1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
|
/* ______ ___ ___
* /\ _ \ /\_ \ /\_ \
* \ \ \L\ \\//\ \ \//\ \ __ __ _ __ ___
* \ \ __ \ \ \ \ \ \ \ /'__`\ /'_ `\/\`'__\/ __`\
* \ \ \/\ \ \_\ \_ \_\ \_/\ __//\ \L\ \ \ \//\ \L\ \
* \ \_\ \_\/\____\/\____\ \____\ \____ \ \_\\ \____/
* \/_/\/_/\/____/\/____/\/____/\/___L\ \/_/ \/___/
* /\____/
* \_/__/
*
* Vector and matrix manipulation routines.
*
* By Shawn Hargreaves.
*
* See readme.txt for copyright information.
*/
#include <math.h>
#include "allegro.h"
#define FLOATSINCOS(x, s, c) _AL_SINCOS((x) * AL_PI / 128.0, s ,c)
#define floattan(x) tan((x) * AL_PI / 128.0)
MATRIX identity_matrix =
{
{
/* 3x3 identity */
{ 1<<16, 0, 0 },
{ 0, 1<<16, 0 },
{ 0, 0, 1<<16 },
},
/* zero translation */
{ 0, 0, 0 }
};
MATRIX_f identity_matrix_f =
{
{
/* 3x3 identity */
{ 1.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 },
},
/* zero translation */
{ 0.0, 0.0, 0.0 }
};
/* get_translation_matrix:
* Constructs a 3d translation matrix. When applied to the vector
* (vx, vy, vx), this will produce (vx+x, vy+y, vz+z).
*/
void get_translation_matrix(MATRIX *m, fixed x, fixed y, fixed z)
{
ASSERT(m);
*m = identity_matrix;
m->t[0] = x;
m->t[1] = y;
m->t[2] = z;
}
/* get_translation_matrix_f:
* Floating point version of get_translation_matrix().
*/
void get_translation_matrix_f(MATRIX_f *m, float x, float y, float z)
{
ASSERT(m);
*m = identity_matrix_f;
m->t[0] = x;
m->t[1] = y;
m->t[2] = z;
}
/* get_scaling_matrix:
* Constructs a 3d scaling matrix. When applied to the vector
* (vx, vy, vx), this will produce (vx*x, vy*y, vz*z).
*/
void get_scaling_matrix(MATRIX *m, fixed x, fixed y, fixed z)
{
ASSERT(m);
*m = identity_matrix;
m->v[0][0] = x;
m->v[1][1] = y;
m->v[2][2] = z;
}
/* get_scaling_matrix_f:
* Floating point version of get_scaling_matrix().
*/
void get_scaling_matrix_f(MATRIX_f *m, float x, float y, float z)
{
ASSERT(m);
*m = identity_matrix_f;
m->v[0][0] = x;
m->v[1][1] = y;
m->v[2][2] = z;
}
/* get_x_rotate_matrix:
* Constructs a 3d transformation matrix, which will rotate points around
* the x axis by the specified amount (given in the Allegro fixed point,
* 256 degrees to a circle format).
*/
void get_x_rotate_matrix(MATRIX *m, fixed r)
{
fixed c = fixcos(r);
fixed s = fixsin(r);
ASSERT(m);
*m = identity_matrix;
m->v[1][1] = c;
m->v[1][2] = -s;
m->v[2][1] = s;
m->v[2][2] = c;
}
/* get_x_rotate_matrix_f:
* Floating point version of get_x_rotate_matrix().
*/
void get_x_rotate_matrix_f(MATRIX_f *m, float r)
{
float c, s;
ASSERT(m);
FLOATSINCOS(r, s, c);
*m = identity_matrix_f;
m->v[1][1] = c;
m->v[1][2] = -s;
m->v[2][1] = s;
m->v[2][2] = c;
}
/* get_y_rotate_matrix:
* Constructs a 3d transformation matrix, which will rotate points around
* the y axis by the specified amount (given in the Allegro fixed point,
* 256 degrees to a circle format).
*/
void get_y_rotate_matrix(MATRIX *m, fixed r)
{
fixed c = fixcos(r);
fixed s = fixsin(r);
ASSERT(m);
*m = identity_matrix;
m->v[0][0] = c;
m->v[0][2] = s;
m->v[2][0] = -s;
m->v[2][2] = c;
}
/* get_y_rotate_matrix_f:
* Floating point version of get_y_rotate_matrix().
*/
void get_y_rotate_matrix_f(MATRIX_f *m, float r)
{
float c, s;
ASSERT(m);
FLOATSINCOS(r, s, c);
*m = identity_matrix_f;
m->v[0][0] = c;
m->v[0][2] = s;
m->v[2][0] = -s;
m->v[2][2] = c;
}
/* get_z_rotate_matrix:
* Constructs a 3d transformation matrix, which will rotate points around
* the z axis by the specified amount (given in the Allegro fixed point,
* 256 degrees to a circle format).
*/
void get_z_rotate_matrix(MATRIX *m, fixed r)
{
fixed c = fixcos(r);
fixed s = fixsin(r);
ASSERT(m);
*m = identity_matrix;
m->v[0][0] = c;
m->v[0][1] = -s;
m->v[1][0] = s;
m->v[1][1] = c;
}
/* get_z_rotate_matrix_f:
* Floating point version of get_z_rotate_matrix().
*/
void get_z_rotate_matrix_f(MATRIX_f *m, float r)
{
float c, s;
ASSERT(m);
FLOATSINCOS(r, s, c);
*m = identity_matrix_f;
m->v[0][0] = c;
m->v[0][1] = -s;
m->v[1][0] = s;
m->v[1][1] = c;
}
/* magical formulae for constructing rotation matrices */
#define MAKE_ROTATION(x, y, z) \
fixed sin_x = fixsin(x); \
fixed cos_x = fixcos(x); \
\
fixed sin_y = fixsin(y); \
fixed cos_y = fixcos(y); \
\
fixed sin_z = fixsin(z); \
fixed cos_z = fixcos(z); \
\
fixed sinx_siny = fixmul(sin_x, sin_y); \
fixed cosx_siny = fixmul(cos_x, sin_y);
#define MAKE_ROTATION_f(x, y, z) \
float sin_x, cos_x; \
float sin_y, cos_y; \
float sin_z, cos_z; \
float sinx_siny, cosx_siny; \
\
FLOATSINCOS(x, sin_x, cos_x); \
FLOATSINCOS(y, sin_y, cos_y); \
FLOATSINCOS(z, sin_z, cos_z); \
\
sinx_siny = sin_x * sin_y; \
cosx_siny = cos_x * sin_y;
#define R00 (fixmul(cos_y, cos_z))
#define R10 (fixmul(sinx_siny, cos_z) - fixmul(cos_x, sin_z))
#define R20 (fixmul(cosx_siny, cos_z) + fixmul(sin_x, sin_z))
#define R01 (fixmul(cos_y, sin_z))
#define R11 (fixmul(sinx_siny, sin_z) + fixmul(cos_x, cos_z))
#define R21 (fixmul(cosx_siny, sin_z) - fixmul(sin_x, cos_z))
#define R02 (-sin_y)
#define R12 (fixmul(sin_x, cos_y))
#define R22 (fixmul(cos_x, cos_y))
#define R00_f (cos_y * cos_z)
#define R10_f ((sinx_siny * cos_z) - (cos_x * sin_z))
#define R20_f ((cosx_siny * cos_z) + (sin_x * sin_z))
#define R01_f (cos_y * sin_z)
#define R11_f ((sinx_siny * sin_z) + (cos_x * cos_z))
#define R21_f ((cosx_siny * sin_z) - (sin_x * cos_z))
#define R02_f (-sin_y)
#define R12_f (sin_x * cos_y)
#define R22_f (cos_x * cos_y)
/* get_rotation_matrix:
* Constructs a 3d transformation matrix, which will rotate points around
* all three axis by the specified amounts (given in the Allegro fixed
* point, 256 degrees to a circle format).
*/
void get_rotation_matrix(MATRIX *m, fixed x, fixed y, fixed z)
{
MAKE_ROTATION(x, y, z);
ASSERT(m);
m->v[0][0] = R00;
m->v[0][1] = R01;
m->v[0][2] = R02;
m->v[1][0] = R10;
m->v[1][1] = R11;
m->v[1][2] = R12;
m->v[2][0] = R20;
m->v[2][1] = R21;
m->v[2][2] = R22;
m->t[0] = m->t[1] = m->t[2] = 0;
}
/* get_rotation_matrix_f:
* Floating point version of get_rotation_matrix().
*/
void get_rotation_matrix_f(MATRIX_f *m, float x, float y, float z)
{
MAKE_ROTATION_f(x, y, z);
ASSERT(m);
m->v[0][0] = R00_f;
m->v[0][1] = R01_f;
m->v[0][2] = R02_f;
m->v[1][0] = R10_f;
m->v[1][1] = R11_f;
m->v[1][2] = R12_f;
m->v[2][0] = R20_f;
m->v[2][1] = R21_f;
m->v[2][2] = R22_f;
m->t[0] = m->t[1] = m->t[2] = 0;
}
/* get_align_matrix:
* Aligns a matrix along an arbitrary coordinate system.
*/
void get_align_matrix(MATRIX *m, fixed xfront, fixed yfront, fixed zfront, fixed xup, fixed yup, fixed zup)
{
fixed xright, yright, zright;
ASSERT(m);
xfront = -xfront;
yfront = -yfront;
zfront = -zfront;
normalize_vector(&xfront, &yfront, &zfront);
cross_product(xup, yup, zup, xfront, yfront, zfront, &xright, &yright, &zright);
normalize_vector(&xright, &yright, &zright);
cross_product(xfront, yfront, zfront, xright, yright, zright, &xup, &yup, &zup);
/* No need to normalize up here, since right and front are perpendicular and normalized. */
m->v[0][0] = xright;
m->v[0][1] = xup;
m->v[0][2] = xfront;
m->v[1][0] = yright;
m->v[1][1] = yup;
m->v[1][2] = yfront;
m->v[2][0] = zright;
m->v[2][1] = zup;
m->v[2][2] = zfront;
m->t[0] = m->t[1] = m->t[2] = 0;
}
/* get_align_matrix_f:
* Floating point version of get_align_matrix().
*/
void get_align_matrix_f(MATRIX_f *m, float xfront, float yfront, float zfront, float xup, float yup, float zup)
{
float xright, yright, zright;
ASSERT(m);
xfront = -xfront;
yfront = -yfront;
zfront = -zfront;
normalize_vector_f(&xfront, &yfront, &zfront);
cross_product_f(xup, yup, zup, xfront, yfront, zfront, &xright, &yright, &zright);
normalize_vector_f(&xright, &yright, &zright);
cross_product_f(xfront, yfront, zfront, xright, yright, zright, &xup, &yup, &zup);
/* No need to normalize up here, since right and front are perpendicular and normalized. */
m->v[0][0] = xright;
m->v[0][1] = xup;
m->v[0][2] = xfront;
m->v[1][0] = yright;
m->v[1][1] = yup;
m->v[1][2] = yfront;
m->v[2][0] = zright;
m->v[2][1] = zup;
m->v[2][2] = zfront;
m->t[0] = m->t[1] = m->t[2] = 0;
}
/* get_vector_rotation_matrix:
* Constructs a 3d transformation matrix, which will rotate points around
* the specified x,y,z vector by the specified angle (given in the Allegro
* fixed point, 256 degrees to a circle format), in a clockwise direction.
*/
void get_vector_rotation_matrix(MATRIX *m, fixed x, fixed y, fixed z, fixed a)
{
MATRIX_f rotation;
int i, j;
ASSERT(m);
get_vector_rotation_matrix_f(&rotation, fixtof(x), fixtof(y), fixtof(z), fixtof(a));
for (i=0; i<3; i++)
for (j=0; j<3; j++)
m->v[i][j] = ftofix(rotation.v[i][j]);
m->t[0] = m->t[1] = m->t[2] = 0;
}
/* get_vector_rotation_matrix_f:
* Floating point version of get_vector_rotation_matrix().
*/
void get_vector_rotation_matrix_f(MATRIX_f *m, float x, float y, float z, float a)
{
float c, s, cc;
ASSERT(m);
FLOATSINCOS(a, s, c);
cc = 1 - c;
normalize_vector_f(&x, &y, &z);
m->v[0][0] = (cc * x * x) + c;
m->v[0][1] = (cc * x * y) + (z * s);
m->v[0][2] = (cc * x * z) - (y * s);
m->v[1][0] = (cc * x * y) - (z * s);
m->v[1][1] = (cc * y * y) + c;
m->v[1][2] = (cc * z * y) + (x * s);
m->v[2][0] = (cc * x * z) + (y * s);
m->v[2][1] = (cc * y * z) - (x * s);
m->v[2][2] = (cc * z * z) + c;
m->t[0] = m->t[1] = m->t[2] = 0;
}
/* get_transformation_matrix:
* Constructs a 3d transformation matrix, which will rotate points around
* all three axis by the specified amounts (given in the Allegro fixed
* point, 256 degrees to a circle format), scale the result by the
* specified amount (itofix(1) for no change of scale), and then translate
* to the requested x, y, z position.
*/
void get_transformation_matrix(MATRIX *m, fixed scale, fixed xrot, fixed yrot, fixed zrot, fixed x, fixed y, fixed z)
{
MAKE_ROTATION(xrot, yrot, zrot);
ASSERT(m);
m->v[0][0] = fixmul(R00, scale);
m->v[0][1] = fixmul(R01, scale);
m->v[0][2] = fixmul(R02, scale);
m->v[1][0] = fixmul(R10, scale);
m->v[1][1] = fixmul(R11, scale);
m->v[1][2] = fixmul(R12, scale);
m->v[2][0] = fixmul(R20, scale);
m->v[2][1] = fixmul(R21, scale);
m->v[2][2] = fixmul(R22, scale);
m->t[0] = x;
m->t[1] = y;
m->t[2] = z;
}
/* get_transformation_matrix_f:
* Floating point version of get_transformation_matrix().
*/
void get_transformation_matrix_f(MATRIX_f *m, float scale, float xrot, float yrot, float zrot, float x, float y, float z)
{
MAKE_ROTATION_f(xrot, yrot, zrot);
ASSERT(m);
m->v[0][0] = R00_f * scale;
m->v[0][1] = R01_f * scale;
m->v[0][2] = R02_f * scale;
m->v[1][0] = R10_f * scale;
m->v[1][1] = R11_f * scale;
m->v[1][2] = R12_f * scale;
m->v[2][0] = R20_f * scale;
m->v[2][1] = R21_f * scale;
m->v[2][2] = R22_f * scale;
m->t[0] = x;
m->t[1] = y;
m->t[2] = z;
}
/* get_camera_matrix:
* Constructs a camera matrix for translating world-space objects into
* a normalised view space, ready for the perspective projection. The
* x, y, and z parameters specify the camera position, xfront, yfront,
* and zfront is an 'in front' vector specifying which way the camera
* is facing (this can be any length: normalisation is not required),
* and xup, yup, and zup is the 'up' direction vector. Up is really only
* a 1.5d vector, since the front vector only leaves one degree of freedom
* for which way up to put the image, but it is simplest to specify it
* as a full 3d direction even though a lot of the information in it is
* discarded. The fov parameter specifies the field of view (ie. width
* of the camera focus) in fixed point, 256 degrees to the circle format.
* For typical projections, a field of view in the region 32-48 will work
* well. Finally, the aspect ratio is used to scale the Y dimensions of
* the image relative to the X axis, so you can use it to correct for
* the proportions of the output image (set it to 1 for no scaling).
*/
void get_camera_matrix(MATRIX *m, fixed x, fixed y, fixed z, fixed xfront, fixed yfront, fixed zfront, fixed xup, fixed yup, fixed zup, fixed fov, fixed aspect)
{
MATRIX_f camera;
int i, j;
ASSERT(m);
get_camera_matrix_f(&camera,
fixtof(x), fixtof(y), fixtof(z),
fixtof(xfront), fixtof(yfront), fixtof(zfront),
fixtof(xup), fixtof(yup), fixtof(zup),
fixtof(fov), fixtof(aspect));
for (i=0; i<3; i++) {
for (j=0; j<3; j++)
m->v[i][j] = ftofix(camera.v[i][j]);
m->t[i] = ftofix(camera.t[i]);
}
}
/* get_camera_matrix_f:
* Floating point version of get_camera_matrix().
*/
void get_camera_matrix_f(MATRIX_f *m, float x, float y, float z, float xfront, float yfront, float zfront, float xup, float yup, float zup, float fov, float aspect)
{
MATRIX_f camera, scale;
float xside, yside, zside, width, d;
ASSERT(m);
/* make 'in-front' into a unit vector, and negate it */
normalize_vector_f(&xfront, &yfront, &zfront);
xfront = -xfront;
yfront = -yfront;
zfront = -zfront;
/* make sure 'up' is at right angles to 'in-front', and normalize */
d = dot_product_f(xup, yup, zup, xfront, yfront, zfront);
xup -= d * xfront;
yup -= d * yfront;
zup -= d * zfront;
normalize_vector_f(&xup, &yup, &zup);
/* calculate the 'sideways' vector */
cross_product_f(xup, yup, zup, xfront, yfront, zfront, &xside, &yside, &zside);
/* set matrix rotation parameters */
camera.v[0][0] = xside;
camera.v[0][1] = yside;
camera.v[0][2] = zside;
camera.v[1][0] = xup;
camera.v[1][1] = yup;
camera.v[1][2] = zup;
camera.v[2][0] = xfront;
camera.v[2][1] = yfront;
camera.v[2][2] = zfront;
/* set matrix translation parameters */
camera.t[0] = -(x*xside + y*yside + z*zside);
camera.t[1] = -(x*xup + y*yup + z*zup);
camera.t[2] = -(x*xfront + y*yfront + z*zfront);
/* construct a scaling matrix to deal with aspect ratio and FOV */
width = floattan(64.0 - fov/2);
get_scaling_matrix_f(&scale, width, -aspect*width, -1.0);
/* combine the camera and scaling matrices */
matrix_mul_f(&camera, &scale, m);
}
/* qtranslate_matrix:
* Adds a position offset to an existing matrix.
*/
void qtranslate_matrix(MATRIX *m, fixed x, fixed y, fixed z)
{
ASSERT(m);
m->t[0] += x;
m->t[1] += y;
m->t[2] += z;
}
/* qtranslate_matrix_f:
* Floating point version of qtranslate_matrix().
*/
void qtranslate_matrix_f(MATRIX_f *m, float x, float y, float z)
{
ASSERT(m);
m->t[0] += x;
m->t[1] += y;
m->t[2] += z;
}
/* qscale_matrix:
* Adds a scaling factor to an existing matrix.
*/
void qscale_matrix(MATRIX *m, fixed scale)
{
int i, j;
ASSERT(m);
for (i=0; i<3; i++)
for (j=0; j<3; j++)
m->v[i][j] = fixmul(m->v[i][j], scale);
}
/* qscale_matrix_f:
* Floating point version of qscale_matrix().
*/
void qscale_matrix_f(MATRIX_f *m, float scale)
{
int i, j;
ASSERT(m);
for (i=0; i<3; i++)
for (j=0; j<3; j++)
m->v[i][j] *= scale;
}
/* matrix_mul:
* Multiplies two matrices, storing the result in out (this must be
* different from the two input matrices). The resulting matrix will
* have the same effect as the combination of m1 and m2, ie. when
* applied to a vector v, (v * out) = ((v * m1) * m2). Any number of
* transformations can be concatenated in this way.
*/
void matrix_mul(AL_CONST MATRIX *m1, AL_CONST MATRIX *m2, MATRIX *out)
{
MATRIX temp;
int i, j;
ASSERT(m1);
ASSERT(m2);
ASSERT(out);
if (m1 == out) {
temp = *m1;
m1 = &temp;
}
else if (m2 == out) {
temp = *m2;
m2 = &temp;
}
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
out->v[i][j] = fixmul(m1->v[0][j], m2->v[i][0]) +
fixmul(m1->v[1][j], m2->v[i][1]) +
fixmul(m1->v[2][j], m2->v[i][2]);
}
out->t[i] = fixmul(m1->t[0], m2->v[i][0]) +
fixmul(m1->t[1], m2->v[i][1]) +
fixmul(m1->t[2], m2->v[i][2]) +
m2->t[i];
}
}
/* matrix_mul_f:
* Floating point version of matrix_mul().
*/
void matrix_mul_f(AL_CONST MATRIX_f *m1, AL_CONST MATRIX_f *m2, MATRIX_f *out)
{
MATRIX_f temp;
int i, j;
ASSERT(m1);
ASSERT(m2);
ASSERT(out);
if (m1 == out) {
temp = *m1;
m1 = &temp;
}
else if (m2 == out) {
temp = *m2;
m2 = &temp;
}
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
out->v[i][j] = (m1->v[0][j] * m2->v[i][0]) +
(m1->v[1][j] * m2->v[i][1]) +
(m1->v[2][j] * m2->v[i][2]);
}
out->t[i] = (m1->t[0] * m2->v[i][0]) +
(m1->t[1] * m2->v[i][1]) +
(m1->t[2] * m2->v[i][2]) +
m2->t[i];
}
}
/* vector_length:
* Computes the length of a vector, using the son of the squaw...
*/
fixed vector_length(fixed x, fixed y, fixed z)
{
x >>= 8;
y >>= 8;
z >>= 8;
return (fixsqrt(fixmul(x,x) + fixmul(y,y) + fixmul(z,z)) << 8);
}
/* vector_lengthf:
* Floating point version of vector_length().
*/
float vector_length_f(float x, float y, float z)
{
return sqrt(x*x + y*y + z*z);
}
/* normalize_vector:
* Converts the specified vector to a unit vector, which has the same
* orientation but a length of one.
*/
void normalize_vector(fixed *x, fixed *y, fixed *z)
{
fixed length = vector_length(*x, *y, *z);
*x = fixdiv(*x, length);
*y = fixdiv(*y, length);
*z = fixdiv(*z, length);
}
/* normalize_vectorf:
* Floating point version of normalize_vector().
*/
void normalize_vector_f(float *x, float *y, float *z)
{
float length = 1.0 / vector_length_f(*x, *y, *z);
*x *= length;
*y *= length;
*z *= length;
}
/* cross_product:
* Calculates the cross product of two vectors.
*/
void cross_product(fixed x1, fixed y1, fixed z1, fixed x2, fixed y2, fixed z2, fixed *xout, fixed *yout, fixed *zout)
{
ASSERT(xout);
ASSERT(yout);
ASSERT(zout);
*xout = fixmul(y1, z2) - fixmul(z1, y2);
*yout = fixmul(z1, x2) - fixmul(x1, z2);
*zout = fixmul(x1, y2) - fixmul(y1, x2);
}
/* cross_productf:
* Floating point version of cross_product().
*/
void cross_product_f(float x1, float y1, float z1, float x2, float y2, float z2, float *xout, float *yout, float *zout)
{
ASSERT(xout);
ASSERT(yout);
ASSERT(zout);
*xout = (y1 * z2) - (z1 * y2);
*yout = (z1 * x2) - (x1 * z2);
*zout = (x1 * y2) - (y1 * x2);
}
/* polygon_z_normal:
* Helper function for backface culling: returns the z component of the
* normal vector to the polygon formed from the three vertices.
*/
fixed polygon_z_normal(AL_CONST V3D *v1, AL_CONST V3D *v2, AL_CONST V3D *v3)
{
ASSERT(v1);
ASSERT(v2);
ASSERT(v3);
return (fixmul(v2->x-v1->x, v3->y-v2->y) - fixmul(v3->x-v2->x, v2->y-v1->y));
}
/* polygon_z_normal_f:
* Floating point version of polygon_z_normal().
*/
float polygon_z_normal_f(AL_CONST V3D_f *v1, AL_CONST V3D_f *v2, AL_CONST V3D_f *v3)
{
ASSERT(v1);
ASSERT(v2);
ASSERT(v3);
return ((v2->x-v1->x) * (v3->y-v2->y)) - ((v3->x-v2->x) * (v2->y-v1->y));
}
/* scaling factors for the perspective projection */
fixed _persp_xscale = 160 << 16;
fixed _persp_yscale = 100 << 16;
fixed _persp_xoffset = 160 << 16;
fixed _persp_yoffset = 100 << 16;
float _persp_xscale_f = 160.0;
float _persp_yscale_f = 100.0;
float _persp_xoffset_f = 160.0;
float _persp_yoffset_f = 100.0;
/* set_projection_viewport:
* Sets the viewport used to scale the output of the persp_project()
* function.
*/
void set_projection_viewport(int x, int y, int w, int h)
{
ASSERT(w > 0);
ASSERT(h > 0);
_persp_xscale = itofix(w/2);
_persp_yscale = itofix(h/2);
_persp_xoffset = itofix(x + w/2);
_persp_yoffset = itofix(y + h/2);
_persp_xscale_f = w/2;
_persp_yscale_f = h/2;
_persp_xoffset_f = x + w/2;
_persp_yoffset_f = y + h/2;
}
|