1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
# AliceVision
## Build instructions
Required tools:
* CMake >= 3.11
* Git
* C/C++ compiler (gcc or Visual Studio or clang) with C++17 support (i.e. gcc >= 7, clang >= 5, msvc >= 19.15, cuda >= 11.0).
### Compile the project
Getting the sources:
```bash
git clone https://github.com/alicevision/AliceVision.git --recursive
```
## Dependencies
AliceVision depends on external libraries:
* [Assimp >= 5.0.0](https://github.com/assimp/assimp)
* [Boost >= 1.74.0](https://www.boost.org)
* [Ceres >= 1.10.0](https://github.com/ceres-solver/ceres-solver)
* CoinUtils >= 2.9.3; use [our fork](https://github.com/alicevision/CoinUtils) with a CMake build system
* Coin-or linear programming (Clp); use [our fork](https://github.com/alicevision/Clp) with a CMake build system
* [Eigen >= 3.3.4](https://gitlab.com/libeigen/eigen)
* [Expat >= 2.4.8](https://libexpat.github.io/)
* Flann >= 1.8.4; use [our fork](https://github.com/alicevision/flann) with a CMake build system
* [Geogram >= 1.7.5 (recommended >= 1.8.8)](https://github.com/BrunoLevy/geogram)
* [nanoflann >= 1.5.4](https://github.com/jlblancoc/nanoflann)
* [OpenEXR >= 2.5](https://github.com/AcademySoftwareFoundation/openexr)
* [OpenImageIO >= 2.1.0 (recommended >= 2.4.13)](https://github.com/OpenImageIO/oiio)
* [OpenMesh >= 9.0](https://www.graphics.rwth-aachen.de/software/openmesh/)
* Open Solver Interface (Osi) >= 0.106.10; use [our fork](https://github.com/alicevision/Osi) with a CMake build system
* [zlib](https://www.zlib.net)
Other optional libraries can enable specific features (check "CMake Options" for enabling them):
* Alembic (data I/O)
* CCTag (feature extraction/matching and localization on CPU or GPU)
* Cuda >= 11.0 (feature extraction and depth map computation)
* Magma (required for UncertaintyTE)
* Mosek >= 6 (linear programming)
* OpenCV >= 3.4.11 (feature extraction, calibration module, video IO), >= 4.5 for colorchecker (mcc)
* OpenMP (enable multi-threading)
* PCL (Point Cloud Library) >= 1.12.1 for the registration module
* PopSift (feature extraction on GPU)
* UncertaintyTE (Uncertainty computation)
* Lemon >= 1.3
* libe57format (support reading .e57 files)
* SWIG, Python 3 and NumPy 1.26 (Python binding for AliceVision modules)
AliceVision also depends on some embedded libraries:
* MeshSDFilter (internal)
### Building the project using vcpkg (recommended on Windows)
[vcpkg](https://github.com/alicevision/vcpkg) is a package manager that helps in acquiring, building, and managing C/C++ libraries.
AliceVision's required dependencies can be built with it.
vcpkg evolved from being a Windows-only project to becoming cross-platform.
In the scope of AliceVision, vcpkg has only been tested on Windows.
1. **Install vcpkg**
See the reference [installation guide](https://github.com/alicevision/vcpkg/blob/alicevision_master/README.md#quick-start-windows) to setup vcpkg.
We recommend to use our vcpkg fork, where dependencies have been validated by the AliceVision development team and where some ports may have custom changes.
```bash
git clone https://github.com/alicevision/vcpkg --branch alicevision_master
cd vcpkg
.\bootstrap-vcpkg.bat
set VCPKG_ROOT=%cd%
```
2. **Build/install the required dependencies**
There are two options for the dependencies:
- Build them from scratch on your system.
```bash
cd <ALICEVISION_REPOSITORY>
%VCPKG_ROOT%\vcpkg.exe install --triplet=x64-windows-release ^
--host-triplet=x64-windows-release
%VCPKG_ROOT%\vcpkg.exe export --raw ^
--output-dir=\path\to\dependencies ^
--output=x64-windows-release ^
--host-triplet=x64-windows-release ^
--triplet=x64-windows-release
```
- Install them from a ready-to-use precompiled archive.
This will save all the compilation time as well as some disk space as there will not be any build artifact, but this requires to use the same CUDA version as the one that was used to generate the archive to be able to build AliceVision later on.
The archive can be downloaded from [our vcpkg fork's release page](https://github.com/alicevision/vcpkg/releases), with the [latest released archive](https://github.com/alicevision/vcpkg/releases/download/2025.08.22/x64-windows-release.zip) built with CUDA 12.5.0.
It should be unzipped in `<VCPKG_INSTALL_DIRECTORY>`.
3. **Build AliceVision**
```bash
cd <ALICEVISION_DIRECTORY>
mkdir build && cd build
cmake -B . -S .. -DCMAKE_TOOLCHAIN_FILE=\path\to\dependencies\x64-windows-release\scripts\buildsystems\vcpkg.cmake ^
-DVCPKG_TARGET_TRIPLET=x64-windows-release ^
-DCMAKE_BUILD_TYPE=Release -A x64 -T host=x64 ^
-DBUILD_SHARED_LIBS=ON ^
-DTARGET_ARCHITECTURE=core ^
-DCMAKE_INSTALL_PREFIX=\path\to\install ^
-DALICEVISION_BUILD_SWIG_BINDING=ON ^
-DVCPKG_MANIFEST_MODE=OFF ^
-DPython3_EXECUTABLE=\path\to\python\python.exe
```
This generates an "aliceVision.sln" solution inside the `build` folder that you can open in Visual Studio to launch the build.
Do not forget to switch the build type to "Release". If you want to continue without an IDE, then use:
```bash
cmake --build build --config Release -t INSTALL
cmake --build build --config Release -t BUNDLE
```
### Building the project with embedded dependencies (recommended on Linux)
```bash
git clone https://github.com/alicevision/AliceVision.git --recursive
mkdir build && cd build
cmake -DALICEVISION_BUILD_DEPENDENCIES=ON -DCMAKE_INSTALL_PREFIX=$PWD/../install ../AliceVision
make -j10
```
* JPEG
You need `autoreconf`, `libtool` and `nasm` to compile `libturbo-jpeg`.
Else if you have jpeg already install on your OS, you can disable the JPEG build with `-DAV_BUILD_JPEG=OFF`.
* PNG
You need `automake` to compile `libpng`.
Else if you have png already install on your OS, you can disable the PNG build with `-DAV_BUILD_PNG=OFF`.
### Building the project using external dependencies
In order to build the library with existing versions of the dependencies (e.g. system-installed libraries or user-built libraries), and thus reduce the compilation time and favour the modularization, the paths where to find such libraries can be given at cmake command line. In particular:
* For Ceres solver library, `Ceres_DIR` can be passed pointing to where CeresConfig.cmake can be found.
e.g. `-DCeres_DIR:PATH=/path/to/ceres/install/share/Ceres/`
* For FLANN library, `FLANN_INCLUDE_DIR_HINTS` can be passed pointing to the include directory, e.g.
`-DFLANN_INCLUDE_DIR_HINTS:PATH=/path/to/flann/1.8.4/include/`
* For Eigen library, `CMAKE_MODULE_PATH` should be passed pointing at the `<EigenInstallDir>/share/cmake/Modules/` directory of the Eigen installation, in which `Eigen-config.cmake` or `FindEigen3.cmake` can be found.
In case only `FindEigen3.cmake` is available (e.g. Homebrew installations), an environment variable `EIGEN_ROOT_DIR` must be set pointing at Eigen install directory.
For example,
`-DCMAKE_MODULE_PATH:PATH=/usr/local/Cellar/eigen/3.3.4/share/cmake/Modules/`
may require to set the environment variable if only `FindEigen3.cmake`, i.e.
`export EIGEN_ROOT_DIR=/usr/local/Cellar/eigen/3.3.4/`
* For OpenEXR library, `OPENEXR_HOME` can be passed pointing to the install directory, e.g.
`-DOPENEXR_HOME:PATH=/path/to/openexr/install`
* For OpenImageIO library, library and include dir paths can be passed, e.g.
`-DOPENIMAGEIO_LIBRARY_DIR_HINTS:PATH=/path/to/oiio/install/lib/`
and `-DOPENIMAGEIO_INCLUDE_DIR:PATH=/path/to/oiio/install/include/`
At the end of the cmake process, a report shows for each library which version (internal/external) will be used in the building process, e.g.:
```
-- EIGEN: 3.3.4
-- CERES: 1.10.0
-- FLANN: 1.8.4
-- LEMON: 1.3
```
## CMake Options
* GEOGRAM
`-DGEOGRAM_INSTALL_PREFIX:PATH=path/to/geogram/install`
* OPENIMAGEIO
`-DOPENIMAGEIO_LIBRARY_DIR_HINTS:PATH=/path/to/oiio/install/lib/`
`-DOPENIMAGEIO_INCLUDE_DIR:PATH=/path/to/oiio/install/include/`
* `BOOST_NO_CXX11` (default `OFF`)
If your Boost binaries are compiled without C++11 support, you need to set this option to avoid compilation errors.
This is most likely to be the case if you use the system packages to install boost.
* `ALICEVISION_USE_OPENMP` (default `ON`)
Use OpenMP parallelization (huge impact on performances).
**OSX**: if you are compiling with clang shipped with XCode, please note that OpenMP is not supported and you need to
disable OpenMP passing `-DALICEVISION_USE_OPENMP:BOOL=OFF`.
* `ALICEVISION_USE_CCTAG` (default: `AUTO`)
Build with CCTag markers support.
`-DCCTag_DIR:PATH=/path/to/cctag/install/lib/cmake/CCTag` (where CCTagConfig.cmake can be found)
* `ALICEVISION_USE_APRILTAG` (default: `AUTO`)
Build with AprilTag markers support.
`-Dapriltag_DIR:PATH=/path/to/apriltag/install/share/apriltag/cmake` (where apriltagConfig.cmake can be found)
* `ALICEVISION_USE_ALEMBIC` (default `AUTO`)
Build with Alembic file format support (required version >= 1.7).
`-DAlembic_DIR:PATH=/path/to/alembic/install/lib/cmake/Alembic/` (where AlembicConfig.cmake can be found)
With old Alembic versions (<1.6), you need to set many variables: `ALEMBIC_ROOT`, `ALEMBIC_HDF5_ROOT`, `ALEMBIC_ILMBASE_ROOT`, `ALEMBIC_OPENEXR_ROOT`.
* `ALICEVISION_USE_CUDA` (default: `ON`)
Enable build with CUDA (for feature extraction and depth map computation).
`-DCUDA_TOOLKIT_ROOT_DIR:PATH=/usr/local/cuda-9.1` (adjust the path to your CUDA installation)
* `ALICEVISION_USE_POPSIFT` (default: `AUTO`)
Enable GPU SIFT implementation.
`-DPopSift_DIR:PATH=/path/to/popsift/install/lib/cmake/PopSift` (where PopSiftConfig.cmake can be found)
* `ALICEVISION_USE_UNCERTAINTYTE` (default: `AUTO`)
Enable Uncertainty computation.
`-DUNCERTAINTYTE_DIR:PATH=/path/to/uncertaintyTE/install/` (where the `include` and `lib` folders can be found)
`-DMAGMA_ROOT:PATH=/path/to/magma/install/` (where the `include` and `lib` folders can be found)
* `ALICEVISION_USE_OPENCV` (default: `OFF`)
Build with OpenCV.
`-DOpenCV_DIR:PATH=/path/to/opencv/install/share/OpenCV/` (where OpenCVConfig.cmake can be found)
* `ALICEVISION_USE_ONNX_GPU` (default: `ON`)
Enable the use of CUDA for ONNX. On some Windows systems, this may cause errors and this flag should be set to `OFF`.
* `ALICEVISION_REQUIRE_CERES_WITH_SUITESPARSE` (default: `ON`)
By default, aliceVision requires Ceres built with SuiteSparse to ensure best performances but you can make SuiteSparse optional with this flag.
* `BUILD_SHARED_LIBS` (default `ON`)
Build AliceVision as shared libraries (instead of static libraries).
* `ALICEVISION_BUILD_SOFTWARE` (default `ON`)
Build AliceVision command line tools.
* `ALICEVISION_BUILD_TESTS` (default `OFF`)
Build AliceVision unit tests.
* `ALICEVISION_BUILD_DOC` (default `AUTO`)
Build AliceVision documentation.
* `ALICEVISION_BUILD_COVERAGE` (default `OFF`)
Enable code coverage generation (gcc only).
* `ALICEVISION_BUILD_SWIG_BINDING` (default `OFF`)
Build AliceVision's Python binding with SWIG.
AliceVision's Python binding requires Python to be installed on the system, as well as NumPy.
For a better compatibility with Meshroom, we advise to use the same Python version as the one used to run Meshroom as well as NumPy 1.26.
* `ALICEVISION_INSTALL_MESHROOM_PLUGIN` (default `ON`)
Copy Meshroom nodes and templates in the installation directory.
### CMake options to build specific parts of AliceVision
* `ALICEVISION_BUILD_SFM` (default `ON`)
Build the SfM part of AliceVision. If set to `OFF`, all the following options will be disabled:
`ALICEVISION_BUILD_MVS`, `ALICEVISION_BUILD_HDR`, `ALICEVISION_BUILD_SEGMENTATION`, `ALICEVISION_BUILD_PHOTOMETRICSTEREO`,
`ALICEVISION_BUILD_PANORAMA`, `ALICEVISION_BUILD_LIDAR`.
* `ALICEVISION_BUILD_MVS` (default `ON`)
Build the MVS part of AliceVision.
* `ALICEVISION_BUILD_HDR` (default `ON`)
Build the HDR part of AliceVision.
* `ALICEVISION_BUILD_SEGMENTATION` (default `ON`)
Build the ONNX-based segmentation part of AliceVision.
* `ALICEVISION_BUILD_PHOTOMETRICSTEREO` (default `ON`)
Build the Photometric Stereo part of AliceVision.
* `ALICEVISION_BUILD_PANORAMA` (default `ON`)
Build the Panorama part of AliceVision.
* `ALICEVISION_BUILD_LIDAR` (default `AUTO`)
Build the LiDAR part of AliceVision.
## Compilation
### Linux compilation
#### Setup the required external library.
* `sudo apt-get install libpng-dev libjpeg-dev libtiff-dev libxxf86vm1 libxxf86vm-dev libxi-dev libxrandr-dev`
* If you want to be able to see the view graph SVG logs:
`sudo apt-get install graphviz`
#### Clone and configure the project:
```bash
git clone --recursive https://github.com/alicevision/AliceVision.git
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release . ../AliceVision
```
If you want to enable the build of the unit tests:
```bash
cmake -DCMAKE_BUILD_TYPE=Release -DALICEVISION_BUILD_TESTS=ON ../AliceVision
```
In order to use the MOSEK 6 back-end for the linear programming aliceVision module:
- Check that you have an up-to-date MOSEK licence, otherwise the aliceVision MOSEK unit test will fail.
- Then:
```bash
cmake -DCMAKE_BUILD_TYPE=Release \
-DMOSEK_SEARCH_HEADER="~/Documents/Lib/mosek/6/tools/platform/linux64x86/h" \
-DMOSEK_SEARCH_LIB="~/Documents/Lib/mosek/6/tools/platform/linux64x86/bin" \
../AliceVision
```
If you want to have an IDE openable project with codeblocks:
```bash
cmake -G "CodeBlocks - Unix Makefiles" -DCMAKE_BUILD_TYPE=Release ../AliceVision
```
#### Compile the project
```bash
make
```
For a multi-core compilation (replace `NBcore` with the number of threads):
```bash
make -j NBcore
```
Launch the unit tests (if built during the compilation step):
```bash
make test
```
### Windows compilation
* Checkout the project
`git clone --recursive https://github.com/alicevision/aliceVision.git`.
* Open cmake-gui.
* Fill the source path with the AliceVision path.
* Fill the build path with a new directory.
* Select your Visual Studio IDE and click configure and then generate.
* Open the .sln solution created in your build directory.
* Change the target to Release.
* Compile the libraries and binaries samples.
### Mac OSX compilation
```bash
git clone --recursive https://github.com/alicevision/AliceVision.git
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -G "Xcode" ../AliceVision
```
If you want to enable the build of the unit tests:
```bash
cmake -DCMAKE_BUILD_TYPE=Release \
-DALICEVISION_BUILD_TESTS=ON \
-G "Xcode" \
../AliceVision
xcodebuild -configuration Release
```
## Using AliceVision as a third party library dependency in CMake
AliceVision can be used as a third party library once it has been installed.
Consider using the `CMAKE_INSTALL_PREFIX` cmake variable to specify a local installation directory.
Here the syntax to add the variable to the cmake command line (use absolute path), e.g.:
```bash
-DCMAKE_INSTALL_PREFIX="/home/user/dev/AliceVision_install"
```
Perform `make` and `make install`
Then you will be able to use AliceVision as an external library in your `CMakeLists.txt` using
the modern CMake approach as imported target. For example, if your target `main` depends on the
AliceVision module `aliceVision_sfmDataIO`:
```cmake
find_package(AliceVision CONFIG REQUIRED)
message(STATUS "Found AliceVision : ${AliceVision_FOUND}")
message(STATUS "Found AliceVision version: ${AliceVision_VERSION}")
add_executable(main main.cpp)
target_link_libraries(main PUBLIC aliceVision_sfmDataIO)
```
In general, you need to specify the list of the AliceVision modules that your library or executable
depends on.
Specify to CMake where AliceVision is installed by using the `AliceVision_DIR` cmake variable: `-DAliceVision_DIR:PATH="YourInstallPath"/share/aliceVision/cmake`
or by simply adding the installation path to your `CMAKE_PREFIX_PATH`, i.e. `-DCMAKE_PREFIX_PATH:PATH="YourInstallPath"`.
Check the sample in [samples](src/samples/aliceVisionAs3rdParty) for an example of use.
### Docker images
A docker image can be built using the Ubuntu or Rocky Linux Dockerfiles.
The Dockerfiles are based on `nvidia/cuda` images (https://hub.docker.com/r/nvidia/cuda/).
To generate the Docker image, just run:
```
./docker/build-rocky.sh
```
or
```
./docker/build-ubuntu.sh
```
To do it manually, parameters `ROCKY_VERSION`/`UBUNTU_VERSION` and `CUDA_TAG` should be passed to choose the OS and CUDA versions.
For example, the first line of the commands below shows the example to build a Docker for a Rocky 9 with Cuda 12.1.0, while the second line is for Ubuntu 22.04 with Cuda 12.1.0:
```
docker build --build-arg ROCKY_VERSION=9 --build-arg CUDA_TAG=12.1.0 --tag alicevision:rocky9-cuda12.1.0 -f Dockerfile_rocky .
docker build --build-arg UBUNTU_VERSION=22.04 --build-arg CUDA_TAG=12.1.0 --build-arg NPROC=8 --tag alicevision:ubuntu22.04-cuda12.1.0 -f Dockerfile_ubuntu .
```
In order to run the image, [nvidia docker](https://github.com/nvidia/nvidia-docker/wiki/Installation-(version-2.0)) is needed.
```
docker run -it --runtime=nvidia alicevision:rocky9-cuda12.1.0
```
To retrieve the generated files:
```
# Create an instance of the image, copy the files and remove the temporary docker instance.
CID=$(docker create alicevision:rocky9-cuda12.1.0) && docker cp ${CID}:/opt/AliceVision_install . && docker cp ${CID}:/opt/AliceVision_bundle . && docker rm ${CID}
```
## Environment variable
You must set the `ALICEVISION_ROOT` environment variable to point to your installation directory, regardless of how you installed it.
## Using AliceVision with Meshroom
AliceVision provides nodes and templates meant to be used with [Meshroom](https://github.com/alicevision/Meshroom).
To install the plugin, build AliceVision with `ALICEVISION_INSTALL_MESHROOM_PLUGIN=ON` (enabled by default) and set the `MESHROOM_NODES_PATH` and `MESHROOM_PIPELINE_TEMPLATES_PATH` environment variables for Meshroom to detect it.
- On Windows:
```
set MESHROOM_NODES_PATH=%ALICEVISION_ROOT%/share/meshroom;%MESHROOM_NODES_PATH%
set MESHROOM_PIPELINE_TEMPLATES_PATH=%ALICEVISION_ROOT%/share/meshroom;%MESHROOM_PIPELINE_TEMPLATES_PATH%
```
- On Linux:
```
export MESHROOM_NODES_PATH=$ALICEVISION_ROOT/share/meshroom:$MESHROOM_NODES_PATH
export MESHROOM_PIPELINE_TEMPLATES_PATH=$ALICEVISION_ROOT/share/meshroom:$MESHROOM_PIPELINE_TEMPLATES_PATH
```
To use AliceVision in Meshroom to the best of its abilities, we recommend building with the following flags:
* `ALICEVISION_USE_OPENCV=ON`
* `ALICEVISION_BUILD_SWIG_BINDING=ON`
* `ALICEVISION_USE_POPSIFT=ON`
* `ALICEVISION_USE_CCTAG=ON`
* `ALICEVISION_INSTALL_MESHROOM_PLUGIN=ON`
### Environment variables to set for Meshroom
Meshroom relies on specific files provided by AliceVision:
* Sensor database: a text database of sensor width per camera model.
Provided in AliceVision source tree: {ALICEVISION_REPOSITORY}/src/aliceVision/sensorDB/cameraSensors.db
* Voctree (optional): for larger datasets (>200 images), greatly improves image matching performances.
It can be downloaded [here](https://gitlab.com/alicevision/trainedVocabularyTreeData/raw/master/vlfeat_K80L3.SIFT.tree).
* Sphere detection model (optional): for the automated sphere detection in stereo photometry.
It can be downloaded [here](https://gitlab.com/alicevision/SphereDetectionModel/-/raw/main/sphereDetection_Mask-RCNN.onnx).
* Semantic segmentation model (optional): for the semantic segmentation of objects.
It can be downloaded [here](https://gitlab.com/alicevision/semanticSegmentationModel/-/raw/main/fcn_resnet50.onnx).
* Color chart detection models (optional): for the detection of color charts.
It can be downloaded [here](https://gitlab.com/alicevision/ColorchartDetectionModel).
Environment variables need to be set for Meshroom to find those files:
```
ALICEVISION_SENSOR_DB=/path/to/database
ALICEVISION_VOCTREE=/path/to/voctree
ALICEVISION_SPHERE_DETECTION_MODEL=/path/to/detection/model
ALICEVISION_SEMANTIC_SEGMENTATION_MODEL=/path/to/segmentation/model
ALICEVISION_COLORCHARTDETECTION_MODEL_FOLDER=/path/to/ColorChartDetectionModel
```
If these variables are not set, Meshroom will expect those files to be located in `{ALICEVISION_ROOT}/share/aliceVision`.
|