routines.
%%
  \bv\begin{lstlisting}
const OEM_DATA *oem;
int iter;
OEM_MV_FCT solver_fct;
int dim;
REAL *uvec, *fvec;
  
oem        = init_oem_solve(A, mask, tol, precon, restart, max_iter, info);
solver_fct = get_oem_solver(CG); /* e.g. */
dim        = dof_real_vec_length(u->fe_space);
if (!CHAIN_SINGLE(u)) {
  uvec = MEM_ALLOC(dim, REAL);
  fvec = MEM_ALLOC(dim, REAL);
  copy_from_dof_real_vec(uvec, u);
  copy_from_dof_real_vec(fvec, f);
} else {
  FOR_ALL_FREE_DOFS(u->fe_space->admin,
      if (dof < dim) u->vec[dof] = f->vec[dof] = 0.0);
  fvec = f->vec;
  uvec = u->vec;
}
...
solver_fct(oem, dim, fvec, uvec);
...
release_oem_solver();
if (!CHAIN_SINGLE(u)) {
  copy_to_dof_real_vec(u, uvec);
  MEM_FREE(uvec, dim, REAL);
  MEM_FREE(fvec, dim, REAL);
}
  \end{lstlisting}\ev
\end{example}

\subsection{SOR solvers for DOF-matrices and -vectors}
The SOR and SSOR methods are implemented directly for linear systems
defined by \code{DOF\_MATRIX} and \code{DOF\_REAL\_[D\_]VEC[\_D]}s.
\begin{remark}
  In contrast to the other solvers for linear systems, the SOR- and
  SSOR-methods described in this section do \emph{not} support direct
  sums of finite element spaces (see \secref{S:chain_impl}).
\end{remark}
\fdx{sor_d()@{\code{sor\_d()}}}%
\idx{linear solvers!sor_d()@{\code{sor\_d()}}}%
\fdx{sor_s()@{\code{sor\_s()}}}%
\idx{linear solvers!sor_s()@{\code{sor\_s()}}}%
\fdx{ssor_d()@{\code{ssor\_d()}}}%
\idx{linear solvers!ssor_d()@{\code{ssor\_d()}}}%
\fdx{ssor_s()@{\code{ssor\_s()}}}%
\idx{linear solvers!ssor_s()@{\code{ssor\_s()}}}%
\bv\begin{lstlisting}
int sor_s(DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *, 
          DOF_REAL_VEC *, REAL, REAL, int, int);
int sor_d(DOF_MATRIX *, const DOF_REAL_D_VEC *, const DOF_SCHAR_VEC *,
          DOF_REAL_D_VEC *, REAL, REAL, int, int);
int ssor_s(DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *, 
          DOF_REAL_VEC *, REAL, REAL, int, int);
int ssor_d(DOF_MATRIX *, const DOF_REAL_D_VEC *, const DOF_SCHAR_VEC *,
           DOF_REAL_D_VEC *, REAL, REAL, int, int);
\end{lstlisting}\ev
\begin{descr}
\kitem{[s]sor\_[s,d](matrix, f, bound, u, omega, tol, max\_iter, info)}
       solves the linear system  for a scalar or decoupled vector valued 
       problem in \ALBERTA by the [Symmetric] Successive
       Over Relaxation method; the return value is the number of used
       iterations to reach the prescribed tolerance;

       \code{matrix}: pointer to a DOF matrix storing the system
       matrix;

       \code{f}: pointer to a DOF vector storing the right hand side
       of the system;

       \code{bound}: optional pointer to a DOF vector giving Dirichlet
       boundary information;

       \code{u}: pointer to a DOF vector storing the initial 
       guess on input and the calculated solution on output;

       \code{omega}: the relaxation parameter and must be in the
       interval $(0,2]$; if it is not in this interval then
       \code{omega=1.0} is used;

       \code{tol}: tolerance for the maximum norm of the correction;
       if this norm is less than or equal to \code{tol}, then
       \code{sor\_[s,d]()} returns the actual iterate as the solution
       of the system; 

       \code{max\_iter}: maximal number of iterations to be performed
       by \code{sor\_[s,d]()} although the tolerance may not be
       reached;

       \code{info}: level of information of \code{sor\_[s,d]()};
       \code{0} is the lowest level of information (no information is printed)
       and \code{6} the highest level.
\end{descr}

\subsection{Saddle-point problems, CG solver for Schur's complement}
\label{S:OEM_SPCG}
On the linear-algebra level, a linaer saddle-point problem is of the
form
%%
\begin{equation}
  \label{eq:spproblem}
  \begin{bmatrix}
    A      & B \\
    B^\ast & 0
  \end{bmatrix}
  \,
  \begin{bmatrix}
    v \\ p
  \end{bmatrix}
  =
  \begin{bmatrix}
    f \\ g
  \end{bmatrix},
  \quad f,\,v\in X,\; g,\,p\in Y,
\end{equation}
%%
with matrices $A$ and $B$, unknown vectors $v$ and $p$ and a load
vector consisting of the vector $f$ and $g$. Usually, $A$ has its
origin in the discretization of an unconstraint minimization problem,
$B^\ast$ plays the role of a linear constraint, and $p$ is the
corresponding Lagrangian multiplier. $Y$ is the finite element space
for the Lagrangian multiplier, and $X$ a possibly different finite
element space for the principal unknown $v$:

If $A$ is invertible, then it is possible to transform
\eqref{eq:spproblem} into an equation for $p$ only:
%%
\begin{equation}
  \label{eq:spschur}
  T\, p = B^\ast\,A^{-1}\,f  - g,\quad T:= B^\ast\,A^{-1}\,B,
\end{equation}
%%
where $v$ can be reconstructed from $p$ by $v=A^{-1}(f - B\,p)$.  If
$A$ is symmetric positive definite, then so is $T$, and thus it is
possible to solve \eqref{eq:spschur} by means of a CG-method in this
case which, interestingly, even computes $v$ as a by-product.

In the same spirit as for the iterative solvers for ``ordinary''
problems, this \emph{SPCG}-method is implemented in a fairly abstract
manner, using a special data-structure to describe the saddle-point
problem. The actual CG-iteration is executed by a call to the function
\code{oem\_spcg(oem\_sp\_data,\dots)}, described below in
\secref{S:oem_spcg_fct}. It is the task of the application to fill
that \code{OEM\_SP\_DATA}-structure (see \secref{S:OEM_SP_DATA_struct}
below).  However, there are interface functions to aid the
implementation of such a saddle-point solver with \ALBERTA's
DOF-matrices and -vectors, see \secref{S:ALBERTA_SPCG} below.
%%
\fdx{oem_spcg()@{\code{oem\_spcg()}}}%
\ddx{OEM_SP_DATA()@{\code{OEM\_SP\_DATA}}}%
\bv\begin{lstlisting}
typedef struct oem_sp_data OEM_SP_DATA;
int oem_spcg(OEM_SP_DATA *data, int dimX, const REAL *f, REAL *u, int dimY,
	     const REAL *g, REAL *p);
\end{lstlisting}\ev
%%
\begin{datatype}{OEM\_SP\_DATA}

\item[Definition]~\hfill

\ddx{OEM_SP_DATA()@{\code{OEM\_SP\_DATA}}}%
\bv\begin{lstlisting}
typedef int (*OEM_MV_FCT)(void *data, int dim, const REAL *rhs, REAL *u);
typedef void (*OEM_GEMV_FCT)(void *data,
			     REAL factor,
			     int dimX, const REAL *x, int dimY, REAL *y);

typedef struct oem_sp_data OEM_SP_DATA;
struct oem_sp_data
{
  OEM_MV_FCT   solve_Auf;
  void         *solve_Auf_data;
  OEM_GEMV_FCT B;
  void         *B_data;
  OEM_GEMV_FCT Bt;
  void         *Bt_data;
  OEM_MV_FCT   project;
  void         *project_data;
  int          (*precon)(void *ud,
			 int dimY, const REAL *g_Btu, const REAL *r, REAL *Cr);
  void         *precon_data;
  
  WORKSPACE    *ws;

  REAL         tolerance;
  int          restart;
  int          max_iter;
  int          info;

  REAL         initial_residual;
  REAL         residual;
};
\end{lstlisting}\ev

\item[Components]~\hfill

\label{S:OEM_SP_DATA_struct}
\begin{descr}
\kitem{solve\_Auf()} An application provided function for solving
  $A\,x=b$, for given initial guess and solution $x$ and load-vector
  $b$. This can, e.g. be one of the solver-functions for ordinary
  problems, see \secref{S:oem}.
  %% 
\kitem{solve\_Auf\_data} Application data passed to \code{solve\_Auf()}
  as first argument. If \code{solve\_Auf()} is one of the
  solver-functions described in \secref{S:oem} or a function pointer
  returned by \code{get\_oem\_solver()}, then this should be a
  pointer to a \code{OEM\_DATA} structure, as returned for instance by
  \code{init\_oem\_solver()}, see above in \secref{S:ALBERTA_OEM_solvers}.
  %% 
\hyperitem{OEM_SP_DATA:B}{B()} A pointer to an application provided
  function with the calling convention
  %% 
  \bv\begin{lstlisting}
B(B_data, factor, dimY, p, dimX, v);
\end{lstlisting}\ev
  %% 
  This function must implement the operation
  $\code{v} = \code{v} + \code{factor} \,\code{B},\code{p}$ In
  the abstract setting the range of the operator underlying \code{B()}
  is the same as the range of the unconstrained operator \code{A()}
  such that it makes sense to apply the inverse of \code{A()} to the
  result of \code{B()}.
  %% 
\hyperitem{OEM_SP_DATA:B_data}{B\_data} Application data passed to
  \code{B()} as first argument.
  %% 
\hyperitem{OEM_SP_DATA:Bt}{Bt()} The pendent to \code{B()}: A pointer
  to an application provided function with the calling convention
  %% 
  \bv\begin{lstlisting}
Bt(Bt_data, factor, dimX, v, dimY, p);
\end{lstlisting}\ev
  %% 
  This function must implement the operation
  $\code{p} = \code{p} + \code{factor} \,\code{B}^\ast\,\code{v}$
  %% 
  For practical reasons -- e.g. in the context of a Stokes problem --
  the range of the discrete operator \code{Bt()} need not necessarily
  be the finite element space for the Lagrangian multiplier (see
  \code{precon()} and \code{project()} below), but often is rather the
  dual of that space.
  %% 
\hyperitem{OEM_SP_DATA:Bt_data}{Bt\_data} Application data passed to
  \code{Bt()} as first argument.
  %% 
\hyperitem{OEM_SP_DATA:project}{project()} A function pointer pointing
  to an application provided function which has the task to project
  the result from \code{Bt()} to the finite element space for the
  Lagrangian multiplier. \code{project()} maybe \nil is such a
  projection is not needed.  Arguably, this could already have been
  incorporated into \code{Bt()}, however, it is sometimes more
  efficient to let the discrete operator \code{Bt()} map to the dual
  of the space for the Lagrangian multiplier. See also \code{precon()}
  below. Often \code{project()} will just be an $L^2$-projection
  involving the inversion of a mass-matrix, which can for instance be
  done by a CG-method, or maybe even more efficiently with
  mass-lumping.
  %% 
\hyperitem{OEM_SP_DATA:project_data}{project\_data} Application data
  pointer passed as first argument to \code{project()}.
  %% 
\hyperitem{OEM_SP_DATA:precon}{precon()} A function
  pointer pointing to an application provided function which should
  implement a preconditioner ``$C()$'' for the CG-method for Schur's
  complement operator. \code{precon()} may be \nil. The calling
  convention is
  %% 
  \bv\begin{lstlisting}
iterations = precon(precon_data, dim, g_Btu, r, Cr);
\end{lstlisting}\ev
  %% 
  where the non-self-explanatory arguments have the following meaning:
  %% 
  \begin{descr}
  \kitem{g\_Btu} The current value of $g - B^\ast u$, where $u$ is the
    current iterate for the principal unknown $v$ in the CG-method.
    This is the result of a call to \code{Bt()}, and most likely lives
    in the dual of the space for the Lagrangian multiplier.
    %% 
  \kitem{r} This is \code{project(g\_Btu)}, this lives in space for
    the Lagrangian multiplier.
    %% 
  \end{descr}
  %% 
  The result value of \code{precon()} must be stored in \code{Cr}.
  \code{Cr} must belong to the space for the Lagrangian multiplier.
  %% 
  As an example, it is known that for a Quasi-Stokes problem
  \[
  \mu\,u - \nu\,\Delta u +\nabla p = f,\quad \nabla\cdot u = 0,
  \]
  a good choice for a preconditioner for Schur's complement CG-method
  is
  \[
  C(\code{r}) = \nu\,\code{r} + \mu\,q,\text{ with }-\Delta q = \code{g\_Btu}.
  \]
  Note that we have omitted the boundary conditions, which, of course,
  have to be applied to close the differential equations mentioned
  above. The reader is referred to standard text-books dealing with
  the discretizations of saddle-point problems.
  %% 
\hyperitem{OEM_SP_DATA:precon_data}{precon\_data} Data pointer passed
  as first argument to \code{precon()}.
  %% 
\kitem{ws} A pointer to a work-space area. May be \nil. If supplied,
  it must point to an initialized work-space of size
  %% 
  $$2*\code{dimY}+\code{dimX}+\max(\code{dimX}, \code{dimY})$$
  %% 
  if \code{precon() == \nil} and
  %% 
  $$3*\code{dimY}+\code{dimX}+\max(\code{dimX}, \code{dimY}).$$
  %% 
  If \code{ws == \nil}, then \code{oem\_spcg()} will allocate a
  work-space area by itself.
  %% 
\kitem{tolerance} \code{oem\_spcg()} will terminate if the norm of the
  CG-residual for the Lagrangian multiplier falls below
  \code{tolerance}.
  %% 
\kitem{restart} Not used by \code{oem\_spcg()}. Could be used when
  implementing similar iterative methods for non-symmetric
  saddle-point problems, e.g. by means of applying GMRES.
  %% 
\kitem{max\_iter} \code{ome\_spcg()} will terminate after this many
  iterations of the main-loop.
  %% 
\kitem{info} An integer controlling the amount of information printed
  to the terminal the application program runs in.
  %% 
  \hyperitem{OEM_SP_DATA:initial_residual}{initial\_residual} Output.
  Upon return from \code{oem\_spcg()} this component stores the
  initial residual.
  %% 
  \hyperitem{OEM_SP_DATA:residual}{residual} Output. Upon return from
  \code{oem\_spcg()} this component stores the final residual. This
  could be used for error recovery, e.g. if the iteration terminates
  because the maximum number of iterations (as specified by
  \code{max\_iter}) was exhausted.
  %% 
\end{descr}
\end{datatype}

\begin{function}{oem\_spcg()}
\label{S:oem_spcg_fct}

\fdx{oem_spcg()@{\code{oem\_spcg()}}}%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
iterations = oem_spcg(sp_data, dimX, f, u, dimY, g, p);
\end{lstlisting}\ev
\item[Description] ~\hfill

  This function implement a CG-method for the inversion of Schur's
  complement operator for a linear symmetric saddle-point problem.
\item[Parameters] ~\hfill
\begin{descr}
\kitem{sp\_data} A pointer to a correctly filled
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}} structure, as
  explained above. Upon return from \code{oem\_spcg()}, the fields
  \hyperlink{OEM_SP_DATA:initial_residual}{\code{initial\_residual}}
  and \hyperlink{OEM_SP_DATA:residual}{\code{residual}} will contain
  the initial and the final residual of the CG-iterations.
%%
\kitem{dimX} The dimension of the space for the principal unknown \code{u}.
%%
\kitem{f} Load-vector for the principal equation.
%%
\kitem{u} Storage for the principal unknown, and start-value for the
  principal unknown for the CG-method.
%%
\kitem{dimY} Dimension of the space for the Lagrangian multiplier.
%%
\kitem{g} Load-vector for the constraint equation.
%%
\kitem{p} Storage for the Lagrangian multiplier and start-value for
  the CG-method.
\end{descr}
\item[Return Value] ~\hfill

  The number of times the main-loop of the CG-iteration was executed.
  If this is equal to \code{sp\_data->max\_iter}, then the application
  should also inspect \code{sp\_data->residual} to determine whether
  the approximative solution is still acceptable.
\end{function}

\subsection{Saddle-pointer solvers for DOF-matrices and -vectors}
\label{S:ALBERTA_SPCG}

Similar to the functions explained in \secref{S:ALBERTA_OEM_solvers}
there are also interface functions to mediate between the more
low-level \hyperref[S:oem_spcg_fct]{oem\_spcg()} function described in
the previous \secref{S:OEM_SPCG} and the DOF-vectors and -matrices
generated by \ALBERTA's assemble frame-work, as described in
\secref{S:ass_tools}. The functions below have the slight disadvantage
that they take too many arguments. The interface functions support
direct sums of finite element spaces (see \secref{S:chain_impl}) which
is of some importance in the context of mixed discretizations for the
Stokes-problem.

There are two interfaces available: one for a saddle-point problem
with a single linear constraint, and one for a saddle-point problem
with multiple linear constraints, with the restriction that the
constraints are decoupled. We start with the single-constraint version
\hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}} in
\secref{S:oem_sp_solve_fct} and continue with the multiple-constraint
functions
\hyperref[S:init_sp_constraint_fct]{\code{init\_sp\_constraint()}},
\hyperref[S:release_sp_constraint_fct]{\code{release\_sp\_constraint()}}
and
\hyperref[S:oem_sp_schur_solve_fct]{\code{oem\_sp\_schur\_solve()}} in
the Sections
\ref{S:init_sp_constraint_fct}-\ref{S:oem_sp_schur_solve_fct}. There
is one additional support function
\hyperref[S:sp_dirichlet_bound_fct]{\code{sp\_dirichlet\_bound()}}
which deals with compatibility conditions in the context of a
divergence constraint and Dirichlet boundary conditions, see
\secref{S:sp_dirichlet_bound_fct}.

The suite of demo-programs contains example programs for the
discretization of Stokes and Quasi-Stokes problems, the interested
reader is referred to the programs
\bv\begin{verbatim}
alberta-VERSION-demo/src/Common/stokes.c
\end{verbatim}\ev
and
\bv\begin{verbatim}
alberta-VERSION-demo/src/Common/quasi-stokes.c.
\end{verbatim}\ev

The prototypes for the available functions read as follows:
%%
\fdx{oem_sp_solve_dow_scl()@{\code{oem\_sp\_solve\_dow\_scl()}}}%
\idx{linear solvers!oem_sp_solve_dow_scl()@{\code{oem\_sp\_solve\_dow\_scl()}}}%
\fdx{oem_sp_solve_ds()@{\code{oem\_sp\_solve\_ds()}}}%
\idx{linear solvers!oem_sp_solve_ds()@{\code{oem\_sp\_solve\_ds()}}}%
%%
\fdx{sp_dirichlet_bound_dow_scl()@{\code{sp\_dirichlet\_bound\_dow\_scl()}}}%
\idx{linear solvers!sp_dirichlet_bound_dow_scl()@{\code{sp\_dirichlet\_bound\_dow\_scl()}}}%
%%
\fdx{sp_dirichlet_bound_ds()@{\code{sp\_dirichlet\_bound\_ds()}}}%
\idx{linear solvers!sp_dirichlet_bound_ds()@{\code{sp\_dirichlet\_bound\_ds()}}}%
%%
\ddx{SP_CONSTRAINT@{\code{SP\_CONSTRAINT}}}%
\idx{linear solvers!SP_CONSTRAINT@{\code{SP\_CONSTRAINT}}}%
%%
\fdx{oem_sp_schur_solve()@{\code{oem\_sp\_schur\_solve()}}}%
\idx{linear solvers!oem_sp_schur_solve()@{\code{oem\_sp\_schur\_solve()}}}%
%%
\fdx{init_sp_constraint()@{\code{init\_sp\_constraint()}}}%
\idx{linear solvers!init_sp_constraint()@{\code{init\_sp\_constraint()}}}%
%%
\fdx{release_sp_constraint()@{\code{release\_sp\_constraint()}}}%
\idx{linear solvers!release_sp_constraint()@{\code{release\_sp\_constraint()}}}%
%%
\bv\begin{lstlisting}
int oem_sp_solve_dow_scl(OEM_SOLVER sp_solver,
                         REAL sp_tol, REAL tol_incr,
                         int sp_max_iter, int sp_info,
                         const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
                         OEM_SOLVER A_solver,
                         int A_max_iter, const PRECON *A_precon,
                         DOF_MATRIX *B,
                         DOF_MATRIX *Bt,
                         DOF_MATRIX *Yproj,
                         OEM_SOLVER Yproj_solver,
                         int Yproj_max_iter, const PRECON *Yproj_precon,
                         DOF_MATRIX *Yprec,
                         OEM_SOLVER Yprec_solver,
                         int Yprec_max_iter, const PRECON *Yprec_precon,
                         REAL Yproj_frac, REAL Ypre_frac,
                         const DOF_REAL_VEC_D *f,
                         const DOF_REAL_VEC *g,
                         DOF_REAL_VEC_D *x,
                         DOF_REAL_VEC *y);
int oem_sp_solve_ds(OEM_SOLVER sp_solver,
                    REAL sp_tol, REAL tol_incr,
                    int sp_max_iter, int sp_info,
                    const DOF_MATRIX *A, const DOF_SCHAR_VEC *bound,
                    OEM_SOLVER A_solver,
                    int A_max_iter, const PRECON *A_precon,
                    DOF_MATRIX *B,
                    DOF_MATRIX *Bt,
                    DOF_MATRIX *Yproj,
                    OEM_SOLVER Yproj_solver,
                    int Yproj_max_iter, const PRECON *Yproj_precon,
                    DOF_MATRIX *Yprec,
                    OEM_SOLVER Yprec_solver,
                    int Yprec_max_iter, const PRECON *Yprec_precon,
                    REAL Yproj_frac, REAL Ypre_frac,
                    const DOF_REAL_D_VEC *f,
                    const DOF_REAL_VEC *g,
                    DOF_REAL_D_VEC *x,
                    DOF_REAL_VEC *y);

REAL sp_dirichlet_bound_dow_scl(MatrixTranspose transpose,
                                const DOF_MATRIX *Bt,
                                const DOF_SCHAR_VEC *bound,
                                const DOF_REAL_VEC_D *u_h,
                                DOF_REAL_VEC *g_h);
REAL sp_dirichlet_bound_ds(MatrixTranspose transpose,
                           const DOF_MATRIX *Bt,
                           const DOF_SCHAR_VEC *bound,
                           const DOF_REAL_D_VEC *u_h,
                           DOF_REAL_VEC *g_h);

typedef struct sp_constraint
{
  const DOF_MATRIX    *B, *Bt;
  const DOF_SCHAR_VEC *bound;
  OEM_MV_FCT          project;
  OEM_DATA            *project_data;
  OEM_MV_FCT          precon;
  OEM_DATA            *precon_data;
  REAL                proj_factor, prec_factor;
} SP_CONSTRAINT;

SP_CONSTRAINT *init_sp_constraint(const DOF_MATRIX *B,
                                  const DOF_MATRIX *Bt,
                                  const DOF_SCHAR_VEC *bound,
                                  REAL tol, int info,
                                  const DOF_MATRIX *Yproj,
                                  OEM_SOLVER Yproj_solver,
                                  int Yproj_max_iter,
                                  const PRECON *Yproj_prec,
                                  const DOF_MATRIX *Yprec,
                                  OEM_SOLVER Yprec_solver,
                                  int Yprec_max_iter,
                                  const PRECON *Yprec_prec,
				  void (*Yprec_bndry)(void *data,
						      const DOF_REAL_VEC *r,
						      DOF_REAL_VEC *mod_r,
						      DOF_REAL_VEC *Cr),
				  void *Yprec_bndry_data,
                                  REAL Yproj_frac, REAL Yprec_frac);
void release_sp_constraint(SP_CONSTRAINT *constraint_data);
int oem_sp_schur_solve(OEM_SOLVER sp_solver,
                       REAL sp_tol, int sp_max_iter, int sp_info,
                       OEM_MV_FCT principal_inverse,
                       OEM_DATA *principal_data,
                       const DOF_REAL_VEC_D *f,
                       DOF_REAL_VEC_D *u,
                       SP_CONSTRAINT *constraint,
                       const DOF_REAL_VEC *g,
                       DOF_REAL_VEC *p,
                       ...);
\end{lstlisting}\ev

\begin{function}{oem\_sp\_solve\_[dow\_scl|ds]()}
\label{S:oem_sp_solve_fct}

%%
\fdx{oem_sp_solve_dow_scl()@{\code{oem\_sp\_solve\_dow\_scl()}}}%
\idx{linear solvers!oem_sp_solve_dow_scl()@{\code{oem\_sp\_solve\_dow\_scl()}}}%
\fdx{oem_sp_solve_ds()@{\code{oem\_sp\_solve\_ds()}}}%
\idx{linear solvers!oem_sp_solve_ds()@{\code{oem\_sp\_solve\_ds()}}}%
%%
\item[Synopsis]~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
iterations = oem_sp_solve_[dow_scl|ds](
  sp_solver,
  sp_tol, tol_incr, sp_max_iter, sp_info,
  A, mask, A_solver, A_max_iter, A_precon,
  B, Bt,
  Yproj, Yproj_solver, Yproj_max_iter, Yproj_precon,
  Yprec, Yprec_solver, Yprec_max_iter, Yprec_precon,
  Yproj_frac, Yprec_frac,
  f, g, x, y);
\end{lstlisting}\ev

\item[Description]~\hfill

  This function implements an interface between the DOF-vector and
  -matrix level and the low-level functions described in
  \secref{S:OEM_SPCG} above. Internally, \code{oem\_sp\_solve()} emits
  calls to \hyperref[S:init_oem_solve_fct]{\code{init\_oem\_solve()}}
  and initializes the support data-structure
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}}. Then finally
  the function \hyperref[S:oem_spcg_fct]{\code{oem\_spcg()}} is
  called, see also \secref{S:OEM_SPCG}.
  
  \code{oem\_sp\_solve()} implements a preconditioner $C$ of the form
  \begin{equation}
    \label{eq:sppreconimpl}
    C(r) = \code{Yproj\_frac}\ast\code{Yproj}(r) +
    \code{Yprec\_frac}\ast\code{Yprec}^{-1}(r),
  \end{equation}
  which has the form of the usual preconditioner for a Quasi-Stokes
  problem, which was already mentioned in the explanation for the
  parameter \hyperlink{oem_spcg_fct:precon}{\code{precon()}} for the
  function \hyperref[S:oem_spcg_fct]{\code{oem\_spcg()}}, see
  \secref{S:oem_spcg_fct}.

\item[Parameters]~\hfill

\hyperitem{oem_sp_solve:sp_solver}{sp\_solver} The solver used for the
  \emph{outer} iteration.  Currently, only a CG-method for a symmetric
  and positive (semi-) definite Schur's complement operator is
  implemented, so \code{sp\_solver} must equal the symbol \code{CG}.
  %%
\hyperitem{oem_sp_solve:sp_tol}{sp\_tol} The tolerance for the
  \emph{outer} CG-loop.
  %%
\hyperitem{oem_sp_solve:tol_incr}{tol\_incr} A decrease in tolerance
  for the iterative solvers for the sub-problems, like inverting the
  principal part \code{A} of the operator. The tolerances for the
  solvers for the sub-problems will be \code{sp\_tol / tol\_incr}.
  %%
\kitem{sp\_max\_iter} The maximum number of iterations for the outer
  CG-loop.
  %%
\hyperitem{oem_sp_solve:sp_info}{sp\_info} The verbosity level. The
  solvers for the sub-problems will inherit a decreased verbosity
  level of $\max(0,\,\code{sp\-info}-3)$.
  %%
\kitem{A} The matrix for the principal part of the saddle-point problem.
  %%
\hyperitem{oem_sp_solve:bound}{bound} A \code{DOF\_SCHAR\_VEC} used to
  exclude DOFs from the operation of the matrix-vector routines. See
  semantics are as explained in the explanations for the argument
  \hyperlink{init_oem_solve:mask}{\code{mask}} to the function
  \hyperref[S:init_oem_solve_fct]{\code{init\_oem\_solve()}}, see
  \secref{S:init_oem_solve_fct}.
  %%
\kitem{A\_solver} The solver to use to invert \code{A}, compare with
  the explanations for
  \hyperref[S:get_oem_solver_fct]{\code{get\_oem\_solver()}} in
  \secref{S:get_oem_solver_fct} and the parameter
  \hyperlink{oem_solve_fct:solver}{\code{solver}} to
  \hyperref[S:init_oem_solve_fct]{\code{init\_oem\_solver()}}.
  %%
\kitem{A\_max\_iter} The maximum number of iterations for the linear
  solver used to invert \code{A}.
  %%
\kitem{A\_precon} A pointer to the descriptor for the preconditioner
  to use for the inversion of \code{A}, see \secref{S:precon} below.
  %%
\hyperitem{oem_sp_solve:B}{B} A pointer to the matrix implementing $B$, see
  \eqref{eq:spproblem}.
  %%
\hyperitem{oem_sp_solve:Bt}{Bt} A pointer to the matrix implementing
  $B^\ast$, see \eqref{eq:spproblem}. \code{Bt} may be \nil, in which
  case the matrix \code{B} is used, passing the
  \hyperref[enum:MatrixTranspose]{\code{Transpose}} flag to the
  matrix-vector routines, see \secref{S:DOF_BLAS}. An application
  calling \code{oem\_sp\_solve()} with \code{Bt == \nil} most likely
  will want to make use of the optional parameter \code{mask} above in
  order to implement Dirichlet boundary conditions.
  %%
\kitem{Yproj} The matrix for the back-projection of the result from
  applying \code{Bt} to the finite element space for the constraint.
  Compare the remarks in the explanation of the component
  \hyperlink{OEM_SP_DATA:project}{\code{project()}} of the
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}} structure.
  %%
\hyperitem{oem_sp_solve:Yproj_solver}{Yproj\_solver} The solver to use
  for inverting \code{Yproj}.
  %%
\hyperitem{oem_sp_solve:Yproj_max_iter}{Yproj\_max\_iter} The maximum
  number of iterations for inverting \code{Yproj}.
  %%
\hyperitem{oem_sp_solve:Yproj_precon}{Yproj\_precon} The
  preconditioner for the iterative solver for the inversion of
  \code{Yproj}. See \secref{S:precon} below.
  %%
\hyperitem{oem_sp_solve:Yprec}{Yprec} A part defining one part of the
  preconditioner as explained in equation \eqref{eq:sppreconimpl}.
  Maybe \nil, in which case no preconditioner will be applied in the
  outer CG-loop for inverting Schur's complement.
  %%
\hyperitem{oem_sp_solve:Yprec_solver}{Yprec\_solver} The solver to use
  for inverting \code{Yprec}.
  %%
\hyperitem{oem_sp_solve:Yprec_max_iter}{Yprec\_max\_iter} The maximum
  number of iterations for inverting \code{Yprec}.
  %%
\hyperitem{oem_sp_solve:Yprec_precon}{Yprec\_precon} The
  preconditioner for the iterative solver for the inversion of
  \code{Yprec}. See \secref{S:precon} below.
  %%
\hyperitem{oem_sp_solve:Yproj_frac}{Yproj\_frac} See equation
  \eqref{eq:sppreconimpl} above.
  %%
\hyperitem{oem_sp_solve:Yprec_frac}{Yprec\_frac} See equation
  \eqref{eq:sppreconimpl} above.
  %%
\hyperitem{oem_sp_solve:f}{f} The load vector for the principal
  unknown.
  %% 
\hyperitem{oem_sp_solve:g}{g} The load vector for the linear
  constraint. Even in the case when the non-discrete problem is
  subject to a homogeneous constraint, it can be necessary to impose a
  slightly inhomogeneous constraint in the discrete setting. One
  notable example is the implementation of Dirichlet boundary
  conditions in the context of a divergence constraint. In this case
  interpolated Dirichlet boundary values will in general fail to
  fulfill the compatibility condition the discrete divergence
  constraint imposes on the discrete boundary values. Compare with the
  explanations for
  \hyperref[S:sp_dirichlet_bound_fct]{\code{sp\_dirichlet\_bound()}}
  below.
  %% 
\hyperitem{oem_sp_solve:x}{x} Storage for the principal of the
  solution, and initial guess for the CG-method.
  %%
\hyperitem{oem_sp_solve:y}{y} Storage for the Lagrangian multiplier,
  and initial guess for the CG-method for Schur's complement.
\end{function}

\begin{datatype}{SP\_CONSTRAINT}
\label{S:SP_CONSTRAINT_struct}

\item[Description]~\hfill

In the multi-constraint case, each single constraint is described by a
\code{SP\_CONSTRAINT} structure, in order to reduce the number of
parameters which have to be passed to the saddle-point solver. Such a
structure can be obtained by a call to
\hyperref[S:init_sp_constraint_fct]{init\_sp\_constraint()}, see below
\secref{S:init_sp_constraint_fct}.

The meaning of the individual structure components is identical to the
meaning of the respective component of the
\hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}} or parameter of
the \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}} function,
the reader is therefore referred to \secref{S:OEM_SP_DATA_struct} and
\secref{S:oem_sp_solve_fct} for a detailed discussion.

\item[Definition]~\hfill

\ddx{SP_CONSTRAINT@{\code{SP\_CONSTRAINT}}}%
\idx{linear solvers!SP_CONSTRAINT@{\code{SP\_CONSTRAINT}}}%
%%
\bv\begin{lstlisting}
typedef struct sp_constraint
{
  const DOF_MATRIX    *B, *Bt;
  const DOF_SCHAR_VEC *bound;
  OEM_MV_FCT          project;
  void                *project_data;
  OEM_MV_FCT          precon;
  void                *precon_data;
  REAL                proj_factor, prec_factor;
} SP_CONSTRAINT;
\end{lstlisting}\ev

\item[Components]~\hfill
%%
\begin{descr}
\hyperitem{SP_CONSTRAINT:B}{B} See parameter
  \hyperlink{oem_sp_solve:B}{\code{B}} of
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
  %% 
\hyperitem{SP_CONSTRAINT:Bt}{Bt} See parameter
  \hyperlink{oem_sp_solve:Bt}{\code{Bt}} of
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
  %%
\hyperitem{SP_CONSTRAINT:bound}{bound} See parameter
  \hyperlink{oem_sp_solve:bound}{\code{bound}} of
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
  %%
\hyperitem{SP_CONSTRAINT:project}{project()} See component
  \hyperlink{OEM_SP_DATA:project}{\code{project()}} of
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}}.
  %%
\hyperitem{SP_CONSTRAINT:project_data}{project\_data} See component
  \hyperlink{OEM_SP_DATA:project_data}{\code{project\_data}} of
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}}.
  %%
\hyperitem{SP_CONSTRAINT:precon}{precon()} See component
  \hyperlink{OEM_SP_DATA:precon}{\code{precon()}} of
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}}.
  %%
\hyperitem{SP_CONSTRAINT:precon_data}{precon\_data} See component
  \hyperlink{OEM_SP_DATA:precon_data}{\code{precon\_data}} of
  \hyperref[S:OEM_SP_DATA_struct]{\code{OEM\_SP\_DATA}}.
  %%
\hyperitem{SP_CONSTRAINT:proj_factor}{proj\_factor} See parameter
  \hyperlink{oem_sp_solve:Yproj_frac}{\code{Yproj\_frac}} of
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
  %%
\hyperitem{SP_CONSTRAINT:prec_factor}{prec\_factor} See parameter
  \hyperlink{oem_sp_solve:Yprec_frac}{\code{Yprec\_frac}} of
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
  %%
\end{descr}
\end{datatype}

\begin{function}{init\_sp\_constraint()}
\label{S:init_sp_constraint_fct}

%%
\fdx{init_sp_constraint()@{\code{init\_sp\_constraint()}}}%
\idx{linear solvers!init_sp_constraint()@{\code{init\_sp\_constraint()}}}%
%%
\item[Synopsis]~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
constraint_data =
  init_sp_constraint(B, Bt, bound, tol, info,
                     Yproj, Yproj_solver, Yproj_max_iter,
                     Yproj_prec,
                     Yprec, Yprec_solver, Yprec_max_iter,
                     Yprec_prec,
                     Yprec_bndry, Yprec_bndry_data,
                     Yproj_frac, Yprec_frac);
\end{lstlisting}\ev

\item[Description]~\hfill

  Allocate and initialize a
  \hyperref[S:SP_CONSTRAINT_struct]{\code{SP\_CONSTRAINT}} structure,
  for later use with
  \hyperref[S:oem_sp_schur_solve_fct]{\code{oem\_sp\_schur\_solve()}},
  see \secref{S:oem_sp_schur_solve_fct} below. The meaning of the
  parameters is almost identical to the corresponding parameters to
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}, see
  \secref{S:oem_sp_solve_fct} above.

\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{init_sp_constraint:B}{B} See parameter
    \hyperlink{oem_sp_solve:B}{\code{B}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Bt}{Bt} See parameter
    \hyperlink{oem_sp_solve:Bt}{\code{Bt}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:bound}{bound} See parameter
    \hyperlink{oem_sp_solve:bound}{\code{bound}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:tol}{tol} The tolerance for the
    sub-solvers used to invert \code{Yproj} and \code{Yprec} (if
    present). Compare parameter
    \hyperlink{oem_sp_solve:tol_incr}{\code{tol\_incr}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:info}{info} Control the amount of
    messages printed to the terminal the application has been started
    from. Compare parameter
    \hyperlink{oem_sp_solve:sp_info}{\code{sp\_info}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yproj}{Yproj} See parameter
    \hyperlink{oem_sp_solve:Yproj}{\code{Yproj}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yproj_solver}{Yproj\_solver} See
    parameter
    \hyperlink{oem_sp_solve:Yproj_solver}{\code{Yproj\_solver}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yproj_max_iter}{Yproj\_max\_iter} See
    parameter
    \hyperlink{oem_sp_solve:Yproj_max_iter}{\code{Yproj\_max\_iter}}
    of \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yproj_prec}{Yproj\_prec} See parameter
    \hyperlink{oem_sp_solve:Yproj_prec}{\code{Yproj\_prec}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec}{Yprec} See parameter
    \hyperlink{oem_sp_solve:Yprec}{\code{Yprec}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec_solver}{Yprec\_solver} See
    parameter
    \hyperlink{oem_sp_solve:Yprec_solver}{\code{Yprec\_solver}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec_max_iter}{Yprec\_max\_iter} See
    parameter
    \hyperlink{oem_sp_solve:Yprec_max_iter}{\code{Yprec\_max\_iter}}
    of \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec_prec}{Yprec\_prec} See parameter
    \hyperlink{oem_sp_solve:Yprec_prec}{\code{Yprec\_prec}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec_frac}{Yprec\_frac} See parameter
    \hyperlink{oem_sp_solve:Yprec_frac}{\code{Yprec\_frac}}
    of \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec_bndry}{Yprec\_bndry(data, r,
      mod\_r, Cr)}
    A callback for cases where the constraint has to fulfil special
    boundary conditions. \code{Yprec\_bndry} may be \nil. The first
    argument to the call-back is the application provided
    \code{Yprec\_bndry\_data}-pointer specified by the following
    argument. \code{r} is the current residual which normally serves
    as load-vector for the preconditioner (see equation
    \eqref{eq:sppreconimpl}), \code{mod\_r} is a modifiable copy of
    \code{r}, and \code{Cr} is the preconditioned residual which is
    solved for when inverting
    \hyperlink{oem_sp_constraint:Yprec}{\code{Yprec}}.
    %% 
  \hyperitem{init_sp_constraint:Yprec_bndry_data}{Yprec\_bndry\_data}
    See the description for \code{Yprec\_bndry()} above;
    \code{Yprec\_bndry\_data} is the application-data pointer for that
    callback.
    %% 
  \hyperitem{init_sp_constraint:Yprec_frac}{Yprec\_frac} See parameter
    \hyperlink{oem_sp_solve:Yprec_frac}{\code{Yprec\_frac}} of
    \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}}.
    %% 
  \end{descr}
\item[Return Value]~\hfill

  A pointer to an initialized
  \hyperref[S:SP_CONSTRAINT_struct]{\code{SP\_CONSTRAINT}} structure,
  which can be passed as argument to
  \hyperref[S:oem_sp_schur_solve_fct]{\code{oem\_sp\_schur\_solve()}}
  described in \secref{S:oem_sp_schur_solve_fct} below. The return
  structure should be deleted by a call to
  \hyperref[S:release_sp_constraint_fct]{\code{release\_sp\_constraint()}},
  see below.
\end{function}

\begin{function}{release\_sp\_constraint()}
\label{S:release_sp_constraint_fct}

%%
\fdx{release_sp_constraint()@{\code{release\_sp\_constraint()}}|(}
\idx{linear solvers!release_sp_constraint()@{\code{release\_sp\_constraint()}}|(}
%%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
release_sp_constraint(constraint_data);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Release the resources associated with a
  \hyperlink{S:SP_CONSTRAINT_stuct}{\code{SP\_CONSTRAINT}} structure
  as returned by
  \hyperlink{S:init_sp_constraint_fct}{\code{init\_sp\_constraint()}}.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{release_sp_constraint:constraint_data}{constraint\_data}
    A pointer to a
    \hyperlink{S:SP_CONSTRAINT_struct}{\code{SP\_CONSTRAINT}} structure
    previously acquired by a call to
    \hyperlink{S:init_sp_constraint_fct}{\code{init\_sp\_constraint()}},
    see \secref{S:init_sp_constraint_fct}.
    %% 
  \end{descr}
\end{function}
%%
\fdx{release_sp_constraint()@{\code{release\_sp\_constraint()}}|)}
\idx{linear solvers!release_sp_constraint()@{\code{release\_sp\_constraint()}}|)}
%%

\begin{function}{oem\_sp\_schur\_solve()}
\label{S:oem_sp_schur_solve_fct}

%%
\fdx{oem_sp_schur_solve()@{\code{oem\_sp\_schur\_solve()}}|(}
\idx{linear solvers!oem_sp_schur_solve()@{\code{oem\_sp\_schur\_solve()}}|(}
%%
\item[Prototype] ~\hfill
\bv\begin{lstlisting}
int oem_sp_schur_solve(OEM_SOLVER sp_solver,
                       REAL sp_tol, int sp_max_iter, int sp_info,
                       OEM_MV_FCT principal_inverse,
                       OEM_DATA *principal_data,
                       const DOF_REAL_VEC_D *f,
                       DOF_REAL_VEC_D *u,
                       SP_CONSTRAINT *constraint,
                       const DOF_REAL_VEC *g,
                       DOF_REAL_VEC *p,
                       ...);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
iterations =
  oem_sp_schur_solve(sp_solver,
                     sp_tol, sp_max_iter, sp_info,
                     A_inverse, A_data, f, u,
                     constraint, g, p,
                     ...);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Solve a saddle-point problem with possibly multiple, decoupled
  linear constraints by inverting the associated Schur's complement
  operator by means of an iterative method. Currently, only a
  CG-method is implemented, so the principal operator \code{A} has to
  be symmetric and positive (semi-) definite.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{oem_sp_solve:sp_solver}{sp\_solver} The solver used for
    the \emph{outer} iteration.  Currently, only a CG-method for a
    symmetric and positive (semi-) definite Schur's complement
    operator is implemented, so \code{sp\_solver} must equal the
    symbol \code{CG}.
    %% 
  \hyperitem{oem_sp_solve:sp_tol}{sp\_tol} The tolerance for the
    \emph{outer} CG-loop.
    %% 
  \hyperitem{oem_sp_solve:sp_max_iter}{sp\_max\_iter} The maximum
    number of iterations for the outer CG-loop.
    %% 
  \hyperitem{oem_sp_solve:sp_info}{sp\_info} A ``verbosity-level''
    controlling the amount of information printed to the terminal the
    application is running from.
    %% 
  \hyperitem{oem_sp_solve:A_inverse}{A\_inverse()} Pointer to a
    solver-function, for instance as returned by
    \hyperref[S:get_oem_solver_fct]{\code{get\_oem\_solver()}}.
    %% 
  \hyperitem{oem_sp_solve:A_data}{A\_data} A pointer to a data
    structure needed by \code{A\_inverse()}, the pointer is passed as
    first argument to \code{A\_inverse()}. See also
    \hyperref[S:init_oem_solve_fct]{\code{init\_oem\_solver()}} in
    \secref{S:init_oem_solve_fct}.
    %% 
  \hyperitem{oem_sp_solve:f}{f} The load-vector for the principal equation.
    %% 
  \hyperitem{oem_sp_solve:u}{u} Storage for the principal unknown
    (solution), and initial guess for the CG-method.
    %% 
  \hyperitem{oem_sp_solve:constraint}{constraint} A
    \hyperref[S:SP_CONSTRAINT_struct]{\code{SP\_CONSTRAINT}}
    structure, for instance as generated by a call to
    \hyperref[S:init_sp_constraint_fct]{\code{init\_sp\_constraint()}},
    see \secref{S:init_sp_constraint_fct}, see also
    \hyperref[S:release_sp_constraint_fct]{\code{release\_sp\_constraint()}},
    \secref{S:release_sp_constraint_fct}.
    %% 
  \hyperitem{oem_sp_solve:g}{g} The load vector for the possibly
    inhomogeneous linear constraint described by the parameter
    \code{constraint}. Note that only \emph{scalar} constraints are
    supported by this function, consequently \code{g} is a scalar
    \code{DOF\_REAL\_VEC}.
    %% 
  \hyperitem{oem_sp_solve:p}{p} Storage for the Lagrangian multiplier
    associated with \code{constraint} and initial guess for the
    Lagrangian multiplier in the outer CG-loop.
    %% 
  \hyperitem{oem_sp_solve:va_args}{\dots} More constraints may be
    added after the parameter \code{p}, each as a triple 
\bv\begin{lstlisting}
..., constraint_data, load_vector, lagrangian_multiplier, ...
\end{lstlisting}\ev
    All constraints must be decoupled from each other. After the final
    constraint a \nil-pointer must be passed to
    \code{oem\_sp\_schur\_solve()}, if only a single constraint is
    needed, then the first argument after the parameter \code{p} must
    already be a \nil-pointer.
    %% 
  \end{descr}
\item[Return Value] ~\hfill

  The number of iterations of the outer CG-loop for the inversion of
  Schur's complement.
\item[Examples] ~\hfill

  The single-constraint
  \hyperref[S:oem_sp_solve_fct]{\code{oem\_sp\_solve()}} functions are
  implemented on top of \code{oem\_sp\_schur\_solve()}. The interested
  reader may want to have a look at
  \code{alberta-VERSION/alberta/src/Common/oem\_sp\_solve.c}. See also
  \exampleref{example:oem_sp_schur_solve} below.

\end{function}
%%
\fdx{oem_sp_schur_solve()@{\code{oem\_sp\_schur\_solve()}}|)}
\idx{linear solvers!oem_sp_schur_solve()@{\code{oem\_sp\_schur\_solve()}}|)}
%%

\begin{example}
  \label{example:oem_sp_schur_solve}
  A brief demonstration of how
  \hyperref[S:oem_sp_schur_solve_fct]{\code{oem\_sp\_schur\_solve()}}
  could be used in the single constraint case is given below. The
  reader is referred to \secref{S:precon} below for the documentation
  of the functions related to preconditioning.
  %%
\bv\begin{lstlisting}
... /* other stuff */

A_prec = init_precon_from_type(A, NULL /* bound */, sub_info, &A_prec_type);
A_oem  = init_oem_solve(A, NULL, tol, A_prec, -1, A_miter, sub_info);

Yproj_prec = init_precon_from_type(Yproj, NULL /* bound */, sub_info,
				   Yproj_prec_type);
Yprec_prec = init_precon_from_type(Yprec, NULL /* bound */, sub_info,
				   Yprec_prec_type);
SP_CONSTRAINT *div_constraint =
  init_sp_constraint(B, Bt, NULL, tol / 100.0, MAX(0, info - 3),
                     Yproj, Yproj_solver, Yproj_miter, Yproj_prec,
                     Yprec, Yprec_solver, Yprec_miter, Yprec_prec,
                     nu, mu);

oem_sp_schur_solve(solver, tol, miter, info,
                   get_oem_solver(A_solver), A_oem,
                   f_h, u_h,
                   div_constraint,
                   g_h, p_h,
                   NULL);

release_sp_constraint(div_constraint);
release_oem_solve(A_oem);

... /* other stuff */
\end{lstlisting}\ev
\end{example}

\begin{function}{sp\_dirichlet\_bound\_[dow\_scl|ds]()}
\label{S:sp_dirichlet_bound_fct}

\fdx{sp_dirichlet_bound_ds()@{\code{sp\_dirichlet\_bound\_ds()}}|(}
\idx{linear solvers!sp_dirichlet_bound_ds()@{\code{sp\_dirichlet\_bound\_ds()}}|(}
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
REAL sp_dirichlet_bound_dow_scl(MatrixTranspose transpose,
                                const DOF_MATRIX *Bt,
                                const DOF_SCHAR_VEC *bound,
                                const DOF_REAL_VEC_D *u,
                                DOF_REAL_VEC *g);
REAL sp_dirichlet_bound_ds(MatrixTranspose transpose,
                           const DOF_MATRIX *Bt,
                           const DOF_SCHAR_VEC *bound,
                           const DOF_REAL_D_VEC *u,
                           DOF_REAL_VEC *g);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
flux_excess = sp_dirichlet_bound_[dow_scl|ds](
  transpose, Bt, bound, u, g);
\end{lstlisting}\ev
\item[Description] ~\hfill

  If a flow field $u$ is subject to a divergence constraint and has to
  satisfy Dirichlet boundary values $h$ on the entire boundary of a
  domain $\Omega$, and if the test-space for the Lagrangian multiplier
  contains the function which is constant and equal to $1$ on the
  entire domain, then the Dirichlet boundary values have to satisfy
  the compatibility condition
  %%
  \begin{equation}
    \label{eq:divdirichletcompat}
    0 = \int_\Omega 1\,\div u = -\int_{\partial\Omega} u\cdot\nu =
    -\int_{\partial\Omega} h\cdot\nu.
  \end{equation}
  %%
  This compatibility conditions has also to be satisfied in the
  discrete setting, however, if one simply uses Lagrange-interpolation
  to implement Dirichlet boundary values, then the discrete Dirichlet
  boundary values in general violate this condition, and consequently
  the discrete saddle point problem does not have a solution in this
  case. One way to cope with this problem is to solve a slightly
  inhomogeneous saddle-point problem, where a load-vector for the
  Lagrangian multiplier compensates for the ``flux-excess'' of the
  interpolated Dirichlet boundary conditions (another way would be to
  modify the boundary values, of course).
  
  \code{sp\_dirichlet\_bound()} computes a load-vector for the
  Lagrangian multiplier by applying the $B^\ast$ operator to the
  boundary values. Of course, this makes only sense if the discrete
  boundary values asymptotically approximate the compatibility
  condition in the limit $h\rightarrow\infty$.

\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{sp_dirichlet_bound:transpose}{transpose} If equal to
    \hyperref[enum:MatrixTranspose]{\code{Tranpose}}, then the
    following parameter \code{Bt} actually is not $B^\ast$, but $B$.
    \code{sp\_dirichlet\_bound()} internally uses the transposed
    matrix for computing the load-vector \code{g}. If the parameter
    \code{Bt} is actually $B^\ast$, the \code{transpose} should be set to 
    \hyperref[enum:MatrixTranspose]{\code{NoTranpose}}.
    %% 
  \hyperitem{sp_dirichlet_bound:Bt}{Bt} A pointer to the DOF-matrix
    implementing the $B^\ast$ matrix from equation \eqref{eq:spschur},
    or the $B$-matrix if \code{transpose == Transpose}.
    %% 
  \hyperitem{sp_dirichlet_bound:bound}{bound} A
    \code{DOF\_SCHAR\_VEC}, if \code{bound->vec[dof] >= DIRICHLET},
    then the corresponding DOF belongs to a Dirichlet boundary.
    \code{bound} \emph{must not} be \nil,
    \code{sp\_dirichlet\_bound()} just works on the linear algebra
    level and does not loop over the mesh-elements. A suitable
    boundary-flag vector can be obtained by a call to the function
    \hyperref[S:dirichlet_bound]{\code{dirichlet\_bound()}}, see also
    \secref{S:dirichlet_bound}.

    If \code{sp\_dirichlet\_bound()} encounters DOFs with
    \code{bound->vec[dof] <= NEUMANN}, then it returns immediately to
    the caller and does not modify the load-vector \code{g}. See also
    \secref{S:boundary}.
    %% 
  \hyperitem{sp_dirichlet_bound:u}{u} The initial value for the
    principle unknown, \code{sp\_dirichlet\_bound()} expects that
    \code{u} already carries the Dirichlet boundary values.
    %% 
  \hyperitem{sp_dirichlet_bound:g}{g} Storage for the load-vector to
    compensate for the flux-excess. Note that the application has to
    initialize \code{g} prior to calling
    \code{sp\_dirichlet\_bound()}, which works also in the case of an
    inhomogeneous divergence constraint. In that case the
    compatibility condition has to be modified in the obvious manner.
    Anyhow, \code{sp\_dirichlet\_bound()} works additive.
    %% 
  \end{descr}
\item[Return Value] ~\hfill
  
  The total flux excess over the boundary segments of the domain, or
  \code{0.0} if for any DOF with \code{bound->vec[DOF] <= NEUMANN} was
  encountered.
\item[Examples] ~\hfill

  The interested read is referred to the program
\bv\begin{verbatim}
alberta-VERSION-demo/src/Common/stokes.c
\end{verbatim}\ev
\end{function}

\fdx{sp_dirichlet_bound_ds()@{\code{sp\_dirichlet\_bound\_ds()}}|)}
\idx{linear solvers!sp_dirichlet_bound_ds()@{\code{sp\_dirichlet\_bound\_ds()}}|)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{OEM matrix-vector functions for DOF-matrices and -vectors}%
\label{S:matvec}

The general \code{oem\_...()} solvers all need pointers to
matrix-vector multiplication routines which do not accept arguments of
type \code{DOF\_REAL\_[D\_]VEC[\_D]} and a \code{DOF\_MATRIX} but work
directly on flat \code{REAL}-arrays. For the application to a scalar
or vector-valued linear system described by a \code{DOF\_MATRIX} (and
an optional \code{DOF\_SCHAR\_VEC} which can be used to honour
Dirichlet boundary conditions, see \secref{S:dirichlet_bound}), the
following routines are provided:
%%
\fdx{init_oem_mat_vec()@{\code{init\_oem\_mat\_vec()}}}%
\fdx{exit_oem_mat_vec()@{\code{exit\_oem\_mat\_vec()}}}%
%%
\bv\begin{lstlisting}
typedef int (*OEM_MV_FCT)(void *data, int dim, const REAL *rhs, REAL *u);

OEM_MV_FCT oem_init_mat_vec(void **dataptrptr,
			    MatrixTranspose transpose, const DOF_MATRIX *A, 
			    const DOF_SCHAR_VEC *mask);
void exit_oem_mat_vec(void *dataptr)
\end{lstlisting}\ev

\begin{example}
  \label{E:init_oem_solve_impl}
  A short example demonstrating the function listed above. These are
  stripped-down versions of \code{init/release\_oem\_solve()}
  explained in \secref{S:ALBERTA_OEM_solvers}. The interested reader is
  referred to \code{alberta-VERSION/alberta/src/Common/oem\_solve.c}
  for the full source code.
  %% 
  \bv\begin{lstlisting}
OEM_DATA *simple_init_oem_solve(const DOF_MATRIX *A,
                                const DOF_SCHAR_VEC *mask,
                                REAL tol, int max_iter, int info)
{
  OEM_DATA     *oem;  
  const MatrixTranspose transpose = NoTranspose;

  oem = MEM_CALLOC(1, OEM_DATA); 
  oem->mat_vec   = init_oem_mat_vec(&oem->mat_vec_data, transpose, A, mask);
  oem->ws        = NULL; /* work-space,
                          * let the solvers handle this point for themselves.
                          */
  oem->tolerance = tol;
  oem->max_iter  = max_iter;
  oem->info      = MAX(0, info);

  return oem;
}

void simple_release_oem_solve(const OEM_DATA *_oem)
{
  OEM_DATA *oem = (OEM_DATA *)_oem;
  
  exit_oem_mat_vec(oem->mat_vec_data);
  MEM_FREE(oem, 1, OEM_DATA);
}
\end{lstlisting}\ev  
\end{example}

\begin{function}{init\_oem\_mat\_vec()}
\label{S:init_oem_mat_vec_fct}
%%
\fdx{init_oem_mat_vec()@{\code{init\_oem\_mat\_vec()}}}%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
mat_vec_fct =
  oem_init_mat_vec(&mv_data_ptr, transpose, A, mask);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Return a pointer to a function implementing the matrix-vector
  operation of the matrix \code{A} with a
  \code{DOF\_REAL[\_D]\_VEC[\_D]}. Of course, a matrix-vector product
  between a $\DOW\times\DOW$ block-matrix and a scalar
  \code{DOF\_REAL\_VEC} does not make sense. This function is fully
  aware of \ALBERTA's implementation of direct sums of finite element
  spaces, as described in \secref{S:chain_impl}.

\item[Parameters]~\hfill
  \begin{descr}
  \kitem{mv\_data\_ptr} After calling this function,
    \code{mv\_data\_ptr} will point to a control structure which must
    be passed as first argument to the function returned by
    \code{init\_oem\_mat\_vec()}. The application can call
    \code{exit\_oem\_mat\_vec()} to release the memory resources
    allocated by \code{init\_oem\_mat\_vec()}.
    %%
  \kitem{transpose} One of \code{Transpose} or \code{NoTranspose},
    indicating the matrix-vector operation should be performed with
    either the transposed or non-transposed matrix.
    %%
  \kitem{A} A pointer to a \code{DOF\_MATRIX}.
    %%
  \kitem{mask} A pointer to a \code{DOF\_SCHAR\_VEC} which can be used
    to exclude DOFs from the matrix-vector product. \code{mask} can be
    \nil. See \secref{S:dirichlet_bound} for further explanations.
  \end{descr}
\item[Return Value] ~\hfill

  A function pointer, pointing to the function actually implementing
  the matrix-vector operation. This function obeys the calling
  convention for the matrix-vector routines in the \code{OEM\_DATA}
  structure, see \secref{S:OEM} above.
\item[Examples]
  See \exampleref{E:init_oem_solve_impl}.
\end{function}

\begin{function}{exit\_oem\_mat\_vec()}
\label{S:exit_oem_mat_vec_fct}

\fdx{exit_oem_mat_vec()@{\code{exit\_oem\_mat\_vec()}}}%
\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
exit_oem_mat_vec(mv_data_ptr);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Release the resources previously allocated by a call to
  \code{init\_oem\_mat\_vec()}.

\item[Parameters]~\hfill
  \begin{descr}
  \kitem{mv\_data\_ptr} The data-pointer allocated by
    \code{init\_oem\_mat\_vec()}.
  \end{descr}

\item[Examples]
  See \exampleref{E:init_oem_solve_impl}.
\end{function}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Preconditioners}
\label{S:precon}

\begin{compatibility}
  The \code{get\_XXX\_precon()} functions no longer carry a
  \code{\dots\_[s|d|dow|}-suffix. This has been dropped, because the
  \hyperref[T:DOF_MATRIX]{\code{DOF\_MATRIX}} structure now carries
  its own block-type, and the finite element spaces described by the
  \hyperref[T:FE_SPACE]{\code{FE\_SPACE}} structure now know about the
  dimension of the range their elements are mapping to.

  See also \compatref{compat:precon} above for further remarks.
\end{compatibility}

The interface functions described in \secref{S:ALBERTA_OEM_solvers}
and \secref{S:ALBERTA_SPCG} which call the iterative solvers described
in \secref{S:OEM} and \secref{S:OEM_SPCG} all need a pointer to a
\code{PRECON} structure. Such a structure can either be initialized by
calls to one of the \code{get\_XXX\_precon()} functions described in
the Sections \ref{S:get_diag_precon_fct}-\ref{S:get_ILUk_precon_fct}:
%%
\fdx{get_diag_precon()@{\code{get\_diag\_precon()}}}%
\fdx{get_HB_precon()@{\code{get\_HB\_precon()}}}%
\fdx{get_BPX_precon()@{\code{get\_BPX\_precon()}}}%
\fdx{get_SSOR_precon()@{\code{get\_SSOR\_precon()}}}%
\fdx{get_ILUk_precon()@{\code{get\_ILUk\_precon()}}}%
%%
\bv\begin{lstlisting}
const PRECON *get_diag_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *bound);
const PRECON *get_HB_precon(const DOF_MATRIX *matrix,
                            const DOF_SCHAR_VEC *bound,
                            int info);
const PRECON *get_BPX_precon(const DOF_MATRIX *matrix,
                             const DOF_SCHAR_VEC *bound,
                             int info);
const PRECON *get_SSOR_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *bound,
                              REAL omega,
                              int n_iter);
const PRECON *get_ILUk_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *mask,
                              int ilu_level, int info);
\end{lstlisting}\ev
%%
These functions implement a diagonal and an SSOR preconditioner and
two hierarchical basis preconditioners (classical Yserentant
\cite{Yserentant:86} and Bramble-Pasciak-Xu \cite{BPX:90} types). The
\hyperref[S:get_ILUk_precon_fct]{$ILU(k)$ preconditioner} is the one
described in \cite{templates:94}.

Another possibility to get access to preconditioners are calls to the
following functions (see Sections
\ref{S:init_oem_precon_fct}-\ref{S:init_precon_from_type_fct}), which
also implement preconditioners for the block-matrices which arise in
the context of \hyperref[S:chain_impl]{direct sums of finite element
  spaces} (see \secref{S:chain_impl}):
%%
\bv
\begin{lstlisting}
const PRECON *init_oem_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *mask,
                              int info, OEM_PRECON precon,
                              ... /* ssor_omega, ssor_n_iter etc. */);
const PRECON *vinit_oem_precon(const DOF_MATRIX *A,
                               const DOF_SCHAR_VEC *mask,
                               int info, OEM_PRECON,
                               va_list ap);
const PRECON *init_precon_from_type(const DOF_MATRIX *A,
                                    const DOF_SCHAR_VEC *mask,
                                    int info,
                                    const PRECON_TYPE *prec_type);
\end{lstlisting}\ev

\begin{datatype}{PRECON}
\label{S:PRECON_struct}

\item[Description]~\hfill

%%
A preconditioner may need some initialization phase, which depends on
the matrix of the linear system, but is independent of the actual
application of the preconditioner to a vector. Thus, a preconditioner
is described by three functions for initialization, application, and a
final exit routine which may free memory which was allocated
during initialization, e.g. All three functions are collected in the
structure

\item[Definition]~\hfill

\ddx{PRECON@{\code{PRECON}}}%
\bv\begin{lstlisting}[label=T:PRECON]
typedef struct precon PRECON;
struct precon
{
  void    *precon_data;

  bool    (*init_precon)(void *precon_data);
  void    (*precon)(void *precon_data, int n, REAL *vec);
  void    (*exit_precon)(void *precon_data);
};
\end{lstlisting}\ev

\item[Components]~\hfill

\begin{descr}
\kitem{precon\_data} data for the preconditioner; always the first
argument to the functions \code{init\_precon()}, \code{precon()}, 
and \code{exit\_precon()}.
\kitem{init\_precon(precon\_data)} pointer to a function for initializing 
the preconditioning method; the return value is \code{false}
if initialization fails, otherwise \code{true}.
\kitem{precon(precon\_data)} pointer to a function for executing 
the preconditioning method; 

\code{precon} can be used as the entry \code{left\_precon} or
\code{right\_precon} in an \code{OEM\_DATA} structure together with
\code{precon\_data} as the corresponding pointer
\code{left\_precon\_data} respectively \code{right\_precon\_data}.

\kitem{exit\_precon(precon\_data)} frees all data used by the
preconditioning method.
\end{descr}
\end{datatype}

\begin{function}{get\_diag\_precon()}
\label{S:get_diag_precon_fct}
%%
\fdx{get_diag_precon()@{\code{get\_diag\_precon()}}|(}
\idx{preconditioner!get_diag_precon()@{\code{get\_diag\_precon()}}|(}

\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *get_diag_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *bound);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon_ptr = get_diag_precon(A, bound);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \hyperref[S:PRECON_struct]{\code{PRECON}} structure
  describing a diagonal preconditioner for \code{A}. The application
  should call \code{precon\_ptr->exit\_precon(precon\_ptr)} to release
  the resources associated with \code{precon\_ptr} ones the
  preconditioner is no longer needed. But note that the solver
  interface-functions \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}
  and \hyperref[S:release_oem_solve_fct]{\code{release\_oem\_solve()}}
  call \code{exit\_precon()} on their own.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{get_diag_precon:A}{A} The matrix to compute the diagonal
    preconditioner for.
    %% 
  \hyperitem{get_diag_precon:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
    %% 
  \end{descr}
\item[Return Value] ~\hfill

  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\end{function}
%%
\fdx{get_diag_precon()@{\code{get\_diag\_precon()}}|)}
\idx{preconditioner!get_diag_precon()@{\code{get\_diag\_precon()}}|)}
%%

\begin{function}{get\_HB\_precon()}
\label{S:get_HB_precon_fct}
%%
\fdx{get_HB_precon()@{\code{get\_HB\_precon()}}|(}
\idx{preconditioner!get_HB_precon()@{\code{get\_HB\_precon()}}|(}
\idx{preconditioner!hierarchical basis}
%%
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *get_HB_precon(const DOF_MATRIX *matrix,
                            const DOF_SCHAR_VEC *bound,
                            int info);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon_ptr = get_HB_precon(A, bound, info);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \hyperref[S:PRECON_struct]{\code{PRECON}} structure
  describing a hierarchical preconditioner, as described in
  \cite{Yserentant:86}. The application should call
  \code{precon\_ptr->exit\_precon(precon\_ptr)} to release the
  resources associated with \code{precon\_ptr} once the preconditioner
  is no longer needed. But note that the solver interface-functions
  \hyperref[S:oem_solve_fct]{\code{oem\_solve()}} and
  \hyperref[S:release_oem_solve_fct]{\code{release\_oem\_solve()}}
  call \code{exit\_precon()} on their own.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{get_HB_precon:A}{A} The matrix to compute the
    preconditioner for.
    %% 
  \hyperitem{get_HB_precon:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
    %% 
  \hyperitem{get_HB_precon:info}{info} An integer controlling the
    amount of information printed to the terminal the application is
    running in (larger values mean more ``noise'').
  \end{descr}
\item[Return Value] ~\hfill

  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\end{function}
%%
\fdx{get_HB_precon()@{\code{get\_HB\_precon()}}|)}
\idx{preconditioner!get_HB_precon()@{\code{get\_HB\_precon()}}|)}
%%

\begin{function}{get\_BPX\_precon()}
\label{S:get_BPX_precon_fct}
%%
\fdx{get_BPX_precon()@{\code{get\_BPX\_precon()}}|(}
\idx{preconditioner!get_BPX_precon()@{\code{get\_BPX\_precon()}}|(}
\idx{preconditioner!BPX}
%%
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *get_BPX_precon(const DOF_MATRIX *matrix,
                             const DOF_SCHAR_VEC *bound,
                             int info);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon_ptr = get_BPX_precon(A, bound, info);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \hyperref[S:PRECON_struct]{\code{PRECON}} structure
  describing the BPX-preconditioner, as described in \cite{BPX:90}.
  The application should call
  \code{precon\_ptr->exit\_precon(precon\_ptr)} to release the
  resources associated with \code{precon\_ptr} once the preconditioner
  is no longer needed. But note that the solver interface-functions
  \hyperref[S:oem_solve_fct]{\code{oem\_solve()}} and
  \hyperref[S:release_oem_solve_fct]{\code{release\_oem\_solve()}}
  call \code{exit\_precon()} on their own.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{get_BPX_precon:A}{A} The matrix to compute the
    preconditioner for.
    %% 
  \hyperitem{get_BPX_precon:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
    %% 
  \hyperitem{get_BPX_precon:info}{info} An integer controlling the
    amount of information printed to the terminal the application is
    running in (larger values mean more ``noise'').
  \end{descr}
\item[Return Value] ~\hfill

  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\end{function}
%%
\fdx{get_BPX_precon()@{\code{get\_BPX\_precon()}}|)}
\idx{preconditioner!get_BPX_precon()@{\code{get\_BPX\_precon()}}|)}
%%

\begin{function}{get\_SSOR\_precon()}
\label{S:get_SSOR_precon_fct}
%%
\fdx{get_SSOR_precon()@{\code{get\_SSOR\_precon()}}|(}
\idx{preconditioner!get_SSOR_precon()@{\code{get\_SSOR\_precon()}}|(}
\idx{preconditioner!SSOR}
%%
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *get_SSOR_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *bound,
                              REAL omega,
                              int n_iter);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon_ptr = get_SSOR_precon(A, bound, info);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \hyperref[S:PRECON_struct]{\code{PRECON}} structure
  describing an SSOR-preconditioner. The application should call
  \code{precon\_ptr->exit\_precon(precon\_ptr)} to release the
  resources associated with \code{precon\_ptr} once the preconditioner
  is no longer needed. But note that the solver interface-functions
  \hyperref[S:oem_solve_fct]{\code{oem\_solve()}} and
  \hyperref[S:release_oem_solve_fct]{\code{release\_oem\_solve()}}
  call \code{exit\_precon()} on their own.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{get_SSOR_precon:A}{A} The matrix to compute the
    preconditioner for.
    %% 
  \hyperitem{get_SSOR_precon:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
    %% 
  \hyperitem{get_SSOR_precon:omega}{omega} The relaxation parameter.
    %% 
  \hyperitem{get_SSOR_precon:n_iter}{n\_iter} The number of
    SSOR-iterations to perform.
  \end{descr}
\item[Return Value] ~\hfill

  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\end{function}
%%
\fdx{get_SSOR_precon()@{\code{get\_SSOR\_precon()}}|)}
\idx{preconditioner!get_SSOR_precon()@{\code{get\_SSOR\_precon()}}|)}
%%

\begin{function}{get\_ILUk\_precon()}
\label{S:get_ILUk_precon_fct}
%%
\fdx{get_ILUk_precon()@{\code{get\_ILUk\_precon()}}|(}
\idx{preconditioner!get_ILUk_precon()@{\code{get\_ILUk\_precon()}}|(}
\idx{preconditioner!ILUk}
%%
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *get_ILUk_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *mask,
                              int ilu_level, int info);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon_ptr = get_ILUk_precon(A, bound, info);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \hyperref[S:PRECON_struct]{\code{PRECON}} structure
  describing an $ILU(k)$-preconditioner as described
  \cite{templates:94}. This preconditioner uses a combinatorical,
  ``level''-based strategy to control the amount of fill-in generated
  by the incomplete $LU$-factorization. The preconditioner can benefit
  from re-ordering the DOFs in a way that the amount of fill-in
  generated by a complete $LU$-factorization would be minimized.
  Currently, \ALBERTA searches for a library \code{libgpskca} and
  expects that this library contains the functions of the
  \code{GPSKCA} package from
  \href{http://www.netlib.org}{www.netlib.org}, \cite{GPSKCA:82}.

  Note the level-based fill-in control has the disadvantage that the
  generated preconditioner may not even be positive definite, even if
  \code{A} is spd. On the other hand, $ILU(k)$ may still be spd even
  if \code{A} is not.

  The application should call
  \code{precon\_ptr->exit\_precon(precon\_ptr)} to release the
  resources associated with \code{precon\_ptr} once the preconditioner
  is no longer needed. But note that the solver interface-functions
  \hyperref[S:oem_solve_fct]{\code{oem\_solve()}} and
  \hyperref[S:release_oem_solve_fct]{\code{release\_oem\_solve()}}
  call \code{exit\_precon()} on their own.
\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{get_ILUk_precon:A}{A} The matrix to compute the
    preconditioner for.
    %% 
  \hyperitem{get_ILUk_precon:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
    %% 
  \hyperitem{get_ILUk_precon:level}{level} The control parameter for
    the amount of fill-in, see \cite{templates:94}.
    %% 
  \hyperitem{get_ILUk_precon:info}{info} An integer controlling the
    amount of information printed to the terminal the application is
    running in (larger values mean more ``noise'').
  \end{descr}
\item[Return Value] ~\hfill

  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\end{function}
%%
\fdx{get_ILUk_precon()@{\code{get\_ILUk\_precon()}}|)}
\idx{preconditioner!get_ILUk_precon()@{\code{get\_ILUk\_precon()}}|)}
%%

\begin{datatype}{OEM\_PRECON}
\label{S:OEM_PRECON_enum}

\item[Definition]~\hfill

\ddx{OEM_PRECON@{\code{OEM\_PRECON}}}
\idx{preconditioner!OEM\_PRECON@{\code{OEM\_PRECON}}}
\bv\begin{lstlisting}
typedef enum {
  PreconEnd  = -1,
  PreconRepeat = PreconEnd,
  NoPrecon   = 0,
  DiagPrecon = 1,
  HBPrecon   = 2,
  BPXPrecon  = 3,
  SSORPrecon = 4,
  __SSORPrecon = 5,
  ILUkPrecon = 6,
  BlkDiagPrecon = 512,
  BlkSSORPrecon = 513,
} OEM_PRECON;
\end{lstlisting}\ev

\item[Symbols]~\hfill
\begin{descr}
\hyperitem{OEM_PRECON:PreconEnd}{PreconEnd}
\hyperitem{OEM_PRECON:PreconRepeat}{PreconRepeat} Terminate the
  variable argument list of
  \hyperref[S:init_oem_precon_fct]{\code{init\_oem\_precon()}}, see
  \secref{S:init_oem_precon_fct} in the context of block-matrix
  preconditioners for block-matrices having their origin in direct-sum
  structure of the underlying finite element spaces (see
  \secref{S:chain_impl}).
  %%
\hyperitem{OEM_PRECON:NoPrecon}{NoPrecon}
\hyperitem{OEM_PRECON:DiagPrecon}{DiagPrecon}
\hyperitem{OEM_PRECON:HBPrecon}{HBPrecon}
\hyperitem{OEM_PRECON:BPXPrecon}{BPXPrecon} Self-explanatory, select
  the respective preconditioner.
  %%
\hyperitem{OEM_PRECON:SSORPrecon}{SSORPrecon} Select an
  SSOR-preconditioner with
  \hyperlink{get_SSOR_precon:omega}{\code{omega == 1.0}} and
  \hyperlink{get_SSOR_precon:n_iter}{\code{n\_iter == 2}}.
  %%
\hyperitem{OEM_PRECON:__SSORPrecon}{\_\_SSORPrecon}
  Select an  SSOR-preconditioner with control over
  \hyperlink{get_SSOR_precon:omega}{\code{omega}} and
  \hyperlink{get_SSOR_precon:n_iter}{\code{n\_iter}}.
  %%
\hyperitem{OEM_PRECON:ILUkPrecon}{ILUkPrecon}
  Self explanatory.
  %%
\hyperitem{OEM_PRECON:BlkDiagPrecon}{BlkDiagPrecon} Select a
  preconditioner which acts on a block-matrix structure induced by a
  finite element space with is composed of several components as a
  direct sum (see \secref{S:chain_impl}).
  %%
\hyperitem{OEM_PRECON:BlkSSORPrecon}{BlkSSORPrecon}
  Currently not supported.
\end{descr}
\end{datatype}

\begin{function}{init\_oem\_precon()}
\label{S:init_oem_precon_fct}
\label{S:vinit_oem_precon_fct}
%%
\fdx{init_oem_precon()@{\code{init\_oem\_precon()}}|(}
\idx{preconditioner!init_oem_precon()@{\code{init\_oem\_precon()}}|(}
\fdx{vinit_oem_precon()@{\code{vinit\_oem\_precon()}}|(}
\idx{preconditioner!vinit_oem_precon()@{\code{vinit\_oem\_precon()}}|(}
%%
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *init_oem_precon(const DOF_MATRIX *A,
                              const DOF_SCHAR_VEC *bound,
                              int info, OEM_PRECON precon_enum,
                              ... /* ssor_omega, ssor_n_iter etc. */);
const PRECON *vinit_oem_precon(const DOF_MATRIX *A,
                               const DOF_SCHAR_VEC *bound,
                               int info, OEM_PRECON precon_enum,
                               va_list ap);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon = init_oem_precon(A, bound, info, precon_enum, ...);
precon = vinit_oem_precon(A, bound, info, precon_enum, ap);
\end{lstlisting}\ev
\item[Description] ~\hfill

  These two function initialize a
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure, based on the
  value of a descriptive enumeration symbol. The returned structure
  can then be passed to
  \hyperref[S:oem_solve_fct]{\code{oem\_solve()}} or
  \hyperref[S:init_oem_solve_fct]{\code{init\_oem\_solve()}}, as
  described in \secref{S:ALBERTA_OEM_solvers}.  In contrast to the
  \code{get\_XXX\_precon()} functions described above these two
  functions support matrices with the block-matrix structure implied
  by using
  \hyperref[S:chain_impl]{direct sums of finite element spaces}, see
  \secref{S:chain_impl} for further explanations.

  For the difference between the \code{\dots} ``argument'' and the
  \code{ap} argument the reader is referred to any text-book dealing
  with the \code{C}-programming language.

\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{init_oem_precon:A}{A} The matrix to compute the
    preconditioner for.
    %% 
  \hyperitem{init_oem_precon:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
  \hyperitem{init_oem_precon:info}{info} An integer controlling the
    amount of information printed to the terminal the application is
    running in (larger values mean more ``noise'').
    %%
  \hyperitem{init_oem_precon:precon_enum}{precon\_enum} An enumeration
    value as defined by
    \hyperlink{S:OEM_PRECON_enum}{\code{OEM\_PRECON}}, see
    \secref{S:OEM_PRECON_enum}, selecting the respective
    preconditioner to use.
   %% 
  \hyperitem{init_oem_precon:va_list}{\dots, ap} A variable-length
    argument list, providing additional parameters needed by some of
    the preconditioners, as explained below:
    \begin{descr}
    \kitem{\_\_SSORPrecon} The two arguments following
      \code{precon\_enum} must specify the relaxation parameter
      \hyperlink{get_SSOR_precon:omega}{\code{omega}} and the number
      of iterations
      \hyperlink{get_SSOR_precon:n_iter}{\code{n\_iter}}
      to perform.
      %% 
    \kitem{ILUkPrecon} The argument following \code{precon\_enum} must
      specify the control-parameter
      \hyperlink{get_ILUk_precon:level}{$k$} controlling the amount of
      fill-in.
      %%
    \kitem{BlkDiagPrecon} The parameters following \code{precon\_enum}
      must specify the type and parameters for the preconditioners for
      the diagonal blocks. It is the responsibility of the calling
      application to ensure that enough preconditioners are defined.
      An example to generate a block-diagonal preconditioner for a
      $3\times 3$ block-matrix (e.g. in the context of a
      ``Crouzeix-Raviart'' discretization for the Stokes-problem in
      3d) would be
      %%
      \bv\begin{lstlisting}
precon = init_oem_precon(A, NULL, 3 /* info */, BlkDiagPrecon,
                         __SSORPrecon, 1.5, 2, DiagPrecon, DiagPrecon);
\end{lstlisting}\ev
      %%
      The symbol
      \hyperlink{OEM_PRECON:PreconRepeat}{\code{PreconRepeat}} has a
      special meaning: it indicates that the last specified
      preconditioner should also be used for all other blocks. In the
      $3\times 3$ example given above, the following code-fragment
      would select diagonal preconditioning for all blocks>
      %%
      \bv\begin{lstlisting}
precon = init_oem_precon(A, NULL, 3 /* info */, BlkDiagPrecon,
                         DiagPrecon, PreconRepeat);
\end{lstlisting}\ev
      %%
    \end{descr}
  \end{descr}
\item[Return Value] ~\hfill

  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\end{function}
%%
%%
\fdx{init_oem_precon()@{\code{init\_oem\_precon()}}|)}
\idx{preconditioner!init_oem_precon()@{\code{init\_oem\_precon()}}|)}
\fdx{vinit_oem_precon()@{\code{vinit\_oem\_precon()}}|)}
\idx{preconditioner!vinit_oem_precon()@{\code{vinit\_oem\_precon()}}|)}
%%

\begin{datatype}{PRECON\_TYPE}
\label{S:PRECON_TYPE_struct}

\item[Description]~\hfill

A data structure which can be use to define more complex
preconditioners. The purpose of this structure is to avoid defining
functions with an endless number of arguments. This
``parameter-transport-structure'' can be passed to
\hyperref[S:init_precon_from_type_fct]{\code{init\_precon\_from\_type()}},
instead of calling
\hyperref[S:init_oem_precon_fct]{\code{init\_oem\_precon()}}. The
actual definition looks somewhat complicated and maybe ugly, but using
this structure is more or less straight-forward, have a look at
\exampleref{example:PRECON_TYPE} below.

\item[Definition]~\hfill

\bv\begin{lstlisting}
#define N_BLOCK_PRECON_MAX 10

struct __precon_type {
  OEM_PRECON type;
  union {
    struct {
      REAL omega;
      int n_iter;  
    } __SSOR;
    struct {
      int level;
    } ILUk;
  } param;
};    

typedef struct precon_type
{
  OEM_PRECON type;
  union {
    struct {
      REAL omega;
      int n_iter;  
    } __SSOR;
    struct {
      int level;
    } ILUk;
    struct {
      struct __precon_type precon[N_BLOCK_PRECON_MAX];
    } BlkDiag;
    struct {
      struct __precon_type precon[N_BLOCK_PRECON_MAX];
      REAL omega;
      int  n_iter;
    } BlkSSOR;
  } param;
} PRECON_TYPE;
\end{lstlisting}\ev

\item[Components]~\hfill
\begin{descr}
\hyperitem{PRECON_TYPE:type}{type} One of the symbolic constants
  defined by the \hyperref[S:OEM_PRECON_enum]{\code{OEM\_PRECON}}
  enumeration type. See \secref{S:OEM_PRECON_enum}.
  %% 
\hyperitem{PRECON_TYPE:param}{param} If the preconditioner defined by
  \code{type} needs additional parameters, then the corresponding
  section in the \code{param} component has to be filled. The names of
  the structure components correspond to the parameters for the
  \code{get\_XXX\_precon()} functions described above, currently, only
  \hyperref[S:get_SSOR_precon_fct]{\code{\_\_SSORPrecon}},
  \hyperref[S:get_ILUk_precon_fct]{\code{ILUkPrecon}} and, of course,
  \code{BlkDiagPrecon} need additional parameters. For the latter, the
  \code{param} component contains an array of
  \code{N\_BLOCK\_PRECON\_MAX} many \code{struct \_\_precon\_type}
  sub-structures for storing additional parameters possibly needed by
  the sub-preconditioners.
\end{descr}
\end{datatype}

\begin{example}
  \label{example:PRECON_TYPE}

  Two short examples demonstrating the use of the
  \hyperref[S:PRECON_TYPE_struct]{\code{PRECON\_TYPE}} structure
  defined above.
  \begin{itemize}
  \item Defining an SSOR preconditioner with control over the
    relaxation parameter and the number of iterations:
    %% 
    \bv\begin{lstlisting}
PRECON_TYPE prec;
prec.type = __SSORPrecon;
prec.param.__SSOR.omega  = 1.5;
prec.param.__SSOR.n_iter = 2;
\end{lstlisting}\ev
    
  \item Defining a preconditioner for a block-matrix resulting from
    using a
    \hyperref[S:chain_impl]{direct sum} of finite element spaces
    %%
    \bv\begin{lstlisting}
PRECON_TYPE prec;
prec.type = BlkDiagPrecon;
prec.param.BlkDiag.precon[0].type = __SSOR;
prec.param.BlkDiag.param.precon[0].__SSOR.omega  = 1.0;
prec.param.BlkDiag.param.precon[0].__SSOR.n_iter = 1;
for (i = 1; i < 3; i++) {
  prec.param.BlkDiag.precon[i].type = DiagPrecon;
}
\end{lstlisting}\ev
  \end{itemize}
\end{example}

\begin{function}{init\_precon\_from\_type()}
\label{S:init_precon_from_type_fct}
%%
\fdx{init_precon_from_type()@{\code{init\_precon\_from\_type()}}|(}
\idx{preconditioner!init_precon_from_type()@{\code{init\_\_precon\_from\_type()}}|(}
%%
\item[Prototype] ~\hfill
%%
\bv\begin{lstlisting}
const PRECON *init_precon_from_type(const DOF_MATRIX *A,
                                    const DOF_SCHAR_VEC *bound,
                                    int info,
                                    const PRECON_TYPE *prec_type);
\end{lstlisting}\ev

\item[Synopsis] ~\hfill

\bv\begin{lstlisting}[basicstyle=\normalsize]
precon = init_precon_from_type(A, bound, info, prec_type);
\end{lstlisting}\ev
\item[Description] ~\hfill

  Initialize a \hyperref[S:PRECON_struct]{\code{PRECON}} structure,
  based on contents of the
  \hyperref[S:PRECON_TYPE_struct]{\code{prec\_type}} parameter.  The
  returned structure can then be passed to
  \hyperref[S:oem_solve_fct]{\code{oem\_solve()}} or
  \hyperref[S:init_oem_solve_fct]{\code{init\_oem\_solve()}}, as
  described in \secref{S:ALBERTA_OEM_solvers}.  In contrast to the
  \code{get\_XXX\_precon()} functions described above these two
  functions support matrices with the block-matrix structure implied
  by using
  \hyperref[S:chain_impl]{direct sums of finite element spaces}, see
  \secref{S:chain_impl} for further explanations.

\item[Parameters]~\hfill
  \begin{descr}
  \hyperitem{init_precon_from_type:A}{A} The matrix to compute the
    preconditioner for.
    %% 
  \hyperitem{init_precon_from_type:bound}{bound} A flag-vector, masking out
    specific DOFs, compare the explanations for the
    \hyperlink{oem_solve:mask}{\code{mask}} parameter to
    \hyperref[S:oem_solve_fct]{\code{oem\_solve()}}, see
    \secref{S:oem_solve_fct}. \code{bound} may be \nil.
    %%
  \hyperitem{init_precon_from_type:info}{info} An integer controlling the
    amount of information printed to the terminal the application is
    running in (larger values mean more ``noise'').
    %%
  \hyperitem{init_precon_from_type:prec_type}{prec\_type} A pointer to
    a structure of type
    \hyperref[S:PRECON_TYPE_struct]{\code{PRECON\_TYPE}}, as described
    in \secref{S:PRECON_TYPE_struct} above, describing the
    preconditioner to generate.
  \end{descr}
\item[Return Value] ~\hfill
  
  A pointer to an initialized
  \hyperref[S:PRECON_struct]{\code{PRECON}} structure implementing the
  preconditioner, see \secref{S:PRECON_struct}.
\item[Examples] ~\hfill

  The function
  \hyperref[S:init_oem_precon_fct]{\code{init\_oem\_precon()}} (see
  \secref{S:init_oem_precon_fct}) is implemented on top of
  \code{init\_precon\_from\_type()}. The interested reader is referred
  to the source code in
  \code{alberta-VERSION/alberta/src/Common/oem\_solver.c}
\end{function}
%%
\fdx{init_oem_precon()@{\code{init\_oem\_precon()}}|)}
\idx{preconditioner!init_oem_precon()@{\code{init\_oem\_precon()}}|)}
%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Multigrid solvers}\label{S:multigrid_solver}

A abstract framework for multigrid solvers is available. The main 
data structure for the multigrid solver \code{MG()} is
\ddx{MULTI_GRID_INFO@\code{MULTI\_GRID\_INFO}}%
\bv\begin{lstlisting}
typedef struct multi_grid_info MULTI_GRID_INFO;
struct multi_grid_info
{
  REAL             tolerance;                 /* tol. for resid         */
  REAL             exact_tolerance;           /* tol. for exact_solver  */

  int              cycle;                     /* 1=V-cycle, 2=W-cycle   */
  int              n_pre_smooth, n_in_smooth; /* no of smoothing loops  */
  int              n_post_smooth;             /* no of smoothing loops  */
  int              mg_levels;                 /* current no. of levels  */
  int              exact_level;               /* level for exact_solver */
  int              max_iter;                  /* max. no of MG iter's   */
  int              info;

  int              (*init_multi_grid)(MULTI_GRID_INFO *mg_info);
  void             (*pre_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
  void             (*in_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
  void             (*post_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
  void             (*mg_restrict)(MULTI_GRID_INFO *mg_info, int level);
  void             (*mg_prolongate)(MULTI_GRID_INFO *mg_info, int level);
  void             (*exact_solver)(MULTI_GRID_INFO *mg_info, int level);
  REAL             (*mg_resid)(MULTI_GRID_INFO *mg_info, int level);
  void             (*exit_multi_grid)(MULTI_GRID_INFO *mg_info);

  void             *data;                         /* application dep. data */
};
\end{lstlisting}\ev
The entries yield following information:
\begin{descr}
\kitem{tolerance} tolerance for norm of residual.
\kitem{exact\_tolerance} tolerance for ``exact solver'' on coarsest level.
\kitem{cycle} selection of multigrid cycle type: $1=$V-cycle, $2=$W-cycle, ....
\kitem{n\_pre\_smooth} number of smoothing steps on each level before (first)
      coarse level correction.
\kitem{n\_in\_smooth} number of smoothing steps on each level between
      coarse level corrections (for \code{cycle} $\geq 2$).
\kitem{n\_post\_smooth} number of smoothing steps on each level after (last)
      coarse level correction.
\kitem{mg\_levels} number of levels.
\kitem{exact\_level} selection of grid level where the ``exact'' solver is used
      (and no further coarse grid correction), usually \code{exact\_level=0}.
\kitem{max\_iter} maximal number of multigrid iterations.
\kitem{info} level of information produced by the multigrid method.
\kitem{init\_multi\_grid} pointer to a function for initializing the
  multigrid method; may be \nil;

  if not \nil, \code{init\_multi\_grid(mg\_info)} initializes data
  needed by the multigrid method, returns \code{true} if an error occurs.

\kitem{pre\_smooth} pointer to a function for performing the smoothing
  step before coarse grid corrections;

 \code{pre\_smooth(mg\_info, level, n)} performs \code{n} smoothing iterations
      on grid \code{level}.

\kitem{in\_smooth} pointer to a function for performing the smoothing
  step between coarse grid corrections;

 \code{in\_smooth(mg\_info, level, n)} performs \code{n} smoothing iterations
      on grid \code{level}.

\kitem{post\_smooth} pointer to a function for performing the smoothing
  step after coarse grid corrections;

\code{{post\_smooth(mg\_info, level, n)}} performs \code{n} smoothing 
  iterations on grid \code{level}.

\kitem{mg\_restrict} pointer to a function for computing and restricting the
  residual to a coarser level;

 \code{mg\_restrict(mg\_info, level)} computes and restricts the
   residual from grid \code{level} to next coarser grid (\code{level-1}).

\kitem{mg\_prolongate} pointer to a function for prolongating and adding
  coarse grid corrections to the fine grid solution;

  \code{mg\_prolongate(mg\_info, level)} prolongates and adds the coarse grid 
      (\code{level-1}) correction to the fine grid solution on grid 
      \code{level}.

\kitem{exact\_solver} pointer to a function for the ``exact'' solver;

\code{exact\_solver(mg\_info, level)} computes the ``exact'' solution of 
  the problem on grid \code{level} with tolerance 
  \code{mg\_info->exact\_tolerance}.

\kitem{mg\_resid} pointer to a function for computing the norm of
 the actual residual;

 \code{mg\_resid(mg\_info, level)} returns the norm of residual on grid
      \code{level}.

\kitem{exit\_multi\_grid} a pointer to a cleanup routine, may be \nil;

  if not \nil \code{exit\_multi\_grid(mg\_info)} is called after
  termination of the multigrid method for freeing used data.

\kitem{data} pointer to application dependent data, holding information on
      or about different grid levels, e.g.
\end{descr}
%
The abstract multigrid solver is implemented in the routine
\fdx{MG()@\code{MG()}}
\bv\begin{lstlisting}
int MG(MULTI_GRID_INFO *)
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{MG(mg\_info)} 
based upon information given in the data structure \code{mg\_info}, the
subroutine \verb|MG()| iterates until the prescribed tolerance is met or
the prescribed number of multigrid cycles is performed.
\end{descr}
%
Main parts of the \code{MG()} routine are:
\bv\begin{lstlisting}
{
  int iter;
  REAL resid;

  if (mg_info->init_multi_grid) 
    if (mg_info->init_multi_grid(mg_info))
      return(-1);

  resid = mg_info->resid(mg_info, mg_info->mg_levels-1);
  if (resid <= mg_info->tolerance)
    return(0);

  for (iter = 0; iter < mg_info->max_iter; iter++)
  {
    recursive_MG_iteration(mg_info, mg_info->mg_levels-1);
    resid = mg_info->resid(mg_info, mg_info->mg_levels-1);
    if (resid <= mg_info->tolerance)
      break;
  }
  if (mg_info->exit_multi_grid)
    mg_info->exit_multi_grid(mg_info);

  return(iter+1);
}
\end{lstlisting}\ev
The subroutine \code{recursive\_MG\_iteration()} performs smoothing,
restriction of the residual and prolongation of the coarse grid correction:
\bv\begin{lstlisting}
static void recursive_MG_iteration(MULTI_GRID_INFO *mg_info, int level)
{
  int  cycle;

  if (level <= mg_info->exact_level) {
    mg_info->exact_solver(mg_info, level);
  }
  else {
    if (mg_info->pre_smooth)
      mg_info->pre_smooth(mg_info, level, mg_info->n_pre_smooth);

    for (cycle = 0; cycle < mg_info->cycle; cycle++) {
      if ((cycle > 0) && mg_info->in_smooth)
        mg_info->in_smooth(mg_info, level, mg_info->n_in_smooth);

      mg_info->mg_restrict(mg_info, level);
      recursive_MG_iteration(mg_info, level-1);
      mg_info->prolongate(mg_info, level);
    }

    if (mg_info->post_smooth)
      mg_info->post_smooth(mg_info, level, mg_info->n_post_smooth);
  }
}
\end{lstlisting}\ev

For multigrid solution of a scalar linear system
\[
  A u = f
\]
given by a \code{DOF\_MATRIX A} and a \code{DOF\_REAL\_VEC f},
the following subroutine is available:
\fdx{mg_s()@\code{mg\_s()}}
\bv\begin{lstlisting}
int mg_s(DOF_MATRIX *, DOF_REAL_VEC *, const DOF_REAL_VEC *, 
         const DOF_SCHAR_VEC *, REAL, int, int, char *);
\end{lstlisting}\ev
%
Description:
\begin{descr}
\kitem{mg\_s(matrix, u, f, bound, tol, max\_iter, info, prefix)} 
solves the linear system  for a scalar valued problem by a
multigrid method; the return value is the number of performed
iterations; 

\code{matrix} is a pointer to a DOF matrix storing the system matrix,
\code{u} is a pointer to a DOF vector for the solution,
holding an initial guess on input;
\code{f} is a pointer to a DOF vector storing the right hand side and
\code{bound} a pointer to a DOF vector with information about boundary 
DOFs; \code{bound} must not be \nil if Dirichlet DOFs are used;

\code{tol} is the tolerance for multigrid solver, \code{max\_iter}
the maximal number of multigrid iterations and
\code{info} gives the level of information for the solver;

\code{prefix} is a parameter key prefix for the initialization of additional
      data via \code{GET\_PARAMETER}, see Table \ref{T:mg_parms}, may be \nil;
\begin{table}
\begin{center}
 \begin{tabular}{|l|c|l|} \hline
   member & default & key\\ \hline\hline
   \code{mg\_info->cycle} & \code{1} &\code{prefix->cycle}\\
   \code{mg\_info->n\_pre\_smooth} & \code{1} &\code{prefix->n\_pre\_smooth}\\
   \code{mg\_info->n\_in\_smooth} & \code{1} & \code{prefix->n\_in\_smooth}\\
   \code{mg\_info->n\_post\_smooth} & \code{1} & \code{prefix->n\_post\_smooth}\\
   \code{mg\_info->exact\_level} & \code{0} & \code{prefix->exact\_level}\\
   \code{mg\_info->info} & \code{info} & \code{prefix->info}\\
  \hline
   \code{mg\_s\_info->smoother} & \code{1} & \code{prefix->smoother}\\
   \code{mg\_s\_info->smooth\_omega} & \code{1.0} 
   &\code{prefix->smooth\_omega} \\
   \code{mg\_s\_info->exact\_solver} & \code{1} &\code{prefix->exact\_solver}\\
   \code{mg\_s\_info->exact\_omega} & \code{1.0} &\code{prefix->exact\_omega}\\
\hline
 \end{tabular}
\end{center}
\caption{Parameters read by \code{mg\_s()} and \code{mg\_s\_init()}}
\label{T:mg_parms}
\end{table}
%
an SOR smoother (\code{mg\_s\_info->smoother=1}) and an SSOR smoother
(\code{smoother=2}) are available; under-- or over relaxation
parameter can be specified by \code{mg\_s\_info->smooth\_omega}. These
SOR/SSOR smoothers are used for \code{exact\_solver}, too.
\end{descr}

For applications, where several systems with the same matrix have to
be solved, computing time can be saved by doing all initializations
like setup of grid levels and restriction of matrices only once.
For such cases, three subroutines are available:
\fdx{mg_s_init()@\code{mg\_s\_init()}}%
\fdx{mg_s_solve()@\code{mg\_s\_solve()}}%
\fdx{mg_s_exit()@\code{mg\_s\_exit()}}%
\bv\begin{lstlisting}
MG_S_INFO *mg_s_init(DOF_MATRIX *, const DOF_SCHAR_VEC *, int, char *);
int mg_s_solve(MG_S_INFO *, DOF_REAL_VEC *, const DOF_REAL_VEC *, REAL, int);
void mg_s_exit(MG_S_INFO *);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{mg\_s\_init(matrix, bound, info, prefix)}
function for initializing a multigrid method for solving
a scalar valued problem by \code{mg\_s\_solve()}; the return
value is a pointer to data used by \code{mg\_s\_solve()} and 
is the first argument to this function; the structure \code{MG\_S\_INFO} 
contains matrices and vectors for linear problems on all used grid levels.

\code{matrix} is a pointer to a DOF matrix storing the system matrix,
\code{bound} a pointer to a DOF vector with information about boundary 
DOFs; \code{bound} must not be \nil if Dirichlet DOFs are used;

\code{info} gives the level of information for \code{mg\_s\_solve()};
\code{prefix} is a parameter key prefix for the initialization of additional
data via \code{GET\_PARAMETER}, see Table \ref{T:mg_parms}, may be \nil.

\kitem{mg\_s\_solve(mg\_s\_info, u, f, tol, max\_iter)} 
solves the linear system  for a scalar valued problem by a
multigrid method; the routine has to be initialize by
\code{mg\_s\_init()} and the return value \code{mg\_s\_info} of
\code{mg\_s\_init()} is the first argument; the return value 
of \code{mg\_s\_solve()} is the number of performed iterations; 
  
\code{u} is a pointer to a DOF vector for the solution, holding an
initial guess on input; \code{f} is a pointer to a DOF vector storing
the right hand side; \code{tol} is the tolerance for multigrid solver,
\code{max\_iter} the maximal number of multigrid iterations;

the function may be called several times with different right
hand sides \code{f}.

\kitem{mg\_s\_exit(mg\_s\_info)} frees data needed for the
multigrid method and which is allocated by \code{mg\_s\_init()}.
\end{descr}

\begin{remark}
The multigrid solver is currently available only for Lagrange finite
elements of first order (\code{lagrange1}). An implementation for
higher order elements is future work.
\end{remark}%
\idx{linear solvers|)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsection{Nonlinear solvers}%
\label{S:nls}%
\idx{nonlinear solvers|(}
For the solution of a nonlinear equation
\begin{equation}\label{E:nonlin}
u \in \R^N: \qquad F(u) = 0 \qquad\mbox{in } \R^N
\end{equation}
several Newton methods are provided. For testing the convergence
a (problem dependent) norm of either the correction $d_k$ in
the $k$th step, i.e.
\[
\|d_k\| = \|u_{k+1} - u_k\|,
\]
or the residual, i.e.
\[
\|F(u_{k+1})\|,
\] 
is used. 

The data structure (defined in \code{alberta\_util.h}) for passing information
about assembling and solving a linearized equation, tolerances,
etc. to the solvers is
\ddx{NLS_DATA@{\code{NLS\_DATA}}}
\idx{nonlinear solvers!NLS_DATA@{\code{NLS\_DATA}}}
\bv\begin{lstlisting}
typedef struct nls_data NLS_DATA;
struct nls_data
{
  void       (*update)(void *, int, const REAL *, int, REAL *);
  void       *update_data;
  int        (*solve)(void *, int, const REAL *, REAL *);
  void       *solve_data;
  REAL       (*norm)(void *, int, const REAL *);
  void       *norm_data;

  WORKSPACE  *ws;

  REAL       tolerance;
  int        restart;
  int        max_iter;
  int        info;

  REAL       initial_residual;
  REAL       residual;
};
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{update} subroutine for computing a linearized system;

      \code{update(update\_data, dim, uk, update\_matrix, F)} computes
      a linearization of the system matrix, if \code{update\_matrix}
      is not zero, and the right hand side \code{F}, if \code{F} is
      not \nil, around the actual iterate \code{uk}; \code{dim} is the
      dimension of the nonlinear system, and \code{update\_data} a
      pointer to user data.
\kitem{update\_data} pointer to user data for the update of a linearized
      equation, first argument to \code{update()}.
\kitem{solve} function for solving a linearized system for the new 
      correction; the return value is the number of iterations used by
      an iterative solver or zero; this number is printed, if
      information about the solution process should be produced;

      \code{solve(solve\_data, dim, F, d)} solves the linearized equation
      of dimension \code{dim} with right hand side \code{F} for a
      correction \code{d} of the actual iterate; \code{d} is initialized
      with zeros and \code{update\_data} is a pointer to user
      data.
\kitem{solve\_data} pointer to user data for solution of the linearized
      equation, first argument to \code{solve()};

      the nonlinear solver does not know how the system matrix is stored;
      such information can be passed from \code{update()} to \code{solve()}
      by using pointers to the same \code{DOF} matrix in both 
      \code{update\_data} and \code{solve\_data}, e.g.
\kitem{norm} function for computing a problem dependent norm $\|.\|$;
      if \code{norm} is \nil, the Euclidian norm is used;

      \code{norm(norm\_data, dim, x)} returns the norm
      of the vector \code{x}; \code{dim} is the dimension of the nonlinear
      system, and \code{norm\_data} pointer to user data.
\kitem{norm\_data} pointer to user data for the calculation of the 
      problem dependent norm, first argument to \code{norm()}.
\kitem{ws} a pointer to a \code{WORKSPACE} structure for storing additional
       vectors used by a solver; if the space is not sufficient, the
       used solver will enlarge this workspace; if \code{ws} is \nil, then
       the used solver allocates memory, which is freed before exit.
\kitem{tolerance} tolerance for the nonlinear solver; if the norm of the 
       correction/residual is less or equal \code{tolerance}, the
       solver returns the actual iterate as the solution of the nonlinear
       system.
\kitem{restart} restart for the nonlinear solver.
\kitem{max\_iter} is a maximal number of iterations to be
       performed, even if the tolerance may not be reached.
\kitem{info} the level of information produced by the solver; \code{0}
       is the lowest level of information (no information is printed)
       and \code{4} the highest level.
\kitem{initial\_residual} stores the norm of the initial correction/residual
       on exit.
\kitem{residual} stores the norm of the last correction/residual on exit.
\end{descr}
The following Newton methods for solving \mathref{E:nonlin}
are currently implemented:
\fdx{nls_newton()@{\code{nls\_newton()}}}%
\idx{nonlinear solvers!nls_newton()@{\code{nls\_newton()}}}%
\fdx{nls_newton_ds()@{\code{nls\_newton\_ds()}}}%
\idx{nonlinear solvers!nls_newton_ds()@{\code{nls\_newton\_ds()}}}%
\fdx{nls_newton_fs()@{\code{nls\_newton\_fs()}}}%
\idx{nonlinear solvers!nls_newton_fs()@{\code{nls\_newton\_fs()}}}%
\fdx{nls_newton_br()@{\code{nls\_newton\_br()}}}%
\idx{nonlinear solvers!nls_newton_br()@{\code{nls\_newton\_br()}}}%
\bv\begin{lstlisting}
int nls_newton(NLS_DATA *, int, REAL *);
int nls_newton_ds(NLS_DATA *, int, REAL *);
int nls_newton_fs(NLS_DATA *, int, REAL *);
int nls_newton_br(NLS_DATA *, REAL, int, REAL *);
\end{lstlisting}\ev
Description:
\begin{descr}
\kitem{nls\_newton(nls\_data, dim, u0)} solves a nonlinear system by the
       classical Newton method; the return value is the number of iterations;

       \code{nls\_data} stores information about functions for the
       assemblage and solution of $DF(u_k)$, $F(u_k)$, calculation of
       a norm, tolerances, etc.  \code{dim} is the dimension of the
       nonlinear system, and \code{u0} the initial guess on input and
       the solution on output; \code{nls\_newton()} stops if the norm
       of the \textbf{correction} is less or equal
       \code{nls\_data->tolerance}; it needs a workspace for storing
       \code{2*dim} additional \code{REAL}s.
\kitem{nls\_newton\_ds(nls\_data, dim, u0)} solves a nonlinear system by a
       Newton method with step size control; the return value is the number 
       of iterations;

       \code{nls\_data} stores information about functions for the
       assembling and solving of $DF(u_k)$, $F(u_k)$, calculation of a
       norm, tolerances, etc.  \code{dim} is the dimension of the
       nonlinear system, and \code{u0} the initial guess on input and
       the solution on output; \code{nls\_newton\_ds()} stops if the norm
       of the \textbf{correction} is less or equal \code{nls\_data->tolerance};
       in each iteration at most \code{nls\_data->restart} steps for
       controlling the step size $\tau$ are performed; the aim is to
       choose $\tau$ such that
\[
\|DF(u_k)^{-1} F(u_k+\tau d_k)\| \le (1-{\textstyle\frac12}\tau) \|d_k\|
\]
       holds, where $\|.\|$ is the problem dependent norm, if 
       \code{nls\_data->norm} is not \nil, otherwise the Euclidian norm;
       each step needs the update of $F$, the solution of one
       linearized problem (the system matrix for the linearized
       system does not change during step size control) and the
       calculation of a norm;

       \code{nls\_newton\_ds()}
       needs a workspace for storing \code{4*dim} additional \code{REAL}s.
\kitem{nls\_newton\_fs(nls\_data, dim, u0)} solves a nonlinear system by a
       Newton method with step size control; the return value is the number 
       of iterations;

       \code{nls\_data} stores information about functions for the
       assembling and solving of $DF(u_k)$, $F(u_k)$, calculation of a
       norm, tolerances, etc.  \code{dim} is the dimension of the
       nonlinear system, and \code{u0} the initial guess on input and
       the solution on output; \code{nls\_newton\_fs()} stops if the norm
       of the \textbf{residual} is less or equal \code{nls\_data->tolerance};
       in each iteration at most \code{nls\_data->restart} steps for
       controlling the step size $\tau$ are performed; the aim is to
       choose $\tau$ such that
\[
\|F(u_k+\tau d_k)\| \le (1-{\textstyle\frac12}\tau) \|F(u_k)\|
\]
       holds, where $\|.\|$ is the problem dependent norm, if 
       \code{nls\_data->norm} is not \nil, otherwise the Euclidian norm;
       the step size control is not expensive, since in each step only
       an update of $F$ and the calculation of $\|F\|$ are 
       involved;

       \code{nls\_newton\_fs()}
       needs a workspace for storing \code{3*dim} additional \code{REAL}s.

\kitem{nls\_newton\_br(nls\_data, delta, dim, u0)} solves a nonlinear 
       system by a global Newton method by Bank and Rose \cite{BankRose:81};
       the return value is the number of iterations;
       
       \code{nls\_data} stores information about functions for the
       assembling and solving of $DF(u_k)$, $F(u_k)$, calculation of a
       norm, tolerances, etc.  \code{delta} is a parameter with
       $\delta\in(0,1-\alpha_0)$, where $\alpha_0 = \|DF(u_0)\, u_0 +
       F(u_0)\|/\|F(u_0)\|$; \code{dim} is the dimension of the
       nonlinear system, and \code{u0} the initial guess on input and
       the solution on output; \code{nls\_newton\_br()} stops if the
       norm of the \textbf{residual} is less or equal
       \code{nls\_data->tolerance}; in each iteration at most
       \code{nls\_data->restart} steps for controlling the step size
       by the method of Bank and Rose are performed; the step size
       control is not expensive, since in each step only an update of
       $F$ and the calculation of $\|F\|$ are involved;

       \code{nls\_newton\_br()}
       needs a workspace for storing \code{3*dim} additional \code{REAL}s.
\end{descr}
\idx{nonlinear solvers|)}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "alberta-man"
%%% End: 

% LocalWords:  Krylov DOF