File: default_typeclass.x

package info (click to toggle)
alex 3.4.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 768 kB
  • sloc: haskell: 4,648; makefile: 138; yacc: 56; ansic: 4
file content (335 lines) | stat: -rw-r--r-- 10,599 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
{
{-# LANGUAGE FlexibleContexts, MultiParamTypeClasses, FunctionalDependencies,
             FlexibleInstances #-}
{-# LANGUAGE TemplateHaskell #-} -- issue #125

module Main (main) where
import System.Exit
import Prelude hiding (lex)
import qualified Data.Bits
import Control.Applicative
import Control.Monad
import Data.Word
import Data.Char

}

%action "AlexInput -> Int -> m (Token s)"
%typeclass "Read s, MonadState AlexState m"

tokens :-

[a-b]+$                     { idtoken 0 }
[c-d]+/"."                  { idtoken 1 }
[e-f]+/{ tokpred }          { idtoken 2 }
^[g-h]+$                    { idtoken 3 }
^[i-j]+/"."                 { idtoken 4 }
^[k-l]+/{ tokpred }         { idtoken 5 }
[m-n]+$                     { idtoken 6 }
[o-p]+/"."                  { idtoken 7 }
[q-r]+/{ tokpred }          { idtoken 8 }
[0-1]^[s-t]+$               { idtoken 9 }
[2-3]^[u-v]+/"."            { idtoken 10 }
[4-5]^[w-x]+/{ tokpred }    { idtoken 11 }
[y-z]+                      { idtoken 12 }
[A-B]+$                     ;
[C-D]+/"."                  ;
[E-F]+/{ tokpred }          ;
^[G-H]+$                    ;
^[I-J]+/"."                 ;
^[K-L]+/{ tokpred }         ;
[M-N]+$                     ;
[O-P]+/"."                  ;
[Q-R]+/{ tokpred }          ;
[0-1]^[S-T]+$               ;
[2-3]^[U-V]+/"."            ;
[4-5]^[W-X]+/{ tokpred }    ;
[Y-Z]+                      ;
\.                          ;
[ \n\t\r]+                  ;
[0-9]                       ;

{

-- | Encode a Haskell String to a list of Word8 values, in UTF8 format.
utf8Encode' :: Char -> (Word8, [Word8])
utf8Encode' c = case go (ord c) of
                  (x, xs) -> (fromIntegral x, map fromIntegral xs)
 where
  go oc
   | oc <= 0x7f       = ( oc
                        , [
                        ])

   | oc <= 0x7ff      = ( 0xc0 + (oc `Data.Bits.shiftR` 6)
                        , [0x80 + oc Data.Bits..&. 0x3f
                        ])

   | oc <= 0xffff     = ( 0xe0 + (oc `Data.Bits.shiftR` 12)
                        , [0x80 + ((oc `Data.Bits.shiftR` 6) Data.Bits..&. 0x3f)
                        , 0x80 + oc Data.Bits..&. 0x3f
                        ])
   | otherwise        = ( 0xf0 + (oc `Data.Bits.shiftR` 18)
                        , [0x80 + ((oc `Data.Bits.shiftR` 12) Data.Bits..&. 0x3f)
                        , 0x80 + ((oc `Data.Bits.shiftR` 6) Data.Bits..&. 0x3f)
                        , 0x80 + oc Data.Bits..&. 0x3f
                        ])

type Byte = Word8

data AlexState = AlexState {
        alex_pos :: !AlexPosn,  -- position at current input location
        alex_inp :: String,     -- the current input
        alex_chr :: !Char,      -- the character before the input
        alex_bytes :: [Byte],
        alex_scd :: !Int,        -- the current startcode
        alex_errs :: [String]


    }

type AlexInput = (AlexPosn,     -- current position,
                  Char,         -- previous char
                  [Byte],       -- pending bytes on current char
                  String)       -- current input string

ignorePendingBytes :: AlexInput -> AlexInput
ignorePendingBytes (p,c,_,s) = (p,c,[],s)

alexInputPrevChar :: AlexInput -> Char
alexInputPrevChar (_,c,_,_) = c

alexGetByte :: AlexInput -> Maybe (Byte,AlexInput)
alexGetByte (p,c,(b:bs),s) = Just (b,(p,c,bs,s))
alexGetByte (_,_,[],[]) = Nothing
alexGetByte (p,_,[],(c:s))  = let p' = alexMove p c
                              in case utf8Encode' c of
                                   (b, bs) -> p' `seq`  Just (b, (p', c, bs, s))

data AlexPosn = AlexPn !Int !Int !Int
        deriving (Eq,Show)

alexStartPos :: AlexPosn
alexStartPos = AlexPn 0 1 1

alexMove :: AlexPosn -> Char -> AlexPosn
alexMove (AlexPn a l c) '\t' = AlexPn (a+1)  l     (((c+7) `div` 8)*8+1)
alexMove (AlexPn a l _) '\n' = AlexPn (a+1) (l+1)   1
alexMove (AlexPn a l c) _    = AlexPn (a+1)  l     (c+1)

alexGetInput :: MonadState AlexState m => m AlexInput
alexGetInput =
  do
    AlexState { alex_pos = pos, alex_chr = c,
                alex_bytes = bs, alex_inp = inp } <- get
    return (pos, c, bs, inp)

alexSetInput :: MonadState AlexState m => AlexInput -> m ()
alexSetInput (pos, c, bs, inp) =
  do
    s <- get
    put s { alex_pos = pos, alex_chr = c,
            alex_bytes = bs, alex_inp = inp }

alexError :: (MonadState AlexState m, Read s) => String -> m (Token s)
alexError message =
  do
    s@AlexState { alex_errs = errs } <- get
    put s { alex_errs = message : errs }
    alexMonadScan

alexGetStartCode :: MonadState AlexState m => m Int
alexGetStartCode =
  do
    AlexState{ alex_scd = sc } <- get
    return sc

alexSetStartCode :: MonadState AlexState m => Int -> m ()
alexSetStartCode sc =
  do
    s <- get
    put s { alex_scd = sc }

alexMonadScan :: (MonadState AlexState m, Read s) => m (Token s)
alexMonadScan = do
  inp <- alexGetInput
  sc <- alexGetStartCode
  case alexScan inp sc of
    AlexEOF -> alexEOF
    AlexError ((AlexPn _ line column),_,_,_) ->
      alexError $ "lexical error at line " ++ (show line) ++
                  ", column " ++ (show column)
    AlexSkip  inp' _ -> do
        alexSetInput inp'
        alexMonadScan
    AlexToken inp' len action -> do
        alexSetInput inp'
        action (ignorePendingBytes inp) len

alexEOF :: MonadState AlexState m => m (Token s)
alexEOF = return EOF

tokpred :: () -> AlexInput -> Int -> AlexInput -> Bool
tokpred _ _ _ _ = True

idtoken :: (Read s, MonadState AlexState m) =>
           Int -> AlexInput -> Int -> m (Token s)
idtoken n (_, _, _, s) len = return (Id n (read ("\"" ++ take len s ++ "\"")))

data Token s = Id Int s | EOF deriving Eq

lex :: (MonadState AlexState m, Read s) => m [Token s]
lex =
  do
    res <- alexMonadScan
    case res of
      EOF -> return []
      tok ->
        do
          rest <- lex
          return (tok : rest)

input = "abab\ndddc.fff\ngh\nijji.\nllmnm\noop.rq0tsst\n3uuvu.5xxw"

tokens = [ Id 0 "abab", Id 1 "dddc", Id 2 "fff", Id 3 "gh", Id 4 "ijji",
           Id 5 "ll", Id 6 "mnm", Id 7 "oop", Id 8 "rq", Id 9 "tsst",
           Id 10 "uuvu", Id 11 "xxw"]

main :: IO ()
main =
  do
    (result, _) <- runStateT lex AlexState { alex_pos = alexStartPos,
                                             alex_inp = input,
                                             alex_chr = '\n',
                                             alex_bytes = [],
                                             alex_scd = 0,
                                             alex_errs= [] }
    if result /= tokens
      then exitFailure
      else exitWith ExitSuccess

-- | Minimal definition is either both of @get@ and @put@ or just @state@
class Monad m => MonadState s m | m -> s where
    -- | Return the state from the internals of the monad.
    get :: m s
    get = state (\s -> (s, s))

    -- | Replace the state inside the monad.
    put :: s -> m ()
    put s = state (\_ -> ((), s))

    -- | Embed a simple state action into the monad.
    state :: (s -> (a, s)) -> m a
    state f = do
      s <- get
      let ~(a, s') = f s
      put s'
      return a

-- | Construct a state monad computation from a function.
-- (The inverse of 'runState'.)
state' :: Monad m
       => (s -> (a, s))  -- ^pure state transformer
       -> StateT s m a   -- ^equivalent state-passing computation
state' f = StateT (return . f)

-- ---------------------------------------------------------------------------
-- | A state transformer monad parameterized by:
--
--   * @s@ - The state.
--
--   * @m@ - The inner monad.
--
-- The 'return' function leaves the state unchanged, while @>>=@ uses
-- the final state of the first computation as the initial state of
-- the second.
newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

-- | Evaluate a state computation with the given initial state
-- and return the final value, discarding the final state.
--
-- * @'evalStateT' m s = 'liftM' 'fst' ('runStateT' m s)@
evalStateT :: (Monad m) => StateT s m a -> s -> m a
evalStateT m s = do
    (a, _) <- runStateT m s
    return a

-- | Evaluate a state computation with the given initial state
-- and return the final state, discarding the final value.
--
-- * @'execStateT' m s = 'liftM' 'snd' ('runStateT' m s)@
execStateT :: (Monad m) => StateT s m a -> s -> m s
execStateT m s = do
    (_, s') <- runStateT m s
    return s'

-- | Map both the return value and final state of a computation using
-- the given function.
--
-- * @'runStateT' ('mapStateT' f m) = f . 'runStateT' m@
mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
mapStateT f m = StateT $ f . runStateT m

-- | @'withStateT' f m@ executes action @m@ on a state modified by
-- applying @f@.
--
-- * @'withStateT' f m = 'modify' f >> m@
withStateT :: (s -> s) -> StateT s m a -> StateT s m a
withStateT f m = StateT $ runStateT m . f

instance (Functor m) => Functor (StateT s m) where
    fmap f m = StateT $ \ s ->
        fmap (\ (a, s') -> (f a, s')) $ runStateT m s

instance (Functor m, Monad m) => Monad (StateT s m) where
    return   = pure
    m >>= k  = StateT $ \s -> do
        (a, s') <- runStateT m s
        runStateT (k a) s'

-- | Fetch the current value of the state within the monad.
get' :: (Functor m, Monad m) => StateT s m s
get' = state $ \s -> (s, s)

-- | @'put' s@ sets the state within the monad to @s@.
put' :: (Functor m, Monad m) => s -> StateT s m ()
put' s = state $ \_ -> ((), s)

-- | @'modify' f@ is an action that updates the state to the result of
-- applying @f@ to the current state.
--
-- * @'modify' f = 'get' >>= ('put' . f)@
modify' :: (Functor m, Monad m) => (s -> s) -> StateT s m ()
modify' f = state $ \s -> ((), f s)

instance (Functor m, Monad m) => MonadState s (StateT s m) where
    get = get'
    put = put'
    state = state'

instance (Functor m, Monad m) => Applicative (StateT s m) where
    pure a = state $ \s -> (a, s)
    (<*>) = ap

-- Andreas Abel, 2023-04-14, issue #125
-- It should be possible to put some Template Haskell here, e.g.
-- @
--     makeLenses ''AlexState
-- @
-- (with 'makeLenses' from 'lens' or 'microlens-th').
--
-- For this to work this "epilogue" code must come last in the generated file.
-- Otherwise, we get scope errors, e.g.
--
--     default_typeclass.x:157:5: error: [GHC-76037]
--         Not in scope: data constructor ‘AlexError’
--         |
--     157 |   case alexScan inp sc of
--         |     ^^^^^^^^^
--
-- It is hard to test 'makeLenses' here because we would need a dependency,
-- but just any Template Haskell instruction seems to trigger issue #125.
-- Thus, we confine ourselves to:
return []

}