1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
// Copyright 2003, 2004 David Hilvert <dhilvert@auricle.dyndns.org>,
// <dhilvert@ugcs.caltech.edu>
/* This file is part of the Anti-Lamenessing Engine.
The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Anti-Lamenessing Engine; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __psf_convolution_h__
#define __psf_convolution_h__
#include "../../point.h"
#include "psf.h"
/*
* XXX: This doesn't work yet.
*/
/*
* Point-spread function module.
*
* This module implements the convolution (f1 * f2) of point-spread functions f1 and
* f2.
*/
class convolution : public psf {
ale_pos _radius;
psf *f1, *f2;
ale_real _min_i, _max_i, _min_j, _max_j;
public:
/*
* The following four functions indicate filter boundaries. Filter
* support may include everything up to and including the boundaries
* specified here.
*/
ale_real min_i() const { return _min_i; }
ale_real max_i() const { return _max_i; }
ale_real min_j() const { return _min_j; }
ale_real max_j() const { return _max_j; }
/*
* Get the number of varieties supported by this PSF. These usually
* correspond to different points in the sensor array.
*/
virtual unsigned int varieties() {
return f1->varieties() * f2->varieties();
}
/*
* Select the variety appropriate for a given position in the sensor
* array.
*/
virtual unsigned int select(unsigned int i, unsigned int j) {
return (f1->select(i, j) * f2->varieties() + f2->select(i, j));
}
/*
* Response function
*
* Get the response to the rectangle bounded by (top, bot, lef, rig).
* This function must correctly handle points which fall outside of the
* filter support. The variety of the responding pixel is provided, in
* case response is not uniform for all pixels (e.g. some sensor arrays
* stagger red, green, and blue sensors).
*/
psf_result operator()(ale_real top, ale_real bot, ale_real lef, ale_real rig,
unsigned int variety) const {
psf_result result;
psf_result r1, r2;
unsigned int v1 = variety / f2->varieties();
unsigned int v2 = variety % f2->varieties();
/*
* This code uses a rasterized approximation of the filters involved.
*/
ale_real vertical_center = (top + bot) / 2;
ale_real horizontal_center = (lef + rig) / 2;
ale_real vertical_resolution = bot - top;
ale_real horizontal_resolution = rig - lef;
if (!(vertical_resolution > 0
&& horizontal_resolution > 0))
return result; /* zero */
for (ale_real i = f1->min_i() + (vertical_resolution / 2);
i < f1->max_i() - (vertical_resolution / 2);
i += vertical_resolution)
for (ale_real j = f1->min_j() + (horizontal_resolution / 2);
j < f1->max_j() - (horizontal_resolution / 2);
j += horizontal_resolution) {
ale_real t = i - (vertical_resolution / 2);
ale_real b = i + (vertical_resolution / 2);
ale_real l = j - (horizontal_resolution / 2);
ale_real r = j + (horizontal_resolution / 2);
ale_real vc = vertical_center;
ale_real hc = horizontal_center;
r1 = (*f1)(t, b, l, r, v1);
r2 = (*f2)(vc - b, vc - t, hc - r, hc - l, v2);
for (int k1 = 0; k1 < 3; k1++)
for (int k2 = 0; k2 < 3; k2++)
result.set_matrix(k1, k2, result.get_matrix(k1, k2)
+ r1.get_matrix(k1, k2)
* r2.get_matrix(k1, k2));
}
return result;
}
convolution(psf *f1, psf *f2) {
this->f1 = f1;
this->f2 = f2;
/*
* XXX: I'm fairly sure that this is correct for filters with
* zero-centered bounding boxes, and I _think_ it's correct for
* other filters also, but I haven't formally proven this.
*/
_min_i = f1->min_i() + f2->min_i();
_min_j = f1->min_j() + f2->min_j();
_max_i = f1->max_i() + f2->max_i();
_max_j = f1->max_j() + f2->max_j();
}
};
#endif
|